1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/memcontrol.h> 58 #include <linux/res_counter.h> 59 #include <linux/static_key.h> 60 #include <linux/aio.h> 61 #include <linux/sched.h> 62 63 #include <linux/filter.h> 64 #include <linux/rculist_nulls.h> 65 #include <linux/poll.h> 66 67 #include <linux/atomic.h> 68 #include <net/dst.h> 69 #include <net/checksum.h> 70 71 struct cgroup; 72 struct cgroup_subsys; 73 #ifdef CONFIG_NET 74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss); 75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg); 76 #else 77 static inline 78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 79 { 80 return 0; 81 } 82 static inline 83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 84 { 85 } 86 #endif 87 /* 88 * This structure really needs to be cleaned up. 89 * Most of it is for TCP, and not used by any of 90 * the other protocols. 91 */ 92 93 /* Define this to get the SOCK_DBG debugging facility. */ 94 #define SOCK_DEBUGGING 95 #ifdef SOCK_DEBUGGING 96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 97 printk(KERN_DEBUG msg); } while (0) 98 #else 99 /* Validate arguments and do nothing */ 100 static inline __printf(2, 3) 101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 102 { 103 } 104 #endif 105 106 /* This is the per-socket lock. The spinlock provides a synchronization 107 * between user contexts and software interrupt processing, whereas the 108 * mini-semaphore synchronizes multiple users amongst themselves. 109 */ 110 typedef struct { 111 spinlock_t slock; 112 int owned; 113 wait_queue_head_t wq; 114 /* 115 * We express the mutex-alike socket_lock semantics 116 * to the lock validator by explicitly managing 117 * the slock as a lock variant (in addition to 118 * the slock itself): 119 */ 120 #ifdef CONFIG_DEBUG_LOCK_ALLOC 121 struct lockdep_map dep_map; 122 #endif 123 } socket_lock_t; 124 125 struct sock; 126 struct proto; 127 struct net; 128 129 /** 130 * struct sock_common - minimal network layer representation of sockets 131 * @skc_daddr: Foreign IPv4 addr 132 * @skc_rcv_saddr: Bound local IPv4 addr 133 * @skc_hash: hash value used with various protocol lookup tables 134 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 135 * @skc_family: network address family 136 * @skc_state: Connection state 137 * @skc_reuse: %SO_REUSEADDR setting 138 * @skc_bound_dev_if: bound device index if != 0 139 * @skc_bind_node: bind hash linkage for various protocol lookup tables 140 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 141 * @skc_prot: protocol handlers inside a network family 142 * @skc_net: reference to the network namespace of this socket 143 * @skc_node: main hash linkage for various protocol lookup tables 144 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 145 * @skc_tx_queue_mapping: tx queue number for this connection 146 * @skc_refcnt: reference count 147 * 148 * This is the minimal network layer representation of sockets, the header 149 * for struct sock and struct inet_timewait_sock. 150 */ 151 struct sock_common { 152 /* skc_daddr and skc_rcv_saddr must be grouped : 153 * cf INET_MATCH() and INET_TW_MATCH() 154 */ 155 __be32 skc_daddr; 156 __be32 skc_rcv_saddr; 157 158 union { 159 unsigned int skc_hash; 160 __u16 skc_u16hashes[2]; 161 }; 162 unsigned short skc_family; 163 volatile unsigned char skc_state; 164 unsigned char skc_reuse; 165 int skc_bound_dev_if; 166 union { 167 struct hlist_node skc_bind_node; 168 struct hlist_nulls_node skc_portaddr_node; 169 }; 170 struct proto *skc_prot; 171 #ifdef CONFIG_NET_NS 172 struct net *skc_net; 173 #endif 174 /* 175 * fields between dontcopy_begin/dontcopy_end 176 * are not copied in sock_copy() 177 */ 178 /* private: */ 179 int skc_dontcopy_begin[0]; 180 /* public: */ 181 union { 182 struct hlist_node skc_node; 183 struct hlist_nulls_node skc_nulls_node; 184 }; 185 int skc_tx_queue_mapping; 186 atomic_t skc_refcnt; 187 /* private: */ 188 int skc_dontcopy_end[0]; 189 /* public: */ 190 }; 191 192 struct cg_proto; 193 /** 194 * struct sock - network layer representation of sockets 195 * @__sk_common: shared layout with inet_timewait_sock 196 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 197 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 198 * @sk_lock: synchronizer 199 * @sk_rcvbuf: size of receive buffer in bytes 200 * @sk_wq: sock wait queue and async head 201 * @sk_dst_cache: destination cache 202 * @sk_dst_lock: destination cache lock 203 * @sk_policy: flow policy 204 * @sk_receive_queue: incoming packets 205 * @sk_wmem_alloc: transmit queue bytes committed 206 * @sk_write_queue: Packet sending queue 207 * @sk_async_wait_queue: DMA copied packets 208 * @sk_omem_alloc: "o" is "option" or "other" 209 * @sk_wmem_queued: persistent queue size 210 * @sk_forward_alloc: space allocated forward 211 * @sk_allocation: allocation mode 212 * @sk_sndbuf: size of send buffer in bytes 213 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 214 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 215 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 216 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 217 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 218 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 219 * @sk_gso_max_size: Maximum GSO segment size to build 220 * @sk_lingertime: %SO_LINGER l_linger setting 221 * @sk_backlog: always used with the per-socket spinlock held 222 * @sk_callback_lock: used with the callbacks in the end of this struct 223 * @sk_error_queue: rarely used 224 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 225 * IPV6_ADDRFORM for instance) 226 * @sk_err: last error 227 * @sk_err_soft: errors that don't cause failure but are the cause of a 228 * persistent failure not just 'timed out' 229 * @sk_drops: raw/udp drops counter 230 * @sk_ack_backlog: current listen backlog 231 * @sk_max_ack_backlog: listen backlog set in listen() 232 * @sk_priority: %SO_PRIORITY setting 233 * @sk_cgrp_prioidx: socket group's priority map index 234 * @sk_type: socket type (%SOCK_STREAM, etc) 235 * @sk_protocol: which protocol this socket belongs in this network family 236 * @sk_peer_pid: &struct pid for this socket's peer 237 * @sk_peer_cred: %SO_PEERCRED setting 238 * @sk_rcvlowat: %SO_RCVLOWAT setting 239 * @sk_rcvtimeo: %SO_RCVTIMEO setting 240 * @sk_sndtimeo: %SO_SNDTIMEO setting 241 * @sk_rxhash: flow hash received from netif layer 242 * @sk_filter: socket filtering instructions 243 * @sk_protinfo: private area, net family specific, when not using slab 244 * @sk_timer: sock cleanup timer 245 * @sk_stamp: time stamp of last packet received 246 * @sk_socket: Identd and reporting IO signals 247 * @sk_user_data: RPC layer private data 248 * @sk_sndmsg_page: cached page for sendmsg 249 * @sk_sndmsg_off: cached offset for sendmsg 250 * @sk_peek_off: current peek_offset value 251 * @sk_send_head: front of stuff to transmit 252 * @sk_security: used by security modules 253 * @sk_mark: generic packet mark 254 * @sk_classid: this socket's cgroup classid 255 * @sk_cgrp: this socket's cgroup-specific proto data 256 * @sk_write_pending: a write to stream socket waits to start 257 * @sk_state_change: callback to indicate change in the state of the sock 258 * @sk_data_ready: callback to indicate there is data to be processed 259 * @sk_write_space: callback to indicate there is bf sending space available 260 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 261 * @sk_backlog_rcv: callback to process the backlog 262 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 263 */ 264 struct sock { 265 /* 266 * Now struct inet_timewait_sock also uses sock_common, so please just 267 * don't add nothing before this first member (__sk_common) --acme 268 */ 269 struct sock_common __sk_common; 270 #define sk_node __sk_common.skc_node 271 #define sk_nulls_node __sk_common.skc_nulls_node 272 #define sk_refcnt __sk_common.skc_refcnt 273 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 274 275 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 276 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 277 #define sk_hash __sk_common.skc_hash 278 #define sk_family __sk_common.skc_family 279 #define sk_state __sk_common.skc_state 280 #define sk_reuse __sk_common.skc_reuse 281 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 282 #define sk_bind_node __sk_common.skc_bind_node 283 #define sk_prot __sk_common.skc_prot 284 #define sk_net __sk_common.skc_net 285 socket_lock_t sk_lock; 286 struct sk_buff_head sk_receive_queue; 287 /* 288 * The backlog queue is special, it is always used with 289 * the per-socket spinlock held and requires low latency 290 * access. Therefore we special case it's implementation. 291 * Note : rmem_alloc is in this structure to fill a hole 292 * on 64bit arches, not because its logically part of 293 * backlog. 294 */ 295 struct { 296 atomic_t rmem_alloc; 297 int len; 298 struct sk_buff *head; 299 struct sk_buff *tail; 300 } sk_backlog; 301 #define sk_rmem_alloc sk_backlog.rmem_alloc 302 int sk_forward_alloc; 303 #ifdef CONFIG_RPS 304 __u32 sk_rxhash; 305 #endif 306 atomic_t sk_drops; 307 int sk_rcvbuf; 308 309 struct sk_filter __rcu *sk_filter; 310 struct socket_wq __rcu *sk_wq; 311 312 #ifdef CONFIG_NET_DMA 313 struct sk_buff_head sk_async_wait_queue; 314 #endif 315 316 #ifdef CONFIG_XFRM 317 struct xfrm_policy *sk_policy[2]; 318 #endif 319 unsigned long sk_flags; 320 struct dst_entry *sk_dst_cache; 321 spinlock_t sk_dst_lock; 322 atomic_t sk_wmem_alloc; 323 atomic_t sk_omem_alloc; 324 int sk_sndbuf; 325 struct sk_buff_head sk_write_queue; 326 kmemcheck_bitfield_begin(flags); 327 unsigned int sk_shutdown : 2, 328 sk_no_check : 2, 329 sk_userlocks : 4, 330 sk_protocol : 8, 331 sk_type : 16; 332 kmemcheck_bitfield_end(flags); 333 int sk_wmem_queued; 334 gfp_t sk_allocation; 335 netdev_features_t sk_route_caps; 336 netdev_features_t sk_route_nocaps; 337 int sk_gso_type; 338 unsigned int sk_gso_max_size; 339 int sk_rcvlowat; 340 unsigned long sk_lingertime; 341 struct sk_buff_head sk_error_queue; 342 struct proto *sk_prot_creator; 343 rwlock_t sk_callback_lock; 344 int sk_err, 345 sk_err_soft; 346 unsigned short sk_ack_backlog; 347 unsigned short sk_max_ack_backlog; 348 __u32 sk_priority; 349 #ifdef CONFIG_CGROUPS 350 __u32 sk_cgrp_prioidx; 351 #endif 352 struct pid *sk_peer_pid; 353 const struct cred *sk_peer_cred; 354 long sk_rcvtimeo; 355 long sk_sndtimeo; 356 void *sk_protinfo; 357 struct timer_list sk_timer; 358 ktime_t sk_stamp; 359 struct socket *sk_socket; 360 void *sk_user_data; 361 struct page *sk_sndmsg_page; 362 struct sk_buff *sk_send_head; 363 __u32 sk_sndmsg_off; 364 __s32 sk_peek_off; 365 int sk_write_pending; 366 #ifdef CONFIG_SECURITY 367 void *sk_security; 368 #endif 369 __u32 sk_mark; 370 u32 sk_classid; 371 struct cg_proto *sk_cgrp; 372 void (*sk_state_change)(struct sock *sk); 373 void (*sk_data_ready)(struct sock *sk, int bytes); 374 void (*sk_write_space)(struct sock *sk); 375 void (*sk_error_report)(struct sock *sk); 376 int (*sk_backlog_rcv)(struct sock *sk, 377 struct sk_buff *skb); 378 void (*sk_destruct)(struct sock *sk); 379 }; 380 381 /* 382 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 383 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 384 * on a socket means that the socket will reuse everybody else's port 385 * without looking at the other's sk_reuse value. 386 */ 387 388 #define SK_NO_REUSE 0 389 #define SK_CAN_REUSE 1 390 #define SK_FORCE_REUSE 2 391 392 static inline int sk_peek_offset(struct sock *sk, int flags) 393 { 394 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 395 return sk->sk_peek_off; 396 else 397 return 0; 398 } 399 400 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 401 { 402 if (sk->sk_peek_off >= 0) { 403 if (sk->sk_peek_off >= val) 404 sk->sk_peek_off -= val; 405 else 406 sk->sk_peek_off = 0; 407 } 408 } 409 410 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 411 { 412 if (sk->sk_peek_off >= 0) 413 sk->sk_peek_off += val; 414 } 415 416 /* 417 * Hashed lists helper routines 418 */ 419 static inline struct sock *sk_entry(const struct hlist_node *node) 420 { 421 return hlist_entry(node, struct sock, sk_node); 422 } 423 424 static inline struct sock *__sk_head(const struct hlist_head *head) 425 { 426 return hlist_entry(head->first, struct sock, sk_node); 427 } 428 429 static inline struct sock *sk_head(const struct hlist_head *head) 430 { 431 return hlist_empty(head) ? NULL : __sk_head(head); 432 } 433 434 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 435 { 436 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 437 } 438 439 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 440 { 441 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 442 } 443 444 static inline struct sock *sk_next(const struct sock *sk) 445 { 446 return sk->sk_node.next ? 447 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 448 } 449 450 static inline struct sock *sk_nulls_next(const struct sock *sk) 451 { 452 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 453 hlist_nulls_entry(sk->sk_nulls_node.next, 454 struct sock, sk_nulls_node) : 455 NULL; 456 } 457 458 static inline bool sk_unhashed(const struct sock *sk) 459 { 460 return hlist_unhashed(&sk->sk_node); 461 } 462 463 static inline bool sk_hashed(const struct sock *sk) 464 { 465 return !sk_unhashed(sk); 466 } 467 468 static inline void sk_node_init(struct hlist_node *node) 469 { 470 node->pprev = NULL; 471 } 472 473 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 474 { 475 node->pprev = NULL; 476 } 477 478 static inline void __sk_del_node(struct sock *sk) 479 { 480 __hlist_del(&sk->sk_node); 481 } 482 483 /* NB: equivalent to hlist_del_init_rcu */ 484 static inline bool __sk_del_node_init(struct sock *sk) 485 { 486 if (sk_hashed(sk)) { 487 __sk_del_node(sk); 488 sk_node_init(&sk->sk_node); 489 return true; 490 } 491 return false; 492 } 493 494 /* Grab socket reference count. This operation is valid only 495 when sk is ALREADY grabbed f.e. it is found in hash table 496 or a list and the lookup is made under lock preventing hash table 497 modifications. 498 */ 499 500 static inline void sock_hold(struct sock *sk) 501 { 502 atomic_inc(&sk->sk_refcnt); 503 } 504 505 /* Ungrab socket in the context, which assumes that socket refcnt 506 cannot hit zero, f.e. it is true in context of any socketcall. 507 */ 508 static inline void __sock_put(struct sock *sk) 509 { 510 atomic_dec(&sk->sk_refcnt); 511 } 512 513 static inline bool sk_del_node_init(struct sock *sk) 514 { 515 bool rc = __sk_del_node_init(sk); 516 517 if (rc) { 518 /* paranoid for a while -acme */ 519 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 520 __sock_put(sk); 521 } 522 return rc; 523 } 524 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 525 526 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 527 { 528 if (sk_hashed(sk)) { 529 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 530 return true; 531 } 532 return false; 533 } 534 535 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 536 { 537 bool rc = __sk_nulls_del_node_init_rcu(sk); 538 539 if (rc) { 540 /* paranoid for a while -acme */ 541 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 542 __sock_put(sk); 543 } 544 return rc; 545 } 546 547 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 548 { 549 hlist_add_head(&sk->sk_node, list); 550 } 551 552 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 553 { 554 sock_hold(sk); 555 __sk_add_node(sk, list); 556 } 557 558 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 559 { 560 sock_hold(sk); 561 hlist_add_head_rcu(&sk->sk_node, list); 562 } 563 564 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 565 { 566 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 567 } 568 569 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 570 { 571 sock_hold(sk); 572 __sk_nulls_add_node_rcu(sk, list); 573 } 574 575 static inline void __sk_del_bind_node(struct sock *sk) 576 { 577 __hlist_del(&sk->sk_bind_node); 578 } 579 580 static inline void sk_add_bind_node(struct sock *sk, 581 struct hlist_head *list) 582 { 583 hlist_add_head(&sk->sk_bind_node, list); 584 } 585 586 #define sk_for_each(__sk, node, list) \ 587 hlist_for_each_entry(__sk, node, list, sk_node) 588 #define sk_for_each_rcu(__sk, node, list) \ 589 hlist_for_each_entry_rcu(__sk, node, list, sk_node) 590 #define sk_nulls_for_each(__sk, node, list) \ 591 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 592 #define sk_nulls_for_each_rcu(__sk, node, list) \ 593 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 594 #define sk_for_each_from(__sk, node) \ 595 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 596 hlist_for_each_entry_from(__sk, node, sk_node) 597 #define sk_nulls_for_each_from(__sk, node) \ 598 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 599 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 600 #define sk_for_each_safe(__sk, node, tmp, list) \ 601 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 602 #define sk_for_each_bound(__sk, node, list) \ 603 hlist_for_each_entry(__sk, node, list, sk_bind_node) 604 605 /* Sock flags */ 606 enum sock_flags { 607 SOCK_DEAD, 608 SOCK_DONE, 609 SOCK_URGINLINE, 610 SOCK_KEEPOPEN, 611 SOCK_LINGER, 612 SOCK_DESTROY, 613 SOCK_BROADCAST, 614 SOCK_TIMESTAMP, 615 SOCK_ZAPPED, 616 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 617 SOCK_DBG, /* %SO_DEBUG setting */ 618 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 619 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 620 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 621 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 622 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */ 623 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */ 624 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */ 625 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 626 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */ 627 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */ 628 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */ 629 SOCK_FASYNC, /* fasync() active */ 630 SOCK_RXQ_OVFL, 631 SOCK_ZEROCOPY, /* buffers from userspace */ 632 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 633 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 634 * Will use last 4 bytes of packet sent from 635 * user-space instead. 636 */ 637 }; 638 639 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 640 { 641 nsk->sk_flags = osk->sk_flags; 642 } 643 644 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 645 { 646 __set_bit(flag, &sk->sk_flags); 647 } 648 649 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 650 { 651 __clear_bit(flag, &sk->sk_flags); 652 } 653 654 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 655 { 656 return test_bit(flag, &sk->sk_flags); 657 } 658 659 static inline void sk_acceptq_removed(struct sock *sk) 660 { 661 sk->sk_ack_backlog--; 662 } 663 664 static inline void sk_acceptq_added(struct sock *sk) 665 { 666 sk->sk_ack_backlog++; 667 } 668 669 static inline bool sk_acceptq_is_full(const struct sock *sk) 670 { 671 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 672 } 673 674 /* 675 * Compute minimal free write space needed to queue new packets. 676 */ 677 static inline int sk_stream_min_wspace(const struct sock *sk) 678 { 679 return sk->sk_wmem_queued >> 1; 680 } 681 682 static inline int sk_stream_wspace(const struct sock *sk) 683 { 684 return sk->sk_sndbuf - sk->sk_wmem_queued; 685 } 686 687 extern void sk_stream_write_space(struct sock *sk); 688 689 static inline bool sk_stream_memory_free(const struct sock *sk) 690 { 691 return sk->sk_wmem_queued < sk->sk_sndbuf; 692 } 693 694 /* OOB backlog add */ 695 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 696 { 697 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 698 skb_dst_force(skb); 699 700 if (!sk->sk_backlog.tail) 701 sk->sk_backlog.head = skb; 702 else 703 sk->sk_backlog.tail->next = skb; 704 705 sk->sk_backlog.tail = skb; 706 skb->next = NULL; 707 } 708 709 /* 710 * Take into account size of receive queue and backlog queue 711 * Do not take into account this skb truesize, 712 * to allow even a single big packet to come. 713 */ 714 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb, 715 unsigned int limit) 716 { 717 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 718 719 return qsize > limit; 720 } 721 722 /* The per-socket spinlock must be held here. */ 723 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 724 unsigned int limit) 725 { 726 if (sk_rcvqueues_full(sk, skb, limit)) 727 return -ENOBUFS; 728 729 __sk_add_backlog(sk, skb); 730 sk->sk_backlog.len += skb->truesize; 731 return 0; 732 } 733 734 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 735 { 736 return sk->sk_backlog_rcv(sk, skb); 737 } 738 739 static inline void sock_rps_record_flow(const struct sock *sk) 740 { 741 #ifdef CONFIG_RPS 742 struct rps_sock_flow_table *sock_flow_table; 743 744 rcu_read_lock(); 745 sock_flow_table = rcu_dereference(rps_sock_flow_table); 746 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash); 747 rcu_read_unlock(); 748 #endif 749 } 750 751 static inline void sock_rps_reset_flow(const struct sock *sk) 752 { 753 #ifdef CONFIG_RPS 754 struct rps_sock_flow_table *sock_flow_table; 755 756 rcu_read_lock(); 757 sock_flow_table = rcu_dereference(rps_sock_flow_table); 758 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash); 759 rcu_read_unlock(); 760 #endif 761 } 762 763 static inline void sock_rps_save_rxhash(struct sock *sk, 764 const struct sk_buff *skb) 765 { 766 #ifdef CONFIG_RPS 767 if (unlikely(sk->sk_rxhash != skb->rxhash)) { 768 sock_rps_reset_flow(sk); 769 sk->sk_rxhash = skb->rxhash; 770 } 771 #endif 772 } 773 774 static inline void sock_rps_reset_rxhash(struct sock *sk) 775 { 776 #ifdef CONFIG_RPS 777 sock_rps_reset_flow(sk); 778 sk->sk_rxhash = 0; 779 #endif 780 } 781 782 #define sk_wait_event(__sk, __timeo, __condition) \ 783 ({ int __rc; \ 784 release_sock(__sk); \ 785 __rc = __condition; \ 786 if (!__rc) { \ 787 *(__timeo) = schedule_timeout(*(__timeo)); \ 788 } \ 789 lock_sock(__sk); \ 790 __rc = __condition; \ 791 __rc; \ 792 }) 793 794 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 795 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 796 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 797 extern int sk_stream_error(struct sock *sk, int flags, int err); 798 extern void sk_stream_kill_queues(struct sock *sk); 799 800 extern int sk_wait_data(struct sock *sk, long *timeo); 801 802 struct request_sock_ops; 803 struct timewait_sock_ops; 804 struct inet_hashinfo; 805 struct raw_hashinfo; 806 struct module; 807 808 /* Networking protocol blocks we attach to sockets. 809 * socket layer -> transport layer interface 810 * transport -> network interface is defined by struct inet_proto 811 */ 812 struct proto { 813 void (*close)(struct sock *sk, 814 long timeout); 815 int (*connect)(struct sock *sk, 816 struct sockaddr *uaddr, 817 int addr_len); 818 int (*disconnect)(struct sock *sk, int flags); 819 820 struct sock * (*accept)(struct sock *sk, int flags, int *err); 821 822 int (*ioctl)(struct sock *sk, int cmd, 823 unsigned long arg); 824 int (*init)(struct sock *sk); 825 void (*destroy)(struct sock *sk); 826 void (*shutdown)(struct sock *sk, int how); 827 int (*setsockopt)(struct sock *sk, int level, 828 int optname, char __user *optval, 829 unsigned int optlen); 830 int (*getsockopt)(struct sock *sk, int level, 831 int optname, char __user *optval, 832 int __user *option); 833 #ifdef CONFIG_COMPAT 834 int (*compat_setsockopt)(struct sock *sk, 835 int level, 836 int optname, char __user *optval, 837 unsigned int optlen); 838 int (*compat_getsockopt)(struct sock *sk, 839 int level, 840 int optname, char __user *optval, 841 int __user *option); 842 int (*compat_ioctl)(struct sock *sk, 843 unsigned int cmd, unsigned long arg); 844 #endif 845 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 846 struct msghdr *msg, size_t len); 847 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 848 struct msghdr *msg, 849 size_t len, int noblock, int flags, 850 int *addr_len); 851 int (*sendpage)(struct sock *sk, struct page *page, 852 int offset, size_t size, int flags); 853 int (*bind)(struct sock *sk, 854 struct sockaddr *uaddr, int addr_len); 855 856 int (*backlog_rcv) (struct sock *sk, 857 struct sk_buff *skb); 858 859 /* Keeping track of sk's, looking them up, and port selection methods. */ 860 void (*hash)(struct sock *sk); 861 void (*unhash)(struct sock *sk); 862 void (*rehash)(struct sock *sk); 863 int (*get_port)(struct sock *sk, unsigned short snum); 864 void (*clear_sk)(struct sock *sk, int size); 865 866 /* Keeping track of sockets in use */ 867 #ifdef CONFIG_PROC_FS 868 unsigned int inuse_idx; 869 #endif 870 871 /* Memory pressure */ 872 void (*enter_memory_pressure)(struct sock *sk); 873 atomic_long_t *memory_allocated; /* Current allocated memory. */ 874 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 875 /* 876 * Pressure flag: try to collapse. 877 * Technical note: it is used by multiple contexts non atomically. 878 * All the __sk_mem_schedule() is of this nature: accounting 879 * is strict, actions are advisory and have some latency. 880 */ 881 int *memory_pressure; 882 long *sysctl_mem; 883 int *sysctl_wmem; 884 int *sysctl_rmem; 885 int max_header; 886 bool no_autobind; 887 888 struct kmem_cache *slab; 889 unsigned int obj_size; 890 int slab_flags; 891 892 struct percpu_counter *orphan_count; 893 894 struct request_sock_ops *rsk_prot; 895 struct timewait_sock_ops *twsk_prot; 896 897 union { 898 struct inet_hashinfo *hashinfo; 899 struct udp_table *udp_table; 900 struct raw_hashinfo *raw_hash; 901 } h; 902 903 struct module *owner; 904 905 char name[32]; 906 907 struct list_head node; 908 #ifdef SOCK_REFCNT_DEBUG 909 atomic_t socks; 910 #endif 911 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM 912 /* 913 * cgroup specific init/deinit functions. Called once for all 914 * protocols that implement it, from cgroups populate function. 915 * This function has to setup any files the protocol want to 916 * appear in the kmem cgroup filesystem. 917 */ 918 int (*init_cgroup)(struct mem_cgroup *memcg, 919 struct cgroup_subsys *ss); 920 void (*destroy_cgroup)(struct mem_cgroup *memcg); 921 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 922 #endif 923 }; 924 925 /* 926 * Bits in struct cg_proto.flags 927 */ 928 enum cg_proto_flags { 929 /* Currently active and new sockets should be assigned to cgroups */ 930 MEMCG_SOCK_ACTIVE, 931 /* It was ever activated; we must disarm static keys on destruction */ 932 MEMCG_SOCK_ACTIVATED, 933 }; 934 935 struct cg_proto { 936 void (*enter_memory_pressure)(struct sock *sk); 937 struct res_counter *memory_allocated; /* Current allocated memory. */ 938 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 939 int *memory_pressure; 940 long *sysctl_mem; 941 unsigned long flags; 942 /* 943 * memcg field is used to find which memcg we belong directly 944 * Each memcg struct can hold more than one cg_proto, so container_of 945 * won't really cut. 946 * 947 * The elegant solution would be having an inverse function to 948 * proto_cgroup in struct proto, but that means polluting the structure 949 * for everybody, instead of just for memcg users. 950 */ 951 struct mem_cgroup *memcg; 952 }; 953 954 extern int proto_register(struct proto *prot, int alloc_slab); 955 extern void proto_unregister(struct proto *prot); 956 957 static inline bool memcg_proto_active(struct cg_proto *cg_proto) 958 { 959 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); 960 } 961 962 static inline bool memcg_proto_activated(struct cg_proto *cg_proto) 963 { 964 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags); 965 } 966 967 #ifdef SOCK_REFCNT_DEBUG 968 static inline void sk_refcnt_debug_inc(struct sock *sk) 969 { 970 atomic_inc(&sk->sk_prot->socks); 971 } 972 973 static inline void sk_refcnt_debug_dec(struct sock *sk) 974 { 975 atomic_dec(&sk->sk_prot->socks); 976 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 977 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 978 } 979 980 inline void sk_refcnt_debug_release(const struct sock *sk) 981 { 982 if (atomic_read(&sk->sk_refcnt) != 1) 983 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 984 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 985 } 986 #else /* SOCK_REFCNT_DEBUG */ 987 #define sk_refcnt_debug_inc(sk) do { } while (0) 988 #define sk_refcnt_debug_dec(sk) do { } while (0) 989 #define sk_refcnt_debug_release(sk) do { } while (0) 990 #endif /* SOCK_REFCNT_DEBUG */ 991 992 #if defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM) && defined(CONFIG_NET) 993 extern struct static_key memcg_socket_limit_enabled; 994 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 995 struct cg_proto *cg_proto) 996 { 997 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 998 } 999 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 1000 #else 1001 #define mem_cgroup_sockets_enabled 0 1002 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1003 struct cg_proto *cg_proto) 1004 { 1005 return NULL; 1006 } 1007 #endif 1008 1009 1010 static inline bool sk_has_memory_pressure(const struct sock *sk) 1011 { 1012 return sk->sk_prot->memory_pressure != NULL; 1013 } 1014 1015 static inline bool sk_under_memory_pressure(const struct sock *sk) 1016 { 1017 if (!sk->sk_prot->memory_pressure) 1018 return false; 1019 1020 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1021 return !!*sk->sk_cgrp->memory_pressure; 1022 1023 return !!*sk->sk_prot->memory_pressure; 1024 } 1025 1026 static inline void sk_leave_memory_pressure(struct sock *sk) 1027 { 1028 int *memory_pressure = sk->sk_prot->memory_pressure; 1029 1030 if (!memory_pressure) 1031 return; 1032 1033 if (*memory_pressure) 1034 *memory_pressure = 0; 1035 1036 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1037 struct cg_proto *cg_proto = sk->sk_cgrp; 1038 struct proto *prot = sk->sk_prot; 1039 1040 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1041 if (*cg_proto->memory_pressure) 1042 *cg_proto->memory_pressure = 0; 1043 } 1044 1045 } 1046 1047 static inline void sk_enter_memory_pressure(struct sock *sk) 1048 { 1049 if (!sk->sk_prot->enter_memory_pressure) 1050 return; 1051 1052 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1053 struct cg_proto *cg_proto = sk->sk_cgrp; 1054 struct proto *prot = sk->sk_prot; 1055 1056 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1057 cg_proto->enter_memory_pressure(sk); 1058 } 1059 1060 sk->sk_prot->enter_memory_pressure(sk); 1061 } 1062 1063 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1064 { 1065 long *prot = sk->sk_prot->sysctl_mem; 1066 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1067 prot = sk->sk_cgrp->sysctl_mem; 1068 return prot[index]; 1069 } 1070 1071 static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1072 unsigned long amt, 1073 int *parent_status) 1074 { 1075 struct res_counter *fail; 1076 int ret; 1077 1078 ret = res_counter_charge_nofail(prot->memory_allocated, 1079 amt << PAGE_SHIFT, &fail); 1080 if (ret < 0) 1081 *parent_status = OVER_LIMIT; 1082 } 1083 1084 static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1085 unsigned long amt) 1086 { 1087 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT); 1088 } 1089 1090 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot) 1091 { 1092 u64 ret; 1093 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE); 1094 return ret >> PAGE_SHIFT; 1095 } 1096 1097 static inline long 1098 sk_memory_allocated(const struct sock *sk) 1099 { 1100 struct proto *prot = sk->sk_prot; 1101 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1102 return memcg_memory_allocated_read(sk->sk_cgrp); 1103 1104 return atomic_long_read(prot->memory_allocated); 1105 } 1106 1107 static inline long 1108 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1109 { 1110 struct proto *prot = sk->sk_prot; 1111 1112 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1113 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1114 /* update the root cgroup regardless */ 1115 atomic_long_add_return(amt, prot->memory_allocated); 1116 return memcg_memory_allocated_read(sk->sk_cgrp); 1117 } 1118 1119 return atomic_long_add_return(amt, prot->memory_allocated); 1120 } 1121 1122 static inline void 1123 sk_memory_allocated_sub(struct sock *sk, int amt) 1124 { 1125 struct proto *prot = sk->sk_prot; 1126 1127 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1128 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1129 1130 atomic_long_sub(amt, prot->memory_allocated); 1131 } 1132 1133 static inline void sk_sockets_allocated_dec(struct sock *sk) 1134 { 1135 struct proto *prot = sk->sk_prot; 1136 1137 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1138 struct cg_proto *cg_proto = sk->sk_cgrp; 1139 1140 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1141 percpu_counter_dec(cg_proto->sockets_allocated); 1142 } 1143 1144 percpu_counter_dec(prot->sockets_allocated); 1145 } 1146 1147 static inline void sk_sockets_allocated_inc(struct sock *sk) 1148 { 1149 struct proto *prot = sk->sk_prot; 1150 1151 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1152 struct cg_proto *cg_proto = sk->sk_cgrp; 1153 1154 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1155 percpu_counter_inc(cg_proto->sockets_allocated); 1156 } 1157 1158 percpu_counter_inc(prot->sockets_allocated); 1159 } 1160 1161 static inline int 1162 sk_sockets_allocated_read_positive(struct sock *sk) 1163 { 1164 struct proto *prot = sk->sk_prot; 1165 1166 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1167 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated); 1168 1169 return percpu_counter_read_positive(prot->sockets_allocated); 1170 } 1171 1172 static inline int 1173 proto_sockets_allocated_sum_positive(struct proto *prot) 1174 { 1175 return percpu_counter_sum_positive(prot->sockets_allocated); 1176 } 1177 1178 static inline long 1179 proto_memory_allocated(struct proto *prot) 1180 { 1181 return atomic_long_read(prot->memory_allocated); 1182 } 1183 1184 static inline bool 1185 proto_memory_pressure(struct proto *prot) 1186 { 1187 if (!prot->memory_pressure) 1188 return false; 1189 return !!*prot->memory_pressure; 1190 } 1191 1192 1193 #ifdef CONFIG_PROC_FS 1194 /* Called with local bh disabled */ 1195 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1196 extern int sock_prot_inuse_get(struct net *net, struct proto *proto); 1197 #else 1198 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1199 int inc) 1200 { 1201 } 1202 #endif 1203 1204 1205 /* With per-bucket locks this operation is not-atomic, so that 1206 * this version is not worse. 1207 */ 1208 static inline void __sk_prot_rehash(struct sock *sk) 1209 { 1210 sk->sk_prot->unhash(sk); 1211 sk->sk_prot->hash(sk); 1212 } 1213 1214 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1215 1216 /* About 10 seconds */ 1217 #define SOCK_DESTROY_TIME (10*HZ) 1218 1219 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1220 #define PROT_SOCK 1024 1221 1222 #define SHUTDOWN_MASK 3 1223 #define RCV_SHUTDOWN 1 1224 #define SEND_SHUTDOWN 2 1225 1226 #define SOCK_SNDBUF_LOCK 1 1227 #define SOCK_RCVBUF_LOCK 2 1228 #define SOCK_BINDADDR_LOCK 4 1229 #define SOCK_BINDPORT_LOCK 8 1230 1231 /* sock_iocb: used to kick off async processing of socket ios */ 1232 struct sock_iocb { 1233 struct list_head list; 1234 1235 int flags; 1236 int size; 1237 struct socket *sock; 1238 struct sock *sk; 1239 struct scm_cookie *scm; 1240 struct msghdr *msg, async_msg; 1241 struct kiocb *kiocb; 1242 }; 1243 1244 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 1245 { 1246 return (struct sock_iocb *)iocb->private; 1247 } 1248 1249 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 1250 { 1251 return si->kiocb; 1252 } 1253 1254 struct socket_alloc { 1255 struct socket socket; 1256 struct inode vfs_inode; 1257 }; 1258 1259 static inline struct socket *SOCKET_I(struct inode *inode) 1260 { 1261 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1262 } 1263 1264 static inline struct inode *SOCK_INODE(struct socket *socket) 1265 { 1266 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1267 } 1268 1269 /* 1270 * Functions for memory accounting 1271 */ 1272 extern int __sk_mem_schedule(struct sock *sk, int size, int kind); 1273 extern void __sk_mem_reclaim(struct sock *sk); 1274 1275 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1276 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1277 #define SK_MEM_SEND 0 1278 #define SK_MEM_RECV 1 1279 1280 static inline int sk_mem_pages(int amt) 1281 { 1282 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1283 } 1284 1285 static inline bool sk_has_account(struct sock *sk) 1286 { 1287 /* return true if protocol supports memory accounting */ 1288 return !!sk->sk_prot->memory_allocated; 1289 } 1290 1291 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1292 { 1293 if (!sk_has_account(sk)) 1294 return true; 1295 return size <= sk->sk_forward_alloc || 1296 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1297 } 1298 1299 static inline bool sk_rmem_schedule(struct sock *sk, int size) 1300 { 1301 if (!sk_has_account(sk)) 1302 return true; 1303 return size <= sk->sk_forward_alloc || 1304 __sk_mem_schedule(sk, size, SK_MEM_RECV); 1305 } 1306 1307 static inline void sk_mem_reclaim(struct sock *sk) 1308 { 1309 if (!sk_has_account(sk)) 1310 return; 1311 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1312 __sk_mem_reclaim(sk); 1313 } 1314 1315 static inline void sk_mem_reclaim_partial(struct sock *sk) 1316 { 1317 if (!sk_has_account(sk)) 1318 return; 1319 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1320 __sk_mem_reclaim(sk); 1321 } 1322 1323 static inline void sk_mem_charge(struct sock *sk, int size) 1324 { 1325 if (!sk_has_account(sk)) 1326 return; 1327 sk->sk_forward_alloc -= size; 1328 } 1329 1330 static inline void sk_mem_uncharge(struct sock *sk, int size) 1331 { 1332 if (!sk_has_account(sk)) 1333 return; 1334 sk->sk_forward_alloc += size; 1335 } 1336 1337 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1338 { 1339 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1340 sk->sk_wmem_queued -= skb->truesize; 1341 sk_mem_uncharge(sk, skb->truesize); 1342 __kfree_skb(skb); 1343 } 1344 1345 /* Used by processes to "lock" a socket state, so that 1346 * interrupts and bottom half handlers won't change it 1347 * from under us. It essentially blocks any incoming 1348 * packets, so that we won't get any new data or any 1349 * packets that change the state of the socket. 1350 * 1351 * While locked, BH processing will add new packets to 1352 * the backlog queue. This queue is processed by the 1353 * owner of the socket lock right before it is released. 1354 * 1355 * Since ~2.3.5 it is also exclusive sleep lock serializing 1356 * accesses from user process context. 1357 */ 1358 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1359 1360 /* 1361 * Macro so as to not evaluate some arguments when 1362 * lockdep is not enabled. 1363 * 1364 * Mark both the sk_lock and the sk_lock.slock as a 1365 * per-address-family lock class. 1366 */ 1367 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1368 do { \ 1369 sk->sk_lock.owned = 0; \ 1370 init_waitqueue_head(&sk->sk_lock.wq); \ 1371 spin_lock_init(&(sk)->sk_lock.slock); \ 1372 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1373 sizeof((sk)->sk_lock)); \ 1374 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1375 (skey), (sname)); \ 1376 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1377 } while (0) 1378 1379 extern void lock_sock_nested(struct sock *sk, int subclass); 1380 1381 static inline void lock_sock(struct sock *sk) 1382 { 1383 lock_sock_nested(sk, 0); 1384 } 1385 1386 extern void release_sock(struct sock *sk); 1387 1388 /* BH context may only use the following locking interface. */ 1389 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1390 #define bh_lock_sock_nested(__sk) \ 1391 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1392 SINGLE_DEPTH_NESTING) 1393 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1394 1395 extern bool lock_sock_fast(struct sock *sk); 1396 /** 1397 * unlock_sock_fast - complement of lock_sock_fast 1398 * @sk: socket 1399 * @slow: slow mode 1400 * 1401 * fast unlock socket for user context. 1402 * If slow mode is on, we call regular release_sock() 1403 */ 1404 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1405 { 1406 if (slow) 1407 release_sock(sk); 1408 else 1409 spin_unlock_bh(&sk->sk_lock.slock); 1410 } 1411 1412 1413 extern struct sock *sk_alloc(struct net *net, int family, 1414 gfp_t priority, 1415 struct proto *prot); 1416 extern void sk_free(struct sock *sk); 1417 extern void sk_release_kernel(struct sock *sk); 1418 extern struct sock *sk_clone_lock(const struct sock *sk, 1419 const gfp_t priority); 1420 1421 extern struct sk_buff *sock_wmalloc(struct sock *sk, 1422 unsigned long size, int force, 1423 gfp_t priority); 1424 extern struct sk_buff *sock_rmalloc(struct sock *sk, 1425 unsigned long size, int force, 1426 gfp_t priority); 1427 extern void sock_wfree(struct sk_buff *skb); 1428 extern void sock_rfree(struct sk_buff *skb); 1429 1430 extern int sock_setsockopt(struct socket *sock, int level, 1431 int op, char __user *optval, 1432 unsigned int optlen); 1433 1434 extern int sock_getsockopt(struct socket *sock, int level, 1435 int op, char __user *optval, 1436 int __user *optlen); 1437 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 1438 unsigned long size, 1439 int noblock, 1440 int *errcode); 1441 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk, 1442 unsigned long header_len, 1443 unsigned long data_len, 1444 int noblock, 1445 int *errcode); 1446 extern void *sock_kmalloc(struct sock *sk, int size, 1447 gfp_t priority); 1448 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 1449 extern void sk_send_sigurg(struct sock *sk); 1450 1451 #ifdef CONFIG_CGROUPS 1452 extern void sock_update_classid(struct sock *sk); 1453 #else 1454 static inline void sock_update_classid(struct sock *sk) 1455 { 1456 } 1457 #endif 1458 1459 /* 1460 * Functions to fill in entries in struct proto_ops when a protocol 1461 * does not implement a particular function. 1462 */ 1463 extern int sock_no_bind(struct socket *, 1464 struct sockaddr *, int); 1465 extern int sock_no_connect(struct socket *, 1466 struct sockaddr *, int, int); 1467 extern int sock_no_socketpair(struct socket *, 1468 struct socket *); 1469 extern int sock_no_accept(struct socket *, 1470 struct socket *, int); 1471 extern int sock_no_getname(struct socket *, 1472 struct sockaddr *, int *, int); 1473 extern unsigned int sock_no_poll(struct file *, struct socket *, 1474 struct poll_table_struct *); 1475 extern int sock_no_ioctl(struct socket *, unsigned int, 1476 unsigned long); 1477 extern int sock_no_listen(struct socket *, int); 1478 extern int sock_no_shutdown(struct socket *, int); 1479 extern int sock_no_getsockopt(struct socket *, int , int, 1480 char __user *, int __user *); 1481 extern int sock_no_setsockopt(struct socket *, int, int, 1482 char __user *, unsigned int); 1483 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 1484 struct msghdr *, size_t); 1485 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 1486 struct msghdr *, size_t, int); 1487 extern int sock_no_mmap(struct file *file, 1488 struct socket *sock, 1489 struct vm_area_struct *vma); 1490 extern ssize_t sock_no_sendpage(struct socket *sock, 1491 struct page *page, 1492 int offset, size_t size, 1493 int flags); 1494 1495 /* 1496 * Functions to fill in entries in struct proto_ops when a protocol 1497 * uses the inet style. 1498 */ 1499 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 1500 char __user *optval, int __user *optlen); 1501 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1502 struct msghdr *msg, size_t size, int flags); 1503 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 1504 char __user *optval, unsigned int optlen); 1505 extern int compat_sock_common_getsockopt(struct socket *sock, int level, 1506 int optname, char __user *optval, int __user *optlen); 1507 extern int compat_sock_common_setsockopt(struct socket *sock, int level, 1508 int optname, char __user *optval, unsigned int optlen); 1509 1510 extern void sk_common_release(struct sock *sk); 1511 1512 /* 1513 * Default socket callbacks and setup code 1514 */ 1515 1516 /* Initialise core socket variables */ 1517 extern void sock_init_data(struct socket *sock, struct sock *sk); 1518 1519 extern void sk_filter_release_rcu(struct rcu_head *rcu); 1520 1521 /** 1522 * sk_filter_release - release a socket filter 1523 * @fp: filter to remove 1524 * 1525 * Remove a filter from a socket and release its resources. 1526 */ 1527 1528 static inline void sk_filter_release(struct sk_filter *fp) 1529 { 1530 if (atomic_dec_and_test(&fp->refcnt)) 1531 call_rcu(&fp->rcu, sk_filter_release_rcu); 1532 } 1533 1534 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) 1535 { 1536 unsigned int size = sk_filter_len(fp); 1537 1538 atomic_sub(size, &sk->sk_omem_alloc); 1539 sk_filter_release(fp); 1540 } 1541 1542 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 1543 { 1544 atomic_inc(&fp->refcnt); 1545 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 1546 } 1547 1548 /* 1549 * Socket reference counting postulates. 1550 * 1551 * * Each user of socket SHOULD hold a reference count. 1552 * * Each access point to socket (an hash table bucket, reference from a list, 1553 * running timer, skb in flight MUST hold a reference count. 1554 * * When reference count hits 0, it means it will never increase back. 1555 * * When reference count hits 0, it means that no references from 1556 * outside exist to this socket and current process on current CPU 1557 * is last user and may/should destroy this socket. 1558 * * sk_free is called from any context: process, BH, IRQ. When 1559 * it is called, socket has no references from outside -> sk_free 1560 * may release descendant resources allocated by the socket, but 1561 * to the time when it is called, socket is NOT referenced by any 1562 * hash tables, lists etc. 1563 * * Packets, delivered from outside (from network or from another process) 1564 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1565 * when they sit in queue. Otherwise, packets will leak to hole, when 1566 * socket is looked up by one cpu and unhasing is made by another CPU. 1567 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1568 * (leak to backlog). Packet socket does all the processing inside 1569 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1570 * use separate SMP lock, so that they are prone too. 1571 */ 1572 1573 /* Ungrab socket and destroy it, if it was the last reference. */ 1574 static inline void sock_put(struct sock *sk) 1575 { 1576 if (atomic_dec_and_test(&sk->sk_refcnt)) 1577 sk_free(sk); 1578 } 1579 1580 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1581 const int nested); 1582 1583 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1584 { 1585 sk->sk_tx_queue_mapping = tx_queue; 1586 } 1587 1588 static inline void sk_tx_queue_clear(struct sock *sk) 1589 { 1590 sk->sk_tx_queue_mapping = -1; 1591 } 1592 1593 static inline int sk_tx_queue_get(const struct sock *sk) 1594 { 1595 return sk ? sk->sk_tx_queue_mapping : -1; 1596 } 1597 1598 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1599 { 1600 sk_tx_queue_clear(sk); 1601 sk->sk_socket = sock; 1602 } 1603 1604 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1605 { 1606 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1607 return &rcu_dereference_raw(sk->sk_wq)->wait; 1608 } 1609 /* Detach socket from process context. 1610 * Announce socket dead, detach it from wait queue and inode. 1611 * Note that parent inode held reference count on this struct sock, 1612 * we do not release it in this function, because protocol 1613 * probably wants some additional cleanups or even continuing 1614 * to work with this socket (TCP). 1615 */ 1616 static inline void sock_orphan(struct sock *sk) 1617 { 1618 write_lock_bh(&sk->sk_callback_lock); 1619 sock_set_flag(sk, SOCK_DEAD); 1620 sk_set_socket(sk, NULL); 1621 sk->sk_wq = NULL; 1622 write_unlock_bh(&sk->sk_callback_lock); 1623 } 1624 1625 static inline void sock_graft(struct sock *sk, struct socket *parent) 1626 { 1627 write_lock_bh(&sk->sk_callback_lock); 1628 sk->sk_wq = parent->wq; 1629 parent->sk = sk; 1630 sk_set_socket(sk, parent); 1631 security_sock_graft(sk, parent); 1632 write_unlock_bh(&sk->sk_callback_lock); 1633 } 1634 1635 extern int sock_i_uid(struct sock *sk); 1636 extern unsigned long sock_i_ino(struct sock *sk); 1637 1638 static inline struct dst_entry * 1639 __sk_dst_get(struct sock *sk) 1640 { 1641 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1642 lockdep_is_held(&sk->sk_lock.slock)); 1643 } 1644 1645 static inline struct dst_entry * 1646 sk_dst_get(struct sock *sk) 1647 { 1648 struct dst_entry *dst; 1649 1650 rcu_read_lock(); 1651 dst = rcu_dereference(sk->sk_dst_cache); 1652 if (dst) 1653 dst_hold(dst); 1654 rcu_read_unlock(); 1655 return dst; 1656 } 1657 1658 extern void sk_reset_txq(struct sock *sk); 1659 1660 static inline void dst_negative_advice(struct sock *sk) 1661 { 1662 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1663 1664 if (dst && dst->ops->negative_advice) { 1665 ndst = dst->ops->negative_advice(dst); 1666 1667 if (ndst != dst) { 1668 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1669 sk_reset_txq(sk); 1670 } 1671 } 1672 } 1673 1674 static inline void 1675 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1676 { 1677 struct dst_entry *old_dst; 1678 1679 sk_tx_queue_clear(sk); 1680 /* 1681 * This can be called while sk is owned by the caller only, 1682 * with no state that can be checked in a rcu_dereference_check() cond 1683 */ 1684 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1685 rcu_assign_pointer(sk->sk_dst_cache, dst); 1686 dst_release(old_dst); 1687 } 1688 1689 static inline void 1690 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1691 { 1692 spin_lock(&sk->sk_dst_lock); 1693 __sk_dst_set(sk, dst); 1694 spin_unlock(&sk->sk_dst_lock); 1695 } 1696 1697 static inline void 1698 __sk_dst_reset(struct sock *sk) 1699 { 1700 __sk_dst_set(sk, NULL); 1701 } 1702 1703 static inline void 1704 sk_dst_reset(struct sock *sk) 1705 { 1706 spin_lock(&sk->sk_dst_lock); 1707 __sk_dst_reset(sk); 1708 spin_unlock(&sk->sk_dst_lock); 1709 } 1710 1711 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1712 1713 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1714 1715 static inline bool sk_can_gso(const struct sock *sk) 1716 { 1717 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1718 } 1719 1720 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1721 1722 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1723 { 1724 sk->sk_route_nocaps |= flags; 1725 sk->sk_route_caps &= ~flags; 1726 } 1727 1728 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1729 char __user *from, char *to, 1730 int copy, int offset) 1731 { 1732 if (skb->ip_summed == CHECKSUM_NONE) { 1733 int err = 0; 1734 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err); 1735 if (err) 1736 return err; 1737 skb->csum = csum_block_add(skb->csum, csum, offset); 1738 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1739 if (!access_ok(VERIFY_READ, from, copy) || 1740 __copy_from_user_nocache(to, from, copy)) 1741 return -EFAULT; 1742 } else if (copy_from_user(to, from, copy)) 1743 return -EFAULT; 1744 1745 return 0; 1746 } 1747 1748 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1749 char __user *from, int copy) 1750 { 1751 int err, offset = skb->len; 1752 1753 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1754 copy, offset); 1755 if (err) 1756 __skb_trim(skb, offset); 1757 1758 return err; 1759 } 1760 1761 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from, 1762 struct sk_buff *skb, 1763 struct page *page, 1764 int off, int copy) 1765 { 1766 int err; 1767 1768 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1769 copy, skb->len); 1770 if (err) 1771 return err; 1772 1773 skb->len += copy; 1774 skb->data_len += copy; 1775 skb->truesize += copy; 1776 sk->sk_wmem_queued += copy; 1777 sk_mem_charge(sk, copy); 1778 return 0; 1779 } 1780 1781 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1782 struct sk_buff *skb, struct page *page, 1783 int off, int copy) 1784 { 1785 if (skb->ip_summed == CHECKSUM_NONE) { 1786 int err = 0; 1787 __wsum csum = csum_and_copy_from_user(from, 1788 page_address(page) + off, 1789 copy, 0, &err); 1790 if (err) 1791 return err; 1792 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1793 } else if (copy_from_user(page_address(page) + off, from, copy)) 1794 return -EFAULT; 1795 1796 skb->len += copy; 1797 skb->data_len += copy; 1798 skb->truesize += copy; 1799 sk->sk_wmem_queued += copy; 1800 sk_mem_charge(sk, copy); 1801 return 0; 1802 } 1803 1804 /** 1805 * sk_wmem_alloc_get - returns write allocations 1806 * @sk: socket 1807 * 1808 * Returns sk_wmem_alloc minus initial offset of one 1809 */ 1810 static inline int sk_wmem_alloc_get(const struct sock *sk) 1811 { 1812 return atomic_read(&sk->sk_wmem_alloc) - 1; 1813 } 1814 1815 /** 1816 * sk_rmem_alloc_get - returns read allocations 1817 * @sk: socket 1818 * 1819 * Returns sk_rmem_alloc 1820 */ 1821 static inline int sk_rmem_alloc_get(const struct sock *sk) 1822 { 1823 return atomic_read(&sk->sk_rmem_alloc); 1824 } 1825 1826 /** 1827 * sk_has_allocations - check if allocations are outstanding 1828 * @sk: socket 1829 * 1830 * Returns true if socket has write or read allocations 1831 */ 1832 static inline bool sk_has_allocations(const struct sock *sk) 1833 { 1834 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1835 } 1836 1837 /** 1838 * wq_has_sleeper - check if there are any waiting processes 1839 * @wq: struct socket_wq 1840 * 1841 * Returns true if socket_wq has waiting processes 1842 * 1843 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1844 * barrier call. They were added due to the race found within the tcp code. 1845 * 1846 * Consider following tcp code paths: 1847 * 1848 * CPU1 CPU2 1849 * 1850 * sys_select receive packet 1851 * ... ... 1852 * __add_wait_queue update tp->rcv_nxt 1853 * ... ... 1854 * tp->rcv_nxt check sock_def_readable 1855 * ... { 1856 * schedule rcu_read_lock(); 1857 * wq = rcu_dereference(sk->sk_wq); 1858 * if (wq && waitqueue_active(&wq->wait)) 1859 * wake_up_interruptible(&wq->wait) 1860 * ... 1861 * } 1862 * 1863 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1864 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1865 * could then endup calling schedule and sleep forever if there are no more 1866 * data on the socket. 1867 * 1868 */ 1869 static inline bool wq_has_sleeper(struct socket_wq *wq) 1870 { 1871 /* We need to be sure we are in sync with the 1872 * add_wait_queue modifications to the wait queue. 1873 * 1874 * This memory barrier is paired in the sock_poll_wait. 1875 */ 1876 smp_mb(); 1877 return wq && waitqueue_active(&wq->wait); 1878 } 1879 1880 /** 1881 * sock_poll_wait - place memory barrier behind the poll_wait call. 1882 * @filp: file 1883 * @wait_address: socket wait queue 1884 * @p: poll_table 1885 * 1886 * See the comments in the wq_has_sleeper function. 1887 */ 1888 static inline void sock_poll_wait(struct file *filp, 1889 wait_queue_head_t *wait_address, poll_table *p) 1890 { 1891 if (!poll_does_not_wait(p) && wait_address) { 1892 poll_wait(filp, wait_address, p); 1893 /* We need to be sure we are in sync with the 1894 * socket flags modification. 1895 * 1896 * This memory barrier is paired in the wq_has_sleeper. 1897 */ 1898 smp_mb(); 1899 } 1900 } 1901 1902 /* 1903 * Queue a received datagram if it will fit. Stream and sequenced 1904 * protocols can't normally use this as they need to fit buffers in 1905 * and play with them. 1906 * 1907 * Inlined as it's very short and called for pretty much every 1908 * packet ever received. 1909 */ 1910 1911 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1912 { 1913 skb_orphan(skb); 1914 skb->sk = sk; 1915 skb->destructor = sock_wfree; 1916 /* 1917 * We used to take a refcount on sk, but following operation 1918 * is enough to guarantee sk_free() wont free this sock until 1919 * all in-flight packets are completed 1920 */ 1921 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1922 } 1923 1924 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1925 { 1926 skb_orphan(skb); 1927 skb->sk = sk; 1928 skb->destructor = sock_rfree; 1929 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1930 sk_mem_charge(sk, skb->truesize); 1931 } 1932 1933 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer, 1934 unsigned long expires); 1935 1936 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer); 1937 1938 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1939 1940 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 1941 1942 /* 1943 * Recover an error report and clear atomically 1944 */ 1945 1946 static inline int sock_error(struct sock *sk) 1947 { 1948 int err; 1949 if (likely(!sk->sk_err)) 1950 return 0; 1951 err = xchg(&sk->sk_err, 0); 1952 return -err; 1953 } 1954 1955 static inline unsigned long sock_wspace(struct sock *sk) 1956 { 1957 int amt = 0; 1958 1959 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1960 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1961 if (amt < 0) 1962 amt = 0; 1963 } 1964 return amt; 1965 } 1966 1967 static inline void sk_wake_async(struct sock *sk, int how, int band) 1968 { 1969 if (sock_flag(sk, SOCK_FASYNC)) 1970 sock_wake_async(sk->sk_socket, how, band); 1971 } 1972 1973 #define SOCK_MIN_SNDBUF 2048 1974 /* 1975 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need 1976 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak 1977 */ 1978 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff)) 1979 1980 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1981 { 1982 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1983 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 1984 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1985 } 1986 } 1987 1988 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 1989 1990 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1991 { 1992 struct page *page = NULL; 1993 1994 page = alloc_pages(sk->sk_allocation, 0); 1995 if (!page) { 1996 sk_enter_memory_pressure(sk); 1997 sk_stream_moderate_sndbuf(sk); 1998 } 1999 return page; 2000 } 2001 2002 /* 2003 * Default write policy as shown to user space via poll/select/SIGIO 2004 */ 2005 static inline bool sock_writeable(const struct sock *sk) 2006 { 2007 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2008 } 2009 2010 static inline gfp_t gfp_any(void) 2011 { 2012 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2013 } 2014 2015 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2016 { 2017 return noblock ? 0 : sk->sk_rcvtimeo; 2018 } 2019 2020 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2021 { 2022 return noblock ? 0 : sk->sk_sndtimeo; 2023 } 2024 2025 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2026 { 2027 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2028 } 2029 2030 /* Alas, with timeout socket operations are not restartable. 2031 * Compare this to poll(). 2032 */ 2033 static inline int sock_intr_errno(long timeo) 2034 { 2035 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2036 } 2037 2038 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2039 struct sk_buff *skb); 2040 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2041 struct sk_buff *skb); 2042 2043 static inline void 2044 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2045 { 2046 ktime_t kt = skb->tstamp; 2047 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2048 2049 /* 2050 * generate control messages if 2051 * - receive time stamping in software requested (SOCK_RCVTSTAMP 2052 * or SOCK_TIMESTAMPING_RX_SOFTWARE) 2053 * - software time stamp available and wanted 2054 * (SOCK_TIMESTAMPING_SOFTWARE) 2055 * - hardware time stamps available and wanted 2056 * (SOCK_TIMESTAMPING_SYS_HARDWARE or 2057 * SOCK_TIMESTAMPING_RAW_HARDWARE) 2058 */ 2059 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2060 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) || 2061 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) || 2062 (hwtstamps->hwtstamp.tv64 && 2063 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) || 2064 (hwtstamps->syststamp.tv64 && 2065 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))) 2066 __sock_recv_timestamp(msg, sk, skb); 2067 else 2068 sk->sk_stamp = kt; 2069 2070 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2071 __sock_recv_wifi_status(msg, sk, skb); 2072 } 2073 2074 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2075 struct sk_buff *skb); 2076 2077 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2078 struct sk_buff *skb) 2079 { 2080 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2081 (1UL << SOCK_RCVTSTAMP) | \ 2082 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \ 2083 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \ 2084 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \ 2085 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE)) 2086 2087 if (sk->sk_flags & FLAGS_TS_OR_DROPS) 2088 __sock_recv_ts_and_drops(msg, sk, skb); 2089 else 2090 sk->sk_stamp = skb->tstamp; 2091 } 2092 2093 /** 2094 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2095 * @sk: socket sending this packet 2096 * @tx_flags: filled with instructions for time stamping 2097 * 2098 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if 2099 * parameters are invalid. 2100 */ 2101 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags); 2102 2103 /** 2104 * sk_eat_skb - Release a skb if it is no longer needed 2105 * @sk: socket to eat this skb from 2106 * @skb: socket buffer to eat 2107 * @copied_early: flag indicating whether DMA operations copied this data early 2108 * 2109 * This routine must be called with interrupts disabled or with the socket 2110 * locked so that the sk_buff queue operation is ok. 2111 */ 2112 #ifdef CONFIG_NET_DMA 2113 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2114 { 2115 __skb_unlink(skb, &sk->sk_receive_queue); 2116 if (!copied_early) 2117 __kfree_skb(skb); 2118 else 2119 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 2120 } 2121 #else 2122 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2123 { 2124 __skb_unlink(skb, &sk->sk_receive_queue); 2125 __kfree_skb(skb); 2126 } 2127 #endif 2128 2129 static inline 2130 struct net *sock_net(const struct sock *sk) 2131 { 2132 return read_pnet(&sk->sk_net); 2133 } 2134 2135 static inline 2136 void sock_net_set(struct sock *sk, struct net *net) 2137 { 2138 write_pnet(&sk->sk_net, net); 2139 } 2140 2141 /* 2142 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 2143 * They should not hold a reference to a namespace in order to allow 2144 * to stop it. 2145 * Sockets after sk_change_net should be released using sk_release_kernel 2146 */ 2147 static inline void sk_change_net(struct sock *sk, struct net *net) 2148 { 2149 put_net(sock_net(sk)); 2150 sock_net_set(sk, hold_net(net)); 2151 } 2152 2153 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2154 { 2155 if (unlikely(skb->sk)) { 2156 struct sock *sk = skb->sk; 2157 2158 skb->destructor = NULL; 2159 skb->sk = NULL; 2160 return sk; 2161 } 2162 return NULL; 2163 } 2164 2165 extern void sock_enable_timestamp(struct sock *sk, int flag); 2166 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 2167 extern int sock_get_timestampns(struct sock *, struct timespec __user *); 2168 2169 /* 2170 * Enable debug/info messages 2171 */ 2172 extern int net_msg_warn; 2173 #define NETDEBUG(fmt, args...) \ 2174 do { if (net_msg_warn) printk(fmt,##args); } while (0) 2175 2176 #define LIMIT_NETDEBUG(fmt, args...) \ 2177 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 2178 2179 extern __u32 sysctl_wmem_max; 2180 extern __u32 sysctl_rmem_max; 2181 2182 extern void sk_init(void); 2183 2184 extern int sysctl_optmem_max; 2185 2186 extern __u32 sysctl_wmem_default; 2187 extern __u32 sysctl_rmem_default; 2188 2189 #endif /* _SOCK_H */ 2190