1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/page_counter.h> 58 #include <linux/memcontrol.h> 59 #include <linux/static_key.h> 60 #include <linux/sched.h> 61 #include <linux/wait.h> 62 #include <linux/cgroup-defs.h> 63 #include <linux/rbtree.h> 64 #include <linux/filter.h> 65 #include <linux/rculist_nulls.h> 66 #include <linux/poll.h> 67 68 #include <linux/atomic.h> 69 #include <linux/refcount.h> 70 #include <net/dst.h> 71 #include <net/checksum.h> 72 #include <net/tcp_states.h> 73 #include <linux/net_tstamp.h> 74 #include <net/smc.h> 75 #include <net/l3mdev.h> 76 77 /* 78 * This structure really needs to be cleaned up. 79 * Most of it is for TCP, and not used by any of 80 * the other protocols. 81 */ 82 83 /* Define this to get the SOCK_DBG debugging facility. */ 84 #define SOCK_DEBUGGING 85 #ifdef SOCK_DEBUGGING 86 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 87 printk(KERN_DEBUG msg); } while (0) 88 #else 89 /* Validate arguments and do nothing */ 90 static inline __printf(2, 3) 91 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 92 { 93 } 94 #endif 95 96 /* This is the per-socket lock. The spinlock provides a synchronization 97 * between user contexts and software interrupt processing, whereas the 98 * mini-semaphore synchronizes multiple users amongst themselves. 99 */ 100 typedef struct { 101 spinlock_t slock; 102 int owned; 103 wait_queue_head_t wq; 104 /* 105 * We express the mutex-alike socket_lock semantics 106 * to the lock validator by explicitly managing 107 * the slock as a lock variant (in addition to 108 * the slock itself): 109 */ 110 #ifdef CONFIG_DEBUG_LOCK_ALLOC 111 struct lockdep_map dep_map; 112 #endif 113 } socket_lock_t; 114 115 struct sock; 116 struct proto; 117 struct net; 118 119 typedef __u32 __bitwise __portpair; 120 typedef __u64 __bitwise __addrpair; 121 122 /** 123 * struct sock_common - minimal network layer representation of sockets 124 * @skc_daddr: Foreign IPv4 addr 125 * @skc_rcv_saddr: Bound local IPv4 addr 126 * @skc_hash: hash value used with various protocol lookup tables 127 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 128 * @skc_dport: placeholder for inet_dport/tw_dport 129 * @skc_num: placeholder for inet_num/tw_num 130 * @skc_family: network address family 131 * @skc_state: Connection state 132 * @skc_reuse: %SO_REUSEADDR setting 133 * @skc_reuseport: %SO_REUSEPORT setting 134 * @skc_bound_dev_if: bound device index if != 0 135 * @skc_bind_node: bind hash linkage for various protocol lookup tables 136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 137 * @skc_prot: protocol handlers inside a network family 138 * @skc_net: reference to the network namespace of this socket 139 * @skc_node: main hash linkage for various protocol lookup tables 140 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 141 * @skc_tx_queue_mapping: tx queue number for this connection 142 * @skc_rx_queue_mapping: rx queue number for this connection 143 * @skc_flags: place holder for sk_flags 144 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 145 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 146 * @skc_incoming_cpu: record/match cpu processing incoming packets 147 * @skc_refcnt: reference count 148 * 149 * This is the minimal network layer representation of sockets, the header 150 * for struct sock and struct inet_timewait_sock. 151 */ 152 struct sock_common { 153 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 154 * address on 64bit arches : cf INET_MATCH() 155 */ 156 union { 157 __addrpair skc_addrpair; 158 struct { 159 __be32 skc_daddr; 160 __be32 skc_rcv_saddr; 161 }; 162 }; 163 union { 164 unsigned int skc_hash; 165 __u16 skc_u16hashes[2]; 166 }; 167 /* skc_dport && skc_num must be grouped as well */ 168 union { 169 __portpair skc_portpair; 170 struct { 171 __be16 skc_dport; 172 __u16 skc_num; 173 }; 174 }; 175 176 unsigned short skc_family; 177 volatile unsigned char skc_state; 178 unsigned char skc_reuse:4; 179 unsigned char skc_reuseport:1; 180 unsigned char skc_ipv6only:1; 181 unsigned char skc_net_refcnt:1; 182 int skc_bound_dev_if; 183 union { 184 struct hlist_node skc_bind_node; 185 struct hlist_node skc_portaddr_node; 186 }; 187 struct proto *skc_prot; 188 possible_net_t skc_net; 189 190 #if IS_ENABLED(CONFIG_IPV6) 191 struct in6_addr skc_v6_daddr; 192 struct in6_addr skc_v6_rcv_saddr; 193 #endif 194 195 atomic64_t skc_cookie; 196 197 /* following fields are padding to force 198 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 199 * assuming IPV6 is enabled. We use this padding differently 200 * for different kind of 'sockets' 201 */ 202 union { 203 unsigned long skc_flags; 204 struct sock *skc_listener; /* request_sock */ 205 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 206 }; 207 /* 208 * fields between dontcopy_begin/dontcopy_end 209 * are not copied in sock_copy() 210 */ 211 /* private: */ 212 int skc_dontcopy_begin[0]; 213 /* public: */ 214 union { 215 struct hlist_node skc_node; 216 struct hlist_nulls_node skc_nulls_node; 217 }; 218 unsigned short skc_tx_queue_mapping; 219 #ifdef CONFIG_XPS 220 unsigned short skc_rx_queue_mapping; 221 #endif 222 union { 223 int skc_incoming_cpu; 224 u32 skc_rcv_wnd; 225 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 226 }; 227 228 refcount_t skc_refcnt; 229 /* private: */ 230 int skc_dontcopy_end[0]; 231 union { 232 u32 skc_rxhash; 233 u32 skc_window_clamp; 234 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 235 }; 236 /* public: */ 237 }; 238 239 /** 240 * struct sock - network layer representation of sockets 241 * @__sk_common: shared layout with inet_timewait_sock 242 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 243 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 244 * @sk_lock: synchronizer 245 * @sk_kern_sock: True if sock is using kernel lock classes 246 * @sk_rcvbuf: size of receive buffer in bytes 247 * @sk_wq: sock wait queue and async head 248 * @sk_rx_dst: receive input route used by early demux 249 * @sk_dst_cache: destination cache 250 * @sk_dst_pending_confirm: need to confirm neighbour 251 * @sk_policy: flow policy 252 * @sk_receive_queue: incoming packets 253 * @sk_wmem_alloc: transmit queue bytes committed 254 * @sk_tsq_flags: TCP Small Queues flags 255 * @sk_write_queue: Packet sending queue 256 * @sk_omem_alloc: "o" is "option" or "other" 257 * @sk_wmem_queued: persistent queue size 258 * @sk_forward_alloc: space allocated forward 259 * @sk_napi_id: id of the last napi context to receive data for sk 260 * @sk_ll_usec: usecs to busypoll when there is no data 261 * @sk_allocation: allocation mode 262 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 263 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 264 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 265 * @sk_sndbuf: size of send buffer in bytes 266 * @__sk_flags_offset: empty field used to determine location of bitfield 267 * @sk_padding: unused element for alignment 268 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 269 * @sk_no_check_rx: allow zero checksum in RX packets 270 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 271 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 272 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 273 * @sk_gso_max_size: Maximum GSO segment size to build 274 * @sk_gso_max_segs: Maximum number of GSO segments 275 * @sk_pacing_shift: scaling factor for TCP Small Queues 276 * @sk_lingertime: %SO_LINGER l_linger setting 277 * @sk_backlog: always used with the per-socket spinlock held 278 * @sk_callback_lock: used with the callbacks in the end of this struct 279 * @sk_error_queue: rarely used 280 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 281 * IPV6_ADDRFORM for instance) 282 * @sk_err: last error 283 * @sk_err_soft: errors that don't cause failure but are the cause of a 284 * persistent failure not just 'timed out' 285 * @sk_drops: raw/udp drops counter 286 * @sk_ack_backlog: current listen backlog 287 * @sk_max_ack_backlog: listen backlog set in listen() 288 * @sk_uid: user id of owner 289 * @sk_priority: %SO_PRIORITY setting 290 * @sk_type: socket type (%SOCK_STREAM, etc) 291 * @sk_protocol: which protocol this socket belongs in this network family 292 * @sk_peer_pid: &struct pid for this socket's peer 293 * @sk_peer_cred: %SO_PEERCRED setting 294 * @sk_rcvlowat: %SO_RCVLOWAT setting 295 * @sk_rcvtimeo: %SO_RCVTIMEO setting 296 * @sk_sndtimeo: %SO_SNDTIMEO setting 297 * @sk_txhash: computed flow hash for use on transmit 298 * @sk_filter: socket filtering instructions 299 * @sk_timer: sock cleanup timer 300 * @sk_stamp: time stamp of last packet received 301 * @sk_tsflags: SO_TIMESTAMPING socket options 302 * @sk_tskey: counter to disambiguate concurrent tstamp requests 303 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 304 * @sk_socket: Identd and reporting IO signals 305 * @sk_user_data: RPC layer private data 306 * @sk_frag: cached page frag 307 * @sk_peek_off: current peek_offset value 308 * @sk_send_head: front of stuff to transmit 309 * @sk_security: used by security modules 310 * @sk_mark: generic packet mark 311 * @sk_cgrp_data: cgroup data for this cgroup 312 * @sk_memcg: this socket's memory cgroup association 313 * @sk_write_pending: a write to stream socket waits to start 314 * @sk_state_change: callback to indicate change in the state of the sock 315 * @sk_data_ready: callback to indicate there is data to be processed 316 * @sk_write_space: callback to indicate there is bf sending space available 317 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 318 * @sk_backlog_rcv: callback to process the backlog 319 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 320 * @sk_reuseport_cb: reuseport group container 321 * @sk_rcu: used during RCU grace period 322 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 323 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 324 * @sk_txtime_unused: unused txtime flags 325 */ 326 struct sock { 327 /* 328 * Now struct inet_timewait_sock also uses sock_common, so please just 329 * don't add nothing before this first member (__sk_common) --acme 330 */ 331 struct sock_common __sk_common; 332 #define sk_node __sk_common.skc_node 333 #define sk_nulls_node __sk_common.skc_nulls_node 334 #define sk_refcnt __sk_common.skc_refcnt 335 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 336 #ifdef CONFIG_XPS 337 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 338 #endif 339 340 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 341 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 342 #define sk_hash __sk_common.skc_hash 343 #define sk_portpair __sk_common.skc_portpair 344 #define sk_num __sk_common.skc_num 345 #define sk_dport __sk_common.skc_dport 346 #define sk_addrpair __sk_common.skc_addrpair 347 #define sk_daddr __sk_common.skc_daddr 348 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 349 #define sk_family __sk_common.skc_family 350 #define sk_state __sk_common.skc_state 351 #define sk_reuse __sk_common.skc_reuse 352 #define sk_reuseport __sk_common.skc_reuseport 353 #define sk_ipv6only __sk_common.skc_ipv6only 354 #define sk_net_refcnt __sk_common.skc_net_refcnt 355 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 356 #define sk_bind_node __sk_common.skc_bind_node 357 #define sk_prot __sk_common.skc_prot 358 #define sk_net __sk_common.skc_net 359 #define sk_v6_daddr __sk_common.skc_v6_daddr 360 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 361 #define sk_cookie __sk_common.skc_cookie 362 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 363 #define sk_flags __sk_common.skc_flags 364 #define sk_rxhash __sk_common.skc_rxhash 365 366 socket_lock_t sk_lock; 367 atomic_t sk_drops; 368 int sk_rcvlowat; 369 struct sk_buff_head sk_error_queue; 370 struct sk_buff_head sk_receive_queue; 371 /* 372 * The backlog queue is special, it is always used with 373 * the per-socket spinlock held and requires low latency 374 * access. Therefore we special case it's implementation. 375 * Note : rmem_alloc is in this structure to fill a hole 376 * on 64bit arches, not because its logically part of 377 * backlog. 378 */ 379 struct { 380 atomic_t rmem_alloc; 381 int len; 382 struct sk_buff *head; 383 struct sk_buff *tail; 384 } sk_backlog; 385 #define sk_rmem_alloc sk_backlog.rmem_alloc 386 387 int sk_forward_alloc; 388 #ifdef CONFIG_NET_RX_BUSY_POLL 389 unsigned int sk_ll_usec; 390 /* ===== mostly read cache line ===== */ 391 unsigned int sk_napi_id; 392 #endif 393 int sk_rcvbuf; 394 395 struct sk_filter __rcu *sk_filter; 396 union { 397 struct socket_wq __rcu *sk_wq; 398 struct socket_wq *sk_wq_raw; 399 }; 400 #ifdef CONFIG_XFRM 401 struct xfrm_policy __rcu *sk_policy[2]; 402 #endif 403 struct dst_entry *sk_rx_dst; 404 struct dst_entry __rcu *sk_dst_cache; 405 atomic_t sk_omem_alloc; 406 int sk_sndbuf; 407 408 /* ===== cache line for TX ===== */ 409 int sk_wmem_queued; 410 refcount_t sk_wmem_alloc; 411 unsigned long sk_tsq_flags; 412 union { 413 struct sk_buff *sk_send_head; 414 struct rb_root tcp_rtx_queue; 415 }; 416 struct sk_buff_head sk_write_queue; 417 __s32 sk_peek_off; 418 int sk_write_pending; 419 __u32 sk_dst_pending_confirm; 420 u32 sk_pacing_status; /* see enum sk_pacing */ 421 long sk_sndtimeo; 422 struct timer_list sk_timer; 423 __u32 sk_priority; 424 __u32 sk_mark; 425 unsigned long sk_pacing_rate; /* bytes per second */ 426 unsigned long sk_max_pacing_rate; 427 struct page_frag sk_frag; 428 netdev_features_t sk_route_caps; 429 netdev_features_t sk_route_nocaps; 430 netdev_features_t sk_route_forced_caps; 431 int sk_gso_type; 432 unsigned int sk_gso_max_size; 433 gfp_t sk_allocation; 434 __u32 sk_txhash; 435 436 /* 437 * Because of non atomicity rules, all 438 * changes are protected by socket lock. 439 */ 440 unsigned int __sk_flags_offset[0]; 441 #ifdef __BIG_ENDIAN_BITFIELD 442 #define SK_FL_PROTO_SHIFT 16 443 #define SK_FL_PROTO_MASK 0x00ff0000 444 445 #define SK_FL_TYPE_SHIFT 0 446 #define SK_FL_TYPE_MASK 0x0000ffff 447 #else 448 #define SK_FL_PROTO_SHIFT 8 449 #define SK_FL_PROTO_MASK 0x0000ff00 450 451 #define SK_FL_TYPE_SHIFT 16 452 #define SK_FL_TYPE_MASK 0xffff0000 453 #endif 454 455 unsigned int sk_padding : 1, 456 sk_kern_sock : 1, 457 sk_no_check_tx : 1, 458 sk_no_check_rx : 1, 459 sk_userlocks : 4, 460 sk_protocol : 8, 461 sk_type : 16; 462 #define SK_PROTOCOL_MAX U8_MAX 463 u16 sk_gso_max_segs; 464 u8 sk_pacing_shift; 465 unsigned long sk_lingertime; 466 struct proto *sk_prot_creator; 467 rwlock_t sk_callback_lock; 468 int sk_err, 469 sk_err_soft; 470 u32 sk_ack_backlog; 471 u32 sk_max_ack_backlog; 472 kuid_t sk_uid; 473 struct pid *sk_peer_pid; 474 const struct cred *sk_peer_cred; 475 long sk_rcvtimeo; 476 ktime_t sk_stamp; 477 u16 sk_tsflags; 478 u8 sk_shutdown; 479 u32 sk_tskey; 480 atomic_t sk_zckey; 481 482 u8 sk_clockid; 483 u8 sk_txtime_deadline_mode : 1, 484 sk_txtime_report_errors : 1, 485 sk_txtime_unused : 6; 486 487 struct socket *sk_socket; 488 void *sk_user_data; 489 #ifdef CONFIG_SECURITY 490 void *sk_security; 491 #endif 492 struct sock_cgroup_data sk_cgrp_data; 493 struct mem_cgroup *sk_memcg; 494 void (*sk_state_change)(struct sock *sk); 495 void (*sk_data_ready)(struct sock *sk); 496 void (*sk_write_space)(struct sock *sk); 497 void (*sk_error_report)(struct sock *sk); 498 int (*sk_backlog_rcv)(struct sock *sk, 499 struct sk_buff *skb); 500 #ifdef CONFIG_SOCK_VALIDATE_XMIT 501 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 502 struct net_device *dev, 503 struct sk_buff *skb); 504 #endif 505 void (*sk_destruct)(struct sock *sk); 506 struct sock_reuseport __rcu *sk_reuseport_cb; 507 struct rcu_head sk_rcu; 508 }; 509 510 enum sk_pacing { 511 SK_PACING_NONE = 0, 512 SK_PACING_NEEDED = 1, 513 SK_PACING_FQ = 2, 514 }; 515 516 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 517 518 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 519 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 520 521 /* 522 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 523 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 524 * on a socket means that the socket will reuse everybody else's port 525 * without looking at the other's sk_reuse value. 526 */ 527 528 #define SK_NO_REUSE 0 529 #define SK_CAN_REUSE 1 530 #define SK_FORCE_REUSE 2 531 532 int sk_set_peek_off(struct sock *sk, int val); 533 534 static inline int sk_peek_offset(struct sock *sk, int flags) 535 { 536 if (unlikely(flags & MSG_PEEK)) { 537 return READ_ONCE(sk->sk_peek_off); 538 } 539 540 return 0; 541 } 542 543 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 544 { 545 s32 off = READ_ONCE(sk->sk_peek_off); 546 547 if (unlikely(off >= 0)) { 548 off = max_t(s32, off - val, 0); 549 WRITE_ONCE(sk->sk_peek_off, off); 550 } 551 } 552 553 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 554 { 555 sk_peek_offset_bwd(sk, -val); 556 } 557 558 /* 559 * Hashed lists helper routines 560 */ 561 static inline struct sock *sk_entry(const struct hlist_node *node) 562 { 563 return hlist_entry(node, struct sock, sk_node); 564 } 565 566 static inline struct sock *__sk_head(const struct hlist_head *head) 567 { 568 return hlist_entry(head->first, struct sock, sk_node); 569 } 570 571 static inline struct sock *sk_head(const struct hlist_head *head) 572 { 573 return hlist_empty(head) ? NULL : __sk_head(head); 574 } 575 576 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 577 { 578 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 579 } 580 581 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 582 { 583 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 584 } 585 586 static inline struct sock *sk_next(const struct sock *sk) 587 { 588 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 589 } 590 591 static inline struct sock *sk_nulls_next(const struct sock *sk) 592 { 593 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 594 hlist_nulls_entry(sk->sk_nulls_node.next, 595 struct sock, sk_nulls_node) : 596 NULL; 597 } 598 599 static inline bool sk_unhashed(const struct sock *sk) 600 { 601 return hlist_unhashed(&sk->sk_node); 602 } 603 604 static inline bool sk_hashed(const struct sock *sk) 605 { 606 return !sk_unhashed(sk); 607 } 608 609 static inline void sk_node_init(struct hlist_node *node) 610 { 611 node->pprev = NULL; 612 } 613 614 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 615 { 616 node->pprev = NULL; 617 } 618 619 static inline void __sk_del_node(struct sock *sk) 620 { 621 __hlist_del(&sk->sk_node); 622 } 623 624 /* NB: equivalent to hlist_del_init_rcu */ 625 static inline bool __sk_del_node_init(struct sock *sk) 626 { 627 if (sk_hashed(sk)) { 628 __sk_del_node(sk); 629 sk_node_init(&sk->sk_node); 630 return true; 631 } 632 return false; 633 } 634 635 /* Grab socket reference count. This operation is valid only 636 when sk is ALREADY grabbed f.e. it is found in hash table 637 or a list and the lookup is made under lock preventing hash table 638 modifications. 639 */ 640 641 static __always_inline void sock_hold(struct sock *sk) 642 { 643 refcount_inc(&sk->sk_refcnt); 644 } 645 646 /* Ungrab socket in the context, which assumes that socket refcnt 647 cannot hit zero, f.e. it is true in context of any socketcall. 648 */ 649 static __always_inline void __sock_put(struct sock *sk) 650 { 651 refcount_dec(&sk->sk_refcnt); 652 } 653 654 static inline bool sk_del_node_init(struct sock *sk) 655 { 656 bool rc = __sk_del_node_init(sk); 657 658 if (rc) { 659 /* paranoid for a while -acme */ 660 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 661 __sock_put(sk); 662 } 663 return rc; 664 } 665 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 666 667 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 668 { 669 if (sk_hashed(sk)) { 670 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 671 return true; 672 } 673 return false; 674 } 675 676 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 677 { 678 bool rc = __sk_nulls_del_node_init_rcu(sk); 679 680 if (rc) { 681 /* paranoid for a while -acme */ 682 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 683 __sock_put(sk); 684 } 685 return rc; 686 } 687 688 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 689 { 690 hlist_add_head(&sk->sk_node, list); 691 } 692 693 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 694 { 695 sock_hold(sk); 696 __sk_add_node(sk, list); 697 } 698 699 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 700 { 701 sock_hold(sk); 702 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 703 sk->sk_family == AF_INET6) 704 hlist_add_tail_rcu(&sk->sk_node, list); 705 else 706 hlist_add_head_rcu(&sk->sk_node, list); 707 } 708 709 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 710 { 711 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 712 } 713 714 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 715 { 716 sock_hold(sk); 717 __sk_nulls_add_node_rcu(sk, list); 718 } 719 720 static inline void __sk_del_bind_node(struct sock *sk) 721 { 722 __hlist_del(&sk->sk_bind_node); 723 } 724 725 static inline void sk_add_bind_node(struct sock *sk, 726 struct hlist_head *list) 727 { 728 hlist_add_head(&sk->sk_bind_node, list); 729 } 730 731 #define sk_for_each(__sk, list) \ 732 hlist_for_each_entry(__sk, list, sk_node) 733 #define sk_for_each_rcu(__sk, list) \ 734 hlist_for_each_entry_rcu(__sk, list, sk_node) 735 #define sk_nulls_for_each(__sk, node, list) \ 736 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 737 #define sk_nulls_for_each_rcu(__sk, node, list) \ 738 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 739 #define sk_for_each_from(__sk) \ 740 hlist_for_each_entry_from(__sk, sk_node) 741 #define sk_nulls_for_each_from(__sk, node) \ 742 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 743 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 744 #define sk_for_each_safe(__sk, tmp, list) \ 745 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 746 #define sk_for_each_bound(__sk, list) \ 747 hlist_for_each_entry(__sk, list, sk_bind_node) 748 749 /** 750 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 751 * @tpos: the type * to use as a loop cursor. 752 * @pos: the &struct hlist_node to use as a loop cursor. 753 * @head: the head for your list. 754 * @offset: offset of hlist_node within the struct. 755 * 756 */ 757 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 758 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 759 pos != NULL && \ 760 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 761 pos = rcu_dereference(hlist_next_rcu(pos))) 762 763 static inline struct user_namespace *sk_user_ns(struct sock *sk) 764 { 765 /* Careful only use this in a context where these parameters 766 * can not change and must all be valid, such as recvmsg from 767 * userspace. 768 */ 769 return sk->sk_socket->file->f_cred->user_ns; 770 } 771 772 /* Sock flags */ 773 enum sock_flags { 774 SOCK_DEAD, 775 SOCK_DONE, 776 SOCK_URGINLINE, 777 SOCK_KEEPOPEN, 778 SOCK_LINGER, 779 SOCK_DESTROY, 780 SOCK_BROADCAST, 781 SOCK_TIMESTAMP, 782 SOCK_ZAPPED, 783 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 784 SOCK_DBG, /* %SO_DEBUG setting */ 785 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 786 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 787 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 788 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 789 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 790 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 791 SOCK_FASYNC, /* fasync() active */ 792 SOCK_RXQ_OVFL, 793 SOCK_ZEROCOPY, /* buffers from userspace */ 794 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 795 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 796 * Will use last 4 bytes of packet sent from 797 * user-space instead. 798 */ 799 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 800 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 801 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 802 SOCK_TXTIME, 803 SOCK_XDP, /* XDP is attached */ 804 }; 805 806 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 807 808 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 809 { 810 nsk->sk_flags = osk->sk_flags; 811 } 812 813 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 814 { 815 __set_bit(flag, &sk->sk_flags); 816 } 817 818 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 819 { 820 __clear_bit(flag, &sk->sk_flags); 821 } 822 823 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 824 { 825 return test_bit(flag, &sk->sk_flags); 826 } 827 828 #ifdef CONFIG_NET 829 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 830 static inline int sk_memalloc_socks(void) 831 { 832 return static_branch_unlikely(&memalloc_socks_key); 833 } 834 #else 835 836 static inline int sk_memalloc_socks(void) 837 { 838 return 0; 839 } 840 841 #endif 842 843 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 844 { 845 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 846 } 847 848 static inline void sk_acceptq_removed(struct sock *sk) 849 { 850 sk->sk_ack_backlog--; 851 } 852 853 static inline void sk_acceptq_added(struct sock *sk) 854 { 855 sk->sk_ack_backlog++; 856 } 857 858 static inline bool sk_acceptq_is_full(const struct sock *sk) 859 { 860 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 861 } 862 863 /* 864 * Compute minimal free write space needed to queue new packets. 865 */ 866 static inline int sk_stream_min_wspace(const struct sock *sk) 867 { 868 return sk->sk_wmem_queued >> 1; 869 } 870 871 static inline int sk_stream_wspace(const struct sock *sk) 872 { 873 return sk->sk_sndbuf - sk->sk_wmem_queued; 874 } 875 876 void sk_stream_write_space(struct sock *sk); 877 878 /* OOB backlog add */ 879 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 880 { 881 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 882 skb_dst_force(skb); 883 884 if (!sk->sk_backlog.tail) 885 sk->sk_backlog.head = skb; 886 else 887 sk->sk_backlog.tail->next = skb; 888 889 sk->sk_backlog.tail = skb; 890 skb->next = NULL; 891 } 892 893 /* 894 * Take into account size of receive queue and backlog queue 895 * Do not take into account this skb truesize, 896 * to allow even a single big packet to come. 897 */ 898 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 899 { 900 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 901 902 return qsize > limit; 903 } 904 905 /* The per-socket spinlock must be held here. */ 906 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 907 unsigned int limit) 908 { 909 if (sk_rcvqueues_full(sk, limit)) 910 return -ENOBUFS; 911 912 /* 913 * If the skb was allocated from pfmemalloc reserves, only 914 * allow SOCK_MEMALLOC sockets to use it as this socket is 915 * helping free memory 916 */ 917 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 918 return -ENOMEM; 919 920 __sk_add_backlog(sk, skb); 921 sk->sk_backlog.len += skb->truesize; 922 return 0; 923 } 924 925 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 926 927 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 928 { 929 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 930 return __sk_backlog_rcv(sk, skb); 931 932 return sk->sk_backlog_rcv(sk, skb); 933 } 934 935 static inline void sk_incoming_cpu_update(struct sock *sk) 936 { 937 int cpu = raw_smp_processor_id(); 938 939 if (unlikely(sk->sk_incoming_cpu != cpu)) 940 sk->sk_incoming_cpu = cpu; 941 } 942 943 static inline void sock_rps_record_flow_hash(__u32 hash) 944 { 945 #ifdef CONFIG_RPS 946 struct rps_sock_flow_table *sock_flow_table; 947 948 rcu_read_lock(); 949 sock_flow_table = rcu_dereference(rps_sock_flow_table); 950 rps_record_sock_flow(sock_flow_table, hash); 951 rcu_read_unlock(); 952 #endif 953 } 954 955 static inline void sock_rps_record_flow(const struct sock *sk) 956 { 957 #ifdef CONFIG_RPS 958 if (static_key_false(&rfs_needed)) { 959 /* Reading sk->sk_rxhash might incur an expensive cache line 960 * miss. 961 * 962 * TCP_ESTABLISHED does cover almost all states where RFS 963 * might be useful, and is cheaper [1] than testing : 964 * IPv4: inet_sk(sk)->inet_daddr 965 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 966 * OR an additional socket flag 967 * [1] : sk_state and sk_prot are in the same cache line. 968 */ 969 if (sk->sk_state == TCP_ESTABLISHED) 970 sock_rps_record_flow_hash(sk->sk_rxhash); 971 } 972 #endif 973 } 974 975 static inline void sock_rps_save_rxhash(struct sock *sk, 976 const struct sk_buff *skb) 977 { 978 #ifdef CONFIG_RPS 979 if (unlikely(sk->sk_rxhash != skb->hash)) 980 sk->sk_rxhash = skb->hash; 981 #endif 982 } 983 984 static inline void sock_rps_reset_rxhash(struct sock *sk) 985 { 986 #ifdef CONFIG_RPS 987 sk->sk_rxhash = 0; 988 #endif 989 } 990 991 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 992 ({ int __rc; \ 993 release_sock(__sk); \ 994 __rc = __condition; \ 995 if (!__rc) { \ 996 *(__timeo) = wait_woken(__wait, \ 997 TASK_INTERRUPTIBLE, \ 998 *(__timeo)); \ 999 } \ 1000 sched_annotate_sleep(); \ 1001 lock_sock(__sk); \ 1002 __rc = __condition; \ 1003 __rc; \ 1004 }) 1005 1006 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1007 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1008 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1009 int sk_stream_error(struct sock *sk, int flags, int err); 1010 void sk_stream_kill_queues(struct sock *sk); 1011 void sk_set_memalloc(struct sock *sk); 1012 void sk_clear_memalloc(struct sock *sk); 1013 1014 void __sk_flush_backlog(struct sock *sk); 1015 1016 static inline bool sk_flush_backlog(struct sock *sk) 1017 { 1018 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1019 __sk_flush_backlog(sk); 1020 return true; 1021 } 1022 return false; 1023 } 1024 1025 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1026 1027 struct request_sock_ops; 1028 struct timewait_sock_ops; 1029 struct inet_hashinfo; 1030 struct raw_hashinfo; 1031 struct smc_hashinfo; 1032 struct module; 1033 1034 /* 1035 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1036 * un-modified. Special care is taken when initializing object to zero. 1037 */ 1038 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1039 { 1040 if (offsetof(struct sock, sk_node.next) != 0) 1041 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1042 memset(&sk->sk_node.pprev, 0, 1043 size - offsetof(struct sock, sk_node.pprev)); 1044 } 1045 1046 /* Networking protocol blocks we attach to sockets. 1047 * socket layer -> transport layer interface 1048 */ 1049 struct proto { 1050 void (*close)(struct sock *sk, 1051 long timeout); 1052 int (*pre_connect)(struct sock *sk, 1053 struct sockaddr *uaddr, 1054 int addr_len); 1055 int (*connect)(struct sock *sk, 1056 struct sockaddr *uaddr, 1057 int addr_len); 1058 int (*disconnect)(struct sock *sk, int flags); 1059 1060 struct sock * (*accept)(struct sock *sk, int flags, int *err, 1061 bool kern); 1062 1063 int (*ioctl)(struct sock *sk, int cmd, 1064 unsigned long arg); 1065 int (*init)(struct sock *sk); 1066 void (*destroy)(struct sock *sk); 1067 void (*shutdown)(struct sock *sk, int how); 1068 int (*setsockopt)(struct sock *sk, int level, 1069 int optname, char __user *optval, 1070 unsigned int optlen); 1071 int (*getsockopt)(struct sock *sk, int level, 1072 int optname, char __user *optval, 1073 int __user *option); 1074 void (*keepalive)(struct sock *sk, int valbool); 1075 #ifdef CONFIG_COMPAT 1076 int (*compat_setsockopt)(struct sock *sk, 1077 int level, 1078 int optname, char __user *optval, 1079 unsigned int optlen); 1080 int (*compat_getsockopt)(struct sock *sk, 1081 int level, 1082 int optname, char __user *optval, 1083 int __user *option); 1084 int (*compat_ioctl)(struct sock *sk, 1085 unsigned int cmd, unsigned long arg); 1086 #endif 1087 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1088 size_t len); 1089 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1090 size_t len, int noblock, int flags, 1091 int *addr_len); 1092 int (*sendpage)(struct sock *sk, struct page *page, 1093 int offset, size_t size, int flags); 1094 int (*bind)(struct sock *sk, 1095 struct sockaddr *uaddr, int addr_len); 1096 1097 int (*backlog_rcv) (struct sock *sk, 1098 struct sk_buff *skb); 1099 1100 void (*release_cb)(struct sock *sk); 1101 1102 /* Keeping track of sk's, looking them up, and port selection methods. */ 1103 int (*hash)(struct sock *sk); 1104 void (*unhash)(struct sock *sk); 1105 void (*rehash)(struct sock *sk); 1106 int (*get_port)(struct sock *sk, unsigned short snum); 1107 1108 /* Keeping track of sockets in use */ 1109 #ifdef CONFIG_PROC_FS 1110 unsigned int inuse_idx; 1111 #endif 1112 1113 bool (*stream_memory_free)(const struct sock *sk); 1114 bool (*stream_memory_read)(const struct sock *sk); 1115 /* Memory pressure */ 1116 void (*enter_memory_pressure)(struct sock *sk); 1117 void (*leave_memory_pressure)(struct sock *sk); 1118 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1119 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1120 /* 1121 * Pressure flag: try to collapse. 1122 * Technical note: it is used by multiple contexts non atomically. 1123 * All the __sk_mem_schedule() is of this nature: accounting 1124 * is strict, actions are advisory and have some latency. 1125 */ 1126 unsigned long *memory_pressure; 1127 long *sysctl_mem; 1128 1129 int *sysctl_wmem; 1130 int *sysctl_rmem; 1131 u32 sysctl_wmem_offset; 1132 u32 sysctl_rmem_offset; 1133 1134 int max_header; 1135 bool no_autobind; 1136 1137 struct kmem_cache *slab; 1138 unsigned int obj_size; 1139 slab_flags_t slab_flags; 1140 unsigned int useroffset; /* Usercopy region offset */ 1141 unsigned int usersize; /* Usercopy region size */ 1142 1143 struct percpu_counter *orphan_count; 1144 1145 struct request_sock_ops *rsk_prot; 1146 struct timewait_sock_ops *twsk_prot; 1147 1148 union { 1149 struct inet_hashinfo *hashinfo; 1150 struct udp_table *udp_table; 1151 struct raw_hashinfo *raw_hash; 1152 struct smc_hashinfo *smc_hash; 1153 } h; 1154 1155 struct module *owner; 1156 1157 char name[32]; 1158 1159 struct list_head node; 1160 #ifdef SOCK_REFCNT_DEBUG 1161 atomic_t socks; 1162 #endif 1163 int (*diag_destroy)(struct sock *sk, int err); 1164 } __randomize_layout; 1165 1166 int proto_register(struct proto *prot, int alloc_slab); 1167 void proto_unregister(struct proto *prot); 1168 int sock_load_diag_module(int family, int protocol); 1169 1170 #ifdef SOCK_REFCNT_DEBUG 1171 static inline void sk_refcnt_debug_inc(struct sock *sk) 1172 { 1173 atomic_inc(&sk->sk_prot->socks); 1174 } 1175 1176 static inline void sk_refcnt_debug_dec(struct sock *sk) 1177 { 1178 atomic_dec(&sk->sk_prot->socks); 1179 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1180 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1181 } 1182 1183 static inline void sk_refcnt_debug_release(const struct sock *sk) 1184 { 1185 if (refcount_read(&sk->sk_refcnt) != 1) 1186 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1187 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); 1188 } 1189 #else /* SOCK_REFCNT_DEBUG */ 1190 #define sk_refcnt_debug_inc(sk) do { } while (0) 1191 #define sk_refcnt_debug_dec(sk) do { } while (0) 1192 #define sk_refcnt_debug_release(sk) do { } while (0) 1193 #endif /* SOCK_REFCNT_DEBUG */ 1194 1195 static inline bool sk_stream_memory_free(const struct sock *sk) 1196 { 1197 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1198 return false; 1199 1200 return sk->sk_prot->stream_memory_free ? 1201 sk->sk_prot->stream_memory_free(sk) : true; 1202 } 1203 1204 static inline bool sk_stream_is_writeable(const struct sock *sk) 1205 { 1206 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1207 sk_stream_memory_free(sk); 1208 } 1209 1210 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1211 struct cgroup *ancestor) 1212 { 1213 #ifdef CONFIG_SOCK_CGROUP_DATA 1214 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1215 ancestor); 1216 #else 1217 return -ENOTSUPP; 1218 #endif 1219 } 1220 1221 static inline bool sk_has_memory_pressure(const struct sock *sk) 1222 { 1223 return sk->sk_prot->memory_pressure != NULL; 1224 } 1225 1226 static inline bool sk_under_memory_pressure(const struct sock *sk) 1227 { 1228 if (!sk->sk_prot->memory_pressure) 1229 return false; 1230 1231 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1232 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1233 return true; 1234 1235 return !!*sk->sk_prot->memory_pressure; 1236 } 1237 1238 static inline long 1239 sk_memory_allocated(const struct sock *sk) 1240 { 1241 return atomic_long_read(sk->sk_prot->memory_allocated); 1242 } 1243 1244 static inline long 1245 sk_memory_allocated_add(struct sock *sk, int amt) 1246 { 1247 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1248 } 1249 1250 static inline void 1251 sk_memory_allocated_sub(struct sock *sk, int amt) 1252 { 1253 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1254 } 1255 1256 static inline void sk_sockets_allocated_dec(struct sock *sk) 1257 { 1258 percpu_counter_dec(sk->sk_prot->sockets_allocated); 1259 } 1260 1261 static inline void sk_sockets_allocated_inc(struct sock *sk) 1262 { 1263 percpu_counter_inc(sk->sk_prot->sockets_allocated); 1264 } 1265 1266 static inline int 1267 sk_sockets_allocated_read_positive(struct sock *sk) 1268 { 1269 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1270 } 1271 1272 static inline int 1273 proto_sockets_allocated_sum_positive(struct proto *prot) 1274 { 1275 return percpu_counter_sum_positive(prot->sockets_allocated); 1276 } 1277 1278 static inline long 1279 proto_memory_allocated(struct proto *prot) 1280 { 1281 return atomic_long_read(prot->memory_allocated); 1282 } 1283 1284 static inline bool 1285 proto_memory_pressure(struct proto *prot) 1286 { 1287 if (!prot->memory_pressure) 1288 return false; 1289 return !!*prot->memory_pressure; 1290 } 1291 1292 1293 #ifdef CONFIG_PROC_FS 1294 /* Called with local bh disabled */ 1295 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1296 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1297 int sock_inuse_get(struct net *net); 1298 #else 1299 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1300 int inc) 1301 { 1302 } 1303 #endif 1304 1305 1306 /* With per-bucket locks this operation is not-atomic, so that 1307 * this version is not worse. 1308 */ 1309 static inline int __sk_prot_rehash(struct sock *sk) 1310 { 1311 sk->sk_prot->unhash(sk); 1312 return sk->sk_prot->hash(sk); 1313 } 1314 1315 /* About 10 seconds */ 1316 #define SOCK_DESTROY_TIME (10*HZ) 1317 1318 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1319 #define PROT_SOCK 1024 1320 1321 #define SHUTDOWN_MASK 3 1322 #define RCV_SHUTDOWN 1 1323 #define SEND_SHUTDOWN 2 1324 1325 #define SOCK_SNDBUF_LOCK 1 1326 #define SOCK_RCVBUF_LOCK 2 1327 #define SOCK_BINDADDR_LOCK 4 1328 #define SOCK_BINDPORT_LOCK 8 1329 1330 struct socket_alloc { 1331 struct socket socket; 1332 struct inode vfs_inode; 1333 }; 1334 1335 static inline struct socket *SOCKET_I(struct inode *inode) 1336 { 1337 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1338 } 1339 1340 static inline struct inode *SOCK_INODE(struct socket *socket) 1341 { 1342 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1343 } 1344 1345 /* 1346 * Functions for memory accounting 1347 */ 1348 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1349 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1350 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1351 void __sk_mem_reclaim(struct sock *sk, int amount); 1352 1353 /* We used to have PAGE_SIZE here, but systems with 64KB pages 1354 * do not necessarily have 16x time more memory than 4KB ones. 1355 */ 1356 #define SK_MEM_QUANTUM 4096 1357 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1358 #define SK_MEM_SEND 0 1359 #define SK_MEM_RECV 1 1360 1361 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1362 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1363 { 1364 long val = sk->sk_prot->sysctl_mem[index]; 1365 1366 #if PAGE_SIZE > SK_MEM_QUANTUM 1367 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1368 #elif PAGE_SIZE < SK_MEM_QUANTUM 1369 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1370 #endif 1371 return val; 1372 } 1373 1374 static inline int sk_mem_pages(int amt) 1375 { 1376 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1377 } 1378 1379 static inline bool sk_has_account(struct sock *sk) 1380 { 1381 /* return true if protocol supports memory accounting */ 1382 return !!sk->sk_prot->memory_allocated; 1383 } 1384 1385 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1386 { 1387 if (!sk_has_account(sk)) 1388 return true; 1389 return size <= sk->sk_forward_alloc || 1390 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1391 } 1392 1393 static inline bool 1394 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1395 { 1396 if (!sk_has_account(sk)) 1397 return true; 1398 return size<= sk->sk_forward_alloc || 1399 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1400 skb_pfmemalloc(skb); 1401 } 1402 1403 static inline void sk_mem_reclaim(struct sock *sk) 1404 { 1405 if (!sk_has_account(sk)) 1406 return; 1407 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1408 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1409 } 1410 1411 static inline void sk_mem_reclaim_partial(struct sock *sk) 1412 { 1413 if (!sk_has_account(sk)) 1414 return; 1415 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1416 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1417 } 1418 1419 static inline void sk_mem_charge(struct sock *sk, int size) 1420 { 1421 if (!sk_has_account(sk)) 1422 return; 1423 sk->sk_forward_alloc -= size; 1424 } 1425 1426 static inline void sk_mem_uncharge(struct sock *sk, int size) 1427 { 1428 if (!sk_has_account(sk)) 1429 return; 1430 sk->sk_forward_alloc += size; 1431 1432 /* Avoid a possible overflow. 1433 * TCP send queues can make this happen, if sk_mem_reclaim() 1434 * is not called and more than 2 GBytes are released at once. 1435 * 1436 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1437 * no need to hold that much forward allocation anyway. 1438 */ 1439 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1440 __sk_mem_reclaim(sk, 1 << 20); 1441 } 1442 1443 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1444 { 1445 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1446 sk->sk_wmem_queued -= skb->truesize; 1447 sk_mem_uncharge(sk, skb->truesize); 1448 __kfree_skb(skb); 1449 } 1450 1451 static inline void sock_release_ownership(struct sock *sk) 1452 { 1453 if (sk->sk_lock.owned) { 1454 sk->sk_lock.owned = 0; 1455 1456 /* The sk_lock has mutex_unlock() semantics: */ 1457 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 1458 } 1459 } 1460 1461 /* 1462 * Macro so as to not evaluate some arguments when 1463 * lockdep is not enabled. 1464 * 1465 * Mark both the sk_lock and the sk_lock.slock as a 1466 * per-address-family lock class. 1467 */ 1468 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1469 do { \ 1470 sk->sk_lock.owned = 0; \ 1471 init_waitqueue_head(&sk->sk_lock.wq); \ 1472 spin_lock_init(&(sk)->sk_lock.slock); \ 1473 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1474 sizeof((sk)->sk_lock)); \ 1475 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1476 (skey), (sname)); \ 1477 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1478 } while (0) 1479 1480 #ifdef CONFIG_LOCKDEP 1481 static inline bool lockdep_sock_is_held(const struct sock *sk) 1482 { 1483 return lockdep_is_held(&sk->sk_lock) || 1484 lockdep_is_held(&sk->sk_lock.slock); 1485 } 1486 #endif 1487 1488 void lock_sock_nested(struct sock *sk, int subclass); 1489 1490 static inline void lock_sock(struct sock *sk) 1491 { 1492 lock_sock_nested(sk, 0); 1493 } 1494 1495 void __release_sock(struct sock *sk); 1496 void release_sock(struct sock *sk); 1497 1498 /* BH context may only use the following locking interface. */ 1499 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1500 #define bh_lock_sock_nested(__sk) \ 1501 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1502 SINGLE_DEPTH_NESTING) 1503 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1504 1505 bool lock_sock_fast(struct sock *sk); 1506 /** 1507 * unlock_sock_fast - complement of lock_sock_fast 1508 * @sk: socket 1509 * @slow: slow mode 1510 * 1511 * fast unlock socket for user context. 1512 * If slow mode is on, we call regular release_sock() 1513 */ 1514 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1515 { 1516 if (slow) 1517 release_sock(sk); 1518 else 1519 spin_unlock_bh(&sk->sk_lock.slock); 1520 } 1521 1522 /* Used by processes to "lock" a socket state, so that 1523 * interrupts and bottom half handlers won't change it 1524 * from under us. It essentially blocks any incoming 1525 * packets, so that we won't get any new data or any 1526 * packets that change the state of the socket. 1527 * 1528 * While locked, BH processing will add new packets to 1529 * the backlog queue. This queue is processed by the 1530 * owner of the socket lock right before it is released. 1531 * 1532 * Since ~2.3.5 it is also exclusive sleep lock serializing 1533 * accesses from user process context. 1534 */ 1535 1536 static inline void sock_owned_by_me(const struct sock *sk) 1537 { 1538 #ifdef CONFIG_LOCKDEP 1539 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1540 #endif 1541 } 1542 1543 static inline bool sock_owned_by_user(const struct sock *sk) 1544 { 1545 sock_owned_by_me(sk); 1546 return sk->sk_lock.owned; 1547 } 1548 1549 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1550 { 1551 return sk->sk_lock.owned; 1552 } 1553 1554 /* no reclassification while locks are held */ 1555 static inline bool sock_allow_reclassification(const struct sock *csk) 1556 { 1557 struct sock *sk = (struct sock *)csk; 1558 1559 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1560 } 1561 1562 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1563 struct proto *prot, int kern); 1564 void sk_free(struct sock *sk); 1565 void sk_destruct(struct sock *sk); 1566 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1567 void sk_free_unlock_clone(struct sock *sk); 1568 1569 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1570 gfp_t priority); 1571 void __sock_wfree(struct sk_buff *skb); 1572 void sock_wfree(struct sk_buff *skb); 1573 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1574 gfp_t priority); 1575 void skb_orphan_partial(struct sk_buff *skb); 1576 void sock_rfree(struct sk_buff *skb); 1577 void sock_efree(struct sk_buff *skb); 1578 #ifdef CONFIG_INET 1579 void sock_edemux(struct sk_buff *skb); 1580 #else 1581 #define sock_edemux sock_efree 1582 #endif 1583 1584 int sock_setsockopt(struct socket *sock, int level, int op, 1585 char __user *optval, unsigned int optlen); 1586 1587 int sock_getsockopt(struct socket *sock, int level, int op, 1588 char __user *optval, int __user *optlen); 1589 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1590 int noblock, int *errcode); 1591 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1592 unsigned long data_len, int noblock, 1593 int *errcode, int max_page_order); 1594 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1595 void sock_kfree_s(struct sock *sk, void *mem, int size); 1596 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1597 void sk_send_sigurg(struct sock *sk); 1598 1599 struct sockcm_cookie { 1600 u64 transmit_time; 1601 u32 mark; 1602 u16 tsflags; 1603 }; 1604 1605 static inline void sockcm_init(struct sockcm_cookie *sockc, 1606 const struct sock *sk) 1607 { 1608 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; 1609 } 1610 1611 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1612 struct sockcm_cookie *sockc); 1613 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1614 struct sockcm_cookie *sockc); 1615 1616 /* 1617 * Functions to fill in entries in struct proto_ops when a protocol 1618 * does not implement a particular function. 1619 */ 1620 int sock_no_bind(struct socket *, struct sockaddr *, int); 1621 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1622 int sock_no_socketpair(struct socket *, struct socket *); 1623 int sock_no_accept(struct socket *, struct socket *, int, bool); 1624 int sock_no_getname(struct socket *, struct sockaddr *, int); 1625 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1626 int sock_no_listen(struct socket *, int); 1627 int sock_no_shutdown(struct socket *, int); 1628 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1629 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1630 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1631 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1632 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1633 int sock_no_mmap(struct file *file, struct socket *sock, 1634 struct vm_area_struct *vma); 1635 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1636 size_t size, int flags); 1637 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 1638 int offset, size_t size, int flags); 1639 1640 /* 1641 * Functions to fill in entries in struct proto_ops when a protocol 1642 * uses the inet style. 1643 */ 1644 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1645 char __user *optval, int __user *optlen); 1646 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1647 int flags); 1648 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1649 char __user *optval, unsigned int optlen); 1650 int compat_sock_common_getsockopt(struct socket *sock, int level, 1651 int optname, char __user *optval, int __user *optlen); 1652 int compat_sock_common_setsockopt(struct socket *sock, int level, 1653 int optname, char __user *optval, unsigned int optlen); 1654 1655 void sk_common_release(struct sock *sk); 1656 1657 /* 1658 * Default socket callbacks and setup code 1659 */ 1660 1661 /* Initialise core socket variables */ 1662 void sock_init_data(struct socket *sock, struct sock *sk); 1663 1664 /* 1665 * Socket reference counting postulates. 1666 * 1667 * * Each user of socket SHOULD hold a reference count. 1668 * * Each access point to socket (an hash table bucket, reference from a list, 1669 * running timer, skb in flight MUST hold a reference count. 1670 * * When reference count hits 0, it means it will never increase back. 1671 * * When reference count hits 0, it means that no references from 1672 * outside exist to this socket and current process on current CPU 1673 * is last user and may/should destroy this socket. 1674 * * sk_free is called from any context: process, BH, IRQ. When 1675 * it is called, socket has no references from outside -> sk_free 1676 * may release descendant resources allocated by the socket, but 1677 * to the time when it is called, socket is NOT referenced by any 1678 * hash tables, lists etc. 1679 * * Packets, delivered from outside (from network or from another process) 1680 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1681 * when they sit in queue. Otherwise, packets will leak to hole, when 1682 * socket is looked up by one cpu and unhasing is made by another CPU. 1683 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1684 * (leak to backlog). Packet socket does all the processing inside 1685 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1686 * use separate SMP lock, so that they are prone too. 1687 */ 1688 1689 /* Ungrab socket and destroy it, if it was the last reference. */ 1690 static inline void sock_put(struct sock *sk) 1691 { 1692 if (refcount_dec_and_test(&sk->sk_refcnt)) 1693 sk_free(sk); 1694 } 1695 /* Generic version of sock_put(), dealing with all sockets 1696 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1697 */ 1698 void sock_gen_put(struct sock *sk); 1699 1700 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1701 unsigned int trim_cap, bool refcounted); 1702 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1703 const int nested) 1704 { 1705 return __sk_receive_skb(sk, skb, nested, 1, true); 1706 } 1707 1708 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1709 { 1710 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1711 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1712 return; 1713 sk->sk_tx_queue_mapping = tx_queue; 1714 } 1715 1716 #define NO_QUEUE_MAPPING USHRT_MAX 1717 1718 static inline void sk_tx_queue_clear(struct sock *sk) 1719 { 1720 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; 1721 } 1722 1723 static inline int sk_tx_queue_get(const struct sock *sk) 1724 { 1725 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) 1726 return sk->sk_tx_queue_mapping; 1727 1728 return -1; 1729 } 1730 1731 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 1732 { 1733 #ifdef CONFIG_XPS 1734 if (skb_rx_queue_recorded(skb)) { 1735 u16 rx_queue = skb_get_rx_queue(skb); 1736 1737 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) 1738 return; 1739 1740 sk->sk_rx_queue_mapping = rx_queue; 1741 } 1742 #endif 1743 } 1744 1745 static inline void sk_rx_queue_clear(struct sock *sk) 1746 { 1747 #ifdef CONFIG_XPS 1748 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; 1749 #endif 1750 } 1751 1752 #ifdef CONFIG_XPS 1753 static inline int sk_rx_queue_get(const struct sock *sk) 1754 { 1755 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) 1756 return sk->sk_rx_queue_mapping; 1757 1758 return -1; 1759 } 1760 #endif 1761 1762 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1763 { 1764 sk_tx_queue_clear(sk); 1765 sk->sk_socket = sock; 1766 } 1767 1768 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1769 { 1770 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1771 return &rcu_dereference_raw(sk->sk_wq)->wait; 1772 } 1773 /* Detach socket from process context. 1774 * Announce socket dead, detach it from wait queue and inode. 1775 * Note that parent inode held reference count on this struct sock, 1776 * we do not release it in this function, because protocol 1777 * probably wants some additional cleanups or even continuing 1778 * to work with this socket (TCP). 1779 */ 1780 static inline void sock_orphan(struct sock *sk) 1781 { 1782 write_lock_bh(&sk->sk_callback_lock); 1783 sock_set_flag(sk, SOCK_DEAD); 1784 sk_set_socket(sk, NULL); 1785 sk->sk_wq = NULL; 1786 write_unlock_bh(&sk->sk_callback_lock); 1787 } 1788 1789 static inline void sock_graft(struct sock *sk, struct socket *parent) 1790 { 1791 WARN_ON(parent->sk); 1792 write_lock_bh(&sk->sk_callback_lock); 1793 rcu_assign_pointer(sk->sk_wq, parent->wq); 1794 parent->sk = sk; 1795 sk_set_socket(sk, parent); 1796 sk->sk_uid = SOCK_INODE(parent)->i_uid; 1797 security_sock_graft(sk, parent); 1798 write_unlock_bh(&sk->sk_callback_lock); 1799 } 1800 1801 kuid_t sock_i_uid(struct sock *sk); 1802 unsigned long sock_i_ino(struct sock *sk); 1803 1804 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 1805 { 1806 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 1807 } 1808 1809 static inline u32 net_tx_rndhash(void) 1810 { 1811 u32 v = prandom_u32(); 1812 1813 return v ?: 1; 1814 } 1815 1816 static inline void sk_set_txhash(struct sock *sk) 1817 { 1818 sk->sk_txhash = net_tx_rndhash(); 1819 } 1820 1821 static inline void sk_rethink_txhash(struct sock *sk) 1822 { 1823 if (sk->sk_txhash) 1824 sk_set_txhash(sk); 1825 } 1826 1827 static inline struct dst_entry * 1828 __sk_dst_get(struct sock *sk) 1829 { 1830 return rcu_dereference_check(sk->sk_dst_cache, 1831 lockdep_sock_is_held(sk)); 1832 } 1833 1834 static inline struct dst_entry * 1835 sk_dst_get(struct sock *sk) 1836 { 1837 struct dst_entry *dst; 1838 1839 rcu_read_lock(); 1840 dst = rcu_dereference(sk->sk_dst_cache); 1841 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1842 dst = NULL; 1843 rcu_read_unlock(); 1844 return dst; 1845 } 1846 1847 static inline void dst_negative_advice(struct sock *sk) 1848 { 1849 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1850 1851 sk_rethink_txhash(sk); 1852 1853 if (dst && dst->ops->negative_advice) { 1854 ndst = dst->ops->negative_advice(dst); 1855 1856 if (ndst != dst) { 1857 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1858 sk_tx_queue_clear(sk); 1859 sk->sk_dst_pending_confirm = 0; 1860 } 1861 } 1862 } 1863 1864 static inline void 1865 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1866 { 1867 struct dst_entry *old_dst; 1868 1869 sk_tx_queue_clear(sk); 1870 sk->sk_dst_pending_confirm = 0; 1871 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 1872 lockdep_sock_is_held(sk)); 1873 rcu_assign_pointer(sk->sk_dst_cache, dst); 1874 dst_release(old_dst); 1875 } 1876 1877 static inline void 1878 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1879 { 1880 struct dst_entry *old_dst; 1881 1882 sk_tx_queue_clear(sk); 1883 sk->sk_dst_pending_confirm = 0; 1884 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1885 dst_release(old_dst); 1886 } 1887 1888 static inline void 1889 __sk_dst_reset(struct sock *sk) 1890 { 1891 __sk_dst_set(sk, NULL); 1892 } 1893 1894 static inline void 1895 sk_dst_reset(struct sock *sk) 1896 { 1897 sk_dst_set(sk, NULL); 1898 } 1899 1900 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1901 1902 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1903 1904 static inline void sk_dst_confirm(struct sock *sk) 1905 { 1906 if (!sk->sk_dst_pending_confirm) 1907 sk->sk_dst_pending_confirm = 1; 1908 } 1909 1910 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 1911 { 1912 if (skb_get_dst_pending_confirm(skb)) { 1913 struct sock *sk = skb->sk; 1914 unsigned long now = jiffies; 1915 1916 /* avoid dirtying neighbour */ 1917 if (n->confirmed != now) 1918 n->confirmed = now; 1919 if (sk && sk->sk_dst_pending_confirm) 1920 sk->sk_dst_pending_confirm = 0; 1921 } 1922 } 1923 1924 bool sk_mc_loop(struct sock *sk); 1925 1926 static inline bool sk_can_gso(const struct sock *sk) 1927 { 1928 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1929 } 1930 1931 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1932 1933 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1934 { 1935 sk->sk_route_nocaps |= flags; 1936 sk->sk_route_caps &= ~flags; 1937 } 1938 1939 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1940 struct iov_iter *from, char *to, 1941 int copy, int offset) 1942 { 1943 if (skb->ip_summed == CHECKSUM_NONE) { 1944 __wsum csum = 0; 1945 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 1946 return -EFAULT; 1947 skb->csum = csum_block_add(skb->csum, csum, offset); 1948 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1949 if (!copy_from_iter_full_nocache(to, copy, from)) 1950 return -EFAULT; 1951 } else if (!copy_from_iter_full(to, copy, from)) 1952 return -EFAULT; 1953 1954 return 0; 1955 } 1956 1957 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1958 struct iov_iter *from, int copy) 1959 { 1960 int err, offset = skb->len; 1961 1962 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1963 copy, offset); 1964 if (err) 1965 __skb_trim(skb, offset); 1966 1967 return err; 1968 } 1969 1970 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 1971 struct sk_buff *skb, 1972 struct page *page, 1973 int off, int copy) 1974 { 1975 int err; 1976 1977 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1978 copy, skb->len); 1979 if (err) 1980 return err; 1981 1982 skb->len += copy; 1983 skb->data_len += copy; 1984 skb->truesize += copy; 1985 sk->sk_wmem_queued += copy; 1986 sk_mem_charge(sk, copy); 1987 return 0; 1988 } 1989 1990 /** 1991 * sk_wmem_alloc_get - returns write allocations 1992 * @sk: socket 1993 * 1994 * Returns sk_wmem_alloc minus initial offset of one 1995 */ 1996 static inline int sk_wmem_alloc_get(const struct sock *sk) 1997 { 1998 return refcount_read(&sk->sk_wmem_alloc) - 1; 1999 } 2000 2001 /** 2002 * sk_rmem_alloc_get - returns read allocations 2003 * @sk: socket 2004 * 2005 * Returns sk_rmem_alloc 2006 */ 2007 static inline int sk_rmem_alloc_get(const struct sock *sk) 2008 { 2009 return atomic_read(&sk->sk_rmem_alloc); 2010 } 2011 2012 /** 2013 * sk_has_allocations - check if allocations are outstanding 2014 * @sk: socket 2015 * 2016 * Returns true if socket has write or read allocations 2017 */ 2018 static inline bool sk_has_allocations(const struct sock *sk) 2019 { 2020 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2021 } 2022 2023 /** 2024 * skwq_has_sleeper - check if there are any waiting processes 2025 * @wq: struct socket_wq 2026 * 2027 * Returns true if socket_wq has waiting processes 2028 * 2029 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2030 * barrier call. They were added due to the race found within the tcp code. 2031 * 2032 * Consider following tcp code paths:: 2033 * 2034 * CPU1 CPU2 2035 * sys_select receive packet 2036 * ... ... 2037 * __add_wait_queue update tp->rcv_nxt 2038 * ... ... 2039 * tp->rcv_nxt check sock_def_readable 2040 * ... { 2041 * schedule rcu_read_lock(); 2042 * wq = rcu_dereference(sk->sk_wq); 2043 * if (wq && waitqueue_active(&wq->wait)) 2044 * wake_up_interruptible(&wq->wait) 2045 * ... 2046 * } 2047 * 2048 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2049 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2050 * could then endup calling schedule and sleep forever if there are no more 2051 * data on the socket. 2052 * 2053 */ 2054 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2055 { 2056 return wq && wq_has_sleeper(&wq->wait); 2057 } 2058 2059 /** 2060 * sock_poll_wait - place memory barrier behind the poll_wait call. 2061 * @filp: file 2062 * @sock: socket to wait on 2063 * @p: poll_table 2064 * 2065 * See the comments in the wq_has_sleeper function. 2066 * 2067 * Do not derive sock from filp->private_data here. An SMC socket establishes 2068 * an internal TCP socket that is used in the fallback case. All socket 2069 * operations on the SMC socket are then forwarded to the TCP socket. In case of 2070 * poll, the filp->private_data pointer references the SMC socket because the 2071 * TCP socket has no file assigned. 2072 */ 2073 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2074 poll_table *p) 2075 { 2076 if (!poll_does_not_wait(p)) { 2077 poll_wait(filp, &sock->wq->wait, p); 2078 /* We need to be sure we are in sync with the 2079 * socket flags modification. 2080 * 2081 * This memory barrier is paired in the wq_has_sleeper. 2082 */ 2083 smp_mb(); 2084 } 2085 } 2086 2087 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2088 { 2089 if (sk->sk_txhash) { 2090 skb->l4_hash = 1; 2091 skb->hash = sk->sk_txhash; 2092 } 2093 } 2094 2095 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2096 2097 /* 2098 * Queue a received datagram if it will fit. Stream and sequenced 2099 * protocols can't normally use this as they need to fit buffers in 2100 * and play with them. 2101 * 2102 * Inlined as it's very short and called for pretty much every 2103 * packet ever received. 2104 */ 2105 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2106 { 2107 skb_orphan(skb); 2108 skb->sk = sk; 2109 skb->destructor = sock_rfree; 2110 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2111 sk_mem_charge(sk, skb->truesize); 2112 } 2113 2114 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2115 unsigned long expires); 2116 2117 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2118 2119 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2120 struct sk_buff *skb, unsigned int flags, 2121 void (*destructor)(struct sock *sk, 2122 struct sk_buff *skb)); 2123 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2124 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2125 2126 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2127 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2128 2129 /* 2130 * Recover an error report and clear atomically 2131 */ 2132 2133 static inline int sock_error(struct sock *sk) 2134 { 2135 int err; 2136 if (likely(!sk->sk_err)) 2137 return 0; 2138 err = xchg(&sk->sk_err, 0); 2139 return -err; 2140 } 2141 2142 static inline unsigned long sock_wspace(struct sock *sk) 2143 { 2144 int amt = 0; 2145 2146 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2147 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2148 if (amt < 0) 2149 amt = 0; 2150 } 2151 return amt; 2152 } 2153 2154 /* Note: 2155 * We use sk->sk_wq_raw, from contexts knowing this 2156 * pointer is not NULL and cannot disappear/change. 2157 */ 2158 static inline void sk_set_bit(int nr, struct sock *sk) 2159 { 2160 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2161 !sock_flag(sk, SOCK_FASYNC)) 2162 return; 2163 2164 set_bit(nr, &sk->sk_wq_raw->flags); 2165 } 2166 2167 static inline void sk_clear_bit(int nr, struct sock *sk) 2168 { 2169 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2170 !sock_flag(sk, SOCK_FASYNC)) 2171 return; 2172 2173 clear_bit(nr, &sk->sk_wq_raw->flags); 2174 } 2175 2176 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2177 { 2178 if (sock_flag(sk, SOCK_FASYNC)) { 2179 rcu_read_lock(); 2180 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2181 rcu_read_unlock(); 2182 } 2183 } 2184 2185 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2186 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2187 * Note: for send buffers, TCP works better if we can build two skbs at 2188 * minimum. 2189 */ 2190 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2191 2192 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2193 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2194 2195 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2196 { 2197 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2198 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2199 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2200 } 2201 } 2202 2203 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2204 bool force_schedule); 2205 2206 /** 2207 * sk_page_frag - return an appropriate page_frag 2208 * @sk: socket 2209 * 2210 * If socket allocation mode allows current thread to sleep, it means its 2211 * safe to use the per task page_frag instead of the per socket one. 2212 */ 2213 static inline struct page_frag *sk_page_frag(struct sock *sk) 2214 { 2215 if (gfpflags_allow_blocking(sk->sk_allocation)) 2216 return ¤t->task_frag; 2217 2218 return &sk->sk_frag; 2219 } 2220 2221 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2222 2223 /* 2224 * Default write policy as shown to user space via poll/select/SIGIO 2225 */ 2226 static inline bool sock_writeable(const struct sock *sk) 2227 { 2228 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2229 } 2230 2231 static inline gfp_t gfp_any(void) 2232 { 2233 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2234 } 2235 2236 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2237 { 2238 return noblock ? 0 : sk->sk_rcvtimeo; 2239 } 2240 2241 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2242 { 2243 return noblock ? 0 : sk->sk_sndtimeo; 2244 } 2245 2246 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2247 { 2248 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2249 } 2250 2251 /* Alas, with timeout socket operations are not restartable. 2252 * Compare this to poll(). 2253 */ 2254 static inline int sock_intr_errno(long timeo) 2255 { 2256 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2257 } 2258 2259 struct sock_skb_cb { 2260 u32 dropcount; 2261 }; 2262 2263 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2264 * using skb->cb[] would keep using it directly and utilize its 2265 * alignement guarantee. 2266 */ 2267 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \ 2268 sizeof(struct sock_skb_cb))) 2269 2270 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2271 SOCK_SKB_CB_OFFSET)) 2272 2273 #define sock_skb_cb_check_size(size) \ 2274 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2275 2276 static inline void 2277 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2278 { 2279 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2280 atomic_read(&sk->sk_drops) : 0; 2281 } 2282 2283 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2284 { 2285 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2286 2287 atomic_add(segs, &sk->sk_drops); 2288 } 2289 2290 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2291 struct sk_buff *skb); 2292 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2293 struct sk_buff *skb); 2294 2295 static inline void 2296 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2297 { 2298 ktime_t kt = skb->tstamp; 2299 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2300 2301 /* 2302 * generate control messages if 2303 * - receive time stamping in software requested 2304 * - software time stamp available and wanted 2305 * - hardware time stamps available and wanted 2306 */ 2307 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2308 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2309 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2310 (hwtstamps->hwtstamp && 2311 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2312 __sock_recv_timestamp(msg, sk, skb); 2313 else 2314 sk->sk_stamp = kt; 2315 2316 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2317 __sock_recv_wifi_status(msg, sk, skb); 2318 } 2319 2320 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2321 struct sk_buff *skb); 2322 2323 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2324 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2325 struct sk_buff *skb) 2326 { 2327 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2328 (1UL << SOCK_RCVTSTAMP)) 2329 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2330 SOF_TIMESTAMPING_RAW_HARDWARE) 2331 2332 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2333 __sock_recv_ts_and_drops(msg, sk, skb); 2334 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2335 sk->sk_stamp = skb->tstamp; 2336 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) 2337 sk->sk_stamp = 0; 2338 } 2339 2340 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2341 2342 /** 2343 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2344 * @sk: socket sending this packet 2345 * @tsflags: timestamping flags to use 2346 * @tx_flags: completed with instructions for time stamping 2347 * 2348 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2349 */ 2350 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags, 2351 __u8 *tx_flags) 2352 { 2353 if (unlikely(tsflags)) 2354 __sock_tx_timestamp(tsflags, tx_flags); 2355 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2356 *tx_flags |= SKBTX_WIFI_STATUS; 2357 } 2358 2359 /** 2360 * sk_eat_skb - Release a skb if it is no longer needed 2361 * @sk: socket to eat this skb from 2362 * @skb: socket buffer to eat 2363 * 2364 * This routine must be called with interrupts disabled or with the socket 2365 * locked so that the sk_buff queue operation is ok. 2366 */ 2367 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2368 { 2369 __skb_unlink(skb, &sk->sk_receive_queue); 2370 __kfree_skb(skb); 2371 } 2372 2373 static inline 2374 struct net *sock_net(const struct sock *sk) 2375 { 2376 return read_pnet(&sk->sk_net); 2377 } 2378 2379 static inline 2380 void sock_net_set(struct sock *sk, struct net *net) 2381 { 2382 write_pnet(&sk->sk_net, net); 2383 } 2384 2385 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2386 { 2387 if (skb->sk) { 2388 struct sock *sk = skb->sk; 2389 2390 skb->destructor = NULL; 2391 skb->sk = NULL; 2392 return sk; 2393 } 2394 return NULL; 2395 } 2396 2397 /* This helper checks if a socket is a full socket, 2398 * ie _not_ a timewait or request socket. 2399 */ 2400 static inline bool sk_fullsock(const struct sock *sk) 2401 { 2402 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2403 } 2404 2405 /* Checks if this SKB belongs to an HW offloaded socket 2406 * and whether any SW fallbacks are required based on dev. 2407 */ 2408 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2409 struct net_device *dev) 2410 { 2411 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2412 struct sock *sk = skb->sk; 2413 2414 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) 2415 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2416 #endif 2417 2418 return skb; 2419 } 2420 2421 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2422 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2423 */ 2424 static inline bool sk_listener(const struct sock *sk) 2425 { 2426 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2427 } 2428 2429 void sock_enable_timestamp(struct sock *sk, int flag); 2430 int sock_get_timestamp(struct sock *, struct timeval __user *); 2431 int sock_get_timestampns(struct sock *, struct timespec __user *); 2432 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2433 int type); 2434 2435 bool sk_ns_capable(const struct sock *sk, 2436 struct user_namespace *user_ns, int cap); 2437 bool sk_capable(const struct sock *sk, int cap); 2438 bool sk_net_capable(const struct sock *sk, int cap); 2439 2440 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2441 2442 /* Take into consideration the size of the struct sk_buff overhead in the 2443 * determination of these values, since that is non-constant across 2444 * platforms. This makes socket queueing behavior and performance 2445 * not depend upon such differences. 2446 */ 2447 #define _SK_MEM_PACKETS 256 2448 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 2449 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2450 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2451 2452 extern __u32 sysctl_wmem_max; 2453 extern __u32 sysctl_rmem_max; 2454 2455 extern int sysctl_tstamp_allow_data; 2456 extern int sysctl_optmem_max; 2457 2458 extern __u32 sysctl_wmem_default; 2459 extern __u32 sysctl_rmem_default; 2460 2461 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 2462 { 2463 /* Does this proto have per netns sysctl_wmem ? */ 2464 if (proto->sysctl_wmem_offset) 2465 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); 2466 2467 return *proto->sysctl_wmem; 2468 } 2469 2470 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 2471 { 2472 /* Does this proto have per netns sysctl_rmem ? */ 2473 if (proto->sysctl_rmem_offset) 2474 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); 2475 2476 return *proto->sysctl_rmem; 2477 } 2478 2479 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 2480 * Some wifi drivers need to tweak it to get more chunks. 2481 * They can use this helper from their ndo_start_xmit() 2482 */ 2483 static inline void sk_pacing_shift_update(struct sock *sk, int val) 2484 { 2485 if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val) 2486 return; 2487 sk->sk_pacing_shift = val; 2488 } 2489 2490 /* if a socket is bound to a device, check that the given device 2491 * index is either the same or that the socket is bound to an L3 2492 * master device and the given device index is also enslaved to 2493 * that L3 master 2494 */ 2495 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 2496 { 2497 int mdif; 2498 2499 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) 2500 return true; 2501 2502 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 2503 if (mdif && mdif == sk->sk_bound_dev_if) 2504 return true; 2505 2506 return false; 2507 } 2508 2509 #endif /* _SOCK_H */ 2510