xref: /openbmc/linux/include/net/route.h (revision b737eecd)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET  is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the IP router.
8  *
9  * Version:	@(#)route.h	1.0.4	05/27/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  * Fixes:
14  *		Alan Cox	:	Reformatted. Added ip_rt_local()
15  *		Alan Cox	:	Support for TCP parameters.
16  *		Alexey Kuznetsov:	Major changes for new routing code.
17  *		Mike McLagan    :	Routing by source
18  *		Robert Olsson   :	Added rt_cache statistics
19  */
20 #ifndef _ROUTE_H
21 #define _ROUTE_H
22 
23 #include <net/dst.h>
24 #include <net/inetpeer.h>
25 #include <net/flow.h>
26 #include <net/inet_sock.h>
27 #include <net/ip_fib.h>
28 #include <net/arp.h>
29 #include <net/ndisc.h>
30 #include <linux/in_route.h>
31 #include <linux/rtnetlink.h>
32 #include <linux/rcupdate.h>
33 #include <linux/route.h>
34 #include <linux/ip.h>
35 #include <linux/cache.h>
36 #include <linux/security.h>
37 
38 /* IPv4 datagram length is stored into 16bit field (tot_len) */
39 #define IP_MAX_MTU	0xFFFFU
40 
41 #define RTO_ONLINK	0x01
42 
43 #define RT_CONN_FLAGS(sk)   (RT_TOS(inet_sk(sk)->tos) | sock_flag(sk, SOCK_LOCALROUTE))
44 #define RT_CONN_FLAGS_TOS(sk,tos)   (RT_TOS(tos) | sock_flag(sk, SOCK_LOCALROUTE))
45 
46 struct fib_nh;
47 struct fib_info;
48 struct uncached_list;
49 struct rtable {
50 	struct dst_entry	dst;
51 
52 	int			rt_genid;
53 	unsigned int		rt_flags;
54 	__u16			rt_type;
55 	__u8			rt_is_input;
56 	__u8			rt_uses_gateway;
57 
58 	int			rt_iif;
59 
60 	u8			rt_gw_family;
61 	/* Info on neighbour */
62 	union {
63 		__be32		rt_gw4;
64 		struct in6_addr	rt_gw6;
65 	};
66 
67 	/* Miscellaneous cached information */
68 	u32			rt_mtu_locked:1,
69 				rt_pmtu:31;
70 
71 	struct list_head	rt_uncached;
72 	struct uncached_list	*rt_uncached_list;
73 };
74 
75 static inline bool rt_is_input_route(const struct rtable *rt)
76 {
77 	return rt->rt_is_input != 0;
78 }
79 
80 static inline bool rt_is_output_route(const struct rtable *rt)
81 {
82 	return rt->rt_is_input == 0;
83 }
84 
85 static inline __be32 rt_nexthop(const struct rtable *rt, __be32 daddr)
86 {
87 	if (rt->rt_gw_family == AF_INET)
88 		return rt->rt_gw4;
89 	return daddr;
90 }
91 
92 struct ip_rt_acct {
93 	__u32 	o_bytes;
94 	__u32 	o_packets;
95 	__u32 	i_bytes;
96 	__u32 	i_packets;
97 };
98 
99 struct rt_cache_stat {
100         unsigned int in_slow_tot;
101         unsigned int in_slow_mc;
102         unsigned int in_no_route;
103         unsigned int in_brd;
104         unsigned int in_martian_dst;
105         unsigned int in_martian_src;
106         unsigned int out_slow_tot;
107         unsigned int out_slow_mc;
108 };
109 
110 extern struct ip_rt_acct __percpu *ip_rt_acct;
111 
112 struct in_device;
113 
114 int ip_rt_init(void);
115 void rt_cache_flush(struct net *net);
116 void rt_flush_dev(struct net_device *dev);
117 struct rtable *ip_route_output_key_hash(struct net *net, struct flowi4 *flp,
118 					const struct sk_buff *skb);
119 struct rtable *ip_route_output_key_hash_rcu(struct net *net, struct flowi4 *flp,
120 					    struct fib_result *res,
121 					    const struct sk_buff *skb);
122 
123 static inline struct rtable *__ip_route_output_key(struct net *net,
124 						   struct flowi4 *flp)
125 {
126 	return ip_route_output_key_hash(net, flp, NULL);
127 }
128 
129 struct rtable *ip_route_output_flow(struct net *, struct flowi4 *flp,
130 				    const struct sock *sk);
131 struct rtable *ip_route_output_tunnel(struct sk_buff *skb,
132 				      struct net_device *dev,
133 				      struct net *net, __be32 *saddr,
134 				      const struct ip_tunnel_info *info,
135 				      u8 protocol, bool use_cache);
136 
137 struct dst_entry *ipv4_blackhole_route(struct net *net,
138 				       struct dst_entry *dst_orig);
139 
140 static inline struct rtable *ip_route_output_key(struct net *net, struct flowi4 *flp)
141 {
142 	return ip_route_output_flow(net, flp, NULL);
143 }
144 
145 static inline struct rtable *ip_route_output(struct net *net, __be32 daddr,
146 					     __be32 saddr, u8 tos, int oif)
147 {
148 	struct flowi4 fl4 = {
149 		.flowi4_oif = oif,
150 		.flowi4_tos = tos,
151 		.daddr = daddr,
152 		.saddr = saddr,
153 	};
154 	return ip_route_output_key(net, &fl4);
155 }
156 
157 static inline struct rtable *ip_route_output_ports(struct net *net, struct flowi4 *fl4,
158 						   struct sock *sk,
159 						   __be32 daddr, __be32 saddr,
160 						   __be16 dport, __be16 sport,
161 						   __u8 proto, __u8 tos, int oif)
162 {
163 	flowi4_init_output(fl4, oif, sk ? sk->sk_mark : 0, tos,
164 			   RT_SCOPE_UNIVERSE, proto,
165 			   sk ? inet_sk_flowi_flags(sk) : 0,
166 			   daddr, saddr, dport, sport, sock_net_uid(net, sk));
167 	if (sk)
168 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
169 	return ip_route_output_flow(net, fl4, sk);
170 }
171 
172 static inline struct rtable *ip_route_output_gre(struct net *net, struct flowi4 *fl4,
173 						 __be32 daddr, __be32 saddr,
174 						 __be32 gre_key, __u8 tos, int oif)
175 {
176 	memset(fl4, 0, sizeof(*fl4));
177 	fl4->flowi4_oif = oif;
178 	fl4->daddr = daddr;
179 	fl4->saddr = saddr;
180 	fl4->flowi4_tos = tos;
181 	fl4->flowi4_proto = IPPROTO_GRE;
182 	fl4->fl4_gre_key = gre_key;
183 	return ip_route_output_key(net, fl4);
184 }
185 int ip_mc_validate_source(struct sk_buff *skb, __be32 daddr, __be32 saddr,
186 			  u8 tos, struct net_device *dev,
187 			  struct in_device *in_dev, u32 *itag);
188 int ip_route_input_noref(struct sk_buff *skb, __be32 dst, __be32 src,
189 			 u8 tos, struct net_device *devin);
190 int ip_route_input_rcu(struct sk_buff *skb, __be32 dst, __be32 src,
191 		       u8 tos, struct net_device *devin,
192 		       struct fib_result *res);
193 
194 int ip_route_use_hint(struct sk_buff *skb, __be32 dst, __be32 src,
195 		      u8 tos, struct net_device *devin,
196 		      const struct sk_buff *hint);
197 
198 static inline int ip_route_input(struct sk_buff *skb, __be32 dst, __be32 src,
199 				 u8 tos, struct net_device *devin)
200 {
201 	int err;
202 
203 	rcu_read_lock();
204 	err = ip_route_input_noref(skb, dst, src, tos, devin);
205 	if (!err) {
206 		skb_dst_force(skb);
207 		if (!skb_dst(skb))
208 			err = -EINVAL;
209 	}
210 	rcu_read_unlock();
211 
212 	return err;
213 }
214 
215 void ipv4_update_pmtu(struct sk_buff *skb, struct net *net, u32 mtu, int oif,
216 		      u8 protocol);
217 void ipv4_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, u32 mtu);
218 void ipv4_redirect(struct sk_buff *skb, struct net *net, int oif, u8 protocol);
219 void ipv4_sk_redirect(struct sk_buff *skb, struct sock *sk);
220 void ip_rt_send_redirect(struct sk_buff *skb);
221 
222 unsigned int inet_addr_type(struct net *net, __be32 addr);
223 unsigned int inet_addr_type_table(struct net *net, __be32 addr, u32 tb_id);
224 unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev,
225 				__be32 addr);
226 unsigned int inet_addr_type_dev_table(struct net *net,
227 				      const struct net_device *dev,
228 				      __be32 addr);
229 void ip_rt_multicast_event(struct in_device *);
230 int ip_rt_ioctl(struct net *, unsigned int cmd, struct rtentry *rt);
231 void ip_rt_get_source(u8 *src, struct sk_buff *skb, struct rtable *rt);
232 struct rtable *rt_dst_alloc(struct net_device *dev,
233 			     unsigned int flags, u16 type,
234 			     bool nopolicy, bool noxfrm);
235 struct rtable *rt_dst_clone(struct net_device *dev, struct rtable *rt);
236 
237 struct in_ifaddr;
238 void fib_add_ifaddr(struct in_ifaddr *);
239 void fib_del_ifaddr(struct in_ifaddr *, struct in_ifaddr *);
240 void fib_modify_prefix_metric(struct in_ifaddr *ifa, u32 new_metric);
241 
242 void rt_add_uncached_list(struct rtable *rt);
243 void rt_del_uncached_list(struct rtable *rt);
244 
245 int fib_dump_info_fnhe(struct sk_buff *skb, struct netlink_callback *cb,
246 		       u32 table_id, struct fib_info *fi,
247 		       int *fa_index, int fa_start, unsigned int flags);
248 
249 static inline void ip_rt_put(struct rtable *rt)
250 {
251 	/* dst_release() accepts a NULL parameter.
252 	 * We rely on dst being first structure in struct rtable
253 	 */
254 	BUILD_BUG_ON(offsetof(struct rtable, dst) != 0);
255 	dst_release(&rt->dst);
256 }
257 
258 #define IPTOS_RT_MASK	(IPTOS_TOS_MASK & ~3)
259 
260 extern const __u8 ip_tos2prio[16];
261 
262 static inline char rt_tos2priority(u8 tos)
263 {
264 	return ip_tos2prio[IPTOS_TOS(tos)>>1];
265 }
266 
267 /* ip_route_connect() and ip_route_newports() work in tandem whilst
268  * binding a socket for a new outgoing connection.
269  *
270  * In order to use IPSEC properly, we must, in the end, have a
271  * route that was looked up using all available keys including source
272  * and destination ports.
273  *
274  * However, if a source port needs to be allocated (the user specified
275  * a wildcard source port) we need to obtain addressing information
276  * in order to perform that allocation.
277  *
278  * So ip_route_connect() looks up a route using wildcarded source and
279  * destination ports in the key, simply so that we can get a pair of
280  * addresses to use for port allocation.
281  *
282  * Later, once the ports are allocated, ip_route_newports() will make
283  * another route lookup if needed to make sure we catch any IPSEC
284  * rules keyed on the port information.
285  *
286  * The callers allocate the flow key on their stack, and must pass in
287  * the same flowi4 object to both the ip_route_connect() and the
288  * ip_route_newports() calls.
289  */
290 
291 static inline void ip_route_connect_init(struct flowi4 *fl4, __be32 dst, __be32 src,
292 					 u32 tos, int oif, u8 protocol,
293 					 __be16 sport, __be16 dport,
294 					 struct sock *sk)
295 {
296 	__u8 flow_flags = 0;
297 
298 	if (inet_sk(sk)->transparent)
299 		flow_flags |= FLOWI_FLAG_ANYSRC;
300 
301 	flowi4_init_output(fl4, oif, sk->sk_mark, tos, RT_SCOPE_UNIVERSE,
302 			   protocol, flow_flags, dst, src, dport, sport,
303 			   sk->sk_uid);
304 }
305 
306 static inline struct rtable *ip_route_connect(struct flowi4 *fl4,
307 					      __be32 dst, __be32 src, u32 tos,
308 					      int oif, u8 protocol,
309 					      __be16 sport, __be16 dport,
310 					      struct sock *sk)
311 {
312 	struct net *net = sock_net(sk);
313 	struct rtable *rt;
314 
315 	ip_route_connect_init(fl4, dst, src, tos, oif, protocol,
316 			      sport, dport, sk);
317 
318 	if (!dst || !src) {
319 		rt = __ip_route_output_key(net, fl4);
320 		if (IS_ERR(rt))
321 			return rt;
322 		ip_rt_put(rt);
323 		flowi4_update_output(fl4, oif, tos, fl4->daddr, fl4->saddr);
324 	}
325 	security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
326 	return ip_route_output_flow(net, fl4, sk);
327 }
328 
329 static inline struct rtable *ip_route_newports(struct flowi4 *fl4, struct rtable *rt,
330 					       __be16 orig_sport, __be16 orig_dport,
331 					       __be16 sport, __be16 dport,
332 					       struct sock *sk)
333 {
334 	if (sport != orig_sport || dport != orig_dport) {
335 		fl4->fl4_dport = dport;
336 		fl4->fl4_sport = sport;
337 		ip_rt_put(rt);
338 		flowi4_update_output(fl4, sk->sk_bound_dev_if,
339 				     RT_CONN_FLAGS(sk), fl4->daddr,
340 				     fl4->saddr);
341 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
342 		return ip_route_output_flow(sock_net(sk), fl4, sk);
343 	}
344 	return rt;
345 }
346 
347 static inline int inet_iif(const struct sk_buff *skb)
348 {
349 	struct rtable *rt = skb_rtable(skb);
350 
351 	if (rt && rt->rt_iif)
352 		return rt->rt_iif;
353 
354 	return skb->skb_iif;
355 }
356 
357 static inline int ip4_dst_hoplimit(const struct dst_entry *dst)
358 {
359 	int hoplimit = dst_metric_raw(dst, RTAX_HOPLIMIT);
360 	struct net *net = dev_net(dst->dev);
361 
362 	if (hoplimit == 0)
363 		hoplimit = net->ipv4.sysctl_ip_default_ttl;
364 	return hoplimit;
365 }
366 
367 static inline struct neighbour *ip_neigh_gw4(struct net_device *dev,
368 					     __be32 daddr)
369 {
370 	struct neighbour *neigh;
371 
372 	neigh = __ipv4_neigh_lookup_noref(dev, daddr);
373 	if (unlikely(!neigh))
374 		neigh = __neigh_create(&arp_tbl, &daddr, dev, false);
375 
376 	return neigh;
377 }
378 
379 static inline struct neighbour *ip_neigh_for_gw(struct rtable *rt,
380 						struct sk_buff *skb,
381 						bool *is_v6gw)
382 {
383 	struct net_device *dev = rt->dst.dev;
384 	struct neighbour *neigh;
385 
386 	if (likely(rt->rt_gw_family == AF_INET)) {
387 		neigh = ip_neigh_gw4(dev, rt->rt_gw4);
388 	} else if (rt->rt_gw_family == AF_INET6) {
389 		neigh = ip_neigh_gw6(dev, &rt->rt_gw6);
390 		*is_v6gw = true;
391 	} else {
392 		neigh = ip_neigh_gw4(dev, ip_hdr(skb)->daddr);
393 	}
394 	return neigh;
395 }
396 
397 #endif	/* _ROUTE_H */
398