xref: /openbmc/linux/include/net/red.h (revision 87c2ce3b)
1 #ifndef __NET_SCHED_RED_H
2 #define __NET_SCHED_RED_H
3 
4 #include <linux/config.h>
5 #include <linux/types.h>
6 #include <net/pkt_sched.h>
7 #include <net/inet_ecn.h>
8 #include <net/dsfield.h>
9 
10 /*	Random Early Detection (RED) algorithm.
11 	=======================================
12 
13 	Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
14 	for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
15 
16 	This file codes a "divisionless" version of RED algorithm
17 	as written down in Fig.17 of the paper.
18 
19 	Short description.
20 	------------------
21 
22 	When a new packet arrives we calculate the average queue length:
23 
24 	avg = (1-W)*avg + W*current_queue_len,
25 
26 	W is the filter time constant (chosen as 2^(-Wlog)), it controls
27 	the inertia of the algorithm. To allow larger bursts, W should be
28 	decreased.
29 
30 	if (avg > th_max) -> packet marked (dropped).
31 	if (avg < th_min) -> packet passes.
32 	if (th_min < avg < th_max) we calculate probability:
33 
34 	Pb = max_P * (avg - th_min)/(th_max-th_min)
35 
36 	and mark (drop) packet with this probability.
37 	Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
38 	max_P should be small (not 1), usually 0.01..0.02 is good value.
39 
40 	max_P is chosen as a number, so that max_P/(th_max-th_min)
41 	is a negative power of two in order arithmetics to contain
42 	only shifts.
43 
44 
45 	Parameters, settable by user:
46 	-----------------------------
47 
48 	qth_min		- bytes (should be < qth_max/2)
49 	qth_max		- bytes (should be at least 2*qth_min and less limit)
50 	Wlog	       	- bits (<32) log(1/W).
51 	Plog	       	- bits (<32)
52 
53 	Plog is related to max_P by formula:
54 
55 	max_P = (qth_max-qth_min)/2^Plog;
56 
57 	F.e. if qth_max=128K and qth_min=32K, then Plog=22
58 	corresponds to max_P=0.02
59 
60 	Scell_log
61 	Stab
62 
63 	Lookup table for log((1-W)^(t/t_ave).
64 
65 
66 	NOTES:
67 
68 	Upper bound on W.
69 	-----------------
70 
71 	If you want to allow bursts of L packets of size S,
72 	you should choose W:
73 
74 	L + 1 - th_min/S < (1-(1-W)^L)/W
75 
76 	th_min/S = 32         th_min/S = 4
77 
78 	log(W)	L
79 	-1	33
80 	-2	35
81 	-3	39
82 	-4	46
83 	-5	57
84 	-6	75
85 	-7	101
86 	-8	135
87 	-9	190
88 	etc.
89  */
90 
91 #define RED_STAB_SIZE	256
92 #define RED_STAB_MASK	(RED_STAB_SIZE - 1)
93 
94 struct red_stats
95 {
96 	u32		prob_drop;	/* Early probability drops */
97 	u32		prob_mark;	/* Early probability marks */
98 	u32		forced_drop;	/* Forced drops, qavg > max_thresh */
99 	u32		forced_mark;	/* Forced marks, qavg > max_thresh */
100 	u32		pdrop;          /* Drops due to queue limits */
101 	u32		other;          /* Drops due to drop() calls */
102 	u32		backlog;
103 };
104 
105 struct red_parms
106 {
107 	/* Parameters */
108 	u32		qth_min;	/* Min avg length threshold: A scaled */
109 	u32		qth_max;	/* Max avg length threshold: A scaled */
110 	u32		Scell_max;
111 	u32		Rmask;		/* Cached random mask, see red_rmask */
112 	u8		Scell_log;
113 	u8		Wlog;		/* log(W)		*/
114 	u8		Plog;		/* random number bits	*/
115 	u8		Stab[RED_STAB_SIZE];
116 
117 	/* Variables */
118 	int		qcount;		/* Number of packets since last random
119 					   number generation */
120 	u32		qR;		/* Cached random number */
121 
122 	unsigned long	qavg;		/* Average queue length: A scaled */
123 	psched_time_t	qidlestart;	/* Start of current idle period */
124 };
125 
126 static inline u32 red_rmask(u8 Plog)
127 {
128 	return Plog < 32 ? ((1 << Plog) - 1) : ~0UL;
129 }
130 
131 static inline void red_set_parms(struct red_parms *p,
132 				 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
133 				 u8 Scell_log, u8 *stab)
134 {
135 	/* Reset average queue length, the value is strictly bound
136 	 * to the parameters below, reseting hurts a bit but leaving
137 	 * it might result in an unreasonable qavg for a while. --TGR
138 	 */
139 	p->qavg		= 0;
140 
141 	p->qcount	= -1;
142 	p->qth_min	= qth_min << Wlog;
143 	p->qth_max	= qth_max << Wlog;
144 	p->Wlog		= Wlog;
145 	p->Plog		= Plog;
146 	p->Rmask	= red_rmask(Plog);
147 	p->Scell_log	= Scell_log;
148 	p->Scell_max	= (255 << Scell_log);
149 
150 	memcpy(p->Stab, stab, sizeof(p->Stab));
151 }
152 
153 static inline int red_is_idling(struct red_parms *p)
154 {
155 	return !PSCHED_IS_PASTPERFECT(p->qidlestart);
156 }
157 
158 static inline void red_start_of_idle_period(struct red_parms *p)
159 {
160 	PSCHED_GET_TIME(p->qidlestart);
161 }
162 
163 static inline void red_end_of_idle_period(struct red_parms *p)
164 {
165 	PSCHED_SET_PASTPERFECT(p->qidlestart);
166 }
167 
168 static inline void red_restart(struct red_parms *p)
169 {
170 	red_end_of_idle_period(p);
171 	p->qavg = 0;
172 	p->qcount = -1;
173 }
174 
175 static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p)
176 {
177 	psched_time_t now;
178 	long us_idle;
179 	int  shift;
180 
181 	PSCHED_GET_TIME(now);
182 	us_idle = PSCHED_TDIFF_SAFE(now, p->qidlestart, p->Scell_max);
183 
184 	/*
185 	 * The problem: ideally, average length queue recalcultion should
186 	 * be done over constant clock intervals. This is too expensive, so
187 	 * that the calculation is driven by outgoing packets.
188 	 * When the queue is idle we have to model this clock by hand.
189 	 *
190 	 * SF+VJ proposed to "generate":
191 	 *
192 	 *	m = idletime / (average_pkt_size / bandwidth)
193 	 *
194 	 * dummy packets as a burst after idle time, i.e.
195 	 *
196 	 * 	p->qavg *= (1-W)^m
197 	 *
198 	 * This is an apparently overcomplicated solution (f.e. we have to
199 	 * precompute a table to make this calculation in reasonable time)
200 	 * I believe that a simpler model may be used here,
201 	 * but it is field for experiments.
202 	 */
203 
204 	shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
205 
206 	if (shift)
207 		return p->qavg >> shift;
208 	else {
209 		/* Approximate initial part of exponent with linear function:
210 		 *
211 		 * 	(1-W)^m ~= 1-mW + ...
212 		 *
213 		 * Seems, it is the best solution to
214 		 * problem of too coarse exponent tabulation.
215 		 */
216 		us_idle = (p->qavg * us_idle) >> p->Scell_log;
217 
218 		if (us_idle < (p->qavg >> 1))
219 			return p->qavg - us_idle;
220 		else
221 			return p->qavg >> 1;
222 	}
223 }
224 
225 static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p,
226 						       unsigned int backlog)
227 {
228 	/*
229 	 * NOTE: p->qavg is fixed point number with point at Wlog.
230 	 * The formula below is equvalent to floating point
231 	 * version:
232 	 *
233 	 * 	qavg = qavg*(1-W) + backlog*W;
234 	 *
235 	 * --ANK (980924)
236 	 */
237 	return p->qavg + (backlog - (p->qavg >> p->Wlog));
238 }
239 
240 static inline unsigned long red_calc_qavg(struct red_parms *p,
241 					  unsigned int backlog)
242 {
243 	if (!red_is_idling(p))
244 		return red_calc_qavg_no_idle_time(p, backlog);
245 	else
246 		return red_calc_qavg_from_idle_time(p);
247 }
248 
249 static inline u32 red_random(struct red_parms *p)
250 {
251 	return net_random() & p->Rmask;
252 }
253 
254 static inline int red_mark_probability(struct red_parms *p, unsigned long qavg)
255 {
256 	/* The formula used below causes questions.
257 
258 	   OK. qR is random number in the interval 0..Rmask
259 	   i.e. 0..(2^Plog). If we used floating point
260 	   arithmetics, it would be: (2^Plog)*rnd_num,
261 	   where rnd_num is less 1.
262 
263 	   Taking into account, that qavg have fixed
264 	   point at Wlog, and Plog is related to max_P by
265 	   max_P = (qth_max-qth_min)/2^Plog; two lines
266 	   below have the following floating point equivalent:
267 
268 	   max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
269 
270 	   Any questions? --ANK (980924)
271 	 */
272 	return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR);
273 }
274 
275 enum {
276 	RED_BELOW_MIN_THRESH,
277 	RED_BETWEEN_TRESH,
278 	RED_ABOVE_MAX_TRESH,
279 };
280 
281 static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg)
282 {
283 	if (qavg < p->qth_min)
284 		return RED_BELOW_MIN_THRESH;
285 	else if (qavg >= p->qth_max)
286 		return RED_ABOVE_MAX_TRESH;
287 	else
288 		return RED_BETWEEN_TRESH;
289 }
290 
291 enum {
292 	RED_DONT_MARK,
293 	RED_PROB_MARK,
294 	RED_HARD_MARK,
295 };
296 
297 static inline int red_action(struct red_parms *p, unsigned long qavg)
298 {
299 	switch (red_cmp_thresh(p, qavg)) {
300 		case RED_BELOW_MIN_THRESH:
301 			p->qcount = -1;
302 			return RED_DONT_MARK;
303 
304 		case RED_BETWEEN_TRESH:
305 			if (++p->qcount) {
306 				if (red_mark_probability(p, qavg)) {
307 					p->qcount = 0;
308 					p->qR = red_random(p);
309 					return RED_PROB_MARK;
310 				}
311 			} else
312 				p->qR = red_random(p);
313 
314 			return RED_DONT_MARK;
315 
316 		case RED_ABOVE_MAX_TRESH:
317 			p->qcount = -1;
318 			return RED_HARD_MARK;
319 	}
320 
321 	BUG();
322 	return RED_DONT_MARK;
323 }
324 
325 #endif
326