1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/memcontrol.h> 58 #include <linux/res_counter.h> 59 #include <linux/static_key.h> 60 #include <linux/aio.h> 61 #include <linux/sched.h> 62 63 #include <linux/filter.h> 64 #include <linux/rculist_nulls.h> 65 #include <linux/poll.h> 66 67 #include <linux/atomic.h> 68 #include <net/dst.h> 69 #include <net/checksum.h> 70 #include <linux/net_tstamp.h> 71 72 struct cgroup; 73 struct cgroup_subsys; 74 #ifdef CONFIG_NET 75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss); 76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg); 77 #else 78 static inline 79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 80 { 81 return 0; 82 } 83 static inline 84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 85 { 86 } 87 #endif 88 /* 89 * This structure really needs to be cleaned up. 90 * Most of it is for TCP, and not used by any of 91 * the other protocols. 92 */ 93 94 /* Define this to get the SOCK_DBG debugging facility. */ 95 #define SOCK_DEBUGGING 96 #ifdef SOCK_DEBUGGING 97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 98 printk(KERN_DEBUG msg); } while (0) 99 #else 100 /* Validate arguments and do nothing */ 101 static inline __printf(2, 3) 102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 103 { 104 } 105 #endif 106 107 /* This is the per-socket lock. The spinlock provides a synchronization 108 * between user contexts and software interrupt processing, whereas the 109 * mini-semaphore synchronizes multiple users amongst themselves. 110 */ 111 typedef struct { 112 spinlock_t slock; 113 int owned; 114 wait_queue_head_t wq; 115 /* 116 * We express the mutex-alike socket_lock semantics 117 * to the lock validator by explicitly managing 118 * the slock as a lock variant (in addition to 119 * the slock itself): 120 */ 121 #ifdef CONFIG_DEBUG_LOCK_ALLOC 122 struct lockdep_map dep_map; 123 #endif 124 } socket_lock_t; 125 126 struct sock; 127 struct proto; 128 struct net; 129 130 typedef __u32 __bitwise __portpair; 131 typedef __u64 __bitwise __addrpair; 132 133 /** 134 * struct sock_common - minimal network layer representation of sockets 135 * @skc_daddr: Foreign IPv4 addr 136 * @skc_rcv_saddr: Bound local IPv4 addr 137 * @skc_hash: hash value used with various protocol lookup tables 138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 139 * @skc_dport: placeholder for inet_dport/tw_dport 140 * @skc_num: placeholder for inet_num/tw_num 141 * @skc_family: network address family 142 * @skc_state: Connection state 143 * @skc_reuse: %SO_REUSEADDR setting 144 * @skc_reuseport: %SO_REUSEPORT setting 145 * @skc_bound_dev_if: bound device index if != 0 146 * @skc_bind_node: bind hash linkage for various protocol lookup tables 147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 148 * @skc_prot: protocol handlers inside a network family 149 * @skc_net: reference to the network namespace of this socket 150 * @skc_node: main hash linkage for various protocol lookup tables 151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 152 * @skc_tx_queue_mapping: tx queue number for this connection 153 * @skc_refcnt: reference count 154 * 155 * This is the minimal network layer representation of sockets, the header 156 * for struct sock and struct inet_timewait_sock. 157 */ 158 struct sock_common { 159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 160 * address on 64bit arches : cf INET_MATCH() 161 */ 162 union { 163 __addrpair skc_addrpair; 164 struct { 165 __be32 skc_daddr; 166 __be32 skc_rcv_saddr; 167 }; 168 }; 169 union { 170 unsigned int skc_hash; 171 __u16 skc_u16hashes[2]; 172 }; 173 /* skc_dport && skc_num must be grouped as well */ 174 union { 175 __portpair skc_portpair; 176 struct { 177 __be16 skc_dport; 178 __u16 skc_num; 179 }; 180 }; 181 182 unsigned short skc_family; 183 volatile unsigned char skc_state; 184 unsigned char skc_reuse:4; 185 unsigned char skc_reuseport:1; 186 unsigned char skc_ipv6only:1; 187 int skc_bound_dev_if; 188 union { 189 struct hlist_node skc_bind_node; 190 struct hlist_nulls_node skc_portaddr_node; 191 }; 192 struct proto *skc_prot; 193 #ifdef CONFIG_NET_NS 194 struct net *skc_net; 195 #endif 196 197 #if IS_ENABLED(CONFIG_IPV6) 198 struct in6_addr skc_v6_daddr; 199 struct in6_addr skc_v6_rcv_saddr; 200 #endif 201 202 /* 203 * fields between dontcopy_begin/dontcopy_end 204 * are not copied in sock_copy() 205 */ 206 /* private: */ 207 int skc_dontcopy_begin[0]; 208 /* public: */ 209 union { 210 struct hlist_node skc_node; 211 struct hlist_nulls_node skc_nulls_node; 212 }; 213 int skc_tx_queue_mapping; 214 atomic_t skc_refcnt; 215 /* private: */ 216 int skc_dontcopy_end[0]; 217 /* public: */ 218 }; 219 220 struct cg_proto; 221 /** 222 * struct sock - network layer representation of sockets 223 * @__sk_common: shared layout with inet_timewait_sock 224 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 225 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 226 * @sk_lock: synchronizer 227 * @sk_rcvbuf: size of receive buffer in bytes 228 * @sk_wq: sock wait queue and async head 229 * @sk_rx_dst: receive input route used by early demux 230 * @sk_dst_cache: destination cache 231 * @sk_dst_lock: destination cache lock 232 * @sk_policy: flow policy 233 * @sk_receive_queue: incoming packets 234 * @sk_wmem_alloc: transmit queue bytes committed 235 * @sk_write_queue: Packet sending queue 236 * @sk_omem_alloc: "o" is "option" or "other" 237 * @sk_wmem_queued: persistent queue size 238 * @sk_forward_alloc: space allocated forward 239 * @sk_napi_id: id of the last napi context to receive data for sk 240 * @sk_ll_usec: usecs to busypoll when there is no data 241 * @sk_allocation: allocation mode 242 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 243 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 244 * @sk_sndbuf: size of send buffer in bytes 245 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 246 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 247 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 248 * @sk_no_check_rx: allow zero checksum in RX packets 249 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 250 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 251 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 252 * @sk_gso_max_size: Maximum GSO segment size to build 253 * @sk_gso_max_segs: Maximum number of GSO segments 254 * @sk_lingertime: %SO_LINGER l_linger setting 255 * @sk_backlog: always used with the per-socket spinlock held 256 * @sk_callback_lock: used with the callbacks in the end of this struct 257 * @sk_error_queue: rarely used 258 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 259 * IPV6_ADDRFORM for instance) 260 * @sk_err: last error 261 * @sk_err_soft: errors that don't cause failure but are the cause of a 262 * persistent failure not just 'timed out' 263 * @sk_drops: raw/udp drops counter 264 * @sk_ack_backlog: current listen backlog 265 * @sk_max_ack_backlog: listen backlog set in listen() 266 * @sk_priority: %SO_PRIORITY setting 267 * @sk_cgrp_prioidx: socket group's priority map index 268 * @sk_type: socket type (%SOCK_STREAM, etc) 269 * @sk_protocol: which protocol this socket belongs in this network family 270 * @sk_peer_pid: &struct pid for this socket's peer 271 * @sk_peer_cred: %SO_PEERCRED setting 272 * @sk_rcvlowat: %SO_RCVLOWAT setting 273 * @sk_rcvtimeo: %SO_RCVTIMEO setting 274 * @sk_sndtimeo: %SO_SNDTIMEO setting 275 * @sk_rxhash: flow hash received from netif layer 276 * @sk_txhash: computed flow hash for use on transmit 277 * @sk_filter: socket filtering instructions 278 * @sk_protinfo: private area, net family specific, when not using slab 279 * @sk_timer: sock cleanup timer 280 * @sk_stamp: time stamp of last packet received 281 * @sk_tsflags: SO_TIMESTAMPING socket options 282 * @sk_tskey: counter to disambiguate concurrent tstamp requests 283 * @sk_socket: Identd and reporting IO signals 284 * @sk_user_data: RPC layer private data 285 * @sk_frag: cached page frag 286 * @sk_peek_off: current peek_offset value 287 * @sk_send_head: front of stuff to transmit 288 * @sk_security: used by security modules 289 * @sk_mark: generic packet mark 290 * @sk_classid: this socket's cgroup classid 291 * @sk_cgrp: this socket's cgroup-specific proto data 292 * @sk_write_pending: a write to stream socket waits to start 293 * @sk_state_change: callback to indicate change in the state of the sock 294 * @sk_data_ready: callback to indicate there is data to be processed 295 * @sk_write_space: callback to indicate there is bf sending space available 296 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 297 * @sk_backlog_rcv: callback to process the backlog 298 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 299 */ 300 struct sock { 301 /* 302 * Now struct inet_timewait_sock also uses sock_common, so please just 303 * don't add nothing before this first member (__sk_common) --acme 304 */ 305 struct sock_common __sk_common; 306 #define sk_node __sk_common.skc_node 307 #define sk_nulls_node __sk_common.skc_nulls_node 308 #define sk_refcnt __sk_common.skc_refcnt 309 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 310 311 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 312 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 313 #define sk_hash __sk_common.skc_hash 314 #define sk_portpair __sk_common.skc_portpair 315 #define sk_num __sk_common.skc_num 316 #define sk_dport __sk_common.skc_dport 317 #define sk_addrpair __sk_common.skc_addrpair 318 #define sk_daddr __sk_common.skc_daddr 319 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 320 #define sk_family __sk_common.skc_family 321 #define sk_state __sk_common.skc_state 322 #define sk_reuse __sk_common.skc_reuse 323 #define sk_reuseport __sk_common.skc_reuseport 324 #define sk_ipv6only __sk_common.skc_ipv6only 325 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 326 #define sk_bind_node __sk_common.skc_bind_node 327 #define sk_prot __sk_common.skc_prot 328 #define sk_net __sk_common.skc_net 329 #define sk_v6_daddr __sk_common.skc_v6_daddr 330 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 331 332 socket_lock_t sk_lock; 333 struct sk_buff_head sk_receive_queue; 334 /* 335 * The backlog queue is special, it is always used with 336 * the per-socket spinlock held and requires low latency 337 * access. Therefore we special case it's implementation. 338 * Note : rmem_alloc is in this structure to fill a hole 339 * on 64bit arches, not because its logically part of 340 * backlog. 341 */ 342 struct { 343 atomic_t rmem_alloc; 344 int len; 345 struct sk_buff *head; 346 struct sk_buff *tail; 347 } sk_backlog; 348 #define sk_rmem_alloc sk_backlog.rmem_alloc 349 int sk_forward_alloc; 350 #ifdef CONFIG_RPS 351 __u32 sk_rxhash; 352 #endif 353 __u32 sk_txhash; 354 #ifdef CONFIG_NET_RX_BUSY_POLL 355 unsigned int sk_napi_id; 356 unsigned int sk_ll_usec; 357 #endif 358 atomic_t sk_drops; 359 int sk_rcvbuf; 360 361 struct sk_filter __rcu *sk_filter; 362 struct socket_wq __rcu *sk_wq; 363 364 #ifdef CONFIG_XFRM 365 struct xfrm_policy *sk_policy[2]; 366 #endif 367 unsigned long sk_flags; 368 struct dst_entry *sk_rx_dst; 369 struct dst_entry __rcu *sk_dst_cache; 370 spinlock_t sk_dst_lock; 371 atomic_t sk_wmem_alloc; 372 atomic_t sk_omem_alloc; 373 int sk_sndbuf; 374 struct sk_buff_head sk_write_queue; 375 kmemcheck_bitfield_begin(flags); 376 unsigned int sk_shutdown : 2, 377 sk_no_check_tx : 1, 378 sk_no_check_rx : 1, 379 sk_userlocks : 4, 380 sk_protocol : 8, 381 sk_type : 16; 382 kmemcheck_bitfield_end(flags); 383 int sk_wmem_queued; 384 gfp_t sk_allocation; 385 u32 sk_pacing_rate; /* bytes per second */ 386 u32 sk_max_pacing_rate; 387 netdev_features_t sk_route_caps; 388 netdev_features_t sk_route_nocaps; 389 int sk_gso_type; 390 unsigned int sk_gso_max_size; 391 u16 sk_gso_max_segs; 392 int sk_rcvlowat; 393 unsigned long sk_lingertime; 394 struct sk_buff_head sk_error_queue; 395 struct proto *sk_prot_creator; 396 rwlock_t sk_callback_lock; 397 int sk_err, 398 sk_err_soft; 399 unsigned short sk_ack_backlog; 400 unsigned short sk_max_ack_backlog; 401 __u32 sk_priority; 402 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 403 __u32 sk_cgrp_prioidx; 404 #endif 405 struct pid *sk_peer_pid; 406 const struct cred *sk_peer_cred; 407 long sk_rcvtimeo; 408 long sk_sndtimeo; 409 void *sk_protinfo; 410 struct timer_list sk_timer; 411 ktime_t sk_stamp; 412 u16 sk_tsflags; 413 u32 sk_tskey; 414 struct socket *sk_socket; 415 void *sk_user_data; 416 struct page_frag sk_frag; 417 struct sk_buff *sk_send_head; 418 __s32 sk_peek_off; 419 int sk_write_pending; 420 #ifdef CONFIG_SECURITY 421 void *sk_security; 422 #endif 423 __u32 sk_mark; 424 u32 sk_classid; 425 struct cg_proto *sk_cgrp; 426 void (*sk_state_change)(struct sock *sk); 427 void (*sk_data_ready)(struct sock *sk); 428 void (*sk_write_space)(struct sock *sk); 429 void (*sk_error_report)(struct sock *sk); 430 int (*sk_backlog_rcv)(struct sock *sk, 431 struct sk_buff *skb); 432 void (*sk_destruct)(struct sock *sk); 433 }; 434 435 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 436 437 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 438 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 439 440 /* 441 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 442 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 443 * on a socket means that the socket will reuse everybody else's port 444 * without looking at the other's sk_reuse value. 445 */ 446 447 #define SK_NO_REUSE 0 448 #define SK_CAN_REUSE 1 449 #define SK_FORCE_REUSE 2 450 451 static inline int sk_peek_offset(struct sock *sk, int flags) 452 { 453 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 454 return sk->sk_peek_off; 455 else 456 return 0; 457 } 458 459 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 460 { 461 if (sk->sk_peek_off >= 0) { 462 if (sk->sk_peek_off >= val) 463 sk->sk_peek_off -= val; 464 else 465 sk->sk_peek_off = 0; 466 } 467 } 468 469 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 470 { 471 if (sk->sk_peek_off >= 0) 472 sk->sk_peek_off += val; 473 } 474 475 /* 476 * Hashed lists helper routines 477 */ 478 static inline struct sock *sk_entry(const struct hlist_node *node) 479 { 480 return hlist_entry(node, struct sock, sk_node); 481 } 482 483 static inline struct sock *__sk_head(const struct hlist_head *head) 484 { 485 return hlist_entry(head->first, struct sock, sk_node); 486 } 487 488 static inline struct sock *sk_head(const struct hlist_head *head) 489 { 490 return hlist_empty(head) ? NULL : __sk_head(head); 491 } 492 493 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 494 { 495 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 496 } 497 498 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 499 { 500 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 501 } 502 503 static inline struct sock *sk_next(const struct sock *sk) 504 { 505 return sk->sk_node.next ? 506 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 507 } 508 509 static inline struct sock *sk_nulls_next(const struct sock *sk) 510 { 511 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 512 hlist_nulls_entry(sk->sk_nulls_node.next, 513 struct sock, sk_nulls_node) : 514 NULL; 515 } 516 517 static inline bool sk_unhashed(const struct sock *sk) 518 { 519 return hlist_unhashed(&sk->sk_node); 520 } 521 522 static inline bool sk_hashed(const struct sock *sk) 523 { 524 return !sk_unhashed(sk); 525 } 526 527 static inline void sk_node_init(struct hlist_node *node) 528 { 529 node->pprev = NULL; 530 } 531 532 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 533 { 534 node->pprev = NULL; 535 } 536 537 static inline void __sk_del_node(struct sock *sk) 538 { 539 __hlist_del(&sk->sk_node); 540 } 541 542 /* NB: equivalent to hlist_del_init_rcu */ 543 static inline bool __sk_del_node_init(struct sock *sk) 544 { 545 if (sk_hashed(sk)) { 546 __sk_del_node(sk); 547 sk_node_init(&sk->sk_node); 548 return true; 549 } 550 return false; 551 } 552 553 /* Grab socket reference count. This operation is valid only 554 when sk is ALREADY grabbed f.e. it is found in hash table 555 or a list and the lookup is made under lock preventing hash table 556 modifications. 557 */ 558 559 static inline void sock_hold(struct sock *sk) 560 { 561 atomic_inc(&sk->sk_refcnt); 562 } 563 564 /* Ungrab socket in the context, which assumes that socket refcnt 565 cannot hit zero, f.e. it is true in context of any socketcall. 566 */ 567 static inline void __sock_put(struct sock *sk) 568 { 569 atomic_dec(&sk->sk_refcnt); 570 } 571 572 static inline bool sk_del_node_init(struct sock *sk) 573 { 574 bool rc = __sk_del_node_init(sk); 575 576 if (rc) { 577 /* paranoid for a while -acme */ 578 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 579 __sock_put(sk); 580 } 581 return rc; 582 } 583 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 584 585 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 586 { 587 if (sk_hashed(sk)) { 588 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 589 return true; 590 } 591 return false; 592 } 593 594 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 595 { 596 bool rc = __sk_nulls_del_node_init_rcu(sk); 597 598 if (rc) { 599 /* paranoid for a while -acme */ 600 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 601 __sock_put(sk); 602 } 603 return rc; 604 } 605 606 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 607 { 608 hlist_add_head(&sk->sk_node, list); 609 } 610 611 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 612 { 613 sock_hold(sk); 614 __sk_add_node(sk, list); 615 } 616 617 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 618 { 619 sock_hold(sk); 620 hlist_add_head_rcu(&sk->sk_node, list); 621 } 622 623 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 624 { 625 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 626 } 627 628 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 629 { 630 sock_hold(sk); 631 __sk_nulls_add_node_rcu(sk, list); 632 } 633 634 static inline void __sk_del_bind_node(struct sock *sk) 635 { 636 __hlist_del(&sk->sk_bind_node); 637 } 638 639 static inline void sk_add_bind_node(struct sock *sk, 640 struct hlist_head *list) 641 { 642 hlist_add_head(&sk->sk_bind_node, list); 643 } 644 645 #define sk_for_each(__sk, list) \ 646 hlist_for_each_entry(__sk, list, sk_node) 647 #define sk_for_each_rcu(__sk, list) \ 648 hlist_for_each_entry_rcu(__sk, list, sk_node) 649 #define sk_nulls_for_each(__sk, node, list) \ 650 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 651 #define sk_nulls_for_each_rcu(__sk, node, list) \ 652 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 653 #define sk_for_each_from(__sk) \ 654 hlist_for_each_entry_from(__sk, sk_node) 655 #define sk_nulls_for_each_from(__sk, node) \ 656 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 657 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 658 #define sk_for_each_safe(__sk, tmp, list) \ 659 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 660 #define sk_for_each_bound(__sk, list) \ 661 hlist_for_each_entry(__sk, list, sk_bind_node) 662 663 /** 664 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset 665 * @tpos: the type * to use as a loop cursor. 666 * @pos: the &struct hlist_node to use as a loop cursor. 667 * @head: the head for your list. 668 * @offset: offset of hlist_node within the struct. 669 * 670 */ 671 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \ 672 for (pos = (head)->first; \ 673 (!is_a_nulls(pos)) && \ 674 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 675 pos = pos->next) 676 677 static inline struct user_namespace *sk_user_ns(struct sock *sk) 678 { 679 /* Careful only use this in a context where these parameters 680 * can not change and must all be valid, such as recvmsg from 681 * userspace. 682 */ 683 return sk->sk_socket->file->f_cred->user_ns; 684 } 685 686 /* Sock flags */ 687 enum sock_flags { 688 SOCK_DEAD, 689 SOCK_DONE, 690 SOCK_URGINLINE, 691 SOCK_KEEPOPEN, 692 SOCK_LINGER, 693 SOCK_DESTROY, 694 SOCK_BROADCAST, 695 SOCK_TIMESTAMP, 696 SOCK_ZAPPED, 697 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 698 SOCK_DBG, /* %SO_DEBUG setting */ 699 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 700 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 701 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 702 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 703 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 704 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 705 SOCK_FASYNC, /* fasync() active */ 706 SOCK_RXQ_OVFL, 707 SOCK_ZEROCOPY, /* buffers from userspace */ 708 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 709 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 710 * Will use last 4 bytes of packet sent from 711 * user-space instead. 712 */ 713 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 714 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 715 }; 716 717 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 718 { 719 nsk->sk_flags = osk->sk_flags; 720 } 721 722 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 723 { 724 __set_bit(flag, &sk->sk_flags); 725 } 726 727 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 728 { 729 __clear_bit(flag, &sk->sk_flags); 730 } 731 732 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 733 { 734 return test_bit(flag, &sk->sk_flags); 735 } 736 737 #ifdef CONFIG_NET 738 extern struct static_key memalloc_socks; 739 static inline int sk_memalloc_socks(void) 740 { 741 return static_key_false(&memalloc_socks); 742 } 743 #else 744 745 static inline int sk_memalloc_socks(void) 746 { 747 return 0; 748 } 749 750 #endif 751 752 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask) 753 { 754 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC); 755 } 756 757 static inline void sk_acceptq_removed(struct sock *sk) 758 { 759 sk->sk_ack_backlog--; 760 } 761 762 static inline void sk_acceptq_added(struct sock *sk) 763 { 764 sk->sk_ack_backlog++; 765 } 766 767 static inline bool sk_acceptq_is_full(const struct sock *sk) 768 { 769 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 770 } 771 772 /* 773 * Compute minimal free write space needed to queue new packets. 774 */ 775 static inline int sk_stream_min_wspace(const struct sock *sk) 776 { 777 return sk->sk_wmem_queued >> 1; 778 } 779 780 static inline int sk_stream_wspace(const struct sock *sk) 781 { 782 return sk->sk_sndbuf - sk->sk_wmem_queued; 783 } 784 785 void sk_stream_write_space(struct sock *sk); 786 787 /* OOB backlog add */ 788 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 789 { 790 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 791 skb_dst_force(skb); 792 793 if (!sk->sk_backlog.tail) 794 sk->sk_backlog.head = skb; 795 else 796 sk->sk_backlog.tail->next = skb; 797 798 sk->sk_backlog.tail = skb; 799 skb->next = NULL; 800 } 801 802 /* 803 * Take into account size of receive queue and backlog queue 804 * Do not take into account this skb truesize, 805 * to allow even a single big packet to come. 806 */ 807 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 808 { 809 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 810 811 return qsize > limit; 812 } 813 814 /* The per-socket spinlock must be held here. */ 815 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 816 unsigned int limit) 817 { 818 if (sk_rcvqueues_full(sk, limit)) 819 return -ENOBUFS; 820 821 __sk_add_backlog(sk, skb); 822 sk->sk_backlog.len += skb->truesize; 823 return 0; 824 } 825 826 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 827 828 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 829 { 830 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 831 return __sk_backlog_rcv(sk, skb); 832 833 return sk->sk_backlog_rcv(sk, skb); 834 } 835 836 static inline void sock_rps_record_flow_hash(__u32 hash) 837 { 838 #ifdef CONFIG_RPS 839 struct rps_sock_flow_table *sock_flow_table; 840 841 rcu_read_lock(); 842 sock_flow_table = rcu_dereference(rps_sock_flow_table); 843 rps_record_sock_flow(sock_flow_table, hash); 844 rcu_read_unlock(); 845 #endif 846 } 847 848 static inline void sock_rps_reset_flow_hash(__u32 hash) 849 { 850 #ifdef CONFIG_RPS 851 struct rps_sock_flow_table *sock_flow_table; 852 853 rcu_read_lock(); 854 sock_flow_table = rcu_dereference(rps_sock_flow_table); 855 rps_reset_sock_flow(sock_flow_table, hash); 856 rcu_read_unlock(); 857 #endif 858 } 859 860 static inline void sock_rps_record_flow(const struct sock *sk) 861 { 862 #ifdef CONFIG_RPS 863 sock_rps_record_flow_hash(sk->sk_rxhash); 864 #endif 865 } 866 867 static inline void sock_rps_reset_flow(const struct sock *sk) 868 { 869 #ifdef CONFIG_RPS 870 sock_rps_reset_flow_hash(sk->sk_rxhash); 871 #endif 872 } 873 874 static inline void sock_rps_save_rxhash(struct sock *sk, 875 const struct sk_buff *skb) 876 { 877 #ifdef CONFIG_RPS 878 if (unlikely(sk->sk_rxhash != skb->hash)) { 879 sock_rps_reset_flow(sk); 880 sk->sk_rxhash = skb->hash; 881 } 882 #endif 883 } 884 885 static inline void sock_rps_reset_rxhash(struct sock *sk) 886 { 887 #ifdef CONFIG_RPS 888 sock_rps_reset_flow(sk); 889 sk->sk_rxhash = 0; 890 #endif 891 } 892 893 #define sk_wait_event(__sk, __timeo, __condition) \ 894 ({ int __rc; \ 895 release_sock(__sk); \ 896 __rc = __condition; \ 897 if (!__rc) { \ 898 *(__timeo) = schedule_timeout(*(__timeo)); \ 899 } \ 900 lock_sock(__sk); \ 901 __rc = __condition; \ 902 __rc; \ 903 }) 904 905 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 906 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 907 void sk_stream_wait_close(struct sock *sk, long timeo_p); 908 int sk_stream_error(struct sock *sk, int flags, int err); 909 void sk_stream_kill_queues(struct sock *sk); 910 void sk_set_memalloc(struct sock *sk); 911 void sk_clear_memalloc(struct sock *sk); 912 913 int sk_wait_data(struct sock *sk, long *timeo); 914 915 struct request_sock_ops; 916 struct timewait_sock_ops; 917 struct inet_hashinfo; 918 struct raw_hashinfo; 919 struct module; 920 921 /* 922 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 923 * un-modified. Special care is taken when initializing object to zero. 924 */ 925 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 926 { 927 if (offsetof(struct sock, sk_node.next) != 0) 928 memset(sk, 0, offsetof(struct sock, sk_node.next)); 929 memset(&sk->sk_node.pprev, 0, 930 size - offsetof(struct sock, sk_node.pprev)); 931 } 932 933 /* Networking protocol blocks we attach to sockets. 934 * socket layer -> transport layer interface 935 * transport -> network interface is defined by struct inet_proto 936 */ 937 struct proto { 938 void (*close)(struct sock *sk, 939 long timeout); 940 int (*connect)(struct sock *sk, 941 struct sockaddr *uaddr, 942 int addr_len); 943 int (*disconnect)(struct sock *sk, int flags); 944 945 struct sock * (*accept)(struct sock *sk, int flags, int *err); 946 947 int (*ioctl)(struct sock *sk, int cmd, 948 unsigned long arg); 949 int (*init)(struct sock *sk); 950 void (*destroy)(struct sock *sk); 951 void (*shutdown)(struct sock *sk, int how); 952 int (*setsockopt)(struct sock *sk, int level, 953 int optname, char __user *optval, 954 unsigned int optlen); 955 int (*getsockopt)(struct sock *sk, int level, 956 int optname, char __user *optval, 957 int __user *option); 958 #ifdef CONFIG_COMPAT 959 int (*compat_setsockopt)(struct sock *sk, 960 int level, 961 int optname, char __user *optval, 962 unsigned int optlen); 963 int (*compat_getsockopt)(struct sock *sk, 964 int level, 965 int optname, char __user *optval, 966 int __user *option); 967 int (*compat_ioctl)(struct sock *sk, 968 unsigned int cmd, unsigned long arg); 969 #endif 970 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 971 struct msghdr *msg, size_t len); 972 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 973 struct msghdr *msg, 974 size_t len, int noblock, int flags, 975 int *addr_len); 976 int (*sendpage)(struct sock *sk, struct page *page, 977 int offset, size_t size, int flags); 978 int (*bind)(struct sock *sk, 979 struct sockaddr *uaddr, int addr_len); 980 981 int (*backlog_rcv) (struct sock *sk, 982 struct sk_buff *skb); 983 984 void (*release_cb)(struct sock *sk); 985 986 /* Keeping track of sk's, looking them up, and port selection methods. */ 987 void (*hash)(struct sock *sk); 988 void (*unhash)(struct sock *sk); 989 void (*rehash)(struct sock *sk); 990 int (*get_port)(struct sock *sk, unsigned short snum); 991 void (*clear_sk)(struct sock *sk, int size); 992 993 /* Keeping track of sockets in use */ 994 #ifdef CONFIG_PROC_FS 995 unsigned int inuse_idx; 996 #endif 997 998 bool (*stream_memory_free)(const struct sock *sk); 999 /* Memory pressure */ 1000 void (*enter_memory_pressure)(struct sock *sk); 1001 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1002 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1003 /* 1004 * Pressure flag: try to collapse. 1005 * Technical note: it is used by multiple contexts non atomically. 1006 * All the __sk_mem_schedule() is of this nature: accounting 1007 * is strict, actions are advisory and have some latency. 1008 */ 1009 int *memory_pressure; 1010 long *sysctl_mem; 1011 int *sysctl_wmem; 1012 int *sysctl_rmem; 1013 int max_header; 1014 bool no_autobind; 1015 1016 struct kmem_cache *slab; 1017 unsigned int obj_size; 1018 int slab_flags; 1019 1020 struct percpu_counter *orphan_count; 1021 1022 struct request_sock_ops *rsk_prot; 1023 struct timewait_sock_ops *twsk_prot; 1024 1025 union { 1026 struct inet_hashinfo *hashinfo; 1027 struct udp_table *udp_table; 1028 struct raw_hashinfo *raw_hash; 1029 } h; 1030 1031 struct module *owner; 1032 1033 char name[32]; 1034 1035 struct list_head node; 1036 #ifdef SOCK_REFCNT_DEBUG 1037 atomic_t socks; 1038 #endif 1039 #ifdef CONFIG_MEMCG_KMEM 1040 /* 1041 * cgroup specific init/deinit functions. Called once for all 1042 * protocols that implement it, from cgroups populate function. 1043 * This function has to setup any files the protocol want to 1044 * appear in the kmem cgroup filesystem. 1045 */ 1046 int (*init_cgroup)(struct mem_cgroup *memcg, 1047 struct cgroup_subsys *ss); 1048 void (*destroy_cgroup)(struct mem_cgroup *memcg); 1049 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 1050 #endif 1051 }; 1052 1053 /* 1054 * Bits in struct cg_proto.flags 1055 */ 1056 enum cg_proto_flags { 1057 /* Currently active and new sockets should be assigned to cgroups */ 1058 MEMCG_SOCK_ACTIVE, 1059 /* It was ever activated; we must disarm static keys on destruction */ 1060 MEMCG_SOCK_ACTIVATED, 1061 }; 1062 1063 struct cg_proto { 1064 struct res_counter memory_allocated; /* Current allocated memory. */ 1065 struct percpu_counter sockets_allocated; /* Current number of sockets. */ 1066 int memory_pressure; 1067 long sysctl_mem[3]; 1068 unsigned long flags; 1069 /* 1070 * memcg field is used to find which memcg we belong directly 1071 * Each memcg struct can hold more than one cg_proto, so container_of 1072 * won't really cut. 1073 * 1074 * The elegant solution would be having an inverse function to 1075 * proto_cgroup in struct proto, but that means polluting the structure 1076 * for everybody, instead of just for memcg users. 1077 */ 1078 struct mem_cgroup *memcg; 1079 }; 1080 1081 int proto_register(struct proto *prot, int alloc_slab); 1082 void proto_unregister(struct proto *prot); 1083 1084 static inline bool memcg_proto_active(struct cg_proto *cg_proto) 1085 { 1086 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); 1087 } 1088 1089 static inline bool memcg_proto_activated(struct cg_proto *cg_proto) 1090 { 1091 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags); 1092 } 1093 1094 #ifdef SOCK_REFCNT_DEBUG 1095 static inline void sk_refcnt_debug_inc(struct sock *sk) 1096 { 1097 atomic_inc(&sk->sk_prot->socks); 1098 } 1099 1100 static inline void sk_refcnt_debug_dec(struct sock *sk) 1101 { 1102 atomic_dec(&sk->sk_prot->socks); 1103 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1104 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1105 } 1106 1107 static inline void sk_refcnt_debug_release(const struct sock *sk) 1108 { 1109 if (atomic_read(&sk->sk_refcnt) != 1) 1110 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1111 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1112 } 1113 #else /* SOCK_REFCNT_DEBUG */ 1114 #define sk_refcnt_debug_inc(sk) do { } while (0) 1115 #define sk_refcnt_debug_dec(sk) do { } while (0) 1116 #define sk_refcnt_debug_release(sk) do { } while (0) 1117 #endif /* SOCK_REFCNT_DEBUG */ 1118 1119 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET) 1120 extern struct static_key memcg_socket_limit_enabled; 1121 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1122 struct cg_proto *cg_proto) 1123 { 1124 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 1125 } 1126 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 1127 #else 1128 #define mem_cgroup_sockets_enabled 0 1129 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1130 struct cg_proto *cg_proto) 1131 { 1132 return NULL; 1133 } 1134 #endif 1135 1136 static inline bool sk_stream_memory_free(const struct sock *sk) 1137 { 1138 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1139 return false; 1140 1141 return sk->sk_prot->stream_memory_free ? 1142 sk->sk_prot->stream_memory_free(sk) : true; 1143 } 1144 1145 static inline bool sk_stream_is_writeable(const struct sock *sk) 1146 { 1147 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1148 sk_stream_memory_free(sk); 1149 } 1150 1151 1152 static inline bool sk_has_memory_pressure(const struct sock *sk) 1153 { 1154 return sk->sk_prot->memory_pressure != NULL; 1155 } 1156 1157 static inline bool sk_under_memory_pressure(const struct sock *sk) 1158 { 1159 if (!sk->sk_prot->memory_pressure) 1160 return false; 1161 1162 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1163 return !!sk->sk_cgrp->memory_pressure; 1164 1165 return !!*sk->sk_prot->memory_pressure; 1166 } 1167 1168 static inline void sk_leave_memory_pressure(struct sock *sk) 1169 { 1170 int *memory_pressure = sk->sk_prot->memory_pressure; 1171 1172 if (!memory_pressure) 1173 return; 1174 1175 if (*memory_pressure) 1176 *memory_pressure = 0; 1177 1178 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1179 struct cg_proto *cg_proto = sk->sk_cgrp; 1180 struct proto *prot = sk->sk_prot; 1181 1182 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1183 cg_proto->memory_pressure = 0; 1184 } 1185 1186 } 1187 1188 static inline void sk_enter_memory_pressure(struct sock *sk) 1189 { 1190 if (!sk->sk_prot->enter_memory_pressure) 1191 return; 1192 1193 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1194 struct cg_proto *cg_proto = sk->sk_cgrp; 1195 struct proto *prot = sk->sk_prot; 1196 1197 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1198 cg_proto->memory_pressure = 1; 1199 } 1200 1201 sk->sk_prot->enter_memory_pressure(sk); 1202 } 1203 1204 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1205 { 1206 long *prot = sk->sk_prot->sysctl_mem; 1207 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1208 prot = sk->sk_cgrp->sysctl_mem; 1209 return prot[index]; 1210 } 1211 1212 static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1213 unsigned long amt, 1214 int *parent_status) 1215 { 1216 struct res_counter *fail; 1217 int ret; 1218 1219 ret = res_counter_charge_nofail(&prot->memory_allocated, 1220 amt << PAGE_SHIFT, &fail); 1221 if (ret < 0) 1222 *parent_status = OVER_LIMIT; 1223 } 1224 1225 static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1226 unsigned long amt) 1227 { 1228 res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT); 1229 } 1230 1231 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot) 1232 { 1233 u64 ret; 1234 ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE); 1235 return ret >> PAGE_SHIFT; 1236 } 1237 1238 static inline long 1239 sk_memory_allocated(const struct sock *sk) 1240 { 1241 struct proto *prot = sk->sk_prot; 1242 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1243 return memcg_memory_allocated_read(sk->sk_cgrp); 1244 1245 return atomic_long_read(prot->memory_allocated); 1246 } 1247 1248 static inline long 1249 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1250 { 1251 struct proto *prot = sk->sk_prot; 1252 1253 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1254 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1255 /* update the root cgroup regardless */ 1256 atomic_long_add_return(amt, prot->memory_allocated); 1257 return memcg_memory_allocated_read(sk->sk_cgrp); 1258 } 1259 1260 return atomic_long_add_return(amt, prot->memory_allocated); 1261 } 1262 1263 static inline void 1264 sk_memory_allocated_sub(struct sock *sk, int amt) 1265 { 1266 struct proto *prot = sk->sk_prot; 1267 1268 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1269 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1270 1271 atomic_long_sub(amt, prot->memory_allocated); 1272 } 1273 1274 static inline void sk_sockets_allocated_dec(struct sock *sk) 1275 { 1276 struct proto *prot = sk->sk_prot; 1277 1278 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1279 struct cg_proto *cg_proto = sk->sk_cgrp; 1280 1281 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1282 percpu_counter_dec(&cg_proto->sockets_allocated); 1283 } 1284 1285 percpu_counter_dec(prot->sockets_allocated); 1286 } 1287 1288 static inline void sk_sockets_allocated_inc(struct sock *sk) 1289 { 1290 struct proto *prot = sk->sk_prot; 1291 1292 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1293 struct cg_proto *cg_proto = sk->sk_cgrp; 1294 1295 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1296 percpu_counter_inc(&cg_proto->sockets_allocated); 1297 } 1298 1299 percpu_counter_inc(prot->sockets_allocated); 1300 } 1301 1302 static inline int 1303 sk_sockets_allocated_read_positive(struct sock *sk) 1304 { 1305 struct proto *prot = sk->sk_prot; 1306 1307 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1308 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated); 1309 1310 return percpu_counter_read_positive(prot->sockets_allocated); 1311 } 1312 1313 static inline int 1314 proto_sockets_allocated_sum_positive(struct proto *prot) 1315 { 1316 return percpu_counter_sum_positive(prot->sockets_allocated); 1317 } 1318 1319 static inline long 1320 proto_memory_allocated(struct proto *prot) 1321 { 1322 return atomic_long_read(prot->memory_allocated); 1323 } 1324 1325 static inline bool 1326 proto_memory_pressure(struct proto *prot) 1327 { 1328 if (!prot->memory_pressure) 1329 return false; 1330 return !!*prot->memory_pressure; 1331 } 1332 1333 1334 #ifdef CONFIG_PROC_FS 1335 /* Called with local bh disabled */ 1336 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1337 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1338 #else 1339 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1340 int inc) 1341 { 1342 } 1343 #endif 1344 1345 1346 /* With per-bucket locks this operation is not-atomic, so that 1347 * this version is not worse. 1348 */ 1349 static inline void __sk_prot_rehash(struct sock *sk) 1350 { 1351 sk->sk_prot->unhash(sk); 1352 sk->sk_prot->hash(sk); 1353 } 1354 1355 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1356 1357 /* About 10 seconds */ 1358 #define SOCK_DESTROY_TIME (10*HZ) 1359 1360 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1361 #define PROT_SOCK 1024 1362 1363 #define SHUTDOWN_MASK 3 1364 #define RCV_SHUTDOWN 1 1365 #define SEND_SHUTDOWN 2 1366 1367 #define SOCK_SNDBUF_LOCK 1 1368 #define SOCK_RCVBUF_LOCK 2 1369 #define SOCK_BINDADDR_LOCK 4 1370 #define SOCK_BINDPORT_LOCK 8 1371 1372 /* sock_iocb: used to kick off async processing of socket ios */ 1373 struct sock_iocb { 1374 struct list_head list; 1375 1376 int flags; 1377 int size; 1378 struct socket *sock; 1379 struct sock *sk; 1380 struct scm_cookie *scm; 1381 struct msghdr *msg, async_msg; 1382 struct kiocb *kiocb; 1383 }; 1384 1385 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 1386 { 1387 return (struct sock_iocb *)iocb->private; 1388 } 1389 1390 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 1391 { 1392 return si->kiocb; 1393 } 1394 1395 struct socket_alloc { 1396 struct socket socket; 1397 struct inode vfs_inode; 1398 }; 1399 1400 static inline struct socket *SOCKET_I(struct inode *inode) 1401 { 1402 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1403 } 1404 1405 static inline struct inode *SOCK_INODE(struct socket *socket) 1406 { 1407 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1408 } 1409 1410 /* 1411 * Functions for memory accounting 1412 */ 1413 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1414 void __sk_mem_reclaim(struct sock *sk); 1415 1416 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1417 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1418 #define SK_MEM_SEND 0 1419 #define SK_MEM_RECV 1 1420 1421 static inline int sk_mem_pages(int amt) 1422 { 1423 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1424 } 1425 1426 static inline bool sk_has_account(struct sock *sk) 1427 { 1428 /* return true if protocol supports memory accounting */ 1429 return !!sk->sk_prot->memory_allocated; 1430 } 1431 1432 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1433 { 1434 if (!sk_has_account(sk)) 1435 return true; 1436 return size <= sk->sk_forward_alloc || 1437 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1438 } 1439 1440 static inline bool 1441 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1442 { 1443 if (!sk_has_account(sk)) 1444 return true; 1445 return size<= sk->sk_forward_alloc || 1446 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1447 skb_pfmemalloc(skb); 1448 } 1449 1450 static inline void sk_mem_reclaim(struct sock *sk) 1451 { 1452 if (!sk_has_account(sk)) 1453 return; 1454 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1455 __sk_mem_reclaim(sk); 1456 } 1457 1458 static inline void sk_mem_reclaim_partial(struct sock *sk) 1459 { 1460 if (!sk_has_account(sk)) 1461 return; 1462 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1463 __sk_mem_reclaim(sk); 1464 } 1465 1466 static inline void sk_mem_charge(struct sock *sk, int size) 1467 { 1468 if (!sk_has_account(sk)) 1469 return; 1470 sk->sk_forward_alloc -= size; 1471 } 1472 1473 static inline void sk_mem_uncharge(struct sock *sk, int size) 1474 { 1475 if (!sk_has_account(sk)) 1476 return; 1477 sk->sk_forward_alloc += size; 1478 } 1479 1480 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1481 { 1482 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1483 sk->sk_wmem_queued -= skb->truesize; 1484 sk_mem_uncharge(sk, skb->truesize); 1485 __kfree_skb(skb); 1486 } 1487 1488 /* Used by processes to "lock" a socket state, so that 1489 * interrupts and bottom half handlers won't change it 1490 * from under us. It essentially blocks any incoming 1491 * packets, so that we won't get any new data or any 1492 * packets that change the state of the socket. 1493 * 1494 * While locked, BH processing will add new packets to 1495 * the backlog queue. This queue is processed by the 1496 * owner of the socket lock right before it is released. 1497 * 1498 * Since ~2.3.5 it is also exclusive sleep lock serializing 1499 * accesses from user process context. 1500 */ 1501 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1502 1503 static inline void sock_release_ownership(struct sock *sk) 1504 { 1505 sk->sk_lock.owned = 0; 1506 } 1507 1508 /* 1509 * Macro so as to not evaluate some arguments when 1510 * lockdep is not enabled. 1511 * 1512 * Mark both the sk_lock and the sk_lock.slock as a 1513 * per-address-family lock class. 1514 */ 1515 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1516 do { \ 1517 sk->sk_lock.owned = 0; \ 1518 init_waitqueue_head(&sk->sk_lock.wq); \ 1519 spin_lock_init(&(sk)->sk_lock.slock); \ 1520 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1521 sizeof((sk)->sk_lock)); \ 1522 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1523 (skey), (sname)); \ 1524 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1525 } while (0) 1526 1527 void lock_sock_nested(struct sock *sk, int subclass); 1528 1529 static inline void lock_sock(struct sock *sk) 1530 { 1531 lock_sock_nested(sk, 0); 1532 } 1533 1534 void release_sock(struct sock *sk); 1535 1536 /* BH context may only use the following locking interface. */ 1537 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1538 #define bh_lock_sock_nested(__sk) \ 1539 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1540 SINGLE_DEPTH_NESTING) 1541 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1542 1543 bool lock_sock_fast(struct sock *sk); 1544 /** 1545 * unlock_sock_fast - complement of lock_sock_fast 1546 * @sk: socket 1547 * @slow: slow mode 1548 * 1549 * fast unlock socket for user context. 1550 * If slow mode is on, we call regular release_sock() 1551 */ 1552 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1553 { 1554 if (slow) 1555 release_sock(sk); 1556 else 1557 spin_unlock_bh(&sk->sk_lock.slock); 1558 } 1559 1560 1561 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1562 struct proto *prot); 1563 void sk_free(struct sock *sk); 1564 void sk_release_kernel(struct sock *sk); 1565 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1566 1567 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1568 gfp_t priority); 1569 void sock_wfree(struct sk_buff *skb); 1570 void skb_orphan_partial(struct sk_buff *skb); 1571 void sock_rfree(struct sk_buff *skb); 1572 void sock_efree(struct sk_buff *skb); 1573 #ifdef CONFIG_INET 1574 void sock_edemux(struct sk_buff *skb); 1575 #else 1576 #define sock_edemux(skb) sock_efree(skb) 1577 #endif 1578 1579 int sock_setsockopt(struct socket *sock, int level, int op, 1580 char __user *optval, unsigned int optlen); 1581 1582 int sock_getsockopt(struct socket *sock, int level, int op, 1583 char __user *optval, int __user *optlen); 1584 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1585 int noblock, int *errcode); 1586 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1587 unsigned long data_len, int noblock, 1588 int *errcode, int max_page_order); 1589 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1590 void sock_kfree_s(struct sock *sk, void *mem, int size); 1591 void sk_send_sigurg(struct sock *sk); 1592 1593 /* 1594 * Functions to fill in entries in struct proto_ops when a protocol 1595 * does not implement a particular function. 1596 */ 1597 int sock_no_bind(struct socket *, struct sockaddr *, int); 1598 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1599 int sock_no_socketpair(struct socket *, struct socket *); 1600 int sock_no_accept(struct socket *, struct socket *, int); 1601 int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1602 unsigned int sock_no_poll(struct file *, struct socket *, 1603 struct poll_table_struct *); 1604 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1605 int sock_no_listen(struct socket *, int); 1606 int sock_no_shutdown(struct socket *, int); 1607 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1608 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1609 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t); 1610 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t, 1611 int); 1612 int sock_no_mmap(struct file *file, struct socket *sock, 1613 struct vm_area_struct *vma); 1614 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1615 size_t size, int flags); 1616 1617 /* 1618 * Functions to fill in entries in struct proto_ops when a protocol 1619 * uses the inet style. 1620 */ 1621 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1622 char __user *optval, int __user *optlen); 1623 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1624 struct msghdr *msg, size_t size, int flags); 1625 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1626 char __user *optval, unsigned int optlen); 1627 int compat_sock_common_getsockopt(struct socket *sock, int level, 1628 int optname, char __user *optval, int __user *optlen); 1629 int compat_sock_common_setsockopt(struct socket *sock, int level, 1630 int optname, char __user *optval, unsigned int optlen); 1631 1632 void sk_common_release(struct sock *sk); 1633 1634 /* 1635 * Default socket callbacks and setup code 1636 */ 1637 1638 /* Initialise core socket variables */ 1639 void sock_init_data(struct socket *sock, struct sock *sk); 1640 1641 /* 1642 * Socket reference counting postulates. 1643 * 1644 * * Each user of socket SHOULD hold a reference count. 1645 * * Each access point to socket (an hash table bucket, reference from a list, 1646 * running timer, skb in flight MUST hold a reference count. 1647 * * When reference count hits 0, it means it will never increase back. 1648 * * When reference count hits 0, it means that no references from 1649 * outside exist to this socket and current process on current CPU 1650 * is last user and may/should destroy this socket. 1651 * * sk_free is called from any context: process, BH, IRQ. When 1652 * it is called, socket has no references from outside -> sk_free 1653 * may release descendant resources allocated by the socket, but 1654 * to the time when it is called, socket is NOT referenced by any 1655 * hash tables, lists etc. 1656 * * Packets, delivered from outside (from network or from another process) 1657 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1658 * when they sit in queue. Otherwise, packets will leak to hole, when 1659 * socket is looked up by one cpu and unhasing is made by another CPU. 1660 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1661 * (leak to backlog). Packet socket does all the processing inside 1662 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1663 * use separate SMP lock, so that they are prone too. 1664 */ 1665 1666 /* Ungrab socket and destroy it, if it was the last reference. */ 1667 static inline void sock_put(struct sock *sk) 1668 { 1669 if (atomic_dec_and_test(&sk->sk_refcnt)) 1670 sk_free(sk); 1671 } 1672 /* Generic version of sock_put(), dealing with all sockets 1673 * (TCP_TIMEWAIT, ESTABLISHED...) 1674 */ 1675 void sock_gen_put(struct sock *sk); 1676 1677 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested); 1678 1679 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1680 { 1681 sk->sk_tx_queue_mapping = tx_queue; 1682 } 1683 1684 static inline void sk_tx_queue_clear(struct sock *sk) 1685 { 1686 sk->sk_tx_queue_mapping = -1; 1687 } 1688 1689 static inline int sk_tx_queue_get(const struct sock *sk) 1690 { 1691 return sk ? sk->sk_tx_queue_mapping : -1; 1692 } 1693 1694 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1695 { 1696 sk_tx_queue_clear(sk); 1697 sk->sk_socket = sock; 1698 } 1699 1700 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1701 { 1702 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1703 return &rcu_dereference_raw(sk->sk_wq)->wait; 1704 } 1705 /* Detach socket from process context. 1706 * Announce socket dead, detach it from wait queue and inode. 1707 * Note that parent inode held reference count on this struct sock, 1708 * we do not release it in this function, because protocol 1709 * probably wants some additional cleanups or even continuing 1710 * to work with this socket (TCP). 1711 */ 1712 static inline void sock_orphan(struct sock *sk) 1713 { 1714 write_lock_bh(&sk->sk_callback_lock); 1715 sock_set_flag(sk, SOCK_DEAD); 1716 sk_set_socket(sk, NULL); 1717 sk->sk_wq = NULL; 1718 write_unlock_bh(&sk->sk_callback_lock); 1719 } 1720 1721 static inline void sock_graft(struct sock *sk, struct socket *parent) 1722 { 1723 write_lock_bh(&sk->sk_callback_lock); 1724 sk->sk_wq = parent->wq; 1725 parent->sk = sk; 1726 sk_set_socket(sk, parent); 1727 security_sock_graft(sk, parent); 1728 write_unlock_bh(&sk->sk_callback_lock); 1729 } 1730 1731 kuid_t sock_i_uid(struct sock *sk); 1732 unsigned long sock_i_ino(struct sock *sk); 1733 1734 static inline struct dst_entry * 1735 __sk_dst_get(struct sock *sk) 1736 { 1737 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1738 lockdep_is_held(&sk->sk_lock.slock)); 1739 } 1740 1741 static inline struct dst_entry * 1742 sk_dst_get(struct sock *sk) 1743 { 1744 struct dst_entry *dst; 1745 1746 rcu_read_lock(); 1747 dst = rcu_dereference(sk->sk_dst_cache); 1748 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1749 dst = NULL; 1750 rcu_read_unlock(); 1751 return dst; 1752 } 1753 1754 static inline void dst_negative_advice(struct sock *sk) 1755 { 1756 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1757 1758 if (dst && dst->ops->negative_advice) { 1759 ndst = dst->ops->negative_advice(dst); 1760 1761 if (ndst != dst) { 1762 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1763 sk_tx_queue_clear(sk); 1764 } 1765 } 1766 } 1767 1768 static inline void 1769 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1770 { 1771 struct dst_entry *old_dst; 1772 1773 sk_tx_queue_clear(sk); 1774 /* 1775 * This can be called while sk is owned by the caller only, 1776 * with no state that can be checked in a rcu_dereference_check() cond 1777 */ 1778 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1779 rcu_assign_pointer(sk->sk_dst_cache, dst); 1780 dst_release(old_dst); 1781 } 1782 1783 static inline void 1784 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1785 { 1786 struct dst_entry *old_dst; 1787 1788 sk_tx_queue_clear(sk); 1789 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1790 dst_release(old_dst); 1791 } 1792 1793 static inline void 1794 __sk_dst_reset(struct sock *sk) 1795 { 1796 __sk_dst_set(sk, NULL); 1797 } 1798 1799 static inline void 1800 sk_dst_reset(struct sock *sk) 1801 { 1802 sk_dst_set(sk, NULL); 1803 } 1804 1805 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1806 1807 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1808 1809 static inline bool sk_can_gso(const struct sock *sk) 1810 { 1811 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1812 } 1813 1814 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1815 1816 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1817 { 1818 sk->sk_route_nocaps |= flags; 1819 sk->sk_route_caps &= ~flags; 1820 } 1821 1822 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1823 char __user *from, char *to, 1824 int copy, int offset) 1825 { 1826 if (skb->ip_summed == CHECKSUM_NONE) { 1827 int err = 0; 1828 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err); 1829 if (err) 1830 return err; 1831 skb->csum = csum_block_add(skb->csum, csum, offset); 1832 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1833 if (!access_ok(VERIFY_READ, from, copy) || 1834 __copy_from_user_nocache(to, from, copy)) 1835 return -EFAULT; 1836 } else if (copy_from_user(to, from, copy)) 1837 return -EFAULT; 1838 1839 return 0; 1840 } 1841 1842 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1843 char __user *from, int copy) 1844 { 1845 int err, offset = skb->len; 1846 1847 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1848 copy, offset); 1849 if (err) 1850 __skb_trim(skb, offset); 1851 1852 return err; 1853 } 1854 1855 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from, 1856 struct sk_buff *skb, 1857 struct page *page, 1858 int off, int copy) 1859 { 1860 int err; 1861 1862 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1863 copy, skb->len); 1864 if (err) 1865 return err; 1866 1867 skb->len += copy; 1868 skb->data_len += copy; 1869 skb->truesize += copy; 1870 sk->sk_wmem_queued += copy; 1871 sk_mem_charge(sk, copy); 1872 return 0; 1873 } 1874 1875 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1876 struct sk_buff *skb, struct page *page, 1877 int off, int copy) 1878 { 1879 if (skb->ip_summed == CHECKSUM_NONE) { 1880 int err = 0; 1881 __wsum csum = csum_and_copy_from_user(from, 1882 page_address(page) + off, 1883 copy, 0, &err); 1884 if (err) 1885 return err; 1886 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1887 } else if (copy_from_user(page_address(page) + off, from, copy)) 1888 return -EFAULT; 1889 1890 skb->len += copy; 1891 skb->data_len += copy; 1892 skb->truesize += copy; 1893 sk->sk_wmem_queued += copy; 1894 sk_mem_charge(sk, copy); 1895 return 0; 1896 } 1897 1898 /** 1899 * sk_wmem_alloc_get - returns write allocations 1900 * @sk: socket 1901 * 1902 * Returns sk_wmem_alloc minus initial offset of one 1903 */ 1904 static inline int sk_wmem_alloc_get(const struct sock *sk) 1905 { 1906 return atomic_read(&sk->sk_wmem_alloc) - 1; 1907 } 1908 1909 /** 1910 * sk_rmem_alloc_get - returns read allocations 1911 * @sk: socket 1912 * 1913 * Returns sk_rmem_alloc 1914 */ 1915 static inline int sk_rmem_alloc_get(const struct sock *sk) 1916 { 1917 return atomic_read(&sk->sk_rmem_alloc); 1918 } 1919 1920 /** 1921 * sk_has_allocations - check if allocations are outstanding 1922 * @sk: socket 1923 * 1924 * Returns true if socket has write or read allocations 1925 */ 1926 static inline bool sk_has_allocations(const struct sock *sk) 1927 { 1928 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1929 } 1930 1931 /** 1932 * wq_has_sleeper - check if there are any waiting processes 1933 * @wq: struct socket_wq 1934 * 1935 * Returns true if socket_wq has waiting processes 1936 * 1937 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1938 * barrier call. They were added due to the race found within the tcp code. 1939 * 1940 * Consider following tcp code paths: 1941 * 1942 * CPU1 CPU2 1943 * 1944 * sys_select receive packet 1945 * ... ... 1946 * __add_wait_queue update tp->rcv_nxt 1947 * ... ... 1948 * tp->rcv_nxt check sock_def_readable 1949 * ... { 1950 * schedule rcu_read_lock(); 1951 * wq = rcu_dereference(sk->sk_wq); 1952 * if (wq && waitqueue_active(&wq->wait)) 1953 * wake_up_interruptible(&wq->wait) 1954 * ... 1955 * } 1956 * 1957 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1958 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1959 * could then endup calling schedule and sleep forever if there are no more 1960 * data on the socket. 1961 * 1962 */ 1963 static inline bool wq_has_sleeper(struct socket_wq *wq) 1964 { 1965 /* We need to be sure we are in sync with the 1966 * add_wait_queue modifications to the wait queue. 1967 * 1968 * This memory barrier is paired in the sock_poll_wait. 1969 */ 1970 smp_mb(); 1971 return wq && waitqueue_active(&wq->wait); 1972 } 1973 1974 /** 1975 * sock_poll_wait - place memory barrier behind the poll_wait call. 1976 * @filp: file 1977 * @wait_address: socket wait queue 1978 * @p: poll_table 1979 * 1980 * See the comments in the wq_has_sleeper function. 1981 */ 1982 static inline void sock_poll_wait(struct file *filp, 1983 wait_queue_head_t *wait_address, poll_table *p) 1984 { 1985 if (!poll_does_not_wait(p) && wait_address) { 1986 poll_wait(filp, wait_address, p); 1987 /* We need to be sure we are in sync with the 1988 * socket flags modification. 1989 * 1990 * This memory barrier is paired in the wq_has_sleeper. 1991 */ 1992 smp_mb(); 1993 } 1994 } 1995 1996 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 1997 { 1998 if (sk->sk_txhash) { 1999 skb->l4_hash = 1; 2000 skb->hash = sk->sk_txhash; 2001 } 2002 } 2003 2004 /* 2005 * Queue a received datagram if it will fit. Stream and sequenced 2006 * protocols can't normally use this as they need to fit buffers in 2007 * and play with them. 2008 * 2009 * Inlined as it's very short and called for pretty much every 2010 * packet ever received. 2011 */ 2012 2013 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2014 { 2015 skb_orphan(skb); 2016 skb->sk = sk; 2017 skb->destructor = sock_wfree; 2018 skb_set_hash_from_sk(skb, sk); 2019 /* 2020 * We used to take a refcount on sk, but following operation 2021 * is enough to guarantee sk_free() wont free this sock until 2022 * all in-flight packets are completed 2023 */ 2024 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 2025 } 2026 2027 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2028 { 2029 skb_orphan(skb); 2030 skb->sk = sk; 2031 skb->destructor = sock_rfree; 2032 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2033 sk_mem_charge(sk, skb->truesize); 2034 } 2035 2036 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2037 unsigned long expires); 2038 2039 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2040 2041 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2042 2043 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2044 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2045 2046 /* 2047 * Recover an error report and clear atomically 2048 */ 2049 2050 static inline int sock_error(struct sock *sk) 2051 { 2052 int err; 2053 if (likely(!sk->sk_err)) 2054 return 0; 2055 err = xchg(&sk->sk_err, 0); 2056 return -err; 2057 } 2058 2059 static inline unsigned long sock_wspace(struct sock *sk) 2060 { 2061 int amt = 0; 2062 2063 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2064 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 2065 if (amt < 0) 2066 amt = 0; 2067 } 2068 return amt; 2069 } 2070 2071 static inline void sk_wake_async(struct sock *sk, int how, int band) 2072 { 2073 if (sock_flag(sk, SOCK_FASYNC)) 2074 sock_wake_async(sk->sk_socket, how, band); 2075 } 2076 2077 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2078 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2079 * Note: for send buffers, TCP works better if we can build two skbs at 2080 * minimum. 2081 */ 2082 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2083 2084 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2085 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2086 2087 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2088 { 2089 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2090 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2091 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2092 } 2093 } 2094 2095 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 2096 2097 /** 2098 * sk_page_frag - return an appropriate page_frag 2099 * @sk: socket 2100 * 2101 * If socket allocation mode allows current thread to sleep, it means its 2102 * safe to use the per task page_frag instead of the per socket one. 2103 */ 2104 static inline struct page_frag *sk_page_frag(struct sock *sk) 2105 { 2106 if (sk->sk_allocation & __GFP_WAIT) 2107 return ¤t->task_frag; 2108 2109 return &sk->sk_frag; 2110 } 2111 2112 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2113 2114 /* 2115 * Default write policy as shown to user space via poll/select/SIGIO 2116 */ 2117 static inline bool sock_writeable(const struct sock *sk) 2118 { 2119 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2120 } 2121 2122 static inline gfp_t gfp_any(void) 2123 { 2124 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2125 } 2126 2127 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2128 { 2129 return noblock ? 0 : sk->sk_rcvtimeo; 2130 } 2131 2132 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2133 { 2134 return noblock ? 0 : sk->sk_sndtimeo; 2135 } 2136 2137 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2138 { 2139 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2140 } 2141 2142 /* Alas, with timeout socket operations are not restartable. 2143 * Compare this to poll(). 2144 */ 2145 static inline int sock_intr_errno(long timeo) 2146 { 2147 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2148 } 2149 2150 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2151 struct sk_buff *skb); 2152 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2153 struct sk_buff *skb); 2154 2155 static inline void 2156 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2157 { 2158 ktime_t kt = skb->tstamp; 2159 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2160 2161 /* 2162 * generate control messages if 2163 * - receive time stamping in software requested 2164 * - software time stamp available and wanted 2165 * - hardware time stamps available and wanted 2166 */ 2167 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2168 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2169 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2170 (hwtstamps->hwtstamp.tv64 && 2171 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2172 __sock_recv_timestamp(msg, sk, skb); 2173 else 2174 sk->sk_stamp = kt; 2175 2176 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2177 __sock_recv_wifi_status(msg, sk, skb); 2178 } 2179 2180 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2181 struct sk_buff *skb); 2182 2183 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2184 struct sk_buff *skb) 2185 { 2186 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2187 (1UL << SOCK_RCVTSTAMP)) 2188 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2189 SOF_TIMESTAMPING_RAW_HARDWARE) 2190 2191 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2192 __sock_recv_ts_and_drops(msg, sk, skb); 2193 else 2194 sk->sk_stamp = skb->tstamp; 2195 } 2196 2197 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags); 2198 2199 /** 2200 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2201 * @sk: socket sending this packet 2202 * @tx_flags: completed with instructions for time stamping 2203 * 2204 * Note : callers should take care of initial *tx_flags value (usually 0) 2205 */ 2206 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 2207 { 2208 if (unlikely(sk->sk_tsflags)) 2209 __sock_tx_timestamp(sk, tx_flags); 2210 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2211 *tx_flags |= SKBTX_WIFI_STATUS; 2212 } 2213 2214 /** 2215 * sk_eat_skb - Release a skb if it is no longer needed 2216 * @sk: socket to eat this skb from 2217 * @skb: socket buffer to eat 2218 * 2219 * This routine must be called with interrupts disabled or with the socket 2220 * locked so that the sk_buff queue operation is ok. 2221 */ 2222 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2223 { 2224 __skb_unlink(skb, &sk->sk_receive_queue); 2225 __kfree_skb(skb); 2226 } 2227 2228 static inline 2229 struct net *sock_net(const struct sock *sk) 2230 { 2231 return read_pnet(&sk->sk_net); 2232 } 2233 2234 static inline 2235 void sock_net_set(struct sock *sk, struct net *net) 2236 { 2237 write_pnet(&sk->sk_net, net); 2238 } 2239 2240 /* 2241 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 2242 * They should not hold a reference to a namespace in order to allow 2243 * to stop it. 2244 * Sockets after sk_change_net should be released using sk_release_kernel 2245 */ 2246 static inline void sk_change_net(struct sock *sk, struct net *net) 2247 { 2248 struct net *current_net = sock_net(sk); 2249 2250 if (!net_eq(current_net, net)) { 2251 put_net(current_net); 2252 sock_net_set(sk, hold_net(net)); 2253 } 2254 } 2255 2256 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2257 { 2258 if (skb->sk) { 2259 struct sock *sk = skb->sk; 2260 2261 skb->destructor = NULL; 2262 skb->sk = NULL; 2263 return sk; 2264 } 2265 return NULL; 2266 } 2267 2268 void sock_enable_timestamp(struct sock *sk, int flag); 2269 int sock_get_timestamp(struct sock *, struct timeval __user *); 2270 int sock_get_timestampns(struct sock *, struct timespec __user *); 2271 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2272 int type); 2273 2274 bool sk_ns_capable(const struct sock *sk, 2275 struct user_namespace *user_ns, int cap); 2276 bool sk_capable(const struct sock *sk, int cap); 2277 bool sk_net_capable(const struct sock *sk, int cap); 2278 2279 /* 2280 * Enable debug/info messages 2281 */ 2282 extern int net_msg_warn; 2283 #define NETDEBUG(fmt, args...) \ 2284 do { if (net_msg_warn) printk(fmt,##args); } while (0) 2285 2286 #define LIMIT_NETDEBUG(fmt, args...) \ 2287 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 2288 2289 extern __u32 sysctl_wmem_max; 2290 extern __u32 sysctl_rmem_max; 2291 2292 extern int sysctl_optmem_max; 2293 2294 extern __u32 sysctl_wmem_default; 2295 extern __u32 sysctl_rmem_default; 2296 2297 #endif /* _SOCK_H */ 2298