xref: /openbmc/linux/include/net/sock.h (revision 0edff03d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 #include <linux/rbtree.h>
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75 
76 /*
77  * This structure really needs to be cleaned up.
78  * Most of it is for TCP, and not used by any of
79  * the other protocols.
80  */
81 
82 /* Define this to get the SOCK_DBG debugging facility. */
83 #define SOCK_DEBUGGING
84 #ifdef SOCK_DEBUGGING
85 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
86 					printk(KERN_DEBUG msg); } while (0)
87 #else
88 /* Validate arguments and do nothing */
89 static inline __printf(2, 3)
90 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
91 {
92 }
93 #endif
94 
95 /* This is the per-socket lock.  The spinlock provides a synchronization
96  * between user contexts and software interrupt processing, whereas the
97  * mini-semaphore synchronizes multiple users amongst themselves.
98  */
99 typedef struct {
100 	spinlock_t		slock;
101 	int			owned;
102 	wait_queue_head_t	wq;
103 	/*
104 	 * We express the mutex-alike socket_lock semantics
105 	 * to the lock validator by explicitly managing
106 	 * the slock as a lock variant (in addition to
107 	 * the slock itself):
108 	 */
109 #ifdef CONFIG_DEBUG_LOCK_ALLOC
110 	struct lockdep_map dep_map;
111 #endif
112 } socket_lock_t;
113 
114 struct sock;
115 struct proto;
116 struct net;
117 
118 typedef __u32 __bitwise __portpair;
119 typedef __u64 __bitwise __addrpair;
120 
121 /**
122  *	struct sock_common - minimal network layer representation of sockets
123  *	@skc_daddr: Foreign IPv4 addr
124  *	@skc_rcv_saddr: Bound local IPv4 addr
125  *	@skc_hash: hash value used with various protocol lookup tables
126  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
127  *	@skc_dport: placeholder for inet_dport/tw_dport
128  *	@skc_num: placeholder for inet_num/tw_num
129  *	@skc_family: network address family
130  *	@skc_state: Connection state
131  *	@skc_reuse: %SO_REUSEADDR setting
132  *	@skc_reuseport: %SO_REUSEPORT setting
133  *	@skc_bound_dev_if: bound device index if != 0
134  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
135  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136  *	@skc_prot: protocol handlers inside a network family
137  *	@skc_net: reference to the network namespace of this socket
138  *	@skc_node: main hash linkage for various protocol lookup tables
139  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
140  *	@skc_tx_queue_mapping: tx queue number for this connection
141  *	@skc_flags: place holder for sk_flags
142  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
143  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
144  *	@skc_incoming_cpu: record/match cpu processing incoming packets
145  *	@skc_refcnt: reference count
146  *
147  *	This is the minimal network layer representation of sockets, the header
148  *	for struct sock and struct inet_timewait_sock.
149  */
150 struct sock_common {
151 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
152 	 * address on 64bit arches : cf INET_MATCH()
153 	 */
154 	union {
155 		__addrpair	skc_addrpair;
156 		struct {
157 			__be32	skc_daddr;
158 			__be32	skc_rcv_saddr;
159 		};
160 	};
161 	union  {
162 		unsigned int	skc_hash;
163 		__u16		skc_u16hashes[2];
164 	};
165 	/* skc_dport && skc_num must be grouped as well */
166 	union {
167 		__portpair	skc_portpair;
168 		struct {
169 			__be16	skc_dport;
170 			__u16	skc_num;
171 		};
172 	};
173 
174 	unsigned short		skc_family;
175 	volatile unsigned char	skc_state;
176 	unsigned char		skc_reuse:4;
177 	unsigned char		skc_reuseport:1;
178 	unsigned char		skc_ipv6only:1;
179 	unsigned char		skc_net_refcnt:1;
180 	int			skc_bound_dev_if;
181 	union {
182 		struct hlist_node	skc_bind_node;
183 		struct hlist_node	skc_portaddr_node;
184 	};
185 	struct proto		*skc_prot;
186 	possible_net_t		skc_net;
187 
188 #if IS_ENABLED(CONFIG_IPV6)
189 	struct in6_addr		skc_v6_daddr;
190 	struct in6_addr		skc_v6_rcv_saddr;
191 #endif
192 
193 	atomic64_t		skc_cookie;
194 
195 	/* following fields are padding to force
196 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
197 	 * assuming IPV6 is enabled. We use this padding differently
198 	 * for different kind of 'sockets'
199 	 */
200 	union {
201 		unsigned long	skc_flags;
202 		struct sock	*skc_listener; /* request_sock */
203 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
204 	};
205 	/*
206 	 * fields between dontcopy_begin/dontcopy_end
207 	 * are not copied in sock_copy()
208 	 */
209 	/* private: */
210 	int			skc_dontcopy_begin[0];
211 	/* public: */
212 	union {
213 		struct hlist_node	skc_node;
214 		struct hlist_nulls_node skc_nulls_node;
215 	};
216 	int			skc_tx_queue_mapping;
217 	union {
218 		int		skc_incoming_cpu;
219 		u32		skc_rcv_wnd;
220 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
221 	};
222 
223 	refcount_t		skc_refcnt;
224 	/* private: */
225 	int                     skc_dontcopy_end[0];
226 	union {
227 		u32		skc_rxhash;
228 		u32		skc_window_clamp;
229 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 	};
231 	/* public: */
232 };
233 
234 /**
235   *	struct sock - network layer representation of sockets
236   *	@__sk_common: shared layout with inet_timewait_sock
237   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
238   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
239   *	@sk_lock:	synchronizer
240   *	@sk_kern_sock: True if sock is using kernel lock classes
241   *	@sk_rcvbuf: size of receive buffer in bytes
242   *	@sk_wq: sock wait queue and async head
243   *	@sk_rx_dst: receive input route used by early demux
244   *	@sk_dst_cache: destination cache
245   *	@sk_dst_pending_confirm: need to confirm neighbour
246   *	@sk_policy: flow policy
247   *	@sk_receive_queue: incoming packets
248   *	@sk_wmem_alloc: transmit queue bytes committed
249   *	@sk_tsq_flags: TCP Small Queues flags
250   *	@sk_write_queue: Packet sending queue
251   *	@sk_omem_alloc: "o" is "option" or "other"
252   *	@sk_wmem_queued: persistent queue size
253   *	@sk_forward_alloc: space allocated forward
254   *	@sk_napi_id: id of the last napi context to receive data for sk
255   *	@sk_ll_usec: usecs to busypoll when there is no data
256   *	@sk_allocation: allocation mode
257   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
258   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
259   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
260   *	@sk_sndbuf: size of send buffer in bytes
261   *	@__sk_flags_offset: empty field used to determine location of bitfield
262   *	@sk_padding: unused element for alignment
263   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
264   *	@sk_no_check_rx: allow zero checksum in RX packets
265   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
266   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
267   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
268   *	@sk_gso_max_size: Maximum GSO segment size to build
269   *	@sk_gso_max_segs: Maximum number of GSO segments
270   *	@sk_pacing_shift: scaling factor for TCP Small Queues
271   *	@sk_lingertime: %SO_LINGER l_linger setting
272   *	@sk_backlog: always used with the per-socket spinlock held
273   *	@sk_callback_lock: used with the callbacks in the end of this struct
274   *	@sk_error_queue: rarely used
275   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
276   *			  IPV6_ADDRFORM for instance)
277   *	@sk_err: last error
278   *	@sk_err_soft: errors that don't cause failure but are the cause of a
279   *		      persistent failure not just 'timed out'
280   *	@sk_drops: raw/udp drops counter
281   *	@sk_ack_backlog: current listen backlog
282   *	@sk_max_ack_backlog: listen backlog set in listen()
283   *	@sk_uid: user id of owner
284   *	@sk_priority: %SO_PRIORITY setting
285   *	@sk_type: socket type (%SOCK_STREAM, etc)
286   *	@sk_protocol: which protocol this socket belongs in this network family
287   *	@sk_peer_pid: &struct pid for this socket's peer
288   *	@sk_peer_cred: %SO_PEERCRED setting
289   *	@sk_rcvlowat: %SO_RCVLOWAT setting
290   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
291   *	@sk_sndtimeo: %SO_SNDTIMEO setting
292   *	@sk_txhash: computed flow hash for use on transmit
293   *	@sk_filter: socket filtering instructions
294   *	@sk_timer: sock cleanup timer
295   *	@sk_stamp: time stamp of last packet received
296   *	@sk_tsflags: SO_TIMESTAMPING socket options
297   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
298   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
299   *	@sk_socket: Identd and reporting IO signals
300   *	@sk_user_data: RPC layer private data
301   *	@sk_frag: cached page frag
302   *	@sk_peek_off: current peek_offset value
303   *	@sk_send_head: front of stuff to transmit
304   *	@sk_security: used by security modules
305   *	@sk_mark: generic packet mark
306   *	@sk_cgrp_data: cgroup data for this cgroup
307   *	@sk_memcg: this socket's memory cgroup association
308   *	@sk_write_pending: a write to stream socket waits to start
309   *	@sk_state_change: callback to indicate change in the state of the sock
310   *	@sk_data_ready: callback to indicate there is data to be processed
311   *	@sk_write_space: callback to indicate there is bf sending space available
312   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
313   *	@sk_backlog_rcv: callback to process the backlog
314   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
315   *	@sk_reuseport_cb: reuseport group container
316   *	@sk_rcu: used during RCU grace period
317   */
318 struct sock {
319 	/*
320 	 * Now struct inet_timewait_sock also uses sock_common, so please just
321 	 * don't add nothing before this first member (__sk_common) --acme
322 	 */
323 	struct sock_common	__sk_common;
324 #define sk_node			__sk_common.skc_node
325 #define sk_nulls_node		__sk_common.skc_nulls_node
326 #define sk_refcnt		__sk_common.skc_refcnt
327 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
328 
329 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
330 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
331 #define sk_hash			__sk_common.skc_hash
332 #define sk_portpair		__sk_common.skc_portpair
333 #define sk_num			__sk_common.skc_num
334 #define sk_dport		__sk_common.skc_dport
335 #define sk_addrpair		__sk_common.skc_addrpair
336 #define sk_daddr		__sk_common.skc_daddr
337 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
338 #define sk_family		__sk_common.skc_family
339 #define sk_state		__sk_common.skc_state
340 #define sk_reuse		__sk_common.skc_reuse
341 #define sk_reuseport		__sk_common.skc_reuseport
342 #define sk_ipv6only		__sk_common.skc_ipv6only
343 #define sk_net_refcnt		__sk_common.skc_net_refcnt
344 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
345 #define sk_bind_node		__sk_common.skc_bind_node
346 #define sk_prot			__sk_common.skc_prot
347 #define sk_net			__sk_common.skc_net
348 #define sk_v6_daddr		__sk_common.skc_v6_daddr
349 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
350 #define sk_cookie		__sk_common.skc_cookie
351 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
352 #define sk_flags		__sk_common.skc_flags
353 #define sk_rxhash		__sk_common.skc_rxhash
354 
355 	socket_lock_t		sk_lock;
356 	atomic_t		sk_drops;
357 	int			sk_rcvlowat;
358 	struct sk_buff_head	sk_error_queue;
359 	struct sk_buff_head	sk_receive_queue;
360 	/*
361 	 * The backlog queue is special, it is always used with
362 	 * the per-socket spinlock held and requires low latency
363 	 * access. Therefore we special case it's implementation.
364 	 * Note : rmem_alloc is in this structure to fill a hole
365 	 * on 64bit arches, not because its logically part of
366 	 * backlog.
367 	 */
368 	struct {
369 		atomic_t	rmem_alloc;
370 		int		len;
371 		struct sk_buff	*head;
372 		struct sk_buff	*tail;
373 	} sk_backlog;
374 #define sk_rmem_alloc sk_backlog.rmem_alloc
375 
376 	int			sk_forward_alloc;
377 #ifdef CONFIG_NET_RX_BUSY_POLL
378 	unsigned int		sk_ll_usec;
379 	/* ===== mostly read cache line ===== */
380 	unsigned int		sk_napi_id;
381 #endif
382 	int			sk_rcvbuf;
383 
384 	struct sk_filter __rcu	*sk_filter;
385 	union {
386 		struct socket_wq __rcu	*sk_wq;
387 		struct socket_wq	*sk_wq_raw;
388 	};
389 #ifdef CONFIG_XFRM
390 	struct xfrm_policy __rcu *sk_policy[2];
391 #endif
392 	struct dst_entry	*sk_rx_dst;
393 	struct dst_entry __rcu	*sk_dst_cache;
394 	atomic_t		sk_omem_alloc;
395 	int			sk_sndbuf;
396 
397 	/* ===== cache line for TX ===== */
398 	int			sk_wmem_queued;
399 	refcount_t		sk_wmem_alloc;
400 	unsigned long		sk_tsq_flags;
401 	union {
402 		struct sk_buff	*sk_send_head;
403 		struct rb_root	tcp_rtx_queue;
404 	};
405 	struct sk_buff_head	sk_write_queue;
406 	__s32			sk_peek_off;
407 	int			sk_write_pending;
408 	__u32			sk_dst_pending_confirm;
409 	u32			sk_pacing_status; /* see enum sk_pacing */
410 	long			sk_sndtimeo;
411 	struct timer_list	sk_timer;
412 	__u32			sk_priority;
413 	__u32			sk_mark;
414 	u32			sk_pacing_rate; /* bytes per second */
415 	u32			sk_max_pacing_rate;
416 	struct page_frag	sk_frag;
417 	netdev_features_t	sk_route_caps;
418 	netdev_features_t	sk_route_nocaps;
419 	int			sk_gso_type;
420 	unsigned int		sk_gso_max_size;
421 	gfp_t			sk_allocation;
422 	__u32			sk_txhash;
423 
424 	/*
425 	 * Because of non atomicity rules, all
426 	 * changes are protected by socket lock.
427 	 */
428 	unsigned int		__sk_flags_offset[0];
429 #ifdef __BIG_ENDIAN_BITFIELD
430 #define SK_FL_PROTO_SHIFT  16
431 #define SK_FL_PROTO_MASK   0x00ff0000
432 
433 #define SK_FL_TYPE_SHIFT   0
434 #define SK_FL_TYPE_MASK    0x0000ffff
435 #else
436 #define SK_FL_PROTO_SHIFT  8
437 #define SK_FL_PROTO_MASK   0x0000ff00
438 
439 #define SK_FL_TYPE_SHIFT   16
440 #define SK_FL_TYPE_MASK    0xffff0000
441 #endif
442 
443 	unsigned int		sk_padding : 1,
444 				sk_kern_sock : 1,
445 				sk_no_check_tx : 1,
446 				sk_no_check_rx : 1,
447 				sk_userlocks : 4,
448 				sk_protocol  : 8,
449 				sk_type      : 16;
450 #define SK_PROTOCOL_MAX U8_MAX
451 	u16			sk_gso_max_segs;
452 	u8			sk_pacing_shift;
453 	unsigned long	        sk_lingertime;
454 	struct proto		*sk_prot_creator;
455 	rwlock_t		sk_callback_lock;
456 	int			sk_err,
457 				sk_err_soft;
458 	u32			sk_ack_backlog;
459 	u32			sk_max_ack_backlog;
460 	kuid_t			sk_uid;
461 	struct pid		*sk_peer_pid;
462 	const struct cred	*sk_peer_cred;
463 	long			sk_rcvtimeo;
464 	ktime_t			sk_stamp;
465 	u16			sk_tsflags;
466 	u8			sk_shutdown;
467 	u32			sk_tskey;
468 	atomic_t		sk_zckey;
469 	struct socket		*sk_socket;
470 	void			*sk_user_data;
471 #ifdef CONFIG_SECURITY
472 	void			*sk_security;
473 #endif
474 	struct sock_cgroup_data	sk_cgrp_data;
475 	struct mem_cgroup	*sk_memcg;
476 	void			(*sk_state_change)(struct sock *sk);
477 	void			(*sk_data_ready)(struct sock *sk);
478 	void			(*sk_write_space)(struct sock *sk);
479 	void			(*sk_error_report)(struct sock *sk);
480 	int			(*sk_backlog_rcv)(struct sock *sk,
481 						  struct sk_buff *skb);
482 	void                    (*sk_destruct)(struct sock *sk);
483 	struct sock_reuseport __rcu	*sk_reuseport_cb;
484 	struct rcu_head		sk_rcu;
485 };
486 
487 enum sk_pacing {
488 	SK_PACING_NONE		= 0,
489 	SK_PACING_NEEDED	= 1,
490 	SK_PACING_FQ		= 2,
491 };
492 
493 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
494 
495 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
496 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
497 
498 /*
499  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
500  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
501  * on a socket means that the socket will reuse everybody else's port
502  * without looking at the other's sk_reuse value.
503  */
504 
505 #define SK_NO_REUSE	0
506 #define SK_CAN_REUSE	1
507 #define SK_FORCE_REUSE	2
508 
509 int sk_set_peek_off(struct sock *sk, int val);
510 
511 static inline int sk_peek_offset(struct sock *sk, int flags)
512 {
513 	if (unlikely(flags & MSG_PEEK)) {
514 		return READ_ONCE(sk->sk_peek_off);
515 	}
516 
517 	return 0;
518 }
519 
520 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
521 {
522 	s32 off = READ_ONCE(sk->sk_peek_off);
523 
524 	if (unlikely(off >= 0)) {
525 		off = max_t(s32, off - val, 0);
526 		WRITE_ONCE(sk->sk_peek_off, off);
527 	}
528 }
529 
530 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
531 {
532 	sk_peek_offset_bwd(sk, -val);
533 }
534 
535 /*
536  * Hashed lists helper routines
537  */
538 static inline struct sock *sk_entry(const struct hlist_node *node)
539 {
540 	return hlist_entry(node, struct sock, sk_node);
541 }
542 
543 static inline struct sock *__sk_head(const struct hlist_head *head)
544 {
545 	return hlist_entry(head->first, struct sock, sk_node);
546 }
547 
548 static inline struct sock *sk_head(const struct hlist_head *head)
549 {
550 	return hlist_empty(head) ? NULL : __sk_head(head);
551 }
552 
553 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
554 {
555 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
556 }
557 
558 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
559 {
560 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
561 }
562 
563 static inline struct sock *sk_next(const struct sock *sk)
564 {
565 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
566 }
567 
568 static inline struct sock *sk_nulls_next(const struct sock *sk)
569 {
570 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
571 		hlist_nulls_entry(sk->sk_nulls_node.next,
572 				  struct sock, sk_nulls_node) :
573 		NULL;
574 }
575 
576 static inline bool sk_unhashed(const struct sock *sk)
577 {
578 	return hlist_unhashed(&sk->sk_node);
579 }
580 
581 static inline bool sk_hashed(const struct sock *sk)
582 {
583 	return !sk_unhashed(sk);
584 }
585 
586 static inline void sk_node_init(struct hlist_node *node)
587 {
588 	node->pprev = NULL;
589 }
590 
591 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
592 {
593 	node->pprev = NULL;
594 }
595 
596 static inline void __sk_del_node(struct sock *sk)
597 {
598 	__hlist_del(&sk->sk_node);
599 }
600 
601 /* NB: equivalent to hlist_del_init_rcu */
602 static inline bool __sk_del_node_init(struct sock *sk)
603 {
604 	if (sk_hashed(sk)) {
605 		__sk_del_node(sk);
606 		sk_node_init(&sk->sk_node);
607 		return true;
608 	}
609 	return false;
610 }
611 
612 /* Grab socket reference count. This operation is valid only
613    when sk is ALREADY grabbed f.e. it is found in hash table
614    or a list and the lookup is made under lock preventing hash table
615    modifications.
616  */
617 
618 static __always_inline void sock_hold(struct sock *sk)
619 {
620 	refcount_inc(&sk->sk_refcnt);
621 }
622 
623 /* Ungrab socket in the context, which assumes that socket refcnt
624    cannot hit zero, f.e. it is true in context of any socketcall.
625  */
626 static __always_inline void __sock_put(struct sock *sk)
627 {
628 	refcount_dec(&sk->sk_refcnt);
629 }
630 
631 static inline bool sk_del_node_init(struct sock *sk)
632 {
633 	bool rc = __sk_del_node_init(sk);
634 
635 	if (rc) {
636 		/* paranoid for a while -acme */
637 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
638 		__sock_put(sk);
639 	}
640 	return rc;
641 }
642 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
643 
644 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
645 {
646 	if (sk_hashed(sk)) {
647 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
648 		return true;
649 	}
650 	return false;
651 }
652 
653 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
654 {
655 	bool rc = __sk_nulls_del_node_init_rcu(sk);
656 
657 	if (rc) {
658 		/* paranoid for a while -acme */
659 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
660 		__sock_put(sk);
661 	}
662 	return rc;
663 }
664 
665 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
666 {
667 	hlist_add_head(&sk->sk_node, list);
668 }
669 
670 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
671 {
672 	sock_hold(sk);
673 	__sk_add_node(sk, list);
674 }
675 
676 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
677 {
678 	sock_hold(sk);
679 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
680 	    sk->sk_family == AF_INET6)
681 		hlist_add_tail_rcu(&sk->sk_node, list);
682 	else
683 		hlist_add_head_rcu(&sk->sk_node, list);
684 }
685 
686 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
687 {
688 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
689 }
690 
691 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
692 {
693 	sock_hold(sk);
694 	__sk_nulls_add_node_rcu(sk, list);
695 }
696 
697 static inline void __sk_del_bind_node(struct sock *sk)
698 {
699 	__hlist_del(&sk->sk_bind_node);
700 }
701 
702 static inline void sk_add_bind_node(struct sock *sk,
703 					struct hlist_head *list)
704 {
705 	hlist_add_head(&sk->sk_bind_node, list);
706 }
707 
708 #define sk_for_each(__sk, list) \
709 	hlist_for_each_entry(__sk, list, sk_node)
710 #define sk_for_each_rcu(__sk, list) \
711 	hlist_for_each_entry_rcu(__sk, list, sk_node)
712 #define sk_nulls_for_each(__sk, node, list) \
713 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
714 #define sk_nulls_for_each_rcu(__sk, node, list) \
715 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
716 #define sk_for_each_from(__sk) \
717 	hlist_for_each_entry_from(__sk, sk_node)
718 #define sk_nulls_for_each_from(__sk, node) \
719 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
720 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
721 #define sk_for_each_safe(__sk, tmp, list) \
722 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
723 #define sk_for_each_bound(__sk, list) \
724 	hlist_for_each_entry(__sk, list, sk_bind_node)
725 
726 /**
727  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
728  * @tpos:	the type * to use as a loop cursor.
729  * @pos:	the &struct hlist_node to use as a loop cursor.
730  * @head:	the head for your list.
731  * @offset:	offset of hlist_node within the struct.
732  *
733  */
734 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
735 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
736 	     pos != NULL &&						       \
737 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
738 	     pos = rcu_dereference(hlist_next_rcu(pos)))
739 
740 static inline struct user_namespace *sk_user_ns(struct sock *sk)
741 {
742 	/* Careful only use this in a context where these parameters
743 	 * can not change and must all be valid, such as recvmsg from
744 	 * userspace.
745 	 */
746 	return sk->sk_socket->file->f_cred->user_ns;
747 }
748 
749 /* Sock flags */
750 enum sock_flags {
751 	SOCK_DEAD,
752 	SOCK_DONE,
753 	SOCK_URGINLINE,
754 	SOCK_KEEPOPEN,
755 	SOCK_LINGER,
756 	SOCK_DESTROY,
757 	SOCK_BROADCAST,
758 	SOCK_TIMESTAMP,
759 	SOCK_ZAPPED,
760 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
761 	SOCK_DBG, /* %SO_DEBUG setting */
762 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
763 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
764 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
765 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
766 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
767 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
768 	SOCK_FASYNC, /* fasync() active */
769 	SOCK_RXQ_OVFL,
770 	SOCK_ZEROCOPY, /* buffers from userspace */
771 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
772 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
773 		     * Will use last 4 bytes of packet sent from
774 		     * user-space instead.
775 		     */
776 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
777 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
778 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
779 };
780 
781 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
782 
783 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
784 {
785 	nsk->sk_flags = osk->sk_flags;
786 }
787 
788 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
789 {
790 	__set_bit(flag, &sk->sk_flags);
791 }
792 
793 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
794 {
795 	__clear_bit(flag, &sk->sk_flags);
796 }
797 
798 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
799 {
800 	return test_bit(flag, &sk->sk_flags);
801 }
802 
803 #ifdef CONFIG_NET
804 extern struct static_key memalloc_socks;
805 static inline int sk_memalloc_socks(void)
806 {
807 	return static_key_false(&memalloc_socks);
808 }
809 #else
810 
811 static inline int sk_memalloc_socks(void)
812 {
813 	return 0;
814 }
815 
816 #endif
817 
818 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
819 {
820 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
821 }
822 
823 static inline void sk_acceptq_removed(struct sock *sk)
824 {
825 	sk->sk_ack_backlog--;
826 }
827 
828 static inline void sk_acceptq_added(struct sock *sk)
829 {
830 	sk->sk_ack_backlog++;
831 }
832 
833 static inline bool sk_acceptq_is_full(const struct sock *sk)
834 {
835 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
836 }
837 
838 /*
839  * Compute minimal free write space needed to queue new packets.
840  */
841 static inline int sk_stream_min_wspace(const struct sock *sk)
842 {
843 	return sk->sk_wmem_queued >> 1;
844 }
845 
846 static inline int sk_stream_wspace(const struct sock *sk)
847 {
848 	return sk->sk_sndbuf - sk->sk_wmem_queued;
849 }
850 
851 void sk_stream_write_space(struct sock *sk);
852 
853 /* OOB backlog add */
854 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
855 {
856 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
857 	skb_dst_force(skb);
858 
859 	if (!sk->sk_backlog.tail)
860 		sk->sk_backlog.head = skb;
861 	else
862 		sk->sk_backlog.tail->next = skb;
863 
864 	sk->sk_backlog.tail = skb;
865 	skb->next = NULL;
866 }
867 
868 /*
869  * Take into account size of receive queue and backlog queue
870  * Do not take into account this skb truesize,
871  * to allow even a single big packet to come.
872  */
873 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
874 {
875 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
876 
877 	return qsize > limit;
878 }
879 
880 /* The per-socket spinlock must be held here. */
881 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
882 					      unsigned int limit)
883 {
884 	if (sk_rcvqueues_full(sk, limit))
885 		return -ENOBUFS;
886 
887 	/*
888 	 * If the skb was allocated from pfmemalloc reserves, only
889 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
890 	 * helping free memory
891 	 */
892 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
893 		return -ENOMEM;
894 
895 	__sk_add_backlog(sk, skb);
896 	sk->sk_backlog.len += skb->truesize;
897 	return 0;
898 }
899 
900 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
901 
902 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
903 {
904 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
905 		return __sk_backlog_rcv(sk, skb);
906 
907 	return sk->sk_backlog_rcv(sk, skb);
908 }
909 
910 static inline void sk_incoming_cpu_update(struct sock *sk)
911 {
912 	int cpu = raw_smp_processor_id();
913 
914 	if (unlikely(sk->sk_incoming_cpu != cpu))
915 		sk->sk_incoming_cpu = cpu;
916 }
917 
918 static inline void sock_rps_record_flow_hash(__u32 hash)
919 {
920 #ifdef CONFIG_RPS
921 	struct rps_sock_flow_table *sock_flow_table;
922 
923 	rcu_read_lock();
924 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
925 	rps_record_sock_flow(sock_flow_table, hash);
926 	rcu_read_unlock();
927 #endif
928 }
929 
930 static inline void sock_rps_record_flow(const struct sock *sk)
931 {
932 #ifdef CONFIG_RPS
933 	if (static_key_false(&rfs_needed)) {
934 		/* Reading sk->sk_rxhash might incur an expensive cache line
935 		 * miss.
936 		 *
937 		 * TCP_ESTABLISHED does cover almost all states where RFS
938 		 * might be useful, and is cheaper [1] than testing :
939 		 *	IPv4: inet_sk(sk)->inet_daddr
940 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
941 		 * OR	an additional socket flag
942 		 * [1] : sk_state and sk_prot are in the same cache line.
943 		 */
944 		if (sk->sk_state == TCP_ESTABLISHED)
945 			sock_rps_record_flow_hash(sk->sk_rxhash);
946 	}
947 #endif
948 }
949 
950 static inline void sock_rps_save_rxhash(struct sock *sk,
951 					const struct sk_buff *skb)
952 {
953 #ifdef CONFIG_RPS
954 	if (unlikely(sk->sk_rxhash != skb->hash))
955 		sk->sk_rxhash = skb->hash;
956 #endif
957 }
958 
959 static inline void sock_rps_reset_rxhash(struct sock *sk)
960 {
961 #ifdef CONFIG_RPS
962 	sk->sk_rxhash = 0;
963 #endif
964 }
965 
966 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
967 	({	int __rc;						\
968 		release_sock(__sk);					\
969 		__rc = __condition;					\
970 		if (!__rc) {						\
971 			*(__timeo) = wait_woken(__wait,			\
972 						TASK_INTERRUPTIBLE,	\
973 						*(__timeo));		\
974 		}							\
975 		sched_annotate_sleep();					\
976 		lock_sock(__sk);					\
977 		__rc = __condition;					\
978 		__rc;							\
979 	})
980 
981 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
982 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
983 void sk_stream_wait_close(struct sock *sk, long timeo_p);
984 int sk_stream_error(struct sock *sk, int flags, int err);
985 void sk_stream_kill_queues(struct sock *sk);
986 void sk_set_memalloc(struct sock *sk);
987 void sk_clear_memalloc(struct sock *sk);
988 
989 void __sk_flush_backlog(struct sock *sk);
990 
991 static inline bool sk_flush_backlog(struct sock *sk)
992 {
993 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
994 		__sk_flush_backlog(sk);
995 		return true;
996 	}
997 	return false;
998 }
999 
1000 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1001 
1002 struct request_sock_ops;
1003 struct timewait_sock_ops;
1004 struct inet_hashinfo;
1005 struct raw_hashinfo;
1006 struct smc_hashinfo;
1007 struct module;
1008 
1009 /*
1010  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1011  * un-modified. Special care is taken when initializing object to zero.
1012  */
1013 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1014 {
1015 	if (offsetof(struct sock, sk_node.next) != 0)
1016 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1017 	memset(&sk->sk_node.pprev, 0,
1018 	       size - offsetof(struct sock, sk_node.pprev));
1019 }
1020 
1021 /* Networking protocol blocks we attach to sockets.
1022  * socket layer -> transport layer interface
1023  */
1024 struct proto {
1025 	void			(*close)(struct sock *sk,
1026 					long timeout);
1027 	int			(*connect)(struct sock *sk,
1028 					struct sockaddr *uaddr,
1029 					int addr_len);
1030 	int			(*disconnect)(struct sock *sk, int flags);
1031 
1032 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1033 					  bool kern);
1034 
1035 	int			(*ioctl)(struct sock *sk, int cmd,
1036 					 unsigned long arg);
1037 	int			(*init)(struct sock *sk);
1038 	void			(*destroy)(struct sock *sk);
1039 	void			(*shutdown)(struct sock *sk, int how);
1040 	int			(*setsockopt)(struct sock *sk, int level,
1041 					int optname, char __user *optval,
1042 					unsigned int optlen);
1043 	int			(*getsockopt)(struct sock *sk, int level,
1044 					int optname, char __user *optval,
1045 					int __user *option);
1046 	void			(*keepalive)(struct sock *sk, int valbool);
1047 #ifdef CONFIG_COMPAT
1048 	int			(*compat_setsockopt)(struct sock *sk,
1049 					int level,
1050 					int optname, char __user *optval,
1051 					unsigned int optlen);
1052 	int			(*compat_getsockopt)(struct sock *sk,
1053 					int level,
1054 					int optname, char __user *optval,
1055 					int __user *option);
1056 	int			(*compat_ioctl)(struct sock *sk,
1057 					unsigned int cmd, unsigned long arg);
1058 #endif
1059 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1060 					   size_t len);
1061 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1062 					   size_t len, int noblock, int flags,
1063 					   int *addr_len);
1064 	int			(*sendpage)(struct sock *sk, struct page *page,
1065 					int offset, size_t size, int flags);
1066 	int			(*bind)(struct sock *sk,
1067 					struct sockaddr *uaddr, int addr_len);
1068 
1069 	int			(*backlog_rcv) (struct sock *sk,
1070 						struct sk_buff *skb);
1071 
1072 	void		(*release_cb)(struct sock *sk);
1073 
1074 	/* Keeping track of sk's, looking them up, and port selection methods. */
1075 	int			(*hash)(struct sock *sk);
1076 	void			(*unhash)(struct sock *sk);
1077 	void			(*rehash)(struct sock *sk);
1078 	int			(*get_port)(struct sock *sk, unsigned short snum);
1079 
1080 	/* Keeping track of sockets in use */
1081 #ifdef CONFIG_PROC_FS
1082 	unsigned int		inuse_idx;
1083 #endif
1084 
1085 	bool			(*stream_memory_free)(const struct sock *sk);
1086 	/* Memory pressure */
1087 	void			(*enter_memory_pressure)(struct sock *sk);
1088 	void			(*leave_memory_pressure)(struct sock *sk);
1089 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1090 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1091 	/*
1092 	 * Pressure flag: try to collapse.
1093 	 * Technical note: it is used by multiple contexts non atomically.
1094 	 * All the __sk_mem_schedule() is of this nature: accounting
1095 	 * is strict, actions are advisory and have some latency.
1096 	 */
1097 	unsigned long		*memory_pressure;
1098 	long			*sysctl_mem;
1099 
1100 	int			*sysctl_wmem;
1101 	int			*sysctl_rmem;
1102 	u32			sysctl_wmem_offset;
1103 	u32			sysctl_rmem_offset;
1104 
1105 	int			max_header;
1106 	bool			no_autobind;
1107 
1108 	struct kmem_cache	*slab;
1109 	unsigned int		obj_size;
1110 	slab_flags_t		slab_flags;
1111 
1112 	struct percpu_counter	*orphan_count;
1113 
1114 	struct request_sock_ops	*rsk_prot;
1115 	struct timewait_sock_ops *twsk_prot;
1116 
1117 	union {
1118 		struct inet_hashinfo	*hashinfo;
1119 		struct udp_table	*udp_table;
1120 		struct raw_hashinfo	*raw_hash;
1121 		struct smc_hashinfo	*smc_hash;
1122 	} h;
1123 
1124 	struct module		*owner;
1125 
1126 	char			name[32];
1127 
1128 	struct list_head	node;
1129 #ifdef SOCK_REFCNT_DEBUG
1130 	atomic_t		socks;
1131 #endif
1132 	int			(*diag_destroy)(struct sock *sk, int err);
1133 } __randomize_layout;
1134 
1135 int proto_register(struct proto *prot, int alloc_slab);
1136 void proto_unregister(struct proto *prot);
1137 
1138 #ifdef SOCK_REFCNT_DEBUG
1139 static inline void sk_refcnt_debug_inc(struct sock *sk)
1140 {
1141 	atomic_inc(&sk->sk_prot->socks);
1142 }
1143 
1144 static inline void sk_refcnt_debug_dec(struct sock *sk)
1145 {
1146 	atomic_dec(&sk->sk_prot->socks);
1147 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1148 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1149 }
1150 
1151 static inline void sk_refcnt_debug_release(const struct sock *sk)
1152 {
1153 	if (refcount_read(&sk->sk_refcnt) != 1)
1154 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1155 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1156 }
1157 #else /* SOCK_REFCNT_DEBUG */
1158 #define sk_refcnt_debug_inc(sk) do { } while (0)
1159 #define sk_refcnt_debug_dec(sk) do { } while (0)
1160 #define sk_refcnt_debug_release(sk) do { } while (0)
1161 #endif /* SOCK_REFCNT_DEBUG */
1162 
1163 static inline bool sk_stream_memory_free(const struct sock *sk)
1164 {
1165 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1166 		return false;
1167 
1168 	return sk->sk_prot->stream_memory_free ?
1169 		sk->sk_prot->stream_memory_free(sk) : true;
1170 }
1171 
1172 static inline bool sk_stream_is_writeable(const struct sock *sk)
1173 {
1174 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1175 	       sk_stream_memory_free(sk);
1176 }
1177 
1178 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1179 					    struct cgroup *ancestor)
1180 {
1181 #ifdef CONFIG_SOCK_CGROUP_DATA
1182 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1183 				    ancestor);
1184 #else
1185 	return -ENOTSUPP;
1186 #endif
1187 }
1188 
1189 static inline bool sk_has_memory_pressure(const struct sock *sk)
1190 {
1191 	return sk->sk_prot->memory_pressure != NULL;
1192 }
1193 
1194 static inline bool sk_under_memory_pressure(const struct sock *sk)
1195 {
1196 	if (!sk->sk_prot->memory_pressure)
1197 		return false;
1198 
1199 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1200 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1201 		return true;
1202 
1203 	return !!*sk->sk_prot->memory_pressure;
1204 }
1205 
1206 static inline long
1207 sk_memory_allocated(const struct sock *sk)
1208 {
1209 	return atomic_long_read(sk->sk_prot->memory_allocated);
1210 }
1211 
1212 static inline long
1213 sk_memory_allocated_add(struct sock *sk, int amt)
1214 {
1215 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1216 }
1217 
1218 static inline void
1219 sk_memory_allocated_sub(struct sock *sk, int amt)
1220 {
1221 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1222 }
1223 
1224 static inline void sk_sockets_allocated_dec(struct sock *sk)
1225 {
1226 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1227 }
1228 
1229 static inline void sk_sockets_allocated_inc(struct sock *sk)
1230 {
1231 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1232 }
1233 
1234 static inline int
1235 sk_sockets_allocated_read_positive(struct sock *sk)
1236 {
1237 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1238 }
1239 
1240 static inline int
1241 proto_sockets_allocated_sum_positive(struct proto *prot)
1242 {
1243 	return percpu_counter_sum_positive(prot->sockets_allocated);
1244 }
1245 
1246 static inline long
1247 proto_memory_allocated(struct proto *prot)
1248 {
1249 	return atomic_long_read(prot->memory_allocated);
1250 }
1251 
1252 static inline bool
1253 proto_memory_pressure(struct proto *prot)
1254 {
1255 	if (!prot->memory_pressure)
1256 		return false;
1257 	return !!*prot->memory_pressure;
1258 }
1259 
1260 
1261 #ifdef CONFIG_PROC_FS
1262 /* Called with local bh disabled */
1263 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1264 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1265 #else
1266 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1267 		int inc)
1268 {
1269 }
1270 #endif
1271 
1272 
1273 /* With per-bucket locks this operation is not-atomic, so that
1274  * this version is not worse.
1275  */
1276 static inline int __sk_prot_rehash(struct sock *sk)
1277 {
1278 	sk->sk_prot->unhash(sk);
1279 	return sk->sk_prot->hash(sk);
1280 }
1281 
1282 /* About 10 seconds */
1283 #define SOCK_DESTROY_TIME (10*HZ)
1284 
1285 /* Sockets 0-1023 can't be bound to unless you are superuser */
1286 #define PROT_SOCK	1024
1287 
1288 #define SHUTDOWN_MASK	3
1289 #define RCV_SHUTDOWN	1
1290 #define SEND_SHUTDOWN	2
1291 
1292 #define SOCK_SNDBUF_LOCK	1
1293 #define SOCK_RCVBUF_LOCK	2
1294 #define SOCK_BINDADDR_LOCK	4
1295 #define SOCK_BINDPORT_LOCK	8
1296 
1297 struct socket_alloc {
1298 	struct socket socket;
1299 	struct inode vfs_inode;
1300 };
1301 
1302 static inline struct socket *SOCKET_I(struct inode *inode)
1303 {
1304 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1305 }
1306 
1307 static inline struct inode *SOCK_INODE(struct socket *socket)
1308 {
1309 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1310 }
1311 
1312 /*
1313  * Functions for memory accounting
1314  */
1315 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1316 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1317 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1318 void __sk_mem_reclaim(struct sock *sk, int amount);
1319 
1320 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1321  * do not necessarily have 16x time more memory than 4KB ones.
1322  */
1323 #define SK_MEM_QUANTUM 4096
1324 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1325 #define SK_MEM_SEND	0
1326 #define SK_MEM_RECV	1
1327 
1328 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1329 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1330 {
1331 	long val = sk->sk_prot->sysctl_mem[index];
1332 
1333 #if PAGE_SIZE > SK_MEM_QUANTUM
1334 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1335 #elif PAGE_SIZE < SK_MEM_QUANTUM
1336 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1337 #endif
1338 	return val;
1339 }
1340 
1341 static inline int sk_mem_pages(int amt)
1342 {
1343 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1344 }
1345 
1346 static inline bool sk_has_account(struct sock *sk)
1347 {
1348 	/* return true if protocol supports memory accounting */
1349 	return !!sk->sk_prot->memory_allocated;
1350 }
1351 
1352 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1353 {
1354 	if (!sk_has_account(sk))
1355 		return true;
1356 	return size <= sk->sk_forward_alloc ||
1357 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1358 }
1359 
1360 static inline bool
1361 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1362 {
1363 	if (!sk_has_account(sk))
1364 		return true;
1365 	return size<= sk->sk_forward_alloc ||
1366 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1367 		skb_pfmemalloc(skb);
1368 }
1369 
1370 static inline void sk_mem_reclaim(struct sock *sk)
1371 {
1372 	if (!sk_has_account(sk))
1373 		return;
1374 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1375 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1376 }
1377 
1378 static inline void sk_mem_reclaim_partial(struct sock *sk)
1379 {
1380 	if (!sk_has_account(sk))
1381 		return;
1382 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1383 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1384 }
1385 
1386 static inline void sk_mem_charge(struct sock *sk, int size)
1387 {
1388 	if (!sk_has_account(sk))
1389 		return;
1390 	sk->sk_forward_alloc -= size;
1391 }
1392 
1393 static inline void sk_mem_uncharge(struct sock *sk, int size)
1394 {
1395 	if (!sk_has_account(sk))
1396 		return;
1397 	sk->sk_forward_alloc += size;
1398 
1399 	/* Avoid a possible overflow.
1400 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1401 	 * is not called and more than 2 GBytes are released at once.
1402 	 *
1403 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1404 	 * no need to hold that much forward allocation anyway.
1405 	 */
1406 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1407 		__sk_mem_reclaim(sk, 1 << 20);
1408 }
1409 
1410 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1411 {
1412 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1413 	sk->sk_wmem_queued -= skb->truesize;
1414 	sk_mem_uncharge(sk, skb->truesize);
1415 	__kfree_skb(skb);
1416 }
1417 
1418 static inline void sock_release_ownership(struct sock *sk)
1419 {
1420 	if (sk->sk_lock.owned) {
1421 		sk->sk_lock.owned = 0;
1422 
1423 		/* The sk_lock has mutex_unlock() semantics: */
1424 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1425 	}
1426 }
1427 
1428 /*
1429  * Macro so as to not evaluate some arguments when
1430  * lockdep is not enabled.
1431  *
1432  * Mark both the sk_lock and the sk_lock.slock as a
1433  * per-address-family lock class.
1434  */
1435 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1436 do {									\
1437 	sk->sk_lock.owned = 0;						\
1438 	init_waitqueue_head(&sk->sk_lock.wq);				\
1439 	spin_lock_init(&(sk)->sk_lock.slock);				\
1440 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1441 			sizeof((sk)->sk_lock));				\
1442 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1443 				(skey), (sname));				\
1444 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1445 } while (0)
1446 
1447 #ifdef CONFIG_LOCKDEP
1448 static inline bool lockdep_sock_is_held(const struct sock *csk)
1449 {
1450 	struct sock *sk = (struct sock *)csk;
1451 
1452 	return lockdep_is_held(&sk->sk_lock) ||
1453 	       lockdep_is_held(&sk->sk_lock.slock);
1454 }
1455 #endif
1456 
1457 void lock_sock_nested(struct sock *sk, int subclass);
1458 
1459 static inline void lock_sock(struct sock *sk)
1460 {
1461 	lock_sock_nested(sk, 0);
1462 }
1463 
1464 void release_sock(struct sock *sk);
1465 
1466 /* BH context may only use the following locking interface. */
1467 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1468 #define bh_lock_sock_nested(__sk) \
1469 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1470 				SINGLE_DEPTH_NESTING)
1471 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1472 
1473 bool lock_sock_fast(struct sock *sk);
1474 /**
1475  * unlock_sock_fast - complement of lock_sock_fast
1476  * @sk: socket
1477  * @slow: slow mode
1478  *
1479  * fast unlock socket for user context.
1480  * If slow mode is on, we call regular release_sock()
1481  */
1482 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1483 {
1484 	if (slow)
1485 		release_sock(sk);
1486 	else
1487 		spin_unlock_bh(&sk->sk_lock.slock);
1488 }
1489 
1490 /* Used by processes to "lock" a socket state, so that
1491  * interrupts and bottom half handlers won't change it
1492  * from under us. It essentially blocks any incoming
1493  * packets, so that we won't get any new data or any
1494  * packets that change the state of the socket.
1495  *
1496  * While locked, BH processing will add new packets to
1497  * the backlog queue.  This queue is processed by the
1498  * owner of the socket lock right before it is released.
1499  *
1500  * Since ~2.3.5 it is also exclusive sleep lock serializing
1501  * accesses from user process context.
1502  */
1503 
1504 static inline void sock_owned_by_me(const struct sock *sk)
1505 {
1506 #ifdef CONFIG_LOCKDEP
1507 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1508 #endif
1509 }
1510 
1511 static inline bool sock_owned_by_user(const struct sock *sk)
1512 {
1513 	sock_owned_by_me(sk);
1514 	return sk->sk_lock.owned;
1515 }
1516 
1517 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1518 {
1519 	return sk->sk_lock.owned;
1520 }
1521 
1522 /* no reclassification while locks are held */
1523 static inline bool sock_allow_reclassification(const struct sock *csk)
1524 {
1525 	struct sock *sk = (struct sock *)csk;
1526 
1527 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1528 }
1529 
1530 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1531 		      struct proto *prot, int kern);
1532 void sk_free(struct sock *sk);
1533 void sk_destruct(struct sock *sk);
1534 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1535 void sk_free_unlock_clone(struct sock *sk);
1536 
1537 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1538 			     gfp_t priority);
1539 void __sock_wfree(struct sk_buff *skb);
1540 void sock_wfree(struct sk_buff *skb);
1541 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1542 			     gfp_t priority);
1543 void skb_orphan_partial(struct sk_buff *skb);
1544 void sock_rfree(struct sk_buff *skb);
1545 void sock_efree(struct sk_buff *skb);
1546 #ifdef CONFIG_INET
1547 void sock_edemux(struct sk_buff *skb);
1548 #else
1549 #define sock_edemux sock_efree
1550 #endif
1551 
1552 int sock_setsockopt(struct socket *sock, int level, int op,
1553 		    char __user *optval, unsigned int optlen);
1554 
1555 int sock_getsockopt(struct socket *sock, int level, int op,
1556 		    char __user *optval, int __user *optlen);
1557 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1558 				    int noblock, int *errcode);
1559 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1560 				     unsigned long data_len, int noblock,
1561 				     int *errcode, int max_page_order);
1562 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1563 void sock_kfree_s(struct sock *sk, void *mem, int size);
1564 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1565 void sk_send_sigurg(struct sock *sk);
1566 
1567 struct sockcm_cookie {
1568 	u32 mark;
1569 	u16 tsflags;
1570 };
1571 
1572 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1573 		     struct sockcm_cookie *sockc);
1574 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1575 		   struct sockcm_cookie *sockc);
1576 
1577 /*
1578  * Functions to fill in entries in struct proto_ops when a protocol
1579  * does not implement a particular function.
1580  */
1581 int sock_no_bind(struct socket *, struct sockaddr *, int);
1582 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1583 int sock_no_socketpair(struct socket *, struct socket *);
1584 int sock_no_accept(struct socket *, struct socket *, int, bool);
1585 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1586 unsigned int sock_no_poll(struct file *, struct socket *,
1587 			  struct poll_table_struct *);
1588 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1589 int sock_no_listen(struct socket *, int);
1590 int sock_no_shutdown(struct socket *, int);
1591 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1592 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1593 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1594 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1595 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1596 int sock_no_mmap(struct file *file, struct socket *sock,
1597 		 struct vm_area_struct *vma);
1598 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1599 			 size_t size, int flags);
1600 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1601 				int offset, size_t size, int flags);
1602 
1603 /*
1604  * Functions to fill in entries in struct proto_ops when a protocol
1605  * uses the inet style.
1606  */
1607 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1608 				  char __user *optval, int __user *optlen);
1609 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1610 			int flags);
1611 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1612 				  char __user *optval, unsigned int optlen);
1613 int compat_sock_common_getsockopt(struct socket *sock, int level,
1614 		int optname, char __user *optval, int __user *optlen);
1615 int compat_sock_common_setsockopt(struct socket *sock, int level,
1616 		int optname, char __user *optval, unsigned int optlen);
1617 
1618 void sk_common_release(struct sock *sk);
1619 
1620 /*
1621  *	Default socket callbacks and setup code
1622  */
1623 
1624 /* Initialise core socket variables */
1625 void sock_init_data(struct socket *sock, struct sock *sk);
1626 
1627 /*
1628  * Socket reference counting postulates.
1629  *
1630  * * Each user of socket SHOULD hold a reference count.
1631  * * Each access point to socket (an hash table bucket, reference from a list,
1632  *   running timer, skb in flight MUST hold a reference count.
1633  * * When reference count hits 0, it means it will never increase back.
1634  * * When reference count hits 0, it means that no references from
1635  *   outside exist to this socket and current process on current CPU
1636  *   is last user and may/should destroy this socket.
1637  * * sk_free is called from any context: process, BH, IRQ. When
1638  *   it is called, socket has no references from outside -> sk_free
1639  *   may release descendant resources allocated by the socket, but
1640  *   to the time when it is called, socket is NOT referenced by any
1641  *   hash tables, lists etc.
1642  * * Packets, delivered from outside (from network or from another process)
1643  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1644  *   when they sit in queue. Otherwise, packets will leak to hole, when
1645  *   socket is looked up by one cpu and unhasing is made by another CPU.
1646  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1647  *   (leak to backlog). Packet socket does all the processing inside
1648  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1649  *   use separate SMP lock, so that they are prone too.
1650  */
1651 
1652 /* Ungrab socket and destroy it, if it was the last reference. */
1653 static inline void sock_put(struct sock *sk)
1654 {
1655 	if (refcount_dec_and_test(&sk->sk_refcnt))
1656 		sk_free(sk);
1657 }
1658 /* Generic version of sock_put(), dealing with all sockets
1659  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1660  */
1661 void sock_gen_put(struct sock *sk);
1662 
1663 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1664 		     unsigned int trim_cap, bool refcounted);
1665 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1666 				 const int nested)
1667 {
1668 	return __sk_receive_skb(sk, skb, nested, 1, true);
1669 }
1670 
1671 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1672 {
1673 	sk->sk_tx_queue_mapping = tx_queue;
1674 }
1675 
1676 static inline void sk_tx_queue_clear(struct sock *sk)
1677 {
1678 	sk->sk_tx_queue_mapping = -1;
1679 }
1680 
1681 static inline int sk_tx_queue_get(const struct sock *sk)
1682 {
1683 	return sk ? sk->sk_tx_queue_mapping : -1;
1684 }
1685 
1686 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1687 {
1688 	sk_tx_queue_clear(sk);
1689 	sk->sk_socket = sock;
1690 }
1691 
1692 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1693 {
1694 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1695 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1696 }
1697 /* Detach socket from process context.
1698  * Announce socket dead, detach it from wait queue and inode.
1699  * Note that parent inode held reference count on this struct sock,
1700  * we do not release it in this function, because protocol
1701  * probably wants some additional cleanups or even continuing
1702  * to work with this socket (TCP).
1703  */
1704 static inline void sock_orphan(struct sock *sk)
1705 {
1706 	write_lock_bh(&sk->sk_callback_lock);
1707 	sock_set_flag(sk, SOCK_DEAD);
1708 	sk_set_socket(sk, NULL);
1709 	sk->sk_wq  = NULL;
1710 	write_unlock_bh(&sk->sk_callback_lock);
1711 }
1712 
1713 static inline void sock_graft(struct sock *sk, struct socket *parent)
1714 {
1715 	WARN_ON(parent->sk);
1716 	write_lock_bh(&sk->sk_callback_lock);
1717 	sk->sk_wq = parent->wq;
1718 	parent->sk = sk;
1719 	sk_set_socket(sk, parent);
1720 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1721 	security_sock_graft(sk, parent);
1722 	write_unlock_bh(&sk->sk_callback_lock);
1723 }
1724 
1725 kuid_t sock_i_uid(struct sock *sk);
1726 unsigned long sock_i_ino(struct sock *sk);
1727 
1728 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1729 {
1730 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1731 }
1732 
1733 static inline u32 net_tx_rndhash(void)
1734 {
1735 	u32 v = prandom_u32();
1736 
1737 	return v ?: 1;
1738 }
1739 
1740 static inline void sk_set_txhash(struct sock *sk)
1741 {
1742 	sk->sk_txhash = net_tx_rndhash();
1743 }
1744 
1745 static inline void sk_rethink_txhash(struct sock *sk)
1746 {
1747 	if (sk->sk_txhash)
1748 		sk_set_txhash(sk);
1749 }
1750 
1751 static inline struct dst_entry *
1752 __sk_dst_get(struct sock *sk)
1753 {
1754 	return rcu_dereference_check(sk->sk_dst_cache,
1755 				     lockdep_sock_is_held(sk));
1756 }
1757 
1758 static inline struct dst_entry *
1759 sk_dst_get(struct sock *sk)
1760 {
1761 	struct dst_entry *dst;
1762 
1763 	rcu_read_lock();
1764 	dst = rcu_dereference(sk->sk_dst_cache);
1765 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1766 		dst = NULL;
1767 	rcu_read_unlock();
1768 	return dst;
1769 }
1770 
1771 static inline void dst_negative_advice(struct sock *sk)
1772 {
1773 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1774 
1775 	sk_rethink_txhash(sk);
1776 
1777 	if (dst && dst->ops->negative_advice) {
1778 		ndst = dst->ops->negative_advice(dst);
1779 
1780 		if (ndst != dst) {
1781 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1782 			sk_tx_queue_clear(sk);
1783 			sk->sk_dst_pending_confirm = 0;
1784 		}
1785 	}
1786 }
1787 
1788 static inline void
1789 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1790 {
1791 	struct dst_entry *old_dst;
1792 
1793 	sk_tx_queue_clear(sk);
1794 	sk->sk_dst_pending_confirm = 0;
1795 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1796 					    lockdep_sock_is_held(sk));
1797 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1798 	dst_release(old_dst);
1799 }
1800 
1801 static inline void
1802 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1803 {
1804 	struct dst_entry *old_dst;
1805 
1806 	sk_tx_queue_clear(sk);
1807 	sk->sk_dst_pending_confirm = 0;
1808 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1809 	dst_release(old_dst);
1810 }
1811 
1812 static inline void
1813 __sk_dst_reset(struct sock *sk)
1814 {
1815 	__sk_dst_set(sk, NULL);
1816 }
1817 
1818 static inline void
1819 sk_dst_reset(struct sock *sk)
1820 {
1821 	sk_dst_set(sk, NULL);
1822 }
1823 
1824 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1825 
1826 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1827 
1828 static inline void sk_dst_confirm(struct sock *sk)
1829 {
1830 	if (!sk->sk_dst_pending_confirm)
1831 		sk->sk_dst_pending_confirm = 1;
1832 }
1833 
1834 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1835 {
1836 	if (skb_get_dst_pending_confirm(skb)) {
1837 		struct sock *sk = skb->sk;
1838 		unsigned long now = jiffies;
1839 
1840 		/* avoid dirtying neighbour */
1841 		if (n->confirmed != now)
1842 			n->confirmed = now;
1843 		if (sk && sk->sk_dst_pending_confirm)
1844 			sk->sk_dst_pending_confirm = 0;
1845 	}
1846 }
1847 
1848 bool sk_mc_loop(struct sock *sk);
1849 
1850 static inline bool sk_can_gso(const struct sock *sk)
1851 {
1852 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1853 }
1854 
1855 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1856 
1857 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1858 {
1859 	sk->sk_route_nocaps |= flags;
1860 	sk->sk_route_caps &= ~flags;
1861 }
1862 
1863 static inline bool sk_check_csum_caps(struct sock *sk)
1864 {
1865 	return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1866 	       (sk->sk_family == PF_INET &&
1867 		(sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1868 	       (sk->sk_family == PF_INET6 &&
1869 		(sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1870 }
1871 
1872 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1873 					   struct iov_iter *from, char *to,
1874 					   int copy, int offset)
1875 {
1876 	if (skb->ip_summed == CHECKSUM_NONE) {
1877 		__wsum csum = 0;
1878 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1879 			return -EFAULT;
1880 		skb->csum = csum_block_add(skb->csum, csum, offset);
1881 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1882 		if (!copy_from_iter_full_nocache(to, copy, from))
1883 			return -EFAULT;
1884 	} else if (!copy_from_iter_full(to, copy, from))
1885 		return -EFAULT;
1886 
1887 	return 0;
1888 }
1889 
1890 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1891 				       struct iov_iter *from, int copy)
1892 {
1893 	int err, offset = skb->len;
1894 
1895 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1896 				       copy, offset);
1897 	if (err)
1898 		__skb_trim(skb, offset);
1899 
1900 	return err;
1901 }
1902 
1903 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1904 					   struct sk_buff *skb,
1905 					   struct page *page,
1906 					   int off, int copy)
1907 {
1908 	int err;
1909 
1910 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1911 				       copy, skb->len);
1912 	if (err)
1913 		return err;
1914 
1915 	skb->len	     += copy;
1916 	skb->data_len	     += copy;
1917 	skb->truesize	     += copy;
1918 	sk->sk_wmem_queued   += copy;
1919 	sk_mem_charge(sk, copy);
1920 	return 0;
1921 }
1922 
1923 /**
1924  * sk_wmem_alloc_get - returns write allocations
1925  * @sk: socket
1926  *
1927  * Returns sk_wmem_alloc minus initial offset of one
1928  */
1929 static inline int sk_wmem_alloc_get(const struct sock *sk)
1930 {
1931 	return refcount_read(&sk->sk_wmem_alloc) - 1;
1932 }
1933 
1934 /**
1935  * sk_rmem_alloc_get - returns read allocations
1936  * @sk: socket
1937  *
1938  * Returns sk_rmem_alloc
1939  */
1940 static inline int sk_rmem_alloc_get(const struct sock *sk)
1941 {
1942 	return atomic_read(&sk->sk_rmem_alloc);
1943 }
1944 
1945 /**
1946  * sk_has_allocations - check if allocations are outstanding
1947  * @sk: socket
1948  *
1949  * Returns true if socket has write or read allocations
1950  */
1951 static inline bool sk_has_allocations(const struct sock *sk)
1952 {
1953 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1954 }
1955 
1956 /**
1957  * skwq_has_sleeper - check if there are any waiting processes
1958  * @wq: struct socket_wq
1959  *
1960  * Returns true if socket_wq has waiting processes
1961  *
1962  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1963  * barrier call. They were added due to the race found within the tcp code.
1964  *
1965  * Consider following tcp code paths::
1966  *
1967  *   CPU1                CPU2
1968  *   sys_select          receive packet
1969  *   ...                 ...
1970  *   __add_wait_queue    update tp->rcv_nxt
1971  *   ...                 ...
1972  *   tp->rcv_nxt check   sock_def_readable
1973  *   ...                 {
1974  *   schedule               rcu_read_lock();
1975  *                          wq = rcu_dereference(sk->sk_wq);
1976  *                          if (wq && waitqueue_active(&wq->wait))
1977  *                              wake_up_interruptible(&wq->wait)
1978  *                          ...
1979  *                       }
1980  *
1981  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1982  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1983  * could then endup calling schedule and sleep forever if there are no more
1984  * data on the socket.
1985  *
1986  */
1987 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1988 {
1989 	return wq && wq_has_sleeper(&wq->wait);
1990 }
1991 
1992 /**
1993  * sock_poll_wait - place memory barrier behind the poll_wait call.
1994  * @filp:           file
1995  * @wait_address:   socket wait queue
1996  * @p:              poll_table
1997  *
1998  * See the comments in the wq_has_sleeper function.
1999  */
2000 static inline void sock_poll_wait(struct file *filp,
2001 		wait_queue_head_t *wait_address, poll_table *p)
2002 {
2003 	if (!poll_does_not_wait(p) && wait_address) {
2004 		poll_wait(filp, wait_address, p);
2005 		/* We need to be sure we are in sync with the
2006 		 * socket flags modification.
2007 		 *
2008 		 * This memory barrier is paired in the wq_has_sleeper.
2009 		 */
2010 		smp_mb();
2011 	}
2012 }
2013 
2014 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2015 {
2016 	if (sk->sk_txhash) {
2017 		skb->l4_hash = 1;
2018 		skb->hash = sk->sk_txhash;
2019 	}
2020 }
2021 
2022 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2023 
2024 /*
2025  *	Queue a received datagram if it will fit. Stream and sequenced
2026  *	protocols can't normally use this as they need to fit buffers in
2027  *	and play with them.
2028  *
2029  *	Inlined as it's very short and called for pretty much every
2030  *	packet ever received.
2031  */
2032 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2033 {
2034 	skb_orphan(skb);
2035 	skb->sk = sk;
2036 	skb->destructor = sock_rfree;
2037 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2038 	sk_mem_charge(sk, skb->truesize);
2039 }
2040 
2041 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2042 		    unsigned long expires);
2043 
2044 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2045 
2046 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2047 			struct sk_buff *skb, unsigned int flags,
2048 			void (*destructor)(struct sock *sk,
2049 					   struct sk_buff *skb));
2050 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2051 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2052 
2053 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2054 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2055 
2056 /*
2057  *	Recover an error report and clear atomically
2058  */
2059 
2060 static inline int sock_error(struct sock *sk)
2061 {
2062 	int err;
2063 	if (likely(!sk->sk_err))
2064 		return 0;
2065 	err = xchg(&sk->sk_err, 0);
2066 	return -err;
2067 }
2068 
2069 static inline unsigned long sock_wspace(struct sock *sk)
2070 {
2071 	int amt = 0;
2072 
2073 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2074 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2075 		if (amt < 0)
2076 			amt = 0;
2077 	}
2078 	return amt;
2079 }
2080 
2081 /* Note:
2082  *  We use sk->sk_wq_raw, from contexts knowing this
2083  *  pointer is not NULL and cannot disappear/change.
2084  */
2085 static inline void sk_set_bit(int nr, struct sock *sk)
2086 {
2087 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2088 	    !sock_flag(sk, SOCK_FASYNC))
2089 		return;
2090 
2091 	set_bit(nr, &sk->sk_wq_raw->flags);
2092 }
2093 
2094 static inline void sk_clear_bit(int nr, struct sock *sk)
2095 {
2096 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2097 	    !sock_flag(sk, SOCK_FASYNC))
2098 		return;
2099 
2100 	clear_bit(nr, &sk->sk_wq_raw->flags);
2101 }
2102 
2103 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2104 {
2105 	if (sock_flag(sk, SOCK_FASYNC)) {
2106 		rcu_read_lock();
2107 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2108 		rcu_read_unlock();
2109 	}
2110 }
2111 
2112 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2113  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2114  * Note: for send buffers, TCP works better if we can build two skbs at
2115  * minimum.
2116  */
2117 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2118 
2119 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2120 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2121 
2122 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2123 {
2124 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2125 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2126 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2127 	}
2128 }
2129 
2130 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2131 				    bool force_schedule);
2132 
2133 /**
2134  * sk_page_frag - return an appropriate page_frag
2135  * @sk: socket
2136  *
2137  * If socket allocation mode allows current thread to sleep, it means its
2138  * safe to use the per task page_frag instead of the per socket one.
2139  */
2140 static inline struct page_frag *sk_page_frag(struct sock *sk)
2141 {
2142 	if (gfpflags_allow_blocking(sk->sk_allocation))
2143 		return &current->task_frag;
2144 
2145 	return &sk->sk_frag;
2146 }
2147 
2148 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2149 
2150 /*
2151  *	Default write policy as shown to user space via poll/select/SIGIO
2152  */
2153 static inline bool sock_writeable(const struct sock *sk)
2154 {
2155 	return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2156 }
2157 
2158 static inline gfp_t gfp_any(void)
2159 {
2160 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2161 }
2162 
2163 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2164 {
2165 	return noblock ? 0 : sk->sk_rcvtimeo;
2166 }
2167 
2168 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2169 {
2170 	return noblock ? 0 : sk->sk_sndtimeo;
2171 }
2172 
2173 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2174 {
2175 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2176 }
2177 
2178 /* Alas, with timeout socket operations are not restartable.
2179  * Compare this to poll().
2180  */
2181 static inline int sock_intr_errno(long timeo)
2182 {
2183 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2184 }
2185 
2186 struct sock_skb_cb {
2187 	u32 dropcount;
2188 };
2189 
2190 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2191  * using skb->cb[] would keep using it directly and utilize its
2192  * alignement guarantee.
2193  */
2194 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2195 			    sizeof(struct sock_skb_cb)))
2196 
2197 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2198 			    SOCK_SKB_CB_OFFSET))
2199 
2200 #define sock_skb_cb_check_size(size) \
2201 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2202 
2203 static inline void
2204 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2205 {
2206 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2207 						atomic_read(&sk->sk_drops) : 0;
2208 }
2209 
2210 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2211 {
2212 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2213 
2214 	atomic_add(segs, &sk->sk_drops);
2215 }
2216 
2217 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2218 			   struct sk_buff *skb);
2219 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2220 			     struct sk_buff *skb);
2221 
2222 static inline void
2223 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2224 {
2225 	ktime_t kt = skb->tstamp;
2226 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2227 
2228 	/*
2229 	 * generate control messages if
2230 	 * - receive time stamping in software requested
2231 	 * - software time stamp available and wanted
2232 	 * - hardware time stamps available and wanted
2233 	 */
2234 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2235 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2236 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2237 	    (hwtstamps->hwtstamp &&
2238 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2239 		__sock_recv_timestamp(msg, sk, skb);
2240 	else
2241 		sk->sk_stamp = kt;
2242 
2243 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2244 		__sock_recv_wifi_status(msg, sk, skb);
2245 }
2246 
2247 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2248 			      struct sk_buff *skb);
2249 
2250 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2251 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2252 					  struct sk_buff *skb)
2253 {
2254 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2255 			   (1UL << SOCK_RCVTSTAMP))
2256 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2257 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2258 
2259 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2260 		__sock_recv_ts_and_drops(msg, sk, skb);
2261 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2262 		sk->sk_stamp = skb->tstamp;
2263 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2264 		sk->sk_stamp = 0;
2265 }
2266 
2267 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2268 
2269 /**
2270  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2271  * @sk:		socket sending this packet
2272  * @tsflags:	timestamping flags to use
2273  * @tx_flags:	completed with instructions for time stamping
2274  *
2275  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2276  */
2277 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2278 				     __u8 *tx_flags)
2279 {
2280 	if (unlikely(tsflags))
2281 		__sock_tx_timestamp(tsflags, tx_flags);
2282 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2283 		*tx_flags |= SKBTX_WIFI_STATUS;
2284 }
2285 
2286 /**
2287  * sk_eat_skb - Release a skb if it is no longer needed
2288  * @sk: socket to eat this skb from
2289  * @skb: socket buffer to eat
2290  *
2291  * This routine must be called with interrupts disabled or with the socket
2292  * locked so that the sk_buff queue operation is ok.
2293 */
2294 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2295 {
2296 	__skb_unlink(skb, &sk->sk_receive_queue);
2297 	__kfree_skb(skb);
2298 }
2299 
2300 static inline
2301 struct net *sock_net(const struct sock *sk)
2302 {
2303 	return read_pnet(&sk->sk_net);
2304 }
2305 
2306 static inline
2307 void sock_net_set(struct sock *sk, struct net *net)
2308 {
2309 	write_pnet(&sk->sk_net, net);
2310 }
2311 
2312 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2313 {
2314 	if (skb->sk) {
2315 		struct sock *sk = skb->sk;
2316 
2317 		skb->destructor = NULL;
2318 		skb->sk = NULL;
2319 		return sk;
2320 	}
2321 	return NULL;
2322 }
2323 
2324 /* This helper checks if a socket is a full socket,
2325  * ie _not_ a timewait or request socket.
2326  */
2327 static inline bool sk_fullsock(const struct sock *sk)
2328 {
2329 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2330 }
2331 
2332 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2333  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2334  */
2335 static inline bool sk_listener(const struct sock *sk)
2336 {
2337 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2338 }
2339 
2340 /**
2341  * sk_state_load - read sk->sk_state for lockless contexts
2342  * @sk: socket pointer
2343  *
2344  * Paired with sk_state_store(). Used in places we do not hold socket lock :
2345  * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2346  */
2347 static inline int sk_state_load(const struct sock *sk)
2348 {
2349 	return smp_load_acquire(&sk->sk_state);
2350 }
2351 
2352 /**
2353  * sk_state_store - update sk->sk_state
2354  * @sk: socket pointer
2355  * @newstate: new state
2356  *
2357  * Paired with sk_state_load(). Should be used in contexts where
2358  * state change might impact lockless readers.
2359  */
2360 static inline void sk_state_store(struct sock *sk, int newstate)
2361 {
2362 	smp_store_release(&sk->sk_state, newstate);
2363 }
2364 
2365 void sock_enable_timestamp(struct sock *sk, int flag);
2366 int sock_get_timestamp(struct sock *, struct timeval __user *);
2367 int sock_get_timestampns(struct sock *, struct timespec __user *);
2368 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2369 		       int type);
2370 
2371 bool sk_ns_capable(const struct sock *sk,
2372 		   struct user_namespace *user_ns, int cap);
2373 bool sk_capable(const struct sock *sk, int cap);
2374 bool sk_net_capable(const struct sock *sk, int cap);
2375 
2376 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2377 
2378 /* Take into consideration the size of the struct sk_buff overhead in the
2379  * determination of these values, since that is non-constant across
2380  * platforms.  This makes socket queueing behavior and performance
2381  * not depend upon such differences.
2382  */
2383 #define _SK_MEM_PACKETS		256
2384 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2385 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2386 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2387 
2388 extern __u32 sysctl_wmem_max;
2389 extern __u32 sysctl_rmem_max;
2390 
2391 extern int sysctl_tstamp_allow_data;
2392 extern int sysctl_optmem_max;
2393 
2394 extern __u32 sysctl_wmem_default;
2395 extern __u32 sysctl_rmem_default;
2396 
2397 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2398 {
2399 	/* Does this proto have per netns sysctl_wmem ? */
2400 	if (proto->sysctl_wmem_offset)
2401 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2402 
2403 	return *proto->sysctl_wmem;
2404 }
2405 
2406 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2407 {
2408 	/* Does this proto have per netns sysctl_rmem ? */
2409 	if (proto->sysctl_rmem_offset)
2410 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2411 
2412 	return *proto->sysctl_rmem;
2413 }
2414 
2415 #endif	/* _SOCK_H */
2416