xref: /openbmc/linux/include/net/route.h (revision f8126f1d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET  is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the IP router.
7  *
8  * Version:	@(#)route.h	1.0.4	05/27/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  * Fixes:
13  *		Alan Cox	:	Reformatted. Added ip_rt_local()
14  *		Alan Cox	:	Support for TCP parameters.
15  *		Alexey Kuznetsov:	Major changes for new routing code.
16  *		Mike McLagan    :	Routing by source
17  *		Robert Olsson   :	Added rt_cache statistics
18  *
19  *		This program is free software; you can redistribute it and/or
20  *		modify it under the terms of the GNU General Public License
21  *		as published by the Free Software Foundation; either version
22  *		2 of the License, or (at your option) any later version.
23  */
24 #ifndef _ROUTE_H
25 #define _ROUTE_H
26 
27 #include <net/dst.h>
28 #include <net/inetpeer.h>
29 #include <net/flow.h>
30 #include <net/inet_sock.h>
31 #include <linux/in_route.h>
32 #include <linux/rtnetlink.h>
33 #include <linux/route.h>
34 #include <linux/ip.h>
35 #include <linux/cache.h>
36 #include <linux/security.h>
37 
38 #define RTO_ONLINK	0x01
39 
40 #define RT_CONN_FLAGS(sk)   (RT_TOS(inet_sk(sk)->tos) | sock_flag(sk, SOCK_LOCALROUTE))
41 
42 struct fib_nh;
43 struct fib_info;
44 struct rtable {
45 	struct dst_entry	dst;
46 
47 	int			rt_genid;
48 	unsigned int		rt_flags;
49 	__u16			rt_type;
50 
51 	int			rt_route_iif;
52 	int			rt_iif;
53 	int			rt_oif;
54 
55 	/* Info on neighbour */
56 	__be32			rt_gateway;
57 
58 	/* Miscellaneous cached information */
59 	u32			rt_pmtu;
60 	struct fib_info		*fi; /* for client ref to shared metrics */
61 };
62 
63 static inline bool rt_is_input_route(const struct rtable *rt)
64 {
65 	return rt->rt_route_iif != 0;
66 }
67 
68 static inline bool rt_is_output_route(const struct rtable *rt)
69 {
70 	return rt->rt_route_iif == 0;
71 }
72 
73 static inline __be32 rt_nexthop(const struct rtable *rt, __be32 daddr)
74 {
75 	if (rt->rt_gateway)
76 		return rt->rt_gateway;
77 	return daddr;
78 }
79 
80 struct ip_rt_acct {
81 	__u32 	o_bytes;
82 	__u32 	o_packets;
83 	__u32 	i_bytes;
84 	__u32 	i_packets;
85 };
86 
87 struct rt_cache_stat {
88         unsigned int in_hit;
89         unsigned int in_slow_tot;
90         unsigned int in_slow_mc;
91         unsigned int in_no_route;
92         unsigned int in_brd;
93         unsigned int in_martian_dst;
94         unsigned int in_martian_src;
95         unsigned int out_hit;
96         unsigned int out_slow_tot;
97         unsigned int out_slow_mc;
98         unsigned int gc_total;
99         unsigned int gc_ignored;
100         unsigned int gc_goal_miss;
101         unsigned int gc_dst_overflow;
102         unsigned int in_hlist_search;
103         unsigned int out_hlist_search;
104 };
105 
106 extern struct ip_rt_acct __percpu *ip_rt_acct;
107 
108 struct in_device;
109 extern int		ip_rt_init(void);
110 extern void		rt_cache_flush(struct net *net, int how);
111 extern struct rtable *__ip_route_output_key(struct net *, struct flowi4 *flp);
112 extern struct rtable *ip_route_output_flow(struct net *, struct flowi4 *flp,
113 					   struct sock *sk);
114 extern struct dst_entry *ipv4_blackhole_route(struct net *net, struct dst_entry *dst_orig);
115 
116 static inline struct rtable *ip_route_output_key(struct net *net, struct flowi4 *flp)
117 {
118 	return ip_route_output_flow(net, flp, NULL);
119 }
120 
121 static inline struct rtable *ip_route_output(struct net *net, __be32 daddr,
122 					     __be32 saddr, u8 tos, int oif)
123 {
124 	struct flowi4 fl4 = {
125 		.flowi4_oif = oif,
126 		.flowi4_tos = tos,
127 		.daddr = daddr,
128 		.saddr = saddr,
129 	};
130 	return ip_route_output_key(net, &fl4);
131 }
132 
133 static inline struct rtable *ip_route_output_ports(struct net *net, struct flowi4 *fl4,
134 						   struct sock *sk,
135 						   __be32 daddr, __be32 saddr,
136 						   __be16 dport, __be16 sport,
137 						   __u8 proto, __u8 tos, int oif)
138 {
139 	flowi4_init_output(fl4, oif, sk ? sk->sk_mark : 0, tos,
140 			   RT_SCOPE_UNIVERSE, proto,
141 			   sk ? inet_sk_flowi_flags(sk) : 0,
142 			   daddr, saddr, dport, sport);
143 	if (sk)
144 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
145 	return ip_route_output_flow(net, fl4, sk);
146 }
147 
148 static inline struct rtable *ip_route_output_gre(struct net *net, struct flowi4 *fl4,
149 						 __be32 daddr, __be32 saddr,
150 						 __be32 gre_key, __u8 tos, int oif)
151 {
152 	memset(fl4, 0, sizeof(*fl4));
153 	fl4->flowi4_oif = oif;
154 	fl4->daddr = daddr;
155 	fl4->saddr = saddr;
156 	fl4->flowi4_tos = tos;
157 	fl4->flowi4_proto = IPPROTO_GRE;
158 	fl4->fl4_gre_key = gre_key;
159 	return ip_route_output_key(net, fl4);
160 }
161 
162 extern int ip_route_input(struct sk_buff *skb, __be32 dst, __be32 src,
163 			  u8 tos, struct net_device *devin);
164 
165 extern void ipv4_update_pmtu(struct sk_buff *skb, struct net *net, u32 mtu,
166 			     int oif, u32 mark, u8 protocol, int flow_flags);
167 extern void ipv4_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, u32 mtu);
168 extern void ipv4_redirect(struct sk_buff *skb, struct net *net,
169 			  int oif, u32 mark, u8 protocol, int flow_flags);
170 extern void ipv4_sk_redirect(struct sk_buff *skb, struct sock *sk);
171 extern void ip_rt_send_redirect(struct sk_buff *skb);
172 
173 extern unsigned int		inet_addr_type(struct net *net, __be32 addr);
174 extern unsigned int		inet_dev_addr_type(struct net *net, const struct net_device *dev, __be32 addr);
175 extern void		ip_rt_multicast_event(struct in_device *);
176 extern int		ip_rt_ioctl(struct net *, unsigned int cmd, void __user *arg);
177 extern void		ip_rt_get_source(u8 *src, struct sk_buff *skb, struct rtable *rt);
178 extern int		ip_rt_dump(struct sk_buff *skb,  struct netlink_callback *cb);
179 
180 struct in_ifaddr;
181 extern void fib_add_ifaddr(struct in_ifaddr *);
182 extern void fib_del_ifaddr(struct in_ifaddr *, struct in_ifaddr *);
183 
184 static inline void ip_rt_put(struct rtable * rt)
185 {
186 	if (rt)
187 		dst_release(&rt->dst);
188 }
189 
190 #define IPTOS_RT_MASK	(IPTOS_TOS_MASK & ~3)
191 
192 extern const __u8 ip_tos2prio[16];
193 
194 static inline char rt_tos2priority(u8 tos)
195 {
196 	return ip_tos2prio[IPTOS_TOS(tos)>>1];
197 }
198 
199 /* ip_route_connect() and ip_route_newports() work in tandem whilst
200  * binding a socket for a new outgoing connection.
201  *
202  * In order to use IPSEC properly, we must, in the end, have a
203  * route that was looked up using all available keys including source
204  * and destination ports.
205  *
206  * However, if a source port needs to be allocated (the user specified
207  * a wildcard source port) we need to obtain addressing information
208  * in order to perform that allocation.
209  *
210  * So ip_route_connect() looks up a route using wildcarded source and
211  * destination ports in the key, simply so that we can get a pair of
212  * addresses to use for port allocation.
213  *
214  * Later, once the ports are allocated, ip_route_newports() will make
215  * another route lookup if needed to make sure we catch any IPSEC
216  * rules keyed on the port information.
217  *
218  * The callers allocate the flow key on their stack, and must pass in
219  * the same flowi4 object to both the ip_route_connect() and the
220  * ip_route_newports() calls.
221  */
222 
223 static inline void ip_route_connect_init(struct flowi4 *fl4, __be32 dst, __be32 src,
224 					 u32 tos, int oif, u8 protocol,
225 					 __be16 sport, __be16 dport,
226 					 struct sock *sk, bool can_sleep)
227 {
228 	__u8 flow_flags = 0;
229 
230 	if (inet_sk(sk)->transparent)
231 		flow_flags |= FLOWI_FLAG_ANYSRC;
232 	if (can_sleep)
233 		flow_flags |= FLOWI_FLAG_CAN_SLEEP;
234 
235 	flowi4_init_output(fl4, oif, sk->sk_mark, tos, RT_SCOPE_UNIVERSE,
236 			   protocol, flow_flags, dst, src, dport, sport);
237 }
238 
239 static inline struct rtable *ip_route_connect(struct flowi4 *fl4,
240 					      __be32 dst, __be32 src, u32 tos,
241 					      int oif, u8 protocol,
242 					      __be16 sport, __be16 dport,
243 					      struct sock *sk, bool can_sleep)
244 {
245 	struct net *net = sock_net(sk);
246 	struct rtable *rt;
247 
248 	ip_route_connect_init(fl4, dst, src, tos, oif, protocol,
249 			      sport, dport, sk, can_sleep);
250 
251 	if (!dst || !src) {
252 		rt = __ip_route_output_key(net, fl4);
253 		if (IS_ERR(rt))
254 			return rt;
255 		ip_rt_put(rt);
256 		flowi4_update_output(fl4, oif, tos, fl4->daddr, fl4->saddr);
257 	}
258 	security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
259 	return ip_route_output_flow(net, fl4, sk);
260 }
261 
262 static inline struct rtable *ip_route_newports(struct flowi4 *fl4, struct rtable *rt,
263 					       __be16 orig_sport, __be16 orig_dport,
264 					       __be16 sport, __be16 dport,
265 					       struct sock *sk)
266 {
267 	if (sport != orig_sport || dport != orig_dport) {
268 		fl4->fl4_dport = dport;
269 		fl4->fl4_sport = sport;
270 		ip_rt_put(rt);
271 		flowi4_update_output(fl4, sk->sk_bound_dev_if,
272 				     RT_CONN_FLAGS(sk), fl4->daddr,
273 				     fl4->saddr);
274 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
275 		return ip_route_output_flow(sock_net(sk), fl4, sk);
276 	}
277 	return rt;
278 }
279 
280 static inline int inet_iif(const struct sk_buff *skb)
281 {
282 	return skb_rtable(skb)->rt_iif;
283 }
284 
285 extern int sysctl_ip_default_ttl;
286 
287 static inline int ip4_dst_hoplimit(const struct dst_entry *dst)
288 {
289 	int hoplimit = dst_metric_raw(dst, RTAX_HOPLIMIT);
290 
291 	if (hoplimit == 0)
292 		hoplimit = sysctl_ip_default_ttl;
293 	return hoplimit;
294 }
295 
296 #endif	/* _ROUTE_H */
297