xref: /openbmc/linux/include/net/red.h (revision fb960bd2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __NET_SCHED_RED_H
3 #define __NET_SCHED_RED_H
4 
5 #include <linux/types.h>
6 #include <linux/bug.h>
7 #include <net/pkt_sched.h>
8 #include <net/inet_ecn.h>
9 #include <net/dsfield.h>
10 #include <linux/reciprocal_div.h>
11 
12 /*	Random Early Detection (RED) algorithm.
13 	=======================================
14 
15 	Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
16 	for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
17 
18 	This file codes a "divisionless" version of RED algorithm
19 	as written down in Fig.17 of the paper.
20 
21 	Short description.
22 	------------------
23 
24 	When a new packet arrives we calculate the average queue length:
25 
26 	avg = (1-W)*avg + W*current_queue_len,
27 
28 	W is the filter time constant (chosen as 2^(-Wlog)), it controls
29 	the inertia of the algorithm. To allow larger bursts, W should be
30 	decreased.
31 
32 	if (avg > th_max) -> packet marked (dropped).
33 	if (avg < th_min) -> packet passes.
34 	if (th_min < avg < th_max) we calculate probability:
35 
36 	Pb = max_P * (avg - th_min)/(th_max-th_min)
37 
38 	and mark (drop) packet with this probability.
39 	Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
40 	max_P should be small (not 1), usually 0.01..0.02 is good value.
41 
42 	max_P is chosen as a number, so that max_P/(th_max-th_min)
43 	is a negative power of two in order arithmetics to contain
44 	only shifts.
45 
46 
47 	Parameters, settable by user:
48 	-----------------------------
49 
50 	qth_min		- bytes (should be < qth_max/2)
51 	qth_max		- bytes (should be at least 2*qth_min and less limit)
52 	Wlog	       	- bits (<32) log(1/W).
53 	Plog	       	- bits (<32)
54 
55 	Plog is related to max_P by formula:
56 
57 	max_P = (qth_max-qth_min)/2^Plog;
58 
59 	F.e. if qth_max=128K and qth_min=32K, then Plog=22
60 	corresponds to max_P=0.02
61 
62 	Scell_log
63 	Stab
64 
65 	Lookup table for log((1-W)^(t/t_ave).
66 
67 
68 	NOTES:
69 
70 	Upper bound on W.
71 	-----------------
72 
73 	If you want to allow bursts of L packets of size S,
74 	you should choose W:
75 
76 	L + 1 - th_min/S < (1-(1-W)^L)/W
77 
78 	th_min/S = 32         th_min/S = 4
79 
80 	log(W)	L
81 	-1	33
82 	-2	35
83 	-3	39
84 	-4	46
85 	-5	57
86 	-6	75
87 	-7	101
88 	-8	135
89 	-9	190
90 	etc.
91  */
92 
93 /*
94  * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
95  * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
96  *
97  * Every 500 ms:
98  *  if (avg > target and max_p <= 0.5)
99  *   increase max_p : max_p += alpha;
100  *  else if (avg < target and max_p >= 0.01)
101  *   decrease max_p : max_p *= beta;
102  *
103  * target :[qth_min + 0.4*(qth_min - qth_max),
104  *          qth_min + 0.6*(qth_min - qth_max)].
105  * alpha : min(0.01, max_p / 4)
106  * beta : 0.9
107  * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
108  * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
109  */
110 #define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
111 
112 #define MAX_P_MIN (1 * RED_ONE_PERCENT)
113 #define MAX_P_MAX (50 * RED_ONE_PERCENT)
114 #define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
115 
116 #define RED_STAB_SIZE	256
117 #define RED_STAB_MASK	(RED_STAB_SIZE - 1)
118 
119 struct red_stats {
120 	u32		prob_drop;	/* Early probability drops */
121 	u32		prob_mark;	/* Early probability marks */
122 	u32		forced_drop;	/* Forced drops, qavg > max_thresh */
123 	u32		forced_mark;	/* Forced marks, qavg > max_thresh */
124 	u32		pdrop;          /* Drops due to queue limits */
125 	u32		other;          /* Drops due to drop() calls */
126 };
127 
128 struct red_parms {
129 	/* Parameters */
130 	u32		qth_min;	/* Min avg length threshold: Wlog scaled */
131 	u32		qth_max;	/* Max avg length threshold: Wlog scaled */
132 	u32		Scell_max;
133 	u32		max_P;		/* probability, [0 .. 1.0] 32 scaled */
134 	/* reciprocal_value(max_P / qth_delta) */
135 	struct reciprocal_value	max_P_reciprocal;
136 	u32		qth_delta;	/* max_th - min_th */
137 	u32		target_min;	/* min_th + 0.4*(max_th - min_th) */
138 	u32		target_max;	/* min_th + 0.6*(max_th - min_th) */
139 	u8		Scell_log;
140 	u8		Wlog;		/* log(W)		*/
141 	u8		Plog;		/* random number bits	*/
142 	u8		Stab[RED_STAB_SIZE];
143 };
144 
145 struct red_vars {
146 	/* Variables */
147 	int		qcount;		/* Number of packets since last random
148 					   number generation */
149 	u32		qR;		/* Cached random number */
150 
151 	unsigned long	qavg;		/* Average queue length: Wlog scaled */
152 	ktime_t		qidlestart;	/* Start of current idle period */
153 };
154 
155 static inline u32 red_maxp(u8 Plog)
156 {
157 	return Plog < 32 ? (~0U >> Plog) : ~0U;
158 }
159 
160 static inline void red_set_vars(struct red_vars *v)
161 {
162 	/* Reset average queue length, the value is strictly bound
163 	 * to the parameters below, reseting hurts a bit but leaving
164 	 * it might result in an unreasonable qavg for a while. --TGR
165 	 */
166 	v->qavg		= 0;
167 
168 	v->qcount	= -1;
169 }
170 
171 static inline void red_set_parms(struct red_parms *p,
172 				 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
173 				 u8 Scell_log, u8 *stab, u32 max_P)
174 {
175 	int delta = qth_max - qth_min;
176 	u32 max_p_delta;
177 
178 	p->qth_min	= qth_min << Wlog;
179 	p->qth_max	= qth_max << Wlog;
180 	p->Wlog		= Wlog;
181 	p->Plog		= Plog;
182 	if (delta < 0)
183 		delta = 1;
184 	p->qth_delta	= delta;
185 	if (!max_P) {
186 		max_P = red_maxp(Plog);
187 		max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
188 	}
189 	p->max_P = max_P;
190 	max_p_delta = max_P / delta;
191 	max_p_delta = max(max_p_delta, 1U);
192 	p->max_P_reciprocal  = reciprocal_value(max_p_delta);
193 
194 	/* RED Adaptative target :
195 	 * [min_th + 0.4*(min_th - max_th),
196 	 *  min_th + 0.6*(min_th - max_th)].
197 	 */
198 	delta /= 5;
199 	p->target_min = qth_min + 2*delta;
200 	p->target_max = qth_min + 3*delta;
201 
202 	p->Scell_log	= Scell_log;
203 	p->Scell_max	= (255 << Scell_log);
204 
205 	if (stab)
206 		memcpy(p->Stab, stab, sizeof(p->Stab));
207 }
208 
209 static inline int red_is_idling(const struct red_vars *v)
210 {
211 	return v->qidlestart != 0;
212 }
213 
214 static inline void red_start_of_idle_period(struct red_vars *v)
215 {
216 	v->qidlestart = ktime_get();
217 }
218 
219 static inline void red_end_of_idle_period(struct red_vars *v)
220 {
221 	v->qidlestart = 0;
222 }
223 
224 static inline void red_restart(struct red_vars *v)
225 {
226 	red_end_of_idle_period(v);
227 	v->qavg = 0;
228 	v->qcount = -1;
229 }
230 
231 static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
232 							 const struct red_vars *v)
233 {
234 	s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
235 	long us_idle = min_t(s64, delta, p->Scell_max);
236 	int  shift;
237 
238 	/*
239 	 * The problem: ideally, average length queue recalcultion should
240 	 * be done over constant clock intervals. This is too expensive, so
241 	 * that the calculation is driven by outgoing packets.
242 	 * When the queue is idle we have to model this clock by hand.
243 	 *
244 	 * SF+VJ proposed to "generate":
245 	 *
246 	 *	m = idletime / (average_pkt_size / bandwidth)
247 	 *
248 	 * dummy packets as a burst after idle time, i.e.
249 	 *
250 	 * 	v->qavg *= (1-W)^m
251 	 *
252 	 * This is an apparently overcomplicated solution (f.e. we have to
253 	 * precompute a table to make this calculation in reasonable time)
254 	 * I believe that a simpler model may be used here,
255 	 * but it is field for experiments.
256 	 */
257 
258 	shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
259 
260 	if (shift)
261 		return v->qavg >> shift;
262 	else {
263 		/* Approximate initial part of exponent with linear function:
264 		 *
265 		 * 	(1-W)^m ~= 1-mW + ...
266 		 *
267 		 * Seems, it is the best solution to
268 		 * problem of too coarse exponent tabulation.
269 		 */
270 		us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
271 
272 		if (us_idle < (v->qavg >> 1))
273 			return v->qavg - us_idle;
274 		else
275 			return v->qavg >> 1;
276 	}
277 }
278 
279 static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
280 						       const struct red_vars *v,
281 						       unsigned int backlog)
282 {
283 	/*
284 	 * NOTE: v->qavg is fixed point number with point at Wlog.
285 	 * The formula below is equvalent to floating point
286 	 * version:
287 	 *
288 	 * 	qavg = qavg*(1-W) + backlog*W;
289 	 *
290 	 * --ANK (980924)
291 	 */
292 	return v->qavg + (backlog - (v->qavg >> p->Wlog));
293 }
294 
295 static inline unsigned long red_calc_qavg(const struct red_parms *p,
296 					  const struct red_vars *v,
297 					  unsigned int backlog)
298 {
299 	if (!red_is_idling(v))
300 		return red_calc_qavg_no_idle_time(p, v, backlog);
301 	else
302 		return red_calc_qavg_from_idle_time(p, v);
303 }
304 
305 
306 static inline u32 red_random(const struct red_parms *p)
307 {
308 	return reciprocal_divide(prandom_u32(), p->max_P_reciprocal);
309 }
310 
311 static inline int red_mark_probability(const struct red_parms *p,
312 				       const struct red_vars *v,
313 				       unsigned long qavg)
314 {
315 	/* The formula used below causes questions.
316 
317 	   OK. qR is random number in the interval
318 		(0..1/max_P)*(qth_max-qth_min)
319 	   i.e. 0..(2^Plog). If we used floating point
320 	   arithmetics, it would be: (2^Plog)*rnd_num,
321 	   where rnd_num is less 1.
322 
323 	   Taking into account, that qavg have fixed
324 	   point at Wlog, two lines
325 	   below have the following floating point equivalent:
326 
327 	   max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
328 
329 	   Any questions? --ANK (980924)
330 	 */
331 	return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
332 }
333 
334 enum {
335 	RED_BELOW_MIN_THRESH,
336 	RED_BETWEEN_TRESH,
337 	RED_ABOVE_MAX_TRESH,
338 };
339 
340 static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
341 {
342 	if (qavg < p->qth_min)
343 		return RED_BELOW_MIN_THRESH;
344 	else if (qavg >= p->qth_max)
345 		return RED_ABOVE_MAX_TRESH;
346 	else
347 		return RED_BETWEEN_TRESH;
348 }
349 
350 enum {
351 	RED_DONT_MARK,
352 	RED_PROB_MARK,
353 	RED_HARD_MARK,
354 };
355 
356 static inline int red_action(const struct red_parms *p,
357 			     struct red_vars *v,
358 			     unsigned long qavg)
359 {
360 	switch (red_cmp_thresh(p, qavg)) {
361 		case RED_BELOW_MIN_THRESH:
362 			v->qcount = -1;
363 			return RED_DONT_MARK;
364 
365 		case RED_BETWEEN_TRESH:
366 			if (++v->qcount) {
367 				if (red_mark_probability(p, v, qavg)) {
368 					v->qcount = 0;
369 					v->qR = red_random(p);
370 					return RED_PROB_MARK;
371 				}
372 			} else
373 				v->qR = red_random(p);
374 
375 			return RED_DONT_MARK;
376 
377 		case RED_ABOVE_MAX_TRESH:
378 			v->qcount = -1;
379 			return RED_HARD_MARK;
380 	}
381 
382 	BUG();
383 	return RED_DONT_MARK;
384 }
385 
386 static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
387 {
388 	unsigned long qavg;
389 	u32 max_p_delta;
390 
391 	qavg = v->qavg;
392 	if (red_is_idling(v))
393 		qavg = red_calc_qavg_from_idle_time(p, v);
394 
395 	/* v->qavg is fixed point number with point at Wlog */
396 	qavg >>= p->Wlog;
397 
398 	if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
399 		p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
400 	else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
401 		p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
402 
403 	max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
404 	max_p_delta = max(max_p_delta, 1U);
405 	p->max_P_reciprocal = reciprocal_value(max_p_delta);
406 }
407 #endif
408