xref: /openbmc/linux/include/net/sock.h (revision 5214cae7)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73 
74 /*
75  * This structure really needs to be cleaned up.
76  * Most of it is for TCP, and not used by any of
77  * the other protocols.
78  */
79 
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 					printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92 
93 /* This is the per-socket lock.  The spinlock provides a synchronization
94  * between user contexts and software interrupt processing, whereas the
95  * mini-semaphore synchronizes multiple users amongst themselves.
96  */
97 typedef struct {
98 	spinlock_t		slock;
99 	int			owned;
100 	wait_queue_head_t	wq;
101 	/*
102 	 * We express the mutex-alike socket_lock semantics
103 	 * to the lock validator by explicitly managing
104 	 * the slock as a lock variant (in addition to
105 	 * the slock itself):
106 	 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 	struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111 
112 struct sock;
113 struct proto;
114 struct net;
115 
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118 
119 /**
120  *	struct sock_common - minimal network layer representation of sockets
121  *	@skc_daddr: Foreign IPv4 addr
122  *	@skc_rcv_saddr: Bound local IPv4 addr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_family: network address family
128  *	@skc_state: Connection state
129  *	@skc_reuse: %SO_REUSEADDR setting
130  *	@skc_reuseport: %SO_REUSEPORT setting
131  *	@skc_bound_dev_if: bound device index if != 0
132  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
133  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
134  *	@skc_prot: protocol handlers inside a network family
135  *	@skc_net: reference to the network namespace of this socket
136  *	@skc_node: main hash linkage for various protocol lookup tables
137  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
138  *	@skc_tx_queue_mapping: tx queue number for this connection
139  *	@skc_flags: place holder for sk_flags
140  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
141  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
142  *	@skc_incoming_cpu: record/match cpu processing incoming packets
143  *	@skc_refcnt: reference count
144  *
145  *	This is the minimal network layer representation of sockets, the header
146  *	for struct sock and struct inet_timewait_sock.
147  */
148 struct sock_common {
149 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
150 	 * address on 64bit arches : cf INET_MATCH()
151 	 */
152 	union {
153 		__addrpair	skc_addrpair;
154 		struct {
155 			__be32	skc_daddr;
156 			__be32	skc_rcv_saddr;
157 		};
158 	};
159 	union  {
160 		unsigned int	skc_hash;
161 		__u16		skc_u16hashes[2];
162 	};
163 	/* skc_dport && skc_num must be grouped as well */
164 	union {
165 		__portpair	skc_portpair;
166 		struct {
167 			__be16	skc_dport;
168 			__u16	skc_num;
169 		};
170 	};
171 
172 	unsigned short		skc_family;
173 	volatile unsigned char	skc_state;
174 	unsigned char		skc_reuse:4;
175 	unsigned char		skc_reuseport:1;
176 	unsigned char		skc_ipv6only:1;
177 	unsigned char		skc_net_refcnt:1;
178 	int			skc_bound_dev_if;
179 	union {
180 		struct hlist_node	skc_bind_node;
181 		struct hlist_nulls_node skc_portaddr_node;
182 	};
183 	struct proto		*skc_prot;
184 	possible_net_t		skc_net;
185 
186 #if IS_ENABLED(CONFIG_IPV6)
187 	struct in6_addr		skc_v6_daddr;
188 	struct in6_addr		skc_v6_rcv_saddr;
189 #endif
190 
191 	atomic64_t		skc_cookie;
192 
193 	/* following fields are padding to force
194 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
195 	 * assuming IPV6 is enabled. We use this padding differently
196 	 * for different kind of 'sockets'
197 	 */
198 	union {
199 		unsigned long	skc_flags;
200 		struct sock	*skc_listener; /* request_sock */
201 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
202 	};
203 	/*
204 	 * fields between dontcopy_begin/dontcopy_end
205 	 * are not copied in sock_copy()
206 	 */
207 	/* private: */
208 	int			skc_dontcopy_begin[0];
209 	/* public: */
210 	union {
211 		struct hlist_node	skc_node;
212 		struct hlist_nulls_node skc_nulls_node;
213 	};
214 	int			skc_tx_queue_mapping;
215 	union {
216 		int		skc_incoming_cpu;
217 		u32		skc_rcv_wnd;
218 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
219 	};
220 
221 	atomic_t		skc_refcnt;
222 	/* private: */
223 	int                     skc_dontcopy_end[0];
224 	union {
225 		u32		skc_rxhash;
226 		u32		skc_window_clamp;
227 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
228 	};
229 	/* public: */
230 };
231 
232 /**
233   *	struct sock - network layer representation of sockets
234   *	@__sk_common: shared layout with inet_timewait_sock
235   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
236   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
237   *	@sk_lock:	synchronizer
238   *	@sk_rcvbuf: size of receive buffer in bytes
239   *	@sk_wq: sock wait queue and async head
240   *	@sk_rx_dst: receive input route used by early demux
241   *	@sk_dst_cache: destination cache
242   *	@sk_policy: flow policy
243   *	@sk_receive_queue: incoming packets
244   *	@sk_wmem_alloc: transmit queue bytes committed
245   *	@sk_write_queue: Packet sending queue
246   *	@sk_omem_alloc: "o" is "option" or "other"
247   *	@sk_wmem_queued: persistent queue size
248   *	@sk_forward_alloc: space allocated forward
249   *	@sk_napi_id: id of the last napi context to receive data for sk
250   *	@sk_ll_usec: usecs to busypoll when there is no data
251   *	@sk_allocation: allocation mode
252   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
253   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
254   *	@sk_sndbuf: size of send buffer in bytes
255   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
256   *	@sk_no_check_rx: allow zero checksum in RX packets
257   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
258   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
259   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
260   *	@sk_gso_max_size: Maximum GSO segment size to build
261   *	@sk_gso_max_segs: Maximum number of GSO segments
262   *	@sk_lingertime: %SO_LINGER l_linger setting
263   *	@sk_backlog: always used with the per-socket spinlock held
264   *	@sk_callback_lock: used with the callbacks in the end of this struct
265   *	@sk_error_queue: rarely used
266   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
267   *			  IPV6_ADDRFORM for instance)
268   *	@sk_err: last error
269   *	@sk_err_soft: errors that don't cause failure but are the cause of a
270   *		      persistent failure not just 'timed out'
271   *	@sk_drops: raw/udp drops counter
272   *	@sk_ack_backlog: current listen backlog
273   *	@sk_max_ack_backlog: listen backlog set in listen()
274   *	@sk_priority: %SO_PRIORITY setting
275   *	@sk_type: socket type (%SOCK_STREAM, etc)
276   *	@sk_protocol: which protocol this socket belongs in this network family
277   *	@sk_peer_pid: &struct pid for this socket's peer
278   *	@sk_peer_cred: %SO_PEERCRED setting
279   *	@sk_rcvlowat: %SO_RCVLOWAT setting
280   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
281   *	@sk_sndtimeo: %SO_SNDTIMEO setting
282   *	@sk_txhash: computed flow hash for use on transmit
283   *	@sk_filter: socket filtering instructions
284   *	@sk_timer: sock cleanup timer
285   *	@sk_stamp: time stamp of last packet received
286   *	@sk_tsflags: SO_TIMESTAMPING socket options
287   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
288   *	@sk_socket: Identd and reporting IO signals
289   *	@sk_user_data: RPC layer private data
290   *	@sk_frag: cached page frag
291   *	@sk_peek_off: current peek_offset value
292   *	@sk_send_head: front of stuff to transmit
293   *	@sk_security: used by security modules
294   *	@sk_mark: generic packet mark
295   *	@sk_cgrp_data: cgroup data for this cgroup
296   *	@sk_memcg: this socket's memory cgroup association
297   *	@sk_write_pending: a write to stream socket waits to start
298   *	@sk_state_change: callback to indicate change in the state of the sock
299   *	@sk_data_ready: callback to indicate there is data to be processed
300   *	@sk_write_space: callback to indicate there is bf sending space available
301   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
302   *	@sk_backlog_rcv: callback to process the backlog
303   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
304   *	@sk_reuseport_cb: reuseport group container
305  */
306 struct sock {
307 	/*
308 	 * Now struct inet_timewait_sock also uses sock_common, so please just
309 	 * don't add nothing before this first member (__sk_common) --acme
310 	 */
311 	struct sock_common	__sk_common;
312 #define sk_node			__sk_common.skc_node
313 #define sk_nulls_node		__sk_common.skc_nulls_node
314 #define sk_refcnt		__sk_common.skc_refcnt
315 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
316 
317 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
318 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
319 #define sk_hash			__sk_common.skc_hash
320 #define sk_portpair		__sk_common.skc_portpair
321 #define sk_num			__sk_common.skc_num
322 #define sk_dport		__sk_common.skc_dport
323 #define sk_addrpair		__sk_common.skc_addrpair
324 #define sk_daddr		__sk_common.skc_daddr
325 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
326 #define sk_family		__sk_common.skc_family
327 #define sk_state		__sk_common.skc_state
328 #define sk_reuse		__sk_common.skc_reuse
329 #define sk_reuseport		__sk_common.skc_reuseport
330 #define sk_ipv6only		__sk_common.skc_ipv6only
331 #define sk_net_refcnt		__sk_common.skc_net_refcnt
332 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
333 #define sk_bind_node		__sk_common.skc_bind_node
334 #define sk_prot			__sk_common.skc_prot
335 #define sk_net			__sk_common.skc_net
336 #define sk_v6_daddr		__sk_common.skc_v6_daddr
337 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
338 #define sk_cookie		__sk_common.skc_cookie
339 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
340 #define sk_flags		__sk_common.skc_flags
341 #define sk_rxhash		__sk_common.skc_rxhash
342 
343 	socket_lock_t		sk_lock;
344 	struct sk_buff_head	sk_receive_queue;
345 	/*
346 	 * The backlog queue is special, it is always used with
347 	 * the per-socket spinlock held and requires low latency
348 	 * access. Therefore we special case it's implementation.
349 	 * Note : rmem_alloc is in this structure to fill a hole
350 	 * on 64bit arches, not because its logically part of
351 	 * backlog.
352 	 */
353 	struct {
354 		atomic_t	rmem_alloc;
355 		int		len;
356 		struct sk_buff	*head;
357 		struct sk_buff	*tail;
358 	} sk_backlog;
359 #define sk_rmem_alloc sk_backlog.rmem_alloc
360 	int			sk_forward_alloc;
361 
362 	__u32			sk_txhash;
363 #ifdef CONFIG_NET_RX_BUSY_POLL
364 	unsigned int		sk_napi_id;
365 	unsigned int		sk_ll_usec;
366 #endif
367 	atomic_t		sk_drops;
368 	int			sk_rcvbuf;
369 
370 	struct sk_filter __rcu	*sk_filter;
371 	union {
372 		struct socket_wq __rcu	*sk_wq;
373 		struct socket_wq	*sk_wq_raw;
374 	};
375 #ifdef CONFIG_XFRM
376 	struct xfrm_policy __rcu *sk_policy[2];
377 #endif
378 	struct dst_entry	*sk_rx_dst;
379 	struct dst_entry __rcu	*sk_dst_cache;
380 	/* Note: 32bit hole on 64bit arches */
381 	atomic_t		sk_wmem_alloc;
382 	atomic_t		sk_omem_alloc;
383 	int			sk_sndbuf;
384 	struct sk_buff_head	sk_write_queue;
385 	kmemcheck_bitfield_begin(flags);
386 	unsigned int		sk_shutdown  : 2,
387 				sk_no_check_tx : 1,
388 				sk_no_check_rx : 1,
389 				sk_userlocks : 4,
390 				sk_protocol  : 8,
391 				sk_type      : 16;
392 #define SK_PROTOCOL_MAX U8_MAX
393 	kmemcheck_bitfield_end(flags);
394 	int			sk_wmem_queued;
395 	gfp_t			sk_allocation;
396 	u32			sk_pacing_rate; /* bytes per second */
397 	u32			sk_max_pacing_rate;
398 	netdev_features_t	sk_route_caps;
399 	netdev_features_t	sk_route_nocaps;
400 	int			sk_gso_type;
401 	unsigned int		sk_gso_max_size;
402 	u16			sk_gso_max_segs;
403 	int			sk_rcvlowat;
404 	unsigned long	        sk_lingertime;
405 	struct sk_buff_head	sk_error_queue;
406 	struct proto		*sk_prot_creator;
407 	rwlock_t		sk_callback_lock;
408 	int			sk_err,
409 				sk_err_soft;
410 	u32			sk_ack_backlog;
411 	u32			sk_max_ack_backlog;
412 	__u32			sk_priority;
413 	__u32			sk_mark;
414 	struct pid		*sk_peer_pid;
415 	const struct cred	*sk_peer_cred;
416 	long			sk_rcvtimeo;
417 	long			sk_sndtimeo;
418 	struct timer_list	sk_timer;
419 	ktime_t			sk_stamp;
420 	u16			sk_tsflags;
421 	u32			sk_tskey;
422 	struct socket		*sk_socket;
423 	void			*sk_user_data;
424 	struct page_frag	sk_frag;
425 	struct sk_buff		*sk_send_head;
426 	__s32			sk_peek_off;
427 	int			sk_write_pending;
428 #ifdef CONFIG_SECURITY
429 	void			*sk_security;
430 #endif
431 	struct sock_cgroup_data	sk_cgrp_data;
432 	struct mem_cgroup	*sk_memcg;
433 	void			(*sk_state_change)(struct sock *sk);
434 	void			(*sk_data_ready)(struct sock *sk);
435 	void			(*sk_write_space)(struct sock *sk);
436 	void			(*sk_error_report)(struct sock *sk);
437 	int			(*sk_backlog_rcv)(struct sock *sk,
438 						  struct sk_buff *skb);
439 	void                    (*sk_destruct)(struct sock *sk);
440 	struct sock_reuseport __rcu	*sk_reuseport_cb;
441 };
442 
443 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
444 
445 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
446 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
447 
448 /*
449  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
450  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
451  * on a socket means that the socket will reuse everybody else's port
452  * without looking at the other's sk_reuse value.
453  */
454 
455 #define SK_NO_REUSE	0
456 #define SK_CAN_REUSE	1
457 #define SK_FORCE_REUSE	2
458 
459 static inline int sk_peek_offset(struct sock *sk, int flags)
460 {
461 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
462 		return sk->sk_peek_off;
463 	else
464 		return 0;
465 }
466 
467 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
468 {
469 	if (sk->sk_peek_off >= 0) {
470 		if (sk->sk_peek_off >= val)
471 			sk->sk_peek_off -= val;
472 		else
473 			sk->sk_peek_off = 0;
474 	}
475 }
476 
477 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
478 {
479 	if (sk->sk_peek_off >= 0)
480 		sk->sk_peek_off += val;
481 }
482 
483 /*
484  * Hashed lists helper routines
485  */
486 static inline struct sock *sk_entry(const struct hlist_node *node)
487 {
488 	return hlist_entry(node, struct sock, sk_node);
489 }
490 
491 static inline struct sock *__sk_head(const struct hlist_head *head)
492 {
493 	return hlist_entry(head->first, struct sock, sk_node);
494 }
495 
496 static inline struct sock *sk_head(const struct hlist_head *head)
497 {
498 	return hlist_empty(head) ? NULL : __sk_head(head);
499 }
500 
501 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
502 {
503 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
504 }
505 
506 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
507 {
508 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
509 }
510 
511 static inline struct sock *sk_next(const struct sock *sk)
512 {
513 	return sk->sk_node.next ?
514 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
515 }
516 
517 static inline struct sock *sk_nulls_next(const struct sock *sk)
518 {
519 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
520 		hlist_nulls_entry(sk->sk_nulls_node.next,
521 				  struct sock, sk_nulls_node) :
522 		NULL;
523 }
524 
525 static inline bool sk_unhashed(const struct sock *sk)
526 {
527 	return hlist_unhashed(&sk->sk_node);
528 }
529 
530 static inline bool sk_hashed(const struct sock *sk)
531 {
532 	return !sk_unhashed(sk);
533 }
534 
535 static inline void sk_node_init(struct hlist_node *node)
536 {
537 	node->pprev = NULL;
538 }
539 
540 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
541 {
542 	node->pprev = NULL;
543 }
544 
545 static inline void __sk_del_node(struct sock *sk)
546 {
547 	__hlist_del(&sk->sk_node);
548 }
549 
550 /* NB: equivalent to hlist_del_init_rcu */
551 static inline bool __sk_del_node_init(struct sock *sk)
552 {
553 	if (sk_hashed(sk)) {
554 		__sk_del_node(sk);
555 		sk_node_init(&sk->sk_node);
556 		return true;
557 	}
558 	return false;
559 }
560 
561 /* Grab socket reference count. This operation is valid only
562    when sk is ALREADY grabbed f.e. it is found in hash table
563    or a list and the lookup is made under lock preventing hash table
564    modifications.
565  */
566 
567 static inline void sock_hold(struct sock *sk)
568 {
569 	atomic_inc(&sk->sk_refcnt);
570 }
571 
572 /* Ungrab socket in the context, which assumes that socket refcnt
573    cannot hit zero, f.e. it is true in context of any socketcall.
574  */
575 static inline void __sock_put(struct sock *sk)
576 {
577 	atomic_dec(&sk->sk_refcnt);
578 }
579 
580 static inline bool sk_del_node_init(struct sock *sk)
581 {
582 	bool rc = __sk_del_node_init(sk);
583 
584 	if (rc) {
585 		/* paranoid for a while -acme */
586 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
587 		__sock_put(sk);
588 	}
589 	return rc;
590 }
591 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
592 
593 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
594 {
595 	if (sk_hashed(sk)) {
596 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
597 		return true;
598 	}
599 	return false;
600 }
601 
602 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
603 {
604 	bool rc = __sk_nulls_del_node_init_rcu(sk);
605 
606 	if (rc) {
607 		/* paranoid for a while -acme */
608 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
609 		__sock_put(sk);
610 	}
611 	return rc;
612 }
613 
614 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
615 {
616 	hlist_add_head(&sk->sk_node, list);
617 }
618 
619 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
620 {
621 	sock_hold(sk);
622 	__sk_add_node(sk, list);
623 }
624 
625 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
626 {
627 	sock_hold(sk);
628 	hlist_add_head_rcu(&sk->sk_node, list);
629 }
630 
631 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
632 {
633 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
634 	    sk->sk_family == AF_INET6)
635 		hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
636 	else
637 		hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
638 }
639 
640 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
641 {
642 	sock_hold(sk);
643 	__sk_nulls_add_node_rcu(sk, list);
644 }
645 
646 static inline void __sk_del_bind_node(struct sock *sk)
647 {
648 	__hlist_del(&sk->sk_bind_node);
649 }
650 
651 static inline void sk_add_bind_node(struct sock *sk,
652 					struct hlist_head *list)
653 {
654 	hlist_add_head(&sk->sk_bind_node, list);
655 }
656 
657 #define sk_for_each(__sk, list) \
658 	hlist_for_each_entry(__sk, list, sk_node)
659 #define sk_for_each_rcu(__sk, list) \
660 	hlist_for_each_entry_rcu(__sk, list, sk_node)
661 #define sk_nulls_for_each(__sk, node, list) \
662 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
663 #define sk_nulls_for_each_rcu(__sk, node, list) \
664 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
665 #define sk_for_each_from(__sk) \
666 	hlist_for_each_entry_from(__sk, sk_node)
667 #define sk_nulls_for_each_from(__sk, node) \
668 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
669 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
670 #define sk_for_each_safe(__sk, tmp, list) \
671 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
672 #define sk_for_each_bound(__sk, list) \
673 	hlist_for_each_entry(__sk, list, sk_bind_node)
674 
675 /**
676  * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
677  * @tpos:	the type * to use as a loop cursor.
678  * @pos:	the &struct hlist_node to use as a loop cursor.
679  * @head:	the head for your list.
680  * @offset:	offset of hlist_node within the struct.
681  *
682  */
683 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset)		       \
684 	for (pos = (head)->first;					       \
685 	     (!is_a_nulls(pos)) &&					       \
686 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
687 	     pos = pos->next)
688 
689 static inline struct user_namespace *sk_user_ns(struct sock *sk)
690 {
691 	/* Careful only use this in a context where these parameters
692 	 * can not change and must all be valid, such as recvmsg from
693 	 * userspace.
694 	 */
695 	return sk->sk_socket->file->f_cred->user_ns;
696 }
697 
698 /* Sock flags */
699 enum sock_flags {
700 	SOCK_DEAD,
701 	SOCK_DONE,
702 	SOCK_URGINLINE,
703 	SOCK_KEEPOPEN,
704 	SOCK_LINGER,
705 	SOCK_DESTROY,
706 	SOCK_BROADCAST,
707 	SOCK_TIMESTAMP,
708 	SOCK_ZAPPED,
709 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
710 	SOCK_DBG, /* %SO_DEBUG setting */
711 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
712 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
713 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
714 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
715 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
716 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
717 	SOCK_FASYNC, /* fasync() active */
718 	SOCK_RXQ_OVFL,
719 	SOCK_ZEROCOPY, /* buffers from userspace */
720 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
721 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
722 		     * Will use last 4 bytes of packet sent from
723 		     * user-space instead.
724 		     */
725 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
726 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
727 };
728 
729 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
730 
731 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
732 {
733 	nsk->sk_flags = osk->sk_flags;
734 }
735 
736 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
737 {
738 	__set_bit(flag, &sk->sk_flags);
739 }
740 
741 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
742 {
743 	__clear_bit(flag, &sk->sk_flags);
744 }
745 
746 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
747 {
748 	return test_bit(flag, &sk->sk_flags);
749 }
750 
751 #ifdef CONFIG_NET
752 extern struct static_key memalloc_socks;
753 static inline int sk_memalloc_socks(void)
754 {
755 	return static_key_false(&memalloc_socks);
756 }
757 #else
758 
759 static inline int sk_memalloc_socks(void)
760 {
761 	return 0;
762 }
763 
764 #endif
765 
766 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
767 {
768 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
769 }
770 
771 static inline void sk_acceptq_removed(struct sock *sk)
772 {
773 	sk->sk_ack_backlog--;
774 }
775 
776 static inline void sk_acceptq_added(struct sock *sk)
777 {
778 	sk->sk_ack_backlog++;
779 }
780 
781 static inline bool sk_acceptq_is_full(const struct sock *sk)
782 {
783 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
784 }
785 
786 /*
787  * Compute minimal free write space needed to queue new packets.
788  */
789 static inline int sk_stream_min_wspace(const struct sock *sk)
790 {
791 	return sk->sk_wmem_queued >> 1;
792 }
793 
794 static inline int sk_stream_wspace(const struct sock *sk)
795 {
796 	return sk->sk_sndbuf - sk->sk_wmem_queued;
797 }
798 
799 void sk_stream_write_space(struct sock *sk);
800 
801 /* OOB backlog add */
802 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
803 {
804 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
805 	skb_dst_force_safe(skb);
806 
807 	if (!sk->sk_backlog.tail)
808 		sk->sk_backlog.head = skb;
809 	else
810 		sk->sk_backlog.tail->next = skb;
811 
812 	sk->sk_backlog.tail = skb;
813 	skb->next = NULL;
814 }
815 
816 /*
817  * Take into account size of receive queue and backlog queue
818  * Do not take into account this skb truesize,
819  * to allow even a single big packet to come.
820  */
821 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
822 {
823 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
824 
825 	return qsize > limit;
826 }
827 
828 /* The per-socket spinlock must be held here. */
829 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
830 					      unsigned int limit)
831 {
832 	if (sk_rcvqueues_full(sk, limit))
833 		return -ENOBUFS;
834 
835 	/*
836 	 * If the skb was allocated from pfmemalloc reserves, only
837 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
838 	 * helping free memory
839 	 */
840 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
841 		return -ENOMEM;
842 
843 	__sk_add_backlog(sk, skb);
844 	sk->sk_backlog.len += skb->truesize;
845 	return 0;
846 }
847 
848 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
849 
850 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
851 {
852 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
853 		return __sk_backlog_rcv(sk, skb);
854 
855 	return sk->sk_backlog_rcv(sk, skb);
856 }
857 
858 static inline void sk_incoming_cpu_update(struct sock *sk)
859 {
860 	sk->sk_incoming_cpu = raw_smp_processor_id();
861 }
862 
863 static inline void sock_rps_record_flow_hash(__u32 hash)
864 {
865 #ifdef CONFIG_RPS
866 	struct rps_sock_flow_table *sock_flow_table;
867 
868 	rcu_read_lock();
869 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
870 	rps_record_sock_flow(sock_flow_table, hash);
871 	rcu_read_unlock();
872 #endif
873 }
874 
875 static inline void sock_rps_record_flow(const struct sock *sk)
876 {
877 #ifdef CONFIG_RPS
878 	sock_rps_record_flow_hash(sk->sk_rxhash);
879 #endif
880 }
881 
882 static inline void sock_rps_save_rxhash(struct sock *sk,
883 					const struct sk_buff *skb)
884 {
885 #ifdef CONFIG_RPS
886 	if (unlikely(sk->sk_rxhash != skb->hash))
887 		sk->sk_rxhash = skb->hash;
888 #endif
889 }
890 
891 static inline void sock_rps_reset_rxhash(struct sock *sk)
892 {
893 #ifdef CONFIG_RPS
894 	sk->sk_rxhash = 0;
895 #endif
896 }
897 
898 #define sk_wait_event(__sk, __timeo, __condition)			\
899 	({	int __rc;						\
900 		release_sock(__sk);					\
901 		__rc = __condition;					\
902 		if (!__rc) {						\
903 			*(__timeo) = schedule_timeout(*(__timeo));	\
904 		}							\
905 		sched_annotate_sleep();						\
906 		lock_sock(__sk);					\
907 		__rc = __condition;					\
908 		__rc;							\
909 	})
910 
911 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
912 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
913 void sk_stream_wait_close(struct sock *sk, long timeo_p);
914 int sk_stream_error(struct sock *sk, int flags, int err);
915 void sk_stream_kill_queues(struct sock *sk);
916 void sk_set_memalloc(struct sock *sk);
917 void sk_clear_memalloc(struct sock *sk);
918 
919 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
920 
921 struct request_sock_ops;
922 struct timewait_sock_ops;
923 struct inet_hashinfo;
924 struct raw_hashinfo;
925 struct module;
926 
927 /*
928  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
929  * un-modified. Special care is taken when initializing object to zero.
930  */
931 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
932 {
933 	if (offsetof(struct sock, sk_node.next) != 0)
934 		memset(sk, 0, offsetof(struct sock, sk_node.next));
935 	memset(&sk->sk_node.pprev, 0,
936 	       size - offsetof(struct sock, sk_node.pprev));
937 }
938 
939 /* Networking protocol blocks we attach to sockets.
940  * socket layer -> transport layer interface
941  */
942 struct proto {
943 	void			(*close)(struct sock *sk,
944 					long timeout);
945 	int			(*connect)(struct sock *sk,
946 					struct sockaddr *uaddr,
947 					int addr_len);
948 	int			(*disconnect)(struct sock *sk, int flags);
949 
950 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
951 
952 	int			(*ioctl)(struct sock *sk, int cmd,
953 					 unsigned long arg);
954 	int			(*init)(struct sock *sk);
955 	void			(*destroy)(struct sock *sk);
956 	void			(*shutdown)(struct sock *sk, int how);
957 	int			(*setsockopt)(struct sock *sk, int level,
958 					int optname, char __user *optval,
959 					unsigned int optlen);
960 	int			(*getsockopt)(struct sock *sk, int level,
961 					int optname, char __user *optval,
962 					int __user *option);
963 #ifdef CONFIG_COMPAT
964 	int			(*compat_setsockopt)(struct sock *sk,
965 					int level,
966 					int optname, char __user *optval,
967 					unsigned int optlen);
968 	int			(*compat_getsockopt)(struct sock *sk,
969 					int level,
970 					int optname, char __user *optval,
971 					int __user *option);
972 	int			(*compat_ioctl)(struct sock *sk,
973 					unsigned int cmd, unsigned long arg);
974 #endif
975 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
976 					   size_t len);
977 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
978 					   size_t len, int noblock, int flags,
979 					   int *addr_len);
980 	int			(*sendpage)(struct sock *sk, struct page *page,
981 					int offset, size_t size, int flags);
982 	int			(*bind)(struct sock *sk,
983 					struct sockaddr *uaddr, int addr_len);
984 
985 	int			(*backlog_rcv) (struct sock *sk,
986 						struct sk_buff *skb);
987 
988 	void		(*release_cb)(struct sock *sk);
989 
990 	/* Keeping track of sk's, looking them up, and port selection methods. */
991 	int			(*hash)(struct sock *sk);
992 	void			(*unhash)(struct sock *sk);
993 	void			(*rehash)(struct sock *sk);
994 	int			(*get_port)(struct sock *sk, unsigned short snum);
995 	void			(*clear_sk)(struct sock *sk, int size);
996 
997 	/* Keeping track of sockets in use */
998 #ifdef CONFIG_PROC_FS
999 	unsigned int		inuse_idx;
1000 #endif
1001 
1002 	bool			(*stream_memory_free)(const struct sock *sk);
1003 	/* Memory pressure */
1004 	void			(*enter_memory_pressure)(struct sock *sk);
1005 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1006 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1007 	/*
1008 	 * Pressure flag: try to collapse.
1009 	 * Technical note: it is used by multiple contexts non atomically.
1010 	 * All the __sk_mem_schedule() is of this nature: accounting
1011 	 * is strict, actions are advisory and have some latency.
1012 	 */
1013 	int			*memory_pressure;
1014 	long			*sysctl_mem;
1015 	int			*sysctl_wmem;
1016 	int			*sysctl_rmem;
1017 	int			max_header;
1018 	bool			no_autobind;
1019 
1020 	struct kmem_cache	*slab;
1021 	unsigned int		obj_size;
1022 	int			slab_flags;
1023 
1024 	struct percpu_counter	*orphan_count;
1025 
1026 	struct request_sock_ops	*rsk_prot;
1027 	struct timewait_sock_ops *twsk_prot;
1028 
1029 	union {
1030 		struct inet_hashinfo	*hashinfo;
1031 		struct udp_table	*udp_table;
1032 		struct raw_hashinfo	*raw_hash;
1033 	} h;
1034 
1035 	struct module		*owner;
1036 
1037 	char			name[32];
1038 
1039 	struct list_head	node;
1040 #ifdef SOCK_REFCNT_DEBUG
1041 	atomic_t		socks;
1042 #endif
1043 	int			(*diag_destroy)(struct sock *sk, int err);
1044 };
1045 
1046 int proto_register(struct proto *prot, int alloc_slab);
1047 void proto_unregister(struct proto *prot);
1048 
1049 #ifdef SOCK_REFCNT_DEBUG
1050 static inline void sk_refcnt_debug_inc(struct sock *sk)
1051 {
1052 	atomic_inc(&sk->sk_prot->socks);
1053 }
1054 
1055 static inline void sk_refcnt_debug_dec(struct sock *sk)
1056 {
1057 	atomic_dec(&sk->sk_prot->socks);
1058 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1059 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1060 }
1061 
1062 static inline void sk_refcnt_debug_release(const struct sock *sk)
1063 {
1064 	if (atomic_read(&sk->sk_refcnt) != 1)
1065 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1066 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1067 }
1068 #else /* SOCK_REFCNT_DEBUG */
1069 #define sk_refcnt_debug_inc(sk) do { } while (0)
1070 #define sk_refcnt_debug_dec(sk) do { } while (0)
1071 #define sk_refcnt_debug_release(sk) do { } while (0)
1072 #endif /* SOCK_REFCNT_DEBUG */
1073 
1074 static inline bool sk_stream_memory_free(const struct sock *sk)
1075 {
1076 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1077 		return false;
1078 
1079 	return sk->sk_prot->stream_memory_free ?
1080 		sk->sk_prot->stream_memory_free(sk) : true;
1081 }
1082 
1083 static inline bool sk_stream_is_writeable(const struct sock *sk)
1084 {
1085 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1086 	       sk_stream_memory_free(sk);
1087 }
1088 
1089 
1090 static inline bool sk_has_memory_pressure(const struct sock *sk)
1091 {
1092 	return sk->sk_prot->memory_pressure != NULL;
1093 }
1094 
1095 static inline bool sk_under_memory_pressure(const struct sock *sk)
1096 {
1097 	if (!sk->sk_prot->memory_pressure)
1098 		return false;
1099 
1100 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1101 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1102 		return true;
1103 
1104 	return !!*sk->sk_prot->memory_pressure;
1105 }
1106 
1107 static inline void sk_leave_memory_pressure(struct sock *sk)
1108 {
1109 	int *memory_pressure = sk->sk_prot->memory_pressure;
1110 
1111 	if (!memory_pressure)
1112 		return;
1113 
1114 	if (*memory_pressure)
1115 		*memory_pressure = 0;
1116 }
1117 
1118 static inline void sk_enter_memory_pressure(struct sock *sk)
1119 {
1120 	if (!sk->sk_prot->enter_memory_pressure)
1121 		return;
1122 
1123 	sk->sk_prot->enter_memory_pressure(sk);
1124 }
1125 
1126 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1127 {
1128 	return sk->sk_prot->sysctl_mem[index];
1129 }
1130 
1131 static inline long
1132 sk_memory_allocated(const struct sock *sk)
1133 {
1134 	return atomic_long_read(sk->sk_prot->memory_allocated);
1135 }
1136 
1137 static inline long
1138 sk_memory_allocated_add(struct sock *sk, int amt)
1139 {
1140 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1141 }
1142 
1143 static inline void
1144 sk_memory_allocated_sub(struct sock *sk, int amt)
1145 {
1146 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1147 }
1148 
1149 static inline void sk_sockets_allocated_dec(struct sock *sk)
1150 {
1151 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1152 }
1153 
1154 static inline void sk_sockets_allocated_inc(struct sock *sk)
1155 {
1156 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1157 }
1158 
1159 static inline int
1160 sk_sockets_allocated_read_positive(struct sock *sk)
1161 {
1162 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1163 }
1164 
1165 static inline int
1166 proto_sockets_allocated_sum_positive(struct proto *prot)
1167 {
1168 	return percpu_counter_sum_positive(prot->sockets_allocated);
1169 }
1170 
1171 static inline long
1172 proto_memory_allocated(struct proto *prot)
1173 {
1174 	return atomic_long_read(prot->memory_allocated);
1175 }
1176 
1177 static inline bool
1178 proto_memory_pressure(struct proto *prot)
1179 {
1180 	if (!prot->memory_pressure)
1181 		return false;
1182 	return !!*prot->memory_pressure;
1183 }
1184 
1185 
1186 #ifdef CONFIG_PROC_FS
1187 /* Called with local bh disabled */
1188 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1189 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1190 #else
1191 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1192 		int inc)
1193 {
1194 }
1195 #endif
1196 
1197 
1198 /* With per-bucket locks this operation is not-atomic, so that
1199  * this version is not worse.
1200  */
1201 static inline int __sk_prot_rehash(struct sock *sk)
1202 {
1203 	sk->sk_prot->unhash(sk);
1204 	return sk->sk_prot->hash(sk);
1205 }
1206 
1207 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1208 
1209 /* About 10 seconds */
1210 #define SOCK_DESTROY_TIME (10*HZ)
1211 
1212 /* Sockets 0-1023 can't be bound to unless you are superuser */
1213 #define PROT_SOCK	1024
1214 
1215 #define SHUTDOWN_MASK	3
1216 #define RCV_SHUTDOWN	1
1217 #define SEND_SHUTDOWN	2
1218 
1219 #define SOCK_SNDBUF_LOCK	1
1220 #define SOCK_RCVBUF_LOCK	2
1221 #define SOCK_BINDADDR_LOCK	4
1222 #define SOCK_BINDPORT_LOCK	8
1223 
1224 struct socket_alloc {
1225 	struct socket socket;
1226 	struct inode vfs_inode;
1227 };
1228 
1229 static inline struct socket *SOCKET_I(struct inode *inode)
1230 {
1231 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1232 }
1233 
1234 static inline struct inode *SOCK_INODE(struct socket *socket)
1235 {
1236 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1237 }
1238 
1239 /*
1240  * Functions for memory accounting
1241  */
1242 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1243 void __sk_mem_reclaim(struct sock *sk, int amount);
1244 
1245 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1246 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1247 #define SK_MEM_SEND	0
1248 #define SK_MEM_RECV	1
1249 
1250 static inline int sk_mem_pages(int amt)
1251 {
1252 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1253 }
1254 
1255 static inline bool sk_has_account(struct sock *sk)
1256 {
1257 	/* return true if protocol supports memory accounting */
1258 	return !!sk->sk_prot->memory_allocated;
1259 }
1260 
1261 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1262 {
1263 	if (!sk_has_account(sk))
1264 		return true;
1265 	return size <= sk->sk_forward_alloc ||
1266 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1267 }
1268 
1269 static inline bool
1270 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1271 {
1272 	if (!sk_has_account(sk))
1273 		return true;
1274 	return size<= sk->sk_forward_alloc ||
1275 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1276 		skb_pfmemalloc(skb);
1277 }
1278 
1279 static inline void sk_mem_reclaim(struct sock *sk)
1280 {
1281 	if (!sk_has_account(sk))
1282 		return;
1283 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1284 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1285 }
1286 
1287 static inline void sk_mem_reclaim_partial(struct sock *sk)
1288 {
1289 	if (!sk_has_account(sk))
1290 		return;
1291 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1292 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1293 }
1294 
1295 static inline void sk_mem_charge(struct sock *sk, int size)
1296 {
1297 	if (!sk_has_account(sk))
1298 		return;
1299 	sk->sk_forward_alloc -= size;
1300 }
1301 
1302 static inline void sk_mem_uncharge(struct sock *sk, int size)
1303 {
1304 	if (!sk_has_account(sk))
1305 		return;
1306 	sk->sk_forward_alloc += size;
1307 }
1308 
1309 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1310 {
1311 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1312 	sk->sk_wmem_queued -= skb->truesize;
1313 	sk_mem_uncharge(sk, skb->truesize);
1314 	__kfree_skb(skb);
1315 }
1316 
1317 /* Used by processes to "lock" a socket state, so that
1318  * interrupts and bottom half handlers won't change it
1319  * from under us. It essentially blocks any incoming
1320  * packets, so that we won't get any new data or any
1321  * packets that change the state of the socket.
1322  *
1323  * While locked, BH processing will add new packets to
1324  * the backlog queue.  This queue is processed by the
1325  * owner of the socket lock right before it is released.
1326  *
1327  * Since ~2.3.5 it is also exclusive sleep lock serializing
1328  * accesses from user process context.
1329  */
1330 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1331 
1332 static inline void sock_release_ownership(struct sock *sk)
1333 {
1334 	sk->sk_lock.owned = 0;
1335 }
1336 
1337 /*
1338  * Macro so as to not evaluate some arguments when
1339  * lockdep is not enabled.
1340  *
1341  * Mark both the sk_lock and the sk_lock.slock as a
1342  * per-address-family lock class.
1343  */
1344 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1345 do {									\
1346 	sk->sk_lock.owned = 0;						\
1347 	init_waitqueue_head(&sk->sk_lock.wq);				\
1348 	spin_lock_init(&(sk)->sk_lock.slock);				\
1349 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1350 			sizeof((sk)->sk_lock));				\
1351 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1352 				(skey), (sname));				\
1353 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1354 } while (0)
1355 
1356 void lock_sock_nested(struct sock *sk, int subclass);
1357 
1358 static inline void lock_sock(struct sock *sk)
1359 {
1360 	lock_sock_nested(sk, 0);
1361 }
1362 
1363 void release_sock(struct sock *sk);
1364 
1365 /* BH context may only use the following locking interface. */
1366 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1367 #define bh_lock_sock_nested(__sk) \
1368 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1369 				SINGLE_DEPTH_NESTING)
1370 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1371 
1372 bool lock_sock_fast(struct sock *sk);
1373 /**
1374  * unlock_sock_fast - complement of lock_sock_fast
1375  * @sk: socket
1376  * @slow: slow mode
1377  *
1378  * fast unlock socket for user context.
1379  * If slow mode is on, we call regular release_sock()
1380  */
1381 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1382 {
1383 	if (slow)
1384 		release_sock(sk);
1385 	else
1386 		spin_unlock_bh(&sk->sk_lock.slock);
1387 }
1388 
1389 
1390 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1391 		      struct proto *prot, int kern);
1392 void sk_free(struct sock *sk);
1393 void sk_destruct(struct sock *sk);
1394 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1395 
1396 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1397 			     gfp_t priority);
1398 void sock_wfree(struct sk_buff *skb);
1399 void skb_orphan_partial(struct sk_buff *skb);
1400 void sock_rfree(struct sk_buff *skb);
1401 void sock_efree(struct sk_buff *skb);
1402 #ifdef CONFIG_INET
1403 void sock_edemux(struct sk_buff *skb);
1404 #else
1405 #define sock_edemux(skb) sock_efree(skb)
1406 #endif
1407 
1408 int sock_setsockopt(struct socket *sock, int level, int op,
1409 		    char __user *optval, unsigned int optlen);
1410 
1411 int sock_getsockopt(struct socket *sock, int level, int op,
1412 		    char __user *optval, int __user *optlen);
1413 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1414 				    int noblock, int *errcode);
1415 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1416 				     unsigned long data_len, int noblock,
1417 				     int *errcode, int max_page_order);
1418 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1419 void sock_kfree_s(struct sock *sk, void *mem, int size);
1420 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1421 void sk_send_sigurg(struct sock *sk);
1422 
1423 struct sockcm_cookie {
1424 	u32 mark;
1425 };
1426 
1427 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1428 		   struct sockcm_cookie *sockc);
1429 
1430 /*
1431  * Functions to fill in entries in struct proto_ops when a protocol
1432  * does not implement a particular function.
1433  */
1434 int sock_no_bind(struct socket *, struct sockaddr *, int);
1435 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1436 int sock_no_socketpair(struct socket *, struct socket *);
1437 int sock_no_accept(struct socket *, struct socket *, int);
1438 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1439 unsigned int sock_no_poll(struct file *, struct socket *,
1440 			  struct poll_table_struct *);
1441 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1442 int sock_no_listen(struct socket *, int);
1443 int sock_no_shutdown(struct socket *, int);
1444 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1445 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1446 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1447 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1448 int sock_no_mmap(struct file *file, struct socket *sock,
1449 		 struct vm_area_struct *vma);
1450 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1451 			 size_t size, int flags);
1452 
1453 /*
1454  * Functions to fill in entries in struct proto_ops when a protocol
1455  * uses the inet style.
1456  */
1457 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1458 				  char __user *optval, int __user *optlen);
1459 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1460 			int flags);
1461 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1462 				  char __user *optval, unsigned int optlen);
1463 int compat_sock_common_getsockopt(struct socket *sock, int level,
1464 		int optname, char __user *optval, int __user *optlen);
1465 int compat_sock_common_setsockopt(struct socket *sock, int level,
1466 		int optname, char __user *optval, unsigned int optlen);
1467 
1468 void sk_common_release(struct sock *sk);
1469 
1470 /*
1471  *	Default socket callbacks and setup code
1472  */
1473 
1474 /* Initialise core socket variables */
1475 void sock_init_data(struct socket *sock, struct sock *sk);
1476 
1477 /*
1478  * Socket reference counting postulates.
1479  *
1480  * * Each user of socket SHOULD hold a reference count.
1481  * * Each access point to socket (an hash table bucket, reference from a list,
1482  *   running timer, skb in flight MUST hold a reference count.
1483  * * When reference count hits 0, it means it will never increase back.
1484  * * When reference count hits 0, it means that no references from
1485  *   outside exist to this socket and current process on current CPU
1486  *   is last user and may/should destroy this socket.
1487  * * sk_free is called from any context: process, BH, IRQ. When
1488  *   it is called, socket has no references from outside -> sk_free
1489  *   may release descendant resources allocated by the socket, but
1490  *   to the time when it is called, socket is NOT referenced by any
1491  *   hash tables, lists etc.
1492  * * Packets, delivered from outside (from network or from another process)
1493  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1494  *   when they sit in queue. Otherwise, packets will leak to hole, when
1495  *   socket is looked up by one cpu and unhasing is made by another CPU.
1496  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1497  *   (leak to backlog). Packet socket does all the processing inside
1498  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1499  *   use separate SMP lock, so that they are prone too.
1500  */
1501 
1502 /* Ungrab socket and destroy it, if it was the last reference. */
1503 static inline void sock_put(struct sock *sk)
1504 {
1505 	if (atomic_dec_and_test(&sk->sk_refcnt))
1506 		sk_free(sk);
1507 }
1508 /* Generic version of sock_put(), dealing with all sockets
1509  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1510  */
1511 void sock_gen_put(struct sock *sk);
1512 
1513 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1514 
1515 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1516 {
1517 	sk->sk_tx_queue_mapping = tx_queue;
1518 }
1519 
1520 static inline void sk_tx_queue_clear(struct sock *sk)
1521 {
1522 	sk->sk_tx_queue_mapping = -1;
1523 }
1524 
1525 static inline int sk_tx_queue_get(const struct sock *sk)
1526 {
1527 	return sk ? sk->sk_tx_queue_mapping : -1;
1528 }
1529 
1530 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1531 {
1532 	sk_tx_queue_clear(sk);
1533 	sk->sk_socket = sock;
1534 }
1535 
1536 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1537 {
1538 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1539 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1540 }
1541 /* Detach socket from process context.
1542  * Announce socket dead, detach it from wait queue and inode.
1543  * Note that parent inode held reference count on this struct sock,
1544  * we do not release it in this function, because protocol
1545  * probably wants some additional cleanups or even continuing
1546  * to work with this socket (TCP).
1547  */
1548 static inline void sock_orphan(struct sock *sk)
1549 {
1550 	write_lock_bh(&sk->sk_callback_lock);
1551 	sock_set_flag(sk, SOCK_DEAD);
1552 	sk_set_socket(sk, NULL);
1553 	sk->sk_wq  = NULL;
1554 	write_unlock_bh(&sk->sk_callback_lock);
1555 }
1556 
1557 static inline void sock_graft(struct sock *sk, struct socket *parent)
1558 {
1559 	write_lock_bh(&sk->sk_callback_lock);
1560 	sk->sk_wq = parent->wq;
1561 	parent->sk = sk;
1562 	sk_set_socket(sk, parent);
1563 	security_sock_graft(sk, parent);
1564 	write_unlock_bh(&sk->sk_callback_lock);
1565 }
1566 
1567 kuid_t sock_i_uid(struct sock *sk);
1568 unsigned long sock_i_ino(struct sock *sk);
1569 
1570 static inline u32 net_tx_rndhash(void)
1571 {
1572 	u32 v = prandom_u32();
1573 
1574 	return v ?: 1;
1575 }
1576 
1577 static inline void sk_set_txhash(struct sock *sk)
1578 {
1579 	sk->sk_txhash = net_tx_rndhash();
1580 }
1581 
1582 static inline void sk_rethink_txhash(struct sock *sk)
1583 {
1584 	if (sk->sk_txhash)
1585 		sk_set_txhash(sk);
1586 }
1587 
1588 static inline struct dst_entry *
1589 __sk_dst_get(struct sock *sk)
1590 {
1591 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1592 						       lockdep_is_held(&sk->sk_lock.slock));
1593 }
1594 
1595 static inline struct dst_entry *
1596 sk_dst_get(struct sock *sk)
1597 {
1598 	struct dst_entry *dst;
1599 
1600 	rcu_read_lock();
1601 	dst = rcu_dereference(sk->sk_dst_cache);
1602 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1603 		dst = NULL;
1604 	rcu_read_unlock();
1605 	return dst;
1606 }
1607 
1608 static inline void dst_negative_advice(struct sock *sk)
1609 {
1610 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1611 
1612 	sk_rethink_txhash(sk);
1613 
1614 	if (dst && dst->ops->negative_advice) {
1615 		ndst = dst->ops->negative_advice(dst);
1616 
1617 		if (ndst != dst) {
1618 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1619 			sk_tx_queue_clear(sk);
1620 		}
1621 	}
1622 }
1623 
1624 static inline void
1625 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1626 {
1627 	struct dst_entry *old_dst;
1628 
1629 	sk_tx_queue_clear(sk);
1630 	/*
1631 	 * This can be called while sk is owned by the caller only,
1632 	 * with no state that can be checked in a rcu_dereference_check() cond
1633 	 */
1634 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1635 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1636 	dst_release(old_dst);
1637 }
1638 
1639 static inline void
1640 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1641 {
1642 	struct dst_entry *old_dst;
1643 
1644 	sk_tx_queue_clear(sk);
1645 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1646 	dst_release(old_dst);
1647 }
1648 
1649 static inline void
1650 __sk_dst_reset(struct sock *sk)
1651 {
1652 	__sk_dst_set(sk, NULL);
1653 }
1654 
1655 static inline void
1656 sk_dst_reset(struct sock *sk)
1657 {
1658 	sk_dst_set(sk, NULL);
1659 }
1660 
1661 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1662 
1663 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1664 
1665 bool sk_mc_loop(struct sock *sk);
1666 
1667 static inline bool sk_can_gso(const struct sock *sk)
1668 {
1669 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1670 }
1671 
1672 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1673 
1674 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1675 {
1676 	sk->sk_route_nocaps |= flags;
1677 	sk->sk_route_caps &= ~flags;
1678 }
1679 
1680 static inline bool sk_check_csum_caps(struct sock *sk)
1681 {
1682 	return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1683 	       (sk->sk_family == PF_INET &&
1684 		(sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1685 	       (sk->sk_family == PF_INET6 &&
1686 		(sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1687 }
1688 
1689 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1690 					   struct iov_iter *from, char *to,
1691 					   int copy, int offset)
1692 {
1693 	if (skb->ip_summed == CHECKSUM_NONE) {
1694 		__wsum csum = 0;
1695 		if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1696 			return -EFAULT;
1697 		skb->csum = csum_block_add(skb->csum, csum, offset);
1698 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1699 		if (copy_from_iter_nocache(to, copy, from) != copy)
1700 			return -EFAULT;
1701 	} else if (copy_from_iter(to, copy, from) != copy)
1702 		return -EFAULT;
1703 
1704 	return 0;
1705 }
1706 
1707 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1708 				       struct iov_iter *from, int copy)
1709 {
1710 	int err, offset = skb->len;
1711 
1712 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1713 				       copy, offset);
1714 	if (err)
1715 		__skb_trim(skb, offset);
1716 
1717 	return err;
1718 }
1719 
1720 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1721 					   struct sk_buff *skb,
1722 					   struct page *page,
1723 					   int off, int copy)
1724 {
1725 	int err;
1726 
1727 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1728 				       copy, skb->len);
1729 	if (err)
1730 		return err;
1731 
1732 	skb->len	     += copy;
1733 	skb->data_len	     += copy;
1734 	skb->truesize	     += copy;
1735 	sk->sk_wmem_queued   += copy;
1736 	sk_mem_charge(sk, copy);
1737 	return 0;
1738 }
1739 
1740 /**
1741  * sk_wmem_alloc_get - returns write allocations
1742  * @sk: socket
1743  *
1744  * Returns sk_wmem_alloc minus initial offset of one
1745  */
1746 static inline int sk_wmem_alloc_get(const struct sock *sk)
1747 {
1748 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1749 }
1750 
1751 /**
1752  * sk_rmem_alloc_get - returns read allocations
1753  * @sk: socket
1754  *
1755  * Returns sk_rmem_alloc
1756  */
1757 static inline int sk_rmem_alloc_get(const struct sock *sk)
1758 {
1759 	return atomic_read(&sk->sk_rmem_alloc);
1760 }
1761 
1762 /**
1763  * sk_has_allocations - check if allocations are outstanding
1764  * @sk: socket
1765  *
1766  * Returns true if socket has write or read allocations
1767  */
1768 static inline bool sk_has_allocations(const struct sock *sk)
1769 {
1770 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1771 }
1772 
1773 /**
1774  * skwq_has_sleeper - check if there are any waiting processes
1775  * @wq: struct socket_wq
1776  *
1777  * Returns true if socket_wq has waiting processes
1778  *
1779  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1780  * barrier call. They were added due to the race found within the tcp code.
1781  *
1782  * Consider following tcp code paths:
1783  *
1784  * CPU1                  CPU2
1785  *
1786  * sys_select            receive packet
1787  *   ...                 ...
1788  *   __add_wait_queue    update tp->rcv_nxt
1789  *   ...                 ...
1790  *   tp->rcv_nxt check   sock_def_readable
1791  *   ...                 {
1792  *   schedule               rcu_read_lock();
1793  *                          wq = rcu_dereference(sk->sk_wq);
1794  *                          if (wq && waitqueue_active(&wq->wait))
1795  *                              wake_up_interruptible(&wq->wait)
1796  *                          ...
1797  *                       }
1798  *
1799  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1800  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1801  * could then endup calling schedule and sleep forever if there are no more
1802  * data on the socket.
1803  *
1804  */
1805 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1806 {
1807 	return wq && wq_has_sleeper(&wq->wait);
1808 }
1809 
1810 /**
1811  * sock_poll_wait - place memory barrier behind the poll_wait call.
1812  * @filp:           file
1813  * @wait_address:   socket wait queue
1814  * @p:              poll_table
1815  *
1816  * See the comments in the wq_has_sleeper function.
1817  */
1818 static inline void sock_poll_wait(struct file *filp,
1819 		wait_queue_head_t *wait_address, poll_table *p)
1820 {
1821 	if (!poll_does_not_wait(p) && wait_address) {
1822 		poll_wait(filp, wait_address, p);
1823 		/* We need to be sure we are in sync with the
1824 		 * socket flags modification.
1825 		 *
1826 		 * This memory barrier is paired in the wq_has_sleeper.
1827 		 */
1828 		smp_mb();
1829 	}
1830 }
1831 
1832 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1833 {
1834 	if (sk->sk_txhash) {
1835 		skb->l4_hash = 1;
1836 		skb->hash = sk->sk_txhash;
1837 	}
1838 }
1839 
1840 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1841 
1842 /*
1843  *	Queue a received datagram if it will fit. Stream and sequenced
1844  *	protocols can't normally use this as they need to fit buffers in
1845  *	and play with them.
1846  *
1847  *	Inlined as it's very short and called for pretty much every
1848  *	packet ever received.
1849  */
1850 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1851 {
1852 	skb_orphan(skb);
1853 	skb->sk = sk;
1854 	skb->destructor = sock_rfree;
1855 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1856 	sk_mem_charge(sk, skb->truesize);
1857 }
1858 
1859 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1860 		    unsigned long expires);
1861 
1862 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1863 
1864 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1865 
1866 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1867 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1868 
1869 /*
1870  *	Recover an error report and clear atomically
1871  */
1872 
1873 static inline int sock_error(struct sock *sk)
1874 {
1875 	int err;
1876 	if (likely(!sk->sk_err))
1877 		return 0;
1878 	err = xchg(&sk->sk_err, 0);
1879 	return -err;
1880 }
1881 
1882 static inline unsigned long sock_wspace(struct sock *sk)
1883 {
1884 	int amt = 0;
1885 
1886 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1887 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1888 		if (amt < 0)
1889 			amt = 0;
1890 	}
1891 	return amt;
1892 }
1893 
1894 /* Note:
1895  *  We use sk->sk_wq_raw, from contexts knowing this
1896  *  pointer is not NULL and cannot disappear/change.
1897  */
1898 static inline void sk_set_bit(int nr, struct sock *sk)
1899 {
1900 	set_bit(nr, &sk->sk_wq_raw->flags);
1901 }
1902 
1903 static inline void sk_clear_bit(int nr, struct sock *sk)
1904 {
1905 	clear_bit(nr, &sk->sk_wq_raw->flags);
1906 }
1907 
1908 static inline void sk_wake_async(const struct sock *sk, int how, int band)
1909 {
1910 	if (sock_flag(sk, SOCK_FASYNC)) {
1911 		rcu_read_lock();
1912 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
1913 		rcu_read_unlock();
1914 	}
1915 }
1916 
1917 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
1918  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
1919  * Note: for send buffers, TCP works better if we can build two skbs at
1920  * minimum.
1921  */
1922 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
1923 
1924 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
1925 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
1926 
1927 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1928 {
1929 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1930 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1931 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1932 	}
1933 }
1934 
1935 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
1936 				    bool force_schedule);
1937 
1938 /**
1939  * sk_page_frag - return an appropriate page_frag
1940  * @sk: socket
1941  *
1942  * If socket allocation mode allows current thread to sleep, it means its
1943  * safe to use the per task page_frag instead of the per socket one.
1944  */
1945 static inline struct page_frag *sk_page_frag(struct sock *sk)
1946 {
1947 	if (gfpflags_allow_blocking(sk->sk_allocation))
1948 		return &current->task_frag;
1949 
1950 	return &sk->sk_frag;
1951 }
1952 
1953 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
1954 
1955 /*
1956  *	Default write policy as shown to user space via poll/select/SIGIO
1957  */
1958 static inline bool sock_writeable(const struct sock *sk)
1959 {
1960 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1961 }
1962 
1963 static inline gfp_t gfp_any(void)
1964 {
1965 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1966 }
1967 
1968 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
1969 {
1970 	return noblock ? 0 : sk->sk_rcvtimeo;
1971 }
1972 
1973 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
1974 {
1975 	return noblock ? 0 : sk->sk_sndtimeo;
1976 }
1977 
1978 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1979 {
1980 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1981 }
1982 
1983 /* Alas, with timeout socket operations are not restartable.
1984  * Compare this to poll().
1985  */
1986 static inline int sock_intr_errno(long timeo)
1987 {
1988 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1989 }
1990 
1991 struct sock_skb_cb {
1992 	u32 dropcount;
1993 };
1994 
1995 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
1996  * using skb->cb[] would keep using it directly and utilize its
1997  * alignement guarantee.
1998  */
1999 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2000 			    sizeof(struct sock_skb_cb)))
2001 
2002 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2003 			    SOCK_SKB_CB_OFFSET))
2004 
2005 #define sock_skb_cb_check_size(size) \
2006 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2007 
2008 static inline void
2009 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2010 {
2011 	SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2012 }
2013 
2014 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2015 			   struct sk_buff *skb);
2016 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2017 			     struct sk_buff *skb);
2018 
2019 static inline void
2020 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2021 {
2022 	ktime_t kt = skb->tstamp;
2023 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2024 
2025 	/*
2026 	 * generate control messages if
2027 	 * - receive time stamping in software requested
2028 	 * - software time stamp available and wanted
2029 	 * - hardware time stamps available and wanted
2030 	 */
2031 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2032 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2033 	    (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2034 	    (hwtstamps->hwtstamp.tv64 &&
2035 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2036 		__sock_recv_timestamp(msg, sk, skb);
2037 	else
2038 		sk->sk_stamp = kt;
2039 
2040 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2041 		__sock_recv_wifi_status(msg, sk, skb);
2042 }
2043 
2044 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2045 			      struct sk_buff *skb);
2046 
2047 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2048 					  struct sk_buff *skb)
2049 {
2050 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2051 			   (1UL << SOCK_RCVTSTAMP))
2052 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2053 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2054 
2055 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2056 		__sock_recv_ts_and_drops(msg, sk, skb);
2057 	else
2058 		sk->sk_stamp = skb->tstamp;
2059 }
2060 
2061 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2062 
2063 /**
2064  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2065  * @sk:		socket sending this packet
2066  * @tx_flags:	completed with instructions for time stamping
2067  *
2068  * Note : callers should take care of initial *tx_flags value (usually 0)
2069  */
2070 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2071 {
2072 	if (unlikely(sk->sk_tsflags))
2073 		__sock_tx_timestamp(sk, tx_flags);
2074 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2075 		*tx_flags |= SKBTX_WIFI_STATUS;
2076 }
2077 
2078 /**
2079  * sk_eat_skb - Release a skb if it is no longer needed
2080  * @sk: socket to eat this skb from
2081  * @skb: socket buffer to eat
2082  *
2083  * This routine must be called with interrupts disabled or with the socket
2084  * locked so that the sk_buff queue operation is ok.
2085 */
2086 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2087 {
2088 	__skb_unlink(skb, &sk->sk_receive_queue);
2089 	__kfree_skb(skb);
2090 }
2091 
2092 static inline
2093 struct net *sock_net(const struct sock *sk)
2094 {
2095 	return read_pnet(&sk->sk_net);
2096 }
2097 
2098 static inline
2099 void sock_net_set(struct sock *sk, struct net *net)
2100 {
2101 	write_pnet(&sk->sk_net, net);
2102 }
2103 
2104 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2105 {
2106 	if (skb->sk) {
2107 		struct sock *sk = skb->sk;
2108 
2109 		skb->destructor = NULL;
2110 		skb->sk = NULL;
2111 		return sk;
2112 	}
2113 	return NULL;
2114 }
2115 
2116 /* This helper checks if a socket is a full socket,
2117  * ie _not_ a timewait or request socket.
2118  */
2119 static inline bool sk_fullsock(const struct sock *sk)
2120 {
2121 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2122 }
2123 
2124 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2125  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2126  */
2127 static inline bool sk_listener(const struct sock *sk)
2128 {
2129 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2130 }
2131 
2132 /**
2133  * sk_state_load - read sk->sk_state for lockless contexts
2134  * @sk: socket pointer
2135  *
2136  * Paired with sk_state_store(). Used in places we do not hold socket lock :
2137  * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2138  */
2139 static inline int sk_state_load(const struct sock *sk)
2140 {
2141 	return smp_load_acquire(&sk->sk_state);
2142 }
2143 
2144 /**
2145  * sk_state_store - update sk->sk_state
2146  * @sk: socket pointer
2147  * @newstate: new state
2148  *
2149  * Paired with sk_state_load(). Should be used in contexts where
2150  * state change might impact lockless readers.
2151  */
2152 static inline void sk_state_store(struct sock *sk, int newstate)
2153 {
2154 	smp_store_release(&sk->sk_state, newstate);
2155 }
2156 
2157 void sock_enable_timestamp(struct sock *sk, int flag);
2158 int sock_get_timestamp(struct sock *, struct timeval __user *);
2159 int sock_get_timestampns(struct sock *, struct timespec __user *);
2160 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2161 		       int type);
2162 
2163 bool sk_ns_capable(const struct sock *sk,
2164 		   struct user_namespace *user_ns, int cap);
2165 bool sk_capable(const struct sock *sk, int cap);
2166 bool sk_net_capable(const struct sock *sk, int cap);
2167 
2168 extern __u32 sysctl_wmem_max;
2169 extern __u32 sysctl_rmem_max;
2170 
2171 extern int sysctl_tstamp_allow_data;
2172 extern int sysctl_optmem_max;
2173 
2174 extern __u32 sysctl_wmem_default;
2175 extern __u32 sysctl_rmem_default;
2176 
2177 #endif	/* _SOCK_H */
2178