xref: /openbmc/linux/include/net/sock.h (revision 02147266)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <net/dst.h>
66 #include <net/checksum.h>
67 #include <net/tcp_states.h>
68 #include <linux/net_tstamp.h>
69 #include <net/l3mdev.h>
70 
71 /*
72  * This structure really needs to be cleaned up.
73  * Most of it is for TCP, and not used by any of
74  * the other protocols.
75  */
76 
77 /* Define this to get the SOCK_DBG debugging facility. */
78 #define SOCK_DEBUGGING
79 #ifdef SOCK_DEBUGGING
80 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
81 					printk(KERN_DEBUG msg); } while (0)
82 #else
83 /* Validate arguments and do nothing */
84 static inline __printf(2, 3)
85 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
86 {
87 }
88 #endif
89 
90 /* This is the per-socket lock.  The spinlock provides a synchronization
91  * between user contexts and software interrupt processing, whereas the
92  * mini-semaphore synchronizes multiple users amongst themselves.
93  */
94 typedef struct {
95 	spinlock_t		slock;
96 	int			owned;
97 	wait_queue_head_t	wq;
98 	/*
99 	 * We express the mutex-alike socket_lock semantics
100 	 * to the lock validator by explicitly managing
101 	 * the slock as a lock variant (in addition to
102 	 * the slock itself):
103 	 */
104 #ifdef CONFIG_DEBUG_LOCK_ALLOC
105 	struct lockdep_map dep_map;
106 #endif
107 } socket_lock_t;
108 
109 struct sock;
110 struct proto;
111 struct net;
112 
113 typedef __u32 __bitwise __portpair;
114 typedef __u64 __bitwise __addrpair;
115 
116 /**
117  *	struct sock_common - minimal network layer representation of sockets
118  *	@skc_daddr: Foreign IPv4 addr
119  *	@skc_rcv_saddr: Bound local IPv4 addr
120  *	@skc_hash: hash value used with various protocol lookup tables
121  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
122  *	@skc_dport: placeholder for inet_dport/tw_dport
123  *	@skc_num: placeholder for inet_num/tw_num
124  *	@skc_family: network address family
125  *	@skc_state: Connection state
126  *	@skc_reuse: %SO_REUSEADDR setting
127  *	@skc_reuseport: %SO_REUSEPORT setting
128  *	@skc_bound_dev_if: bound device index if != 0
129  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
130  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
131  *	@skc_prot: protocol handlers inside a network family
132  *	@skc_net: reference to the network namespace of this socket
133  *	@skc_node: main hash linkage for various protocol lookup tables
134  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
135  *	@skc_tx_queue_mapping: tx queue number for this connection
136  *	@skc_rx_queue_mapping: rx queue number for this connection
137  *	@skc_flags: place holder for sk_flags
138  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
139  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
140  *	@skc_incoming_cpu: record/match cpu processing incoming packets
141  *	@skc_refcnt: reference count
142  *
143  *	This is the minimal network layer representation of sockets, the header
144  *	for struct sock and struct inet_timewait_sock.
145  */
146 struct sock_common {
147 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
148 	 * address on 64bit arches : cf INET_MATCH()
149 	 */
150 	union {
151 		__addrpair	skc_addrpair;
152 		struct {
153 			__be32	skc_daddr;
154 			__be32	skc_rcv_saddr;
155 		};
156 	};
157 	union  {
158 		unsigned int	skc_hash;
159 		__u16		skc_u16hashes[2];
160 	};
161 	/* skc_dport && skc_num must be grouped as well */
162 	union {
163 		__portpair	skc_portpair;
164 		struct {
165 			__be16	skc_dport;
166 			__u16	skc_num;
167 		};
168 	};
169 
170 	unsigned short		skc_family;
171 	volatile unsigned char	skc_state;
172 	unsigned char		skc_reuse:4;
173 	unsigned char		skc_reuseport:1;
174 	unsigned char		skc_ipv6only:1;
175 	unsigned char		skc_net_refcnt:1;
176 	int			skc_bound_dev_if;
177 	union {
178 		struct hlist_node	skc_bind_node;
179 		struct hlist_node	skc_portaddr_node;
180 	};
181 	struct proto		*skc_prot;
182 	possible_net_t		skc_net;
183 
184 #if IS_ENABLED(CONFIG_IPV6)
185 	struct in6_addr		skc_v6_daddr;
186 	struct in6_addr		skc_v6_rcv_saddr;
187 #endif
188 
189 	atomic64_t		skc_cookie;
190 
191 	/* following fields are padding to force
192 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
193 	 * assuming IPV6 is enabled. We use this padding differently
194 	 * for different kind of 'sockets'
195 	 */
196 	union {
197 		unsigned long	skc_flags;
198 		struct sock	*skc_listener; /* request_sock */
199 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
200 	};
201 	/*
202 	 * fields between dontcopy_begin/dontcopy_end
203 	 * are not copied in sock_copy()
204 	 */
205 	/* private: */
206 	int			skc_dontcopy_begin[0];
207 	/* public: */
208 	union {
209 		struct hlist_node	skc_node;
210 		struct hlist_nulls_node skc_nulls_node;
211 	};
212 	unsigned short		skc_tx_queue_mapping;
213 #ifdef CONFIG_XPS
214 	unsigned short		skc_rx_queue_mapping;
215 #endif
216 	union {
217 		int		skc_incoming_cpu;
218 		u32		skc_rcv_wnd;
219 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
220 	};
221 
222 	refcount_t		skc_refcnt;
223 	/* private: */
224 	int                     skc_dontcopy_end[0];
225 	union {
226 		u32		skc_rxhash;
227 		u32		skc_window_clamp;
228 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
229 	};
230 	/* public: */
231 };
232 
233 struct bpf_sk_storage;
234 
235 /**
236   *	struct sock - network layer representation of sockets
237   *	@__sk_common: shared layout with inet_timewait_sock
238   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
239   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
240   *	@sk_lock:	synchronizer
241   *	@sk_kern_sock: True if sock is using kernel lock classes
242   *	@sk_rcvbuf: size of receive buffer in bytes
243   *	@sk_wq: sock wait queue and async head
244   *	@sk_rx_dst: receive input route used by early demux
245   *	@sk_dst_cache: destination cache
246   *	@sk_dst_pending_confirm: need to confirm neighbour
247   *	@sk_policy: flow policy
248   *	@sk_receive_queue: incoming packets
249   *	@sk_wmem_alloc: transmit queue bytes committed
250   *	@sk_tsq_flags: TCP Small Queues flags
251   *	@sk_write_queue: Packet sending queue
252   *	@sk_omem_alloc: "o" is "option" or "other"
253   *	@sk_wmem_queued: persistent queue size
254   *	@sk_forward_alloc: space allocated forward
255   *	@sk_napi_id: id of the last napi context to receive data for sk
256   *	@sk_ll_usec: usecs to busypoll when there is no data
257   *	@sk_allocation: allocation mode
258   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
259   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
260   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
261   *	@sk_sndbuf: size of send buffer in bytes
262   *	@__sk_flags_offset: empty field used to determine location of bitfield
263   *	@sk_padding: unused element for alignment
264   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
265   *	@sk_no_check_rx: allow zero checksum in RX packets
266   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
267   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
268   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
269   *	@sk_gso_max_size: Maximum GSO segment size to build
270   *	@sk_gso_max_segs: Maximum number of GSO segments
271   *	@sk_pacing_shift: scaling factor for TCP Small Queues
272   *	@sk_lingertime: %SO_LINGER l_linger setting
273   *	@sk_backlog: always used with the per-socket spinlock held
274   *	@sk_callback_lock: used with the callbacks in the end of this struct
275   *	@sk_error_queue: rarely used
276   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
277   *			  IPV6_ADDRFORM for instance)
278   *	@sk_err: last error
279   *	@sk_err_soft: errors that don't cause failure but are the cause of a
280   *		      persistent failure not just 'timed out'
281   *	@sk_drops: raw/udp drops counter
282   *	@sk_ack_backlog: current listen backlog
283   *	@sk_max_ack_backlog: listen backlog set in listen()
284   *	@sk_uid: user id of owner
285   *	@sk_priority: %SO_PRIORITY setting
286   *	@sk_type: socket type (%SOCK_STREAM, etc)
287   *	@sk_protocol: which protocol this socket belongs in this network family
288   *	@sk_peer_pid: &struct pid for this socket's peer
289   *	@sk_peer_cred: %SO_PEERCRED setting
290   *	@sk_rcvlowat: %SO_RCVLOWAT setting
291   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
292   *	@sk_sndtimeo: %SO_SNDTIMEO setting
293   *	@sk_txhash: computed flow hash for use on transmit
294   *	@sk_filter: socket filtering instructions
295   *	@sk_timer: sock cleanup timer
296   *	@sk_stamp: time stamp of last packet received
297   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
298   *	@sk_tsflags: SO_TIMESTAMPING socket options
299   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
300   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
301   *	@sk_socket: Identd and reporting IO signals
302   *	@sk_user_data: RPC layer private data
303   *	@sk_frag: cached page frag
304   *	@sk_peek_off: current peek_offset value
305   *	@sk_send_head: front of stuff to transmit
306   *	@sk_security: used by security modules
307   *	@sk_mark: generic packet mark
308   *	@sk_cgrp_data: cgroup data for this cgroup
309   *	@sk_memcg: this socket's memory cgroup association
310   *	@sk_write_pending: a write to stream socket waits to start
311   *	@sk_state_change: callback to indicate change in the state of the sock
312   *	@sk_data_ready: callback to indicate there is data to be processed
313   *	@sk_write_space: callback to indicate there is bf sending space available
314   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
315   *	@sk_backlog_rcv: callback to process the backlog
316   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
317   *	@sk_reuseport_cb: reuseport group container
318   *	@sk_rcu: used during RCU grace period
319   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
320   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
321   *	@sk_txtime_unused: unused txtime flags
322   */
323 struct sock {
324 	/*
325 	 * Now struct inet_timewait_sock also uses sock_common, so please just
326 	 * don't add nothing before this first member (__sk_common) --acme
327 	 */
328 	struct sock_common	__sk_common;
329 #define sk_node			__sk_common.skc_node
330 #define sk_nulls_node		__sk_common.skc_nulls_node
331 #define sk_refcnt		__sk_common.skc_refcnt
332 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
333 #ifdef CONFIG_XPS
334 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
335 #endif
336 
337 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
338 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
339 #define sk_hash			__sk_common.skc_hash
340 #define sk_portpair		__sk_common.skc_portpair
341 #define sk_num			__sk_common.skc_num
342 #define sk_dport		__sk_common.skc_dport
343 #define sk_addrpair		__sk_common.skc_addrpair
344 #define sk_daddr		__sk_common.skc_daddr
345 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
346 #define sk_family		__sk_common.skc_family
347 #define sk_state		__sk_common.skc_state
348 #define sk_reuse		__sk_common.skc_reuse
349 #define sk_reuseport		__sk_common.skc_reuseport
350 #define sk_ipv6only		__sk_common.skc_ipv6only
351 #define sk_net_refcnt		__sk_common.skc_net_refcnt
352 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
353 #define sk_bind_node		__sk_common.skc_bind_node
354 #define sk_prot			__sk_common.skc_prot
355 #define sk_net			__sk_common.skc_net
356 #define sk_v6_daddr		__sk_common.skc_v6_daddr
357 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
358 #define sk_cookie		__sk_common.skc_cookie
359 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
360 #define sk_flags		__sk_common.skc_flags
361 #define sk_rxhash		__sk_common.skc_rxhash
362 
363 	socket_lock_t		sk_lock;
364 	atomic_t		sk_drops;
365 	int			sk_rcvlowat;
366 	struct sk_buff_head	sk_error_queue;
367 	struct sk_buff		*sk_rx_skb_cache;
368 	struct sk_buff_head	sk_receive_queue;
369 	/*
370 	 * The backlog queue is special, it is always used with
371 	 * the per-socket spinlock held and requires low latency
372 	 * access. Therefore we special case it's implementation.
373 	 * Note : rmem_alloc is in this structure to fill a hole
374 	 * on 64bit arches, not because its logically part of
375 	 * backlog.
376 	 */
377 	struct {
378 		atomic_t	rmem_alloc;
379 		int		len;
380 		struct sk_buff	*head;
381 		struct sk_buff	*tail;
382 	} sk_backlog;
383 #define sk_rmem_alloc sk_backlog.rmem_alloc
384 
385 	int			sk_forward_alloc;
386 #ifdef CONFIG_NET_RX_BUSY_POLL
387 	unsigned int		sk_ll_usec;
388 	/* ===== mostly read cache line ===== */
389 	unsigned int		sk_napi_id;
390 #endif
391 	int			sk_rcvbuf;
392 
393 	struct sk_filter __rcu	*sk_filter;
394 	union {
395 		struct socket_wq __rcu	*sk_wq;
396 		struct socket_wq	*sk_wq_raw;
397 	};
398 #ifdef CONFIG_XFRM
399 	struct xfrm_policy __rcu *sk_policy[2];
400 #endif
401 	struct dst_entry	*sk_rx_dst;
402 	struct dst_entry __rcu	*sk_dst_cache;
403 	atomic_t		sk_omem_alloc;
404 	int			sk_sndbuf;
405 
406 	/* ===== cache line for TX ===== */
407 	int			sk_wmem_queued;
408 	refcount_t		sk_wmem_alloc;
409 	unsigned long		sk_tsq_flags;
410 	union {
411 		struct sk_buff	*sk_send_head;
412 		struct rb_root	tcp_rtx_queue;
413 	};
414 	struct sk_buff		*sk_tx_skb_cache;
415 	struct sk_buff_head	sk_write_queue;
416 	__s32			sk_peek_off;
417 	int			sk_write_pending;
418 	__u32			sk_dst_pending_confirm;
419 	u32			sk_pacing_status; /* see enum sk_pacing */
420 	long			sk_sndtimeo;
421 	struct timer_list	sk_timer;
422 	__u32			sk_priority;
423 	__u32			sk_mark;
424 	unsigned long		sk_pacing_rate; /* bytes per second */
425 	unsigned long		sk_max_pacing_rate;
426 	struct page_frag	sk_frag;
427 	netdev_features_t	sk_route_caps;
428 	netdev_features_t	sk_route_nocaps;
429 	netdev_features_t	sk_route_forced_caps;
430 	int			sk_gso_type;
431 	unsigned int		sk_gso_max_size;
432 	gfp_t			sk_allocation;
433 	__u32			sk_txhash;
434 
435 	/*
436 	 * Because of non atomicity rules, all
437 	 * changes are protected by socket lock.
438 	 */
439 	unsigned int		__sk_flags_offset[0];
440 #ifdef __BIG_ENDIAN_BITFIELD
441 #define SK_FL_PROTO_SHIFT  16
442 #define SK_FL_PROTO_MASK   0x00ff0000
443 
444 #define SK_FL_TYPE_SHIFT   0
445 #define SK_FL_TYPE_MASK    0x0000ffff
446 #else
447 #define SK_FL_PROTO_SHIFT  8
448 #define SK_FL_PROTO_MASK   0x0000ff00
449 
450 #define SK_FL_TYPE_SHIFT   16
451 #define SK_FL_TYPE_MASK    0xffff0000
452 #endif
453 
454 	unsigned int		sk_padding : 1,
455 				sk_kern_sock : 1,
456 				sk_no_check_tx : 1,
457 				sk_no_check_rx : 1,
458 				sk_userlocks : 4,
459 				sk_protocol  : 8,
460 				sk_type      : 16;
461 #define SK_PROTOCOL_MAX U8_MAX
462 	u16			sk_gso_max_segs;
463 	u8			sk_pacing_shift;
464 	unsigned long	        sk_lingertime;
465 	struct proto		*sk_prot_creator;
466 	rwlock_t		sk_callback_lock;
467 	int			sk_err,
468 				sk_err_soft;
469 	u32			sk_ack_backlog;
470 	u32			sk_max_ack_backlog;
471 	kuid_t			sk_uid;
472 	struct pid		*sk_peer_pid;
473 	const struct cred	*sk_peer_cred;
474 	long			sk_rcvtimeo;
475 	ktime_t			sk_stamp;
476 #if BITS_PER_LONG==32
477 	seqlock_t		sk_stamp_seq;
478 #endif
479 	u16			sk_tsflags;
480 	u8			sk_shutdown;
481 	u32			sk_tskey;
482 	atomic_t		sk_zckey;
483 
484 	u8			sk_clockid;
485 	u8			sk_txtime_deadline_mode : 1,
486 				sk_txtime_report_errors : 1,
487 				sk_txtime_unused : 6;
488 
489 	struct socket		*sk_socket;
490 	void			*sk_user_data;
491 #ifdef CONFIG_SECURITY
492 	void			*sk_security;
493 #endif
494 	struct sock_cgroup_data	sk_cgrp_data;
495 	struct mem_cgroup	*sk_memcg;
496 	void			(*sk_state_change)(struct sock *sk);
497 	void			(*sk_data_ready)(struct sock *sk);
498 	void			(*sk_write_space)(struct sock *sk);
499 	void			(*sk_error_report)(struct sock *sk);
500 	int			(*sk_backlog_rcv)(struct sock *sk,
501 						  struct sk_buff *skb);
502 #ifdef CONFIG_SOCK_VALIDATE_XMIT
503 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
504 							struct net_device *dev,
505 							struct sk_buff *skb);
506 #endif
507 	void                    (*sk_destruct)(struct sock *sk);
508 	struct sock_reuseport __rcu	*sk_reuseport_cb;
509 #ifdef CONFIG_BPF_SYSCALL
510 	struct bpf_sk_storage __rcu	*sk_bpf_storage;
511 #endif
512 	struct rcu_head		sk_rcu;
513 };
514 
515 enum sk_pacing {
516 	SK_PACING_NONE		= 0,
517 	SK_PACING_NEEDED	= 1,
518 	SK_PACING_FQ		= 2,
519 };
520 
521 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
522 
523 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
524 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
525 
526 /*
527  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
528  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
529  * on a socket means that the socket will reuse everybody else's port
530  * without looking at the other's sk_reuse value.
531  */
532 
533 #define SK_NO_REUSE	0
534 #define SK_CAN_REUSE	1
535 #define SK_FORCE_REUSE	2
536 
537 int sk_set_peek_off(struct sock *sk, int val);
538 
539 static inline int sk_peek_offset(struct sock *sk, int flags)
540 {
541 	if (unlikely(flags & MSG_PEEK)) {
542 		return READ_ONCE(sk->sk_peek_off);
543 	}
544 
545 	return 0;
546 }
547 
548 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
549 {
550 	s32 off = READ_ONCE(sk->sk_peek_off);
551 
552 	if (unlikely(off >= 0)) {
553 		off = max_t(s32, off - val, 0);
554 		WRITE_ONCE(sk->sk_peek_off, off);
555 	}
556 }
557 
558 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
559 {
560 	sk_peek_offset_bwd(sk, -val);
561 }
562 
563 /*
564  * Hashed lists helper routines
565  */
566 static inline struct sock *sk_entry(const struct hlist_node *node)
567 {
568 	return hlist_entry(node, struct sock, sk_node);
569 }
570 
571 static inline struct sock *__sk_head(const struct hlist_head *head)
572 {
573 	return hlist_entry(head->first, struct sock, sk_node);
574 }
575 
576 static inline struct sock *sk_head(const struct hlist_head *head)
577 {
578 	return hlist_empty(head) ? NULL : __sk_head(head);
579 }
580 
581 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
582 {
583 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
584 }
585 
586 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
587 {
588 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
589 }
590 
591 static inline struct sock *sk_next(const struct sock *sk)
592 {
593 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
594 }
595 
596 static inline struct sock *sk_nulls_next(const struct sock *sk)
597 {
598 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
599 		hlist_nulls_entry(sk->sk_nulls_node.next,
600 				  struct sock, sk_nulls_node) :
601 		NULL;
602 }
603 
604 static inline bool sk_unhashed(const struct sock *sk)
605 {
606 	return hlist_unhashed(&sk->sk_node);
607 }
608 
609 static inline bool sk_hashed(const struct sock *sk)
610 {
611 	return !sk_unhashed(sk);
612 }
613 
614 static inline void sk_node_init(struct hlist_node *node)
615 {
616 	node->pprev = NULL;
617 }
618 
619 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
620 {
621 	node->pprev = NULL;
622 }
623 
624 static inline void __sk_del_node(struct sock *sk)
625 {
626 	__hlist_del(&sk->sk_node);
627 }
628 
629 /* NB: equivalent to hlist_del_init_rcu */
630 static inline bool __sk_del_node_init(struct sock *sk)
631 {
632 	if (sk_hashed(sk)) {
633 		__sk_del_node(sk);
634 		sk_node_init(&sk->sk_node);
635 		return true;
636 	}
637 	return false;
638 }
639 
640 /* Grab socket reference count. This operation is valid only
641    when sk is ALREADY grabbed f.e. it is found in hash table
642    or a list and the lookup is made under lock preventing hash table
643    modifications.
644  */
645 
646 static __always_inline void sock_hold(struct sock *sk)
647 {
648 	refcount_inc(&sk->sk_refcnt);
649 }
650 
651 /* Ungrab socket in the context, which assumes that socket refcnt
652    cannot hit zero, f.e. it is true in context of any socketcall.
653  */
654 static __always_inline void __sock_put(struct sock *sk)
655 {
656 	refcount_dec(&sk->sk_refcnt);
657 }
658 
659 static inline bool sk_del_node_init(struct sock *sk)
660 {
661 	bool rc = __sk_del_node_init(sk);
662 
663 	if (rc) {
664 		/* paranoid for a while -acme */
665 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
666 		__sock_put(sk);
667 	}
668 	return rc;
669 }
670 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
671 
672 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
673 {
674 	if (sk_hashed(sk)) {
675 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
676 		return true;
677 	}
678 	return false;
679 }
680 
681 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
682 {
683 	bool rc = __sk_nulls_del_node_init_rcu(sk);
684 
685 	if (rc) {
686 		/* paranoid for a while -acme */
687 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
688 		__sock_put(sk);
689 	}
690 	return rc;
691 }
692 
693 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
694 {
695 	hlist_add_head(&sk->sk_node, list);
696 }
697 
698 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
699 {
700 	sock_hold(sk);
701 	__sk_add_node(sk, list);
702 }
703 
704 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
705 {
706 	sock_hold(sk);
707 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
708 	    sk->sk_family == AF_INET6)
709 		hlist_add_tail_rcu(&sk->sk_node, list);
710 	else
711 		hlist_add_head_rcu(&sk->sk_node, list);
712 }
713 
714 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
715 {
716 	sock_hold(sk);
717 	hlist_add_tail_rcu(&sk->sk_node, list);
718 }
719 
720 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
721 {
722 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
723 }
724 
725 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
726 {
727 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
728 }
729 
730 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
731 {
732 	sock_hold(sk);
733 	__sk_nulls_add_node_rcu(sk, list);
734 }
735 
736 static inline void __sk_del_bind_node(struct sock *sk)
737 {
738 	__hlist_del(&sk->sk_bind_node);
739 }
740 
741 static inline void sk_add_bind_node(struct sock *sk,
742 					struct hlist_head *list)
743 {
744 	hlist_add_head(&sk->sk_bind_node, list);
745 }
746 
747 #define sk_for_each(__sk, list) \
748 	hlist_for_each_entry(__sk, list, sk_node)
749 #define sk_for_each_rcu(__sk, list) \
750 	hlist_for_each_entry_rcu(__sk, list, sk_node)
751 #define sk_nulls_for_each(__sk, node, list) \
752 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
753 #define sk_nulls_for_each_rcu(__sk, node, list) \
754 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
755 #define sk_for_each_from(__sk) \
756 	hlist_for_each_entry_from(__sk, sk_node)
757 #define sk_nulls_for_each_from(__sk, node) \
758 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
759 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
760 #define sk_for_each_safe(__sk, tmp, list) \
761 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
762 #define sk_for_each_bound(__sk, list) \
763 	hlist_for_each_entry(__sk, list, sk_bind_node)
764 
765 /**
766  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
767  * @tpos:	the type * to use as a loop cursor.
768  * @pos:	the &struct hlist_node to use as a loop cursor.
769  * @head:	the head for your list.
770  * @offset:	offset of hlist_node within the struct.
771  *
772  */
773 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
774 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
775 	     pos != NULL &&						       \
776 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
777 	     pos = rcu_dereference(hlist_next_rcu(pos)))
778 
779 static inline struct user_namespace *sk_user_ns(struct sock *sk)
780 {
781 	/* Careful only use this in a context where these parameters
782 	 * can not change and must all be valid, such as recvmsg from
783 	 * userspace.
784 	 */
785 	return sk->sk_socket->file->f_cred->user_ns;
786 }
787 
788 /* Sock flags */
789 enum sock_flags {
790 	SOCK_DEAD,
791 	SOCK_DONE,
792 	SOCK_URGINLINE,
793 	SOCK_KEEPOPEN,
794 	SOCK_LINGER,
795 	SOCK_DESTROY,
796 	SOCK_BROADCAST,
797 	SOCK_TIMESTAMP,
798 	SOCK_ZAPPED,
799 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
800 	SOCK_DBG, /* %SO_DEBUG setting */
801 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
802 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
803 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
804 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
805 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
806 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
807 	SOCK_FASYNC, /* fasync() active */
808 	SOCK_RXQ_OVFL,
809 	SOCK_ZEROCOPY, /* buffers from userspace */
810 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
811 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
812 		     * Will use last 4 bytes of packet sent from
813 		     * user-space instead.
814 		     */
815 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
816 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
817 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
818 	SOCK_TXTIME,
819 	SOCK_XDP, /* XDP is attached */
820 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
821 };
822 
823 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
824 
825 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
826 {
827 	nsk->sk_flags = osk->sk_flags;
828 }
829 
830 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
831 {
832 	__set_bit(flag, &sk->sk_flags);
833 }
834 
835 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
836 {
837 	__clear_bit(flag, &sk->sk_flags);
838 }
839 
840 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
841 {
842 	return test_bit(flag, &sk->sk_flags);
843 }
844 
845 #ifdef CONFIG_NET
846 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
847 static inline int sk_memalloc_socks(void)
848 {
849 	return static_branch_unlikely(&memalloc_socks_key);
850 }
851 #else
852 
853 static inline int sk_memalloc_socks(void)
854 {
855 	return 0;
856 }
857 
858 #endif
859 
860 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
861 {
862 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
863 }
864 
865 static inline void sk_acceptq_removed(struct sock *sk)
866 {
867 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
868 }
869 
870 static inline void sk_acceptq_added(struct sock *sk)
871 {
872 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
873 }
874 
875 static inline bool sk_acceptq_is_full(const struct sock *sk)
876 {
877 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
878 }
879 
880 /*
881  * Compute minimal free write space needed to queue new packets.
882  */
883 static inline int sk_stream_min_wspace(const struct sock *sk)
884 {
885 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
886 }
887 
888 static inline int sk_stream_wspace(const struct sock *sk)
889 {
890 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
891 }
892 
893 static inline void sk_wmem_queued_add(struct sock *sk, int val)
894 {
895 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
896 }
897 
898 void sk_stream_write_space(struct sock *sk);
899 
900 /* OOB backlog add */
901 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
902 {
903 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
904 	skb_dst_force(skb);
905 
906 	if (!sk->sk_backlog.tail)
907 		WRITE_ONCE(sk->sk_backlog.head, skb);
908 	else
909 		sk->sk_backlog.tail->next = skb;
910 
911 	WRITE_ONCE(sk->sk_backlog.tail, skb);
912 	skb->next = NULL;
913 }
914 
915 /*
916  * Take into account size of receive queue and backlog queue
917  * Do not take into account this skb truesize,
918  * to allow even a single big packet to come.
919  */
920 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
921 {
922 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
923 
924 	return qsize > limit;
925 }
926 
927 /* The per-socket spinlock must be held here. */
928 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
929 					      unsigned int limit)
930 {
931 	if (sk_rcvqueues_full(sk, limit))
932 		return -ENOBUFS;
933 
934 	/*
935 	 * If the skb was allocated from pfmemalloc reserves, only
936 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
937 	 * helping free memory
938 	 */
939 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
940 		return -ENOMEM;
941 
942 	__sk_add_backlog(sk, skb);
943 	sk->sk_backlog.len += skb->truesize;
944 	return 0;
945 }
946 
947 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
948 
949 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
950 {
951 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
952 		return __sk_backlog_rcv(sk, skb);
953 
954 	return sk->sk_backlog_rcv(sk, skb);
955 }
956 
957 static inline void sk_incoming_cpu_update(struct sock *sk)
958 {
959 	int cpu = raw_smp_processor_id();
960 
961 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
962 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
963 }
964 
965 static inline void sock_rps_record_flow_hash(__u32 hash)
966 {
967 #ifdef CONFIG_RPS
968 	struct rps_sock_flow_table *sock_flow_table;
969 
970 	rcu_read_lock();
971 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
972 	rps_record_sock_flow(sock_flow_table, hash);
973 	rcu_read_unlock();
974 #endif
975 }
976 
977 static inline void sock_rps_record_flow(const struct sock *sk)
978 {
979 #ifdef CONFIG_RPS
980 	if (static_branch_unlikely(&rfs_needed)) {
981 		/* Reading sk->sk_rxhash might incur an expensive cache line
982 		 * miss.
983 		 *
984 		 * TCP_ESTABLISHED does cover almost all states where RFS
985 		 * might be useful, and is cheaper [1] than testing :
986 		 *	IPv4: inet_sk(sk)->inet_daddr
987 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
988 		 * OR	an additional socket flag
989 		 * [1] : sk_state and sk_prot are in the same cache line.
990 		 */
991 		if (sk->sk_state == TCP_ESTABLISHED)
992 			sock_rps_record_flow_hash(sk->sk_rxhash);
993 	}
994 #endif
995 }
996 
997 static inline void sock_rps_save_rxhash(struct sock *sk,
998 					const struct sk_buff *skb)
999 {
1000 #ifdef CONFIG_RPS
1001 	if (unlikely(sk->sk_rxhash != skb->hash))
1002 		sk->sk_rxhash = skb->hash;
1003 #endif
1004 }
1005 
1006 static inline void sock_rps_reset_rxhash(struct sock *sk)
1007 {
1008 #ifdef CONFIG_RPS
1009 	sk->sk_rxhash = 0;
1010 #endif
1011 }
1012 
1013 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1014 	({	int __rc;						\
1015 		release_sock(__sk);					\
1016 		__rc = __condition;					\
1017 		if (!__rc) {						\
1018 			*(__timeo) = wait_woken(__wait,			\
1019 						TASK_INTERRUPTIBLE,	\
1020 						*(__timeo));		\
1021 		}							\
1022 		sched_annotate_sleep();					\
1023 		lock_sock(__sk);					\
1024 		__rc = __condition;					\
1025 		__rc;							\
1026 	})
1027 
1028 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1029 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1030 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1031 int sk_stream_error(struct sock *sk, int flags, int err);
1032 void sk_stream_kill_queues(struct sock *sk);
1033 void sk_set_memalloc(struct sock *sk);
1034 void sk_clear_memalloc(struct sock *sk);
1035 
1036 void __sk_flush_backlog(struct sock *sk);
1037 
1038 static inline bool sk_flush_backlog(struct sock *sk)
1039 {
1040 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1041 		__sk_flush_backlog(sk);
1042 		return true;
1043 	}
1044 	return false;
1045 }
1046 
1047 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1048 
1049 struct request_sock_ops;
1050 struct timewait_sock_ops;
1051 struct inet_hashinfo;
1052 struct raw_hashinfo;
1053 struct smc_hashinfo;
1054 struct module;
1055 
1056 /*
1057  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1058  * un-modified. Special care is taken when initializing object to zero.
1059  */
1060 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1061 {
1062 	if (offsetof(struct sock, sk_node.next) != 0)
1063 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1064 	memset(&sk->sk_node.pprev, 0,
1065 	       size - offsetof(struct sock, sk_node.pprev));
1066 }
1067 
1068 /* Networking protocol blocks we attach to sockets.
1069  * socket layer -> transport layer interface
1070  */
1071 struct proto {
1072 	void			(*close)(struct sock *sk,
1073 					long timeout);
1074 	int			(*pre_connect)(struct sock *sk,
1075 					struct sockaddr *uaddr,
1076 					int addr_len);
1077 	int			(*connect)(struct sock *sk,
1078 					struct sockaddr *uaddr,
1079 					int addr_len);
1080 	int			(*disconnect)(struct sock *sk, int flags);
1081 
1082 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1083 					  bool kern);
1084 
1085 	int			(*ioctl)(struct sock *sk, int cmd,
1086 					 unsigned long arg);
1087 	int			(*init)(struct sock *sk);
1088 	void			(*destroy)(struct sock *sk);
1089 	void			(*shutdown)(struct sock *sk, int how);
1090 	int			(*setsockopt)(struct sock *sk, int level,
1091 					int optname, char __user *optval,
1092 					unsigned int optlen);
1093 	int			(*getsockopt)(struct sock *sk, int level,
1094 					int optname, char __user *optval,
1095 					int __user *option);
1096 	void			(*keepalive)(struct sock *sk, int valbool);
1097 #ifdef CONFIG_COMPAT
1098 	int			(*compat_setsockopt)(struct sock *sk,
1099 					int level,
1100 					int optname, char __user *optval,
1101 					unsigned int optlen);
1102 	int			(*compat_getsockopt)(struct sock *sk,
1103 					int level,
1104 					int optname, char __user *optval,
1105 					int __user *option);
1106 	int			(*compat_ioctl)(struct sock *sk,
1107 					unsigned int cmd, unsigned long arg);
1108 #endif
1109 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1110 					   size_t len);
1111 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1112 					   size_t len, int noblock, int flags,
1113 					   int *addr_len);
1114 	int			(*sendpage)(struct sock *sk, struct page *page,
1115 					int offset, size_t size, int flags);
1116 	int			(*bind)(struct sock *sk,
1117 					struct sockaddr *uaddr, int addr_len);
1118 
1119 	int			(*backlog_rcv) (struct sock *sk,
1120 						struct sk_buff *skb);
1121 
1122 	void		(*release_cb)(struct sock *sk);
1123 
1124 	/* Keeping track of sk's, looking them up, and port selection methods. */
1125 	int			(*hash)(struct sock *sk);
1126 	void			(*unhash)(struct sock *sk);
1127 	void			(*rehash)(struct sock *sk);
1128 	int			(*get_port)(struct sock *sk, unsigned short snum);
1129 
1130 	/* Keeping track of sockets in use */
1131 #ifdef CONFIG_PROC_FS
1132 	unsigned int		inuse_idx;
1133 #endif
1134 
1135 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1136 	bool			(*stream_memory_read)(const struct sock *sk);
1137 	/* Memory pressure */
1138 	void			(*enter_memory_pressure)(struct sock *sk);
1139 	void			(*leave_memory_pressure)(struct sock *sk);
1140 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1141 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1142 	/*
1143 	 * Pressure flag: try to collapse.
1144 	 * Technical note: it is used by multiple contexts non atomically.
1145 	 * All the __sk_mem_schedule() is of this nature: accounting
1146 	 * is strict, actions are advisory and have some latency.
1147 	 */
1148 	unsigned long		*memory_pressure;
1149 	long			*sysctl_mem;
1150 
1151 	int			*sysctl_wmem;
1152 	int			*sysctl_rmem;
1153 	u32			sysctl_wmem_offset;
1154 	u32			sysctl_rmem_offset;
1155 
1156 	int			max_header;
1157 	bool			no_autobind;
1158 
1159 	struct kmem_cache	*slab;
1160 	unsigned int		obj_size;
1161 	slab_flags_t		slab_flags;
1162 	unsigned int		useroffset;	/* Usercopy region offset */
1163 	unsigned int		usersize;	/* Usercopy region size */
1164 
1165 	struct percpu_counter	*orphan_count;
1166 
1167 	struct request_sock_ops	*rsk_prot;
1168 	struct timewait_sock_ops *twsk_prot;
1169 
1170 	union {
1171 		struct inet_hashinfo	*hashinfo;
1172 		struct udp_table	*udp_table;
1173 		struct raw_hashinfo	*raw_hash;
1174 		struct smc_hashinfo	*smc_hash;
1175 	} h;
1176 
1177 	struct module		*owner;
1178 
1179 	char			name[32];
1180 
1181 	struct list_head	node;
1182 #ifdef SOCK_REFCNT_DEBUG
1183 	atomic_t		socks;
1184 #endif
1185 	int			(*diag_destroy)(struct sock *sk, int err);
1186 } __randomize_layout;
1187 
1188 int proto_register(struct proto *prot, int alloc_slab);
1189 void proto_unregister(struct proto *prot);
1190 int sock_load_diag_module(int family, int protocol);
1191 
1192 #ifdef SOCK_REFCNT_DEBUG
1193 static inline void sk_refcnt_debug_inc(struct sock *sk)
1194 {
1195 	atomic_inc(&sk->sk_prot->socks);
1196 }
1197 
1198 static inline void sk_refcnt_debug_dec(struct sock *sk)
1199 {
1200 	atomic_dec(&sk->sk_prot->socks);
1201 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1202 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1203 }
1204 
1205 static inline void sk_refcnt_debug_release(const struct sock *sk)
1206 {
1207 	if (refcount_read(&sk->sk_refcnt) != 1)
1208 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1209 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1210 }
1211 #else /* SOCK_REFCNT_DEBUG */
1212 #define sk_refcnt_debug_inc(sk) do { } while (0)
1213 #define sk_refcnt_debug_dec(sk) do { } while (0)
1214 #define sk_refcnt_debug_release(sk) do { } while (0)
1215 #endif /* SOCK_REFCNT_DEBUG */
1216 
1217 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1218 {
1219 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1220 		return false;
1221 
1222 	return sk->sk_prot->stream_memory_free ?
1223 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1224 }
1225 
1226 static inline bool sk_stream_memory_free(const struct sock *sk)
1227 {
1228 	return __sk_stream_memory_free(sk, 0);
1229 }
1230 
1231 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1232 {
1233 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1234 	       __sk_stream_memory_free(sk, wake);
1235 }
1236 
1237 static inline bool sk_stream_is_writeable(const struct sock *sk)
1238 {
1239 	return __sk_stream_is_writeable(sk, 0);
1240 }
1241 
1242 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1243 					    struct cgroup *ancestor)
1244 {
1245 #ifdef CONFIG_SOCK_CGROUP_DATA
1246 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1247 				    ancestor);
1248 #else
1249 	return -ENOTSUPP;
1250 #endif
1251 }
1252 
1253 static inline bool sk_has_memory_pressure(const struct sock *sk)
1254 {
1255 	return sk->sk_prot->memory_pressure != NULL;
1256 }
1257 
1258 static inline bool sk_under_memory_pressure(const struct sock *sk)
1259 {
1260 	if (!sk->sk_prot->memory_pressure)
1261 		return false;
1262 
1263 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1264 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1265 		return true;
1266 
1267 	return !!*sk->sk_prot->memory_pressure;
1268 }
1269 
1270 static inline long
1271 sk_memory_allocated(const struct sock *sk)
1272 {
1273 	return atomic_long_read(sk->sk_prot->memory_allocated);
1274 }
1275 
1276 static inline long
1277 sk_memory_allocated_add(struct sock *sk, int amt)
1278 {
1279 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1280 }
1281 
1282 static inline void
1283 sk_memory_allocated_sub(struct sock *sk, int amt)
1284 {
1285 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1286 }
1287 
1288 static inline void sk_sockets_allocated_dec(struct sock *sk)
1289 {
1290 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1291 }
1292 
1293 static inline void sk_sockets_allocated_inc(struct sock *sk)
1294 {
1295 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1296 }
1297 
1298 static inline u64
1299 sk_sockets_allocated_read_positive(struct sock *sk)
1300 {
1301 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1302 }
1303 
1304 static inline int
1305 proto_sockets_allocated_sum_positive(struct proto *prot)
1306 {
1307 	return percpu_counter_sum_positive(prot->sockets_allocated);
1308 }
1309 
1310 static inline long
1311 proto_memory_allocated(struct proto *prot)
1312 {
1313 	return atomic_long_read(prot->memory_allocated);
1314 }
1315 
1316 static inline bool
1317 proto_memory_pressure(struct proto *prot)
1318 {
1319 	if (!prot->memory_pressure)
1320 		return false;
1321 	return !!*prot->memory_pressure;
1322 }
1323 
1324 
1325 #ifdef CONFIG_PROC_FS
1326 /* Called with local bh disabled */
1327 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1328 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1329 int sock_inuse_get(struct net *net);
1330 #else
1331 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1332 		int inc)
1333 {
1334 }
1335 #endif
1336 
1337 
1338 /* With per-bucket locks this operation is not-atomic, so that
1339  * this version is not worse.
1340  */
1341 static inline int __sk_prot_rehash(struct sock *sk)
1342 {
1343 	sk->sk_prot->unhash(sk);
1344 	return sk->sk_prot->hash(sk);
1345 }
1346 
1347 /* About 10 seconds */
1348 #define SOCK_DESTROY_TIME (10*HZ)
1349 
1350 /* Sockets 0-1023 can't be bound to unless you are superuser */
1351 #define PROT_SOCK	1024
1352 
1353 #define SHUTDOWN_MASK	3
1354 #define RCV_SHUTDOWN	1
1355 #define SEND_SHUTDOWN	2
1356 
1357 #define SOCK_SNDBUF_LOCK	1
1358 #define SOCK_RCVBUF_LOCK	2
1359 #define SOCK_BINDADDR_LOCK	4
1360 #define SOCK_BINDPORT_LOCK	8
1361 
1362 struct socket_alloc {
1363 	struct socket socket;
1364 	struct inode vfs_inode;
1365 };
1366 
1367 static inline struct socket *SOCKET_I(struct inode *inode)
1368 {
1369 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1370 }
1371 
1372 static inline struct inode *SOCK_INODE(struct socket *socket)
1373 {
1374 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1375 }
1376 
1377 /*
1378  * Functions for memory accounting
1379  */
1380 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1381 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1382 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1383 void __sk_mem_reclaim(struct sock *sk, int amount);
1384 
1385 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1386  * do not necessarily have 16x time more memory than 4KB ones.
1387  */
1388 #define SK_MEM_QUANTUM 4096
1389 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1390 #define SK_MEM_SEND	0
1391 #define SK_MEM_RECV	1
1392 
1393 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1394 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1395 {
1396 	long val = sk->sk_prot->sysctl_mem[index];
1397 
1398 #if PAGE_SIZE > SK_MEM_QUANTUM
1399 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1400 #elif PAGE_SIZE < SK_MEM_QUANTUM
1401 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1402 #endif
1403 	return val;
1404 }
1405 
1406 static inline int sk_mem_pages(int amt)
1407 {
1408 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1409 }
1410 
1411 static inline bool sk_has_account(struct sock *sk)
1412 {
1413 	/* return true if protocol supports memory accounting */
1414 	return !!sk->sk_prot->memory_allocated;
1415 }
1416 
1417 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1418 {
1419 	if (!sk_has_account(sk))
1420 		return true;
1421 	return size <= sk->sk_forward_alloc ||
1422 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1423 }
1424 
1425 static inline bool
1426 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1427 {
1428 	if (!sk_has_account(sk))
1429 		return true;
1430 	return size<= sk->sk_forward_alloc ||
1431 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1432 		skb_pfmemalloc(skb);
1433 }
1434 
1435 static inline void sk_mem_reclaim(struct sock *sk)
1436 {
1437 	if (!sk_has_account(sk))
1438 		return;
1439 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1440 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1441 }
1442 
1443 static inline void sk_mem_reclaim_partial(struct sock *sk)
1444 {
1445 	if (!sk_has_account(sk))
1446 		return;
1447 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1448 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1449 }
1450 
1451 static inline void sk_mem_charge(struct sock *sk, int size)
1452 {
1453 	if (!sk_has_account(sk))
1454 		return;
1455 	sk->sk_forward_alloc -= size;
1456 }
1457 
1458 static inline void sk_mem_uncharge(struct sock *sk, int size)
1459 {
1460 	if (!sk_has_account(sk))
1461 		return;
1462 	sk->sk_forward_alloc += size;
1463 
1464 	/* Avoid a possible overflow.
1465 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1466 	 * is not called and more than 2 GBytes are released at once.
1467 	 *
1468 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1469 	 * no need to hold that much forward allocation anyway.
1470 	 */
1471 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1472 		__sk_mem_reclaim(sk, 1 << 20);
1473 }
1474 
1475 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1476 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1477 {
1478 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1479 	sk_wmem_queued_add(sk, -skb->truesize);
1480 	sk_mem_uncharge(sk, skb->truesize);
1481 	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1482 	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1483 		skb_zcopy_clear(skb, true);
1484 		sk->sk_tx_skb_cache = skb;
1485 		return;
1486 	}
1487 	__kfree_skb(skb);
1488 }
1489 
1490 static inline void sock_release_ownership(struct sock *sk)
1491 {
1492 	if (sk->sk_lock.owned) {
1493 		sk->sk_lock.owned = 0;
1494 
1495 		/* The sk_lock has mutex_unlock() semantics: */
1496 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1497 	}
1498 }
1499 
1500 /*
1501  * Macro so as to not evaluate some arguments when
1502  * lockdep is not enabled.
1503  *
1504  * Mark both the sk_lock and the sk_lock.slock as a
1505  * per-address-family lock class.
1506  */
1507 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1508 do {									\
1509 	sk->sk_lock.owned = 0;						\
1510 	init_waitqueue_head(&sk->sk_lock.wq);				\
1511 	spin_lock_init(&(sk)->sk_lock.slock);				\
1512 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1513 			sizeof((sk)->sk_lock));				\
1514 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1515 				(skey), (sname));				\
1516 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1517 } while (0)
1518 
1519 #ifdef CONFIG_LOCKDEP
1520 static inline bool lockdep_sock_is_held(const struct sock *sk)
1521 {
1522 	return lockdep_is_held(&sk->sk_lock) ||
1523 	       lockdep_is_held(&sk->sk_lock.slock);
1524 }
1525 #endif
1526 
1527 void lock_sock_nested(struct sock *sk, int subclass);
1528 
1529 static inline void lock_sock(struct sock *sk)
1530 {
1531 	lock_sock_nested(sk, 0);
1532 }
1533 
1534 void __release_sock(struct sock *sk);
1535 void release_sock(struct sock *sk);
1536 
1537 /* BH context may only use the following locking interface. */
1538 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1539 #define bh_lock_sock_nested(__sk) \
1540 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1541 				SINGLE_DEPTH_NESTING)
1542 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1543 
1544 bool lock_sock_fast(struct sock *sk);
1545 /**
1546  * unlock_sock_fast - complement of lock_sock_fast
1547  * @sk: socket
1548  * @slow: slow mode
1549  *
1550  * fast unlock socket for user context.
1551  * If slow mode is on, we call regular release_sock()
1552  */
1553 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1554 {
1555 	if (slow)
1556 		release_sock(sk);
1557 	else
1558 		spin_unlock_bh(&sk->sk_lock.slock);
1559 }
1560 
1561 /* Used by processes to "lock" a socket state, so that
1562  * interrupts and bottom half handlers won't change it
1563  * from under us. It essentially blocks any incoming
1564  * packets, so that we won't get any new data or any
1565  * packets that change the state of the socket.
1566  *
1567  * While locked, BH processing will add new packets to
1568  * the backlog queue.  This queue is processed by the
1569  * owner of the socket lock right before it is released.
1570  *
1571  * Since ~2.3.5 it is also exclusive sleep lock serializing
1572  * accesses from user process context.
1573  */
1574 
1575 static inline void sock_owned_by_me(const struct sock *sk)
1576 {
1577 #ifdef CONFIG_LOCKDEP
1578 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1579 #endif
1580 }
1581 
1582 static inline bool sock_owned_by_user(const struct sock *sk)
1583 {
1584 	sock_owned_by_me(sk);
1585 	return sk->sk_lock.owned;
1586 }
1587 
1588 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1589 {
1590 	return sk->sk_lock.owned;
1591 }
1592 
1593 /* no reclassification while locks are held */
1594 static inline bool sock_allow_reclassification(const struct sock *csk)
1595 {
1596 	struct sock *sk = (struct sock *)csk;
1597 
1598 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1599 }
1600 
1601 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1602 		      struct proto *prot, int kern);
1603 void sk_free(struct sock *sk);
1604 void sk_destruct(struct sock *sk);
1605 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1606 void sk_free_unlock_clone(struct sock *sk);
1607 
1608 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1609 			     gfp_t priority);
1610 void __sock_wfree(struct sk_buff *skb);
1611 void sock_wfree(struct sk_buff *skb);
1612 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1613 			     gfp_t priority);
1614 void skb_orphan_partial(struct sk_buff *skb);
1615 void sock_rfree(struct sk_buff *skb);
1616 void sock_efree(struct sk_buff *skb);
1617 #ifdef CONFIG_INET
1618 void sock_edemux(struct sk_buff *skb);
1619 #else
1620 #define sock_edemux sock_efree
1621 #endif
1622 
1623 int sock_setsockopt(struct socket *sock, int level, int op,
1624 		    char __user *optval, unsigned int optlen);
1625 
1626 int sock_getsockopt(struct socket *sock, int level, int op,
1627 		    char __user *optval, int __user *optlen);
1628 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1629 		   bool timeval, bool time32);
1630 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1631 				    int noblock, int *errcode);
1632 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1633 				     unsigned long data_len, int noblock,
1634 				     int *errcode, int max_page_order);
1635 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1636 void sock_kfree_s(struct sock *sk, void *mem, int size);
1637 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1638 void sk_send_sigurg(struct sock *sk);
1639 
1640 struct sockcm_cookie {
1641 	u64 transmit_time;
1642 	u32 mark;
1643 	u16 tsflags;
1644 };
1645 
1646 static inline void sockcm_init(struct sockcm_cookie *sockc,
1647 			       const struct sock *sk)
1648 {
1649 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1650 }
1651 
1652 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1653 		     struct sockcm_cookie *sockc);
1654 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1655 		   struct sockcm_cookie *sockc);
1656 
1657 /*
1658  * Functions to fill in entries in struct proto_ops when a protocol
1659  * does not implement a particular function.
1660  */
1661 int sock_no_bind(struct socket *, struct sockaddr *, int);
1662 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1663 int sock_no_socketpair(struct socket *, struct socket *);
1664 int sock_no_accept(struct socket *, struct socket *, int, bool);
1665 int sock_no_getname(struct socket *, struct sockaddr *, int);
1666 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1667 int sock_no_listen(struct socket *, int);
1668 int sock_no_shutdown(struct socket *, int);
1669 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1670 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1671 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1672 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1673 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1674 int sock_no_mmap(struct file *file, struct socket *sock,
1675 		 struct vm_area_struct *vma);
1676 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1677 			 size_t size, int flags);
1678 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1679 				int offset, size_t size, int flags);
1680 
1681 /*
1682  * Functions to fill in entries in struct proto_ops when a protocol
1683  * uses the inet style.
1684  */
1685 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1686 				  char __user *optval, int __user *optlen);
1687 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1688 			int flags);
1689 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1690 				  char __user *optval, unsigned int optlen);
1691 int compat_sock_common_getsockopt(struct socket *sock, int level,
1692 		int optname, char __user *optval, int __user *optlen);
1693 int compat_sock_common_setsockopt(struct socket *sock, int level,
1694 		int optname, char __user *optval, unsigned int optlen);
1695 
1696 void sk_common_release(struct sock *sk);
1697 
1698 /*
1699  *	Default socket callbacks and setup code
1700  */
1701 
1702 /* Initialise core socket variables */
1703 void sock_init_data(struct socket *sock, struct sock *sk);
1704 
1705 /*
1706  * Socket reference counting postulates.
1707  *
1708  * * Each user of socket SHOULD hold a reference count.
1709  * * Each access point to socket (an hash table bucket, reference from a list,
1710  *   running timer, skb in flight MUST hold a reference count.
1711  * * When reference count hits 0, it means it will never increase back.
1712  * * When reference count hits 0, it means that no references from
1713  *   outside exist to this socket and current process on current CPU
1714  *   is last user and may/should destroy this socket.
1715  * * sk_free is called from any context: process, BH, IRQ. When
1716  *   it is called, socket has no references from outside -> sk_free
1717  *   may release descendant resources allocated by the socket, but
1718  *   to the time when it is called, socket is NOT referenced by any
1719  *   hash tables, lists etc.
1720  * * Packets, delivered from outside (from network or from another process)
1721  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1722  *   when they sit in queue. Otherwise, packets will leak to hole, when
1723  *   socket is looked up by one cpu and unhasing is made by another CPU.
1724  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1725  *   (leak to backlog). Packet socket does all the processing inside
1726  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1727  *   use separate SMP lock, so that they are prone too.
1728  */
1729 
1730 /* Ungrab socket and destroy it, if it was the last reference. */
1731 static inline void sock_put(struct sock *sk)
1732 {
1733 	if (refcount_dec_and_test(&sk->sk_refcnt))
1734 		sk_free(sk);
1735 }
1736 /* Generic version of sock_put(), dealing with all sockets
1737  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1738  */
1739 void sock_gen_put(struct sock *sk);
1740 
1741 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1742 		     unsigned int trim_cap, bool refcounted);
1743 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1744 				 const int nested)
1745 {
1746 	return __sk_receive_skb(sk, skb, nested, 1, true);
1747 }
1748 
1749 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1750 {
1751 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1752 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1753 		return;
1754 	sk->sk_tx_queue_mapping = tx_queue;
1755 }
1756 
1757 #define NO_QUEUE_MAPPING	USHRT_MAX
1758 
1759 static inline void sk_tx_queue_clear(struct sock *sk)
1760 {
1761 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1762 }
1763 
1764 static inline int sk_tx_queue_get(const struct sock *sk)
1765 {
1766 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1767 		return sk->sk_tx_queue_mapping;
1768 
1769 	return -1;
1770 }
1771 
1772 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1773 {
1774 #ifdef CONFIG_XPS
1775 	if (skb_rx_queue_recorded(skb)) {
1776 		u16 rx_queue = skb_get_rx_queue(skb);
1777 
1778 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1779 			return;
1780 
1781 		sk->sk_rx_queue_mapping = rx_queue;
1782 	}
1783 #endif
1784 }
1785 
1786 static inline void sk_rx_queue_clear(struct sock *sk)
1787 {
1788 #ifdef CONFIG_XPS
1789 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1790 #endif
1791 }
1792 
1793 #ifdef CONFIG_XPS
1794 static inline int sk_rx_queue_get(const struct sock *sk)
1795 {
1796 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1797 		return sk->sk_rx_queue_mapping;
1798 
1799 	return -1;
1800 }
1801 #endif
1802 
1803 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1804 {
1805 	sk_tx_queue_clear(sk);
1806 	sk->sk_socket = sock;
1807 }
1808 
1809 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1810 {
1811 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1812 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1813 }
1814 /* Detach socket from process context.
1815  * Announce socket dead, detach it from wait queue and inode.
1816  * Note that parent inode held reference count on this struct sock,
1817  * we do not release it in this function, because protocol
1818  * probably wants some additional cleanups or even continuing
1819  * to work with this socket (TCP).
1820  */
1821 static inline void sock_orphan(struct sock *sk)
1822 {
1823 	write_lock_bh(&sk->sk_callback_lock);
1824 	sock_set_flag(sk, SOCK_DEAD);
1825 	sk_set_socket(sk, NULL);
1826 	sk->sk_wq  = NULL;
1827 	write_unlock_bh(&sk->sk_callback_lock);
1828 }
1829 
1830 static inline void sock_graft(struct sock *sk, struct socket *parent)
1831 {
1832 	WARN_ON(parent->sk);
1833 	write_lock_bh(&sk->sk_callback_lock);
1834 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1835 	parent->sk = sk;
1836 	sk_set_socket(sk, parent);
1837 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1838 	security_sock_graft(sk, parent);
1839 	write_unlock_bh(&sk->sk_callback_lock);
1840 }
1841 
1842 kuid_t sock_i_uid(struct sock *sk);
1843 unsigned long sock_i_ino(struct sock *sk);
1844 
1845 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1846 {
1847 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1848 }
1849 
1850 static inline u32 net_tx_rndhash(void)
1851 {
1852 	u32 v = prandom_u32();
1853 
1854 	return v ?: 1;
1855 }
1856 
1857 static inline void sk_set_txhash(struct sock *sk)
1858 {
1859 	sk->sk_txhash = net_tx_rndhash();
1860 }
1861 
1862 static inline void sk_rethink_txhash(struct sock *sk)
1863 {
1864 	if (sk->sk_txhash)
1865 		sk_set_txhash(sk);
1866 }
1867 
1868 static inline struct dst_entry *
1869 __sk_dst_get(struct sock *sk)
1870 {
1871 	return rcu_dereference_check(sk->sk_dst_cache,
1872 				     lockdep_sock_is_held(sk));
1873 }
1874 
1875 static inline struct dst_entry *
1876 sk_dst_get(struct sock *sk)
1877 {
1878 	struct dst_entry *dst;
1879 
1880 	rcu_read_lock();
1881 	dst = rcu_dereference(sk->sk_dst_cache);
1882 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1883 		dst = NULL;
1884 	rcu_read_unlock();
1885 	return dst;
1886 }
1887 
1888 static inline void dst_negative_advice(struct sock *sk)
1889 {
1890 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1891 
1892 	sk_rethink_txhash(sk);
1893 
1894 	if (dst && dst->ops->negative_advice) {
1895 		ndst = dst->ops->negative_advice(dst);
1896 
1897 		if (ndst != dst) {
1898 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1899 			sk_tx_queue_clear(sk);
1900 			sk->sk_dst_pending_confirm = 0;
1901 		}
1902 	}
1903 }
1904 
1905 static inline void
1906 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1907 {
1908 	struct dst_entry *old_dst;
1909 
1910 	sk_tx_queue_clear(sk);
1911 	sk->sk_dst_pending_confirm = 0;
1912 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1913 					    lockdep_sock_is_held(sk));
1914 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1915 	dst_release(old_dst);
1916 }
1917 
1918 static inline void
1919 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1920 {
1921 	struct dst_entry *old_dst;
1922 
1923 	sk_tx_queue_clear(sk);
1924 	sk->sk_dst_pending_confirm = 0;
1925 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1926 	dst_release(old_dst);
1927 }
1928 
1929 static inline void
1930 __sk_dst_reset(struct sock *sk)
1931 {
1932 	__sk_dst_set(sk, NULL);
1933 }
1934 
1935 static inline void
1936 sk_dst_reset(struct sock *sk)
1937 {
1938 	sk_dst_set(sk, NULL);
1939 }
1940 
1941 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1942 
1943 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1944 
1945 static inline void sk_dst_confirm(struct sock *sk)
1946 {
1947 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
1948 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
1949 }
1950 
1951 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1952 {
1953 	if (skb_get_dst_pending_confirm(skb)) {
1954 		struct sock *sk = skb->sk;
1955 		unsigned long now = jiffies;
1956 
1957 		/* avoid dirtying neighbour */
1958 		if (READ_ONCE(n->confirmed) != now)
1959 			WRITE_ONCE(n->confirmed, now);
1960 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
1961 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
1962 	}
1963 }
1964 
1965 bool sk_mc_loop(struct sock *sk);
1966 
1967 static inline bool sk_can_gso(const struct sock *sk)
1968 {
1969 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1970 }
1971 
1972 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1973 
1974 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1975 {
1976 	sk->sk_route_nocaps |= flags;
1977 	sk->sk_route_caps &= ~flags;
1978 }
1979 
1980 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1981 					   struct iov_iter *from, char *to,
1982 					   int copy, int offset)
1983 {
1984 	if (skb->ip_summed == CHECKSUM_NONE) {
1985 		__wsum csum = 0;
1986 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1987 			return -EFAULT;
1988 		skb->csum = csum_block_add(skb->csum, csum, offset);
1989 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1990 		if (!copy_from_iter_full_nocache(to, copy, from))
1991 			return -EFAULT;
1992 	} else if (!copy_from_iter_full(to, copy, from))
1993 		return -EFAULT;
1994 
1995 	return 0;
1996 }
1997 
1998 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1999 				       struct iov_iter *from, int copy)
2000 {
2001 	int err, offset = skb->len;
2002 
2003 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2004 				       copy, offset);
2005 	if (err)
2006 		__skb_trim(skb, offset);
2007 
2008 	return err;
2009 }
2010 
2011 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2012 					   struct sk_buff *skb,
2013 					   struct page *page,
2014 					   int off, int copy)
2015 {
2016 	int err;
2017 
2018 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2019 				       copy, skb->len);
2020 	if (err)
2021 		return err;
2022 
2023 	skb->len	     += copy;
2024 	skb->data_len	     += copy;
2025 	skb->truesize	     += copy;
2026 	sk_wmem_queued_add(sk, copy);
2027 	sk_mem_charge(sk, copy);
2028 	return 0;
2029 }
2030 
2031 /**
2032  * sk_wmem_alloc_get - returns write allocations
2033  * @sk: socket
2034  *
2035  * Returns sk_wmem_alloc minus initial offset of one
2036  */
2037 static inline int sk_wmem_alloc_get(const struct sock *sk)
2038 {
2039 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2040 }
2041 
2042 /**
2043  * sk_rmem_alloc_get - returns read allocations
2044  * @sk: socket
2045  *
2046  * Returns sk_rmem_alloc
2047  */
2048 static inline int sk_rmem_alloc_get(const struct sock *sk)
2049 {
2050 	return atomic_read(&sk->sk_rmem_alloc);
2051 }
2052 
2053 /**
2054  * sk_has_allocations - check if allocations are outstanding
2055  * @sk: socket
2056  *
2057  * Returns true if socket has write or read allocations
2058  */
2059 static inline bool sk_has_allocations(const struct sock *sk)
2060 {
2061 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2062 }
2063 
2064 /**
2065  * skwq_has_sleeper - check if there are any waiting processes
2066  * @wq: struct socket_wq
2067  *
2068  * Returns true if socket_wq has waiting processes
2069  *
2070  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2071  * barrier call. They were added due to the race found within the tcp code.
2072  *
2073  * Consider following tcp code paths::
2074  *
2075  *   CPU1                CPU2
2076  *   sys_select          receive packet
2077  *   ...                 ...
2078  *   __add_wait_queue    update tp->rcv_nxt
2079  *   ...                 ...
2080  *   tp->rcv_nxt check   sock_def_readable
2081  *   ...                 {
2082  *   schedule               rcu_read_lock();
2083  *                          wq = rcu_dereference(sk->sk_wq);
2084  *                          if (wq && waitqueue_active(&wq->wait))
2085  *                              wake_up_interruptible(&wq->wait)
2086  *                          ...
2087  *                       }
2088  *
2089  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2090  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2091  * could then endup calling schedule and sleep forever if there are no more
2092  * data on the socket.
2093  *
2094  */
2095 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2096 {
2097 	return wq && wq_has_sleeper(&wq->wait);
2098 }
2099 
2100 /**
2101  * sock_poll_wait - place memory barrier behind the poll_wait call.
2102  * @filp:           file
2103  * @sock:           socket to wait on
2104  * @p:              poll_table
2105  *
2106  * See the comments in the wq_has_sleeper function.
2107  */
2108 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2109 				  poll_table *p)
2110 {
2111 	if (!poll_does_not_wait(p)) {
2112 		poll_wait(filp, &sock->wq.wait, p);
2113 		/* We need to be sure we are in sync with the
2114 		 * socket flags modification.
2115 		 *
2116 		 * This memory barrier is paired in the wq_has_sleeper.
2117 		 */
2118 		smp_mb();
2119 	}
2120 }
2121 
2122 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2123 {
2124 	if (sk->sk_txhash) {
2125 		skb->l4_hash = 1;
2126 		skb->hash = sk->sk_txhash;
2127 	}
2128 }
2129 
2130 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2131 
2132 /*
2133  *	Queue a received datagram if it will fit. Stream and sequenced
2134  *	protocols can't normally use this as they need to fit buffers in
2135  *	and play with them.
2136  *
2137  *	Inlined as it's very short and called for pretty much every
2138  *	packet ever received.
2139  */
2140 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2141 {
2142 	skb_orphan(skb);
2143 	skb->sk = sk;
2144 	skb->destructor = sock_rfree;
2145 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2146 	sk_mem_charge(sk, skb->truesize);
2147 }
2148 
2149 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2150 		    unsigned long expires);
2151 
2152 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2153 
2154 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2155 			struct sk_buff *skb, unsigned int flags,
2156 			void (*destructor)(struct sock *sk,
2157 					   struct sk_buff *skb));
2158 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2159 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2160 
2161 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2162 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2163 
2164 /*
2165  *	Recover an error report and clear atomically
2166  */
2167 
2168 static inline int sock_error(struct sock *sk)
2169 {
2170 	int err;
2171 	if (likely(!sk->sk_err))
2172 		return 0;
2173 	err = xchg(&sk->sk_err, 0);
2174 	return -err;
2175 }
2176 
2177 static inline unsigned long sock_wspace(struct sock *sk)
2178 {
2179 	int amt = 0;
2180 
2181 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2182 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2183 		if (amt < 0)
2184 			amt = 0;
2185 	}
2186 	return amt;
2187 }
2188 
2189 /* Note:
2190  *  We use sk->sk_wq_raw, from contexts knowing this
2191  *  pointer is not NULL and cannot disappear/change.
2192  */
2193 static inline void sk_set_bit(int nr, struct sock *sk)
2194 {
2195 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2196 	    !sock_flag(sk, SOCK_FASYNC))
2197 		return;
2198 
2199 	set_bit(nr, &sk->sk_wq_raw->flags);
2200 }
2201 
2202 static inline void sk_clear_bit(int nr, struct sock *sk)
2203 {
2204 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2205 	    !sock_flag(sk, SOCK_FASYNC))
2206 		return;
2207 
2208 	clear_bit(nr, &sk->sk_wq_raw->flags);
2209 }
2210 
2211 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2212 {
2213 	if (sock_flag(sk, SOCK_FASYNC)) {
2214 		rcu_read_lock();
2215 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2216 		rcu_read_unlock();
2217 	}
2218 }
2219 
2220 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2221  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2222  * Note: for send buffers, TCP works better if we can build two skbs at
2223  * minimum.
2224  */
2225 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2226 
2227 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2228 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2229 
2230 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2231 {
2232 	u32 val;
2233 
2234 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2235 		return;
2236 
2237 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2238 
2239 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2240 }
2241 
2242 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2243 				    bool force_schedule);
2244 
2245 /**
2246  * sk_page_frag - return an appropriate page_frag
2247  * @sk: socket
2248  *
2249  * Use the per task page_frag instead of the per socket one for
2250  * optimization when we know that we're in the normal context and owns
2251  * everything that's associated with %current.
2252  *
2253  * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2254  * inside other socket operations and end up recursing into sk_page_frag()
2255  * while it's already in use.
2256  */
2257 static inline struct page_frag *sk_page_frag(struct sock *sk)
2258 {
2259 	if (gfpflags_normal_context(sk->sk_allocation))
2260 		return &current->task_frag;
2261 
2262 	return &sk->sk_frag;
2263 }
2264 
2265 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2266 
2267 /*
2268  *	Default write policy as shown to user space via poll/select/SIGIO
2269  */
2270 static inline bool sock_writeable(const struct sock *sk)
2271 {
2272 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2273 }
2274 
2275 static inline gfp_t gfp_any(void)
2276 {
2277 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2278 }
2279 
2280 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2281 {
2282 	return noblock ? 0 : sk->sk_rcvtimeo;
2283 }
2284 
2285 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2286 {
2287 	return noblock ? 0 : sk->sk_sndtimeo;
2288 }
2289 
2290 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2291 {
2292 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2293 
2294 	return v ?: 1;
2295 }
2296 
2297 /* Alas, with timeout socket operations are not restartable.
2298  * Compare this to poll().
2299  */
2300 static inline int sock_intr_errno(long timeo)
2301 {
2302 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2303 }
2304 
2305 struct sock_skb_cb {
2306 	u32 dropcount;
2307 };
2308 
2309 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2310  * using skb->cb[] would keep using it directly and utilize its
2311  * alignement guarantee.
2312  */
2313 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2314 			    sizeof(struct sock_skb_cb)))
2315 
2316 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2317 			    SOCK_SKB_CB_OFFSET))
2318 
2319 #define sock_skb_cb_check_size(size) \
2320 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2321 
2322 static inline void
2323 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2324 {
2325 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2326 						atomic_read(&sk->sk_drops) : 0;
2327 }
2328 
2329 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2330 {
2331 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2332 
2333 	atomic_add(segs, &sk->sk_drops);
2334 }
2335 
2336 static inline ktime_t sock_read_timestamp(struct sock *sk)
2337 {
2338 #if BITS_PER_LONG==32
2339 	unsigned int seq;
2340 	ktime_t kt;
2341 
2342 	do {
2343 		seq = read_seqbegin(&sk->sk_stamp_seq);
2344 		kt = sk->sk_stamp;
2345 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2346 
2347 	return kt;
2348 #else
2349 	return READ_ONCE(sk->sk_stamp);
2350 #endif
2351 }
2352 
2353 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2354 {
2355 #if BITS_PER_LONG==32
2356 	write_seqlock(&sk->sk_stamp_seq);
2357 	sk->sk_stamp = kt;
2358 	write_sequnlock(&sk->sk_stamp_seq);
2359 #else
2360 	WRITE_ONCE(sk->sk_stamp, kt);
2361 #endif
2362 }
2363 
2364 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2365 			   struct sk_buff *skb);
2366 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2367 			     struct sk_buff *skb);
2368 
2369 static inline void
2370 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2371 {
2372 	ktime_t kt = skb->tstamp;
2373 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2374 
2375 	/*
2376 	 * generate control messages if
2377 	 * - receive time stamping in software requested
2378 	 * - software time stamp available and wanted
2379 	 * - hardware time stamps available and wanted
2380 	 */
2381 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2382 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2383 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2384 	    (hwtstamps->hwtstamp &&
2385 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2386 		__sock_recv_timestamp(msg, sk, skb);
2387 	else
2388 		sock_write_timestamp(sk, kt);
2389 
2390 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2391 		__sock_recv_wifi_status(msg, sk, skb);
2392 }
2393 
2394 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2395 			      struct sk_buff *skb);
2396 
2397 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2398 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2399 					  struct sk_buff *skb)
2400 {
2401 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2402 			   (1UL << SOCK_RCVTSTAMP))
2403 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2404 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2405 
2406 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2407 		__sock_recv_ts_and_drops(msg, sk, skb);
2408 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2409 		sock_write_timestamp(sk, skb->tstamp);
2410 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2411 		sock_write_timestamp(sk, 0);
2412 }
2413 
2414 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2415 
2416 /**
2417  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2418  * @sk:		socket sending this packet
2419  * @tsflags:	timestamping flags to use
2420  * @tx_flags:	completed with instructions for time stamping
2421  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2422  *
2423  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2424  */
2425 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2426 				      __u8 *tx_flags, __u32 *tskey)
2427 {
2428 	if (unlikely(tsflags)) {
2429 		__sock_tx_timestamp(tsflags, tx_flags);
2430 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2431 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2432 			*tskey = sk->sk_tskey++;
2433 	}
2434 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2435 		*tx_flags |= SKBTX_WIFI_STATUS;
2436 }
2437 
2438 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2439 				     __u8 *tx_flags)
2440 {
2441 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2442 }
2443 
2444 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2445 {
2446 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2447 			   &skb_shinfo(skb)->tskey);
2448 }
2449 
2450 /**
2451  * sk_eat_skb - Release a skb if it is no longer needed
2452  * @sk: socket to eat this skb from
2453  * @skb: socket buffer to eat
2454  *
2455  * This routine must be called with interrupts disabled or with the socket
2456  * locked so that the sk_buff queue operation is ok.
2457 */
2458 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2459 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2460 {
2461 	__skb_unlink(skb, &sk->sk_receive_queue);
2462 	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2463 	    !sk->sk_rx_skb_cache) {
2464 		sk->sk_rx_skb_cache = skb;
2465 		skb_orphan(skb);
2466 		return;
2467 	}
2468 	__kfree_skb(skb);
2469 }
2470 
2471 static inline
2472 struct net *sock_net(const struct sock *sk)
2473 {
2474 	return read_pnet(&sk->sk_net);
2475 }
2476 
2477 static inline
2478 void sock_net_set(struct sock *sk, struct net *net)
2479 {
2480 	write_pnet(&sk->sk_net, net);
2481 }
2482 
2483 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2484 {
2485 	if (skb->sk) {
2486 		struct sock *sk = skb->sk;
2487 
2488 		skb->destructor = NULL;
2489 		skb->sk = NULL;
2490 		return sk;
2491 	}
2492 	return NULL;
2493 }
2494 
2495 /* This helper checks if a socket is a full socket,
2496  * ie _not_ a timewait or request socket.
2497  */
2498 static inline bool sk_fullsock(const struct sock *sk)
2499 {
2500 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2501 }
2502 
2503 /* Checks if this SKB belongs to an HW offloaded socket
2504  * and whether any SW fallbacks are required based on dev.
2505  * Check decrypted mark in case skb_orphan() cleared socket.
2506  */
2507 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2508 						   struct net_device *dev)
2509 {
2510 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2511 	struct sock *sk = skb->sk;
2512 
2513 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2514 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2515 #ifdef CONFIG_TLS_DEVICE
2516 	} else if (unlikely(skb->decrypted)) {
2517 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2518 		kfree_skb(skb);
2519 		skb = NULL;
2520 #endif
2521 	}
2522 #endif
2523 
2524 	return skb;
2525 }
2526 
2527 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2528  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2529  */
2530 static inline bool sk_listener(const struct sock *sk)
2531 {
2532 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2533 }
2534 
2535 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2536 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2537 		       int type);
2538 
2539 bool sk_ns_capable(const struct sock *sk,
2540 		   struct user_namespace *user_ns, int cap);
2541 bool sk_capable(const struct sock *sk, int cap);
2542 bool sk_net_capable(const struct sock *sk, int cap);
2543 
2544 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2545 
2546 /* Take into consideration the size of the struct sk_buff overhead in the
2547  * determination of these values, since that is non-constant across
2548  * platforms.  This makes socket queueing behavior and performance
2549  * not depend upon such differences.
2550  */
2551 #define _SK_MEM_PACKETS		256
2552 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2553 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2554 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2555 
2556 extern __u32 sysctl_wmem_max;
2557 extern __u32 sysctl_rmem_max;
2558 
2559 extern int sysctl_tstamp_allow_data;
2560 extern int sysctl_optmem_max;
2561 
2562 extern __u32 sysctl_wmem_default;
2563 extern __u32 sysctl_rmem_default;
2564 
2565 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2566 
2567 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2568 {
2569 	/* Does this proto have per netns sysctl_wmem ? */
2570 	if (proto->sysctl_wmem_offset)
2571 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2572 
2573 	return *proto->sysctl_wmem;
2574 }
2575 
2576 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2577 {
2578 	/* Does this proto have per netns sysctl_rmem ? */
2579 	if (proto->sysctl_rmem_offset)
2580 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2581 
2582 	return *proto->sysctl_rmem;
2583 }
2584 
2585 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2586  * Some wifi drivers need to tweak it to get more chunks.
2587  * They can use this helper from their ndo_start_xmit()
2588  */
2589 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2590 {
2591 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2592 		return;
2593 	WRITE_ONCE(sk->sk_pacing_shift, val);
2594 }
2595 
2596 /* if a socket is bound to a device, check that the given device
2597  * index is either the same or that the socket is bound to an L3
2598  * master device and the given device index is also enslaved to
2599  * that L3 master
2600  */
2601 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2602 {
2603 	int mdif;
2604 
2605 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2606 		return true;
2607 
2608 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2609 	if (mdif && mdif == sk->sk_bound_dev_if)
2610 		return true;
2611 
2612 	return false;
2613 }
2614 
2615 #endif	/* _SOCK_H */
2616