xref: /openbmc/linux/include/net/red.h (revision 1fa6ac37)
1 #ifndef __NET_SCHED_RED_H
2 #define __NET_SCHED_RED_H
3 
4 #include <linux/types.h>
5 #include <net/pkt_sched.h>
6 #include <net/inet_ecn.h>
7 #include <net/dsfield.h>
8 
9 /*	Random Early Detection (RED) algorithm.
10 	=======================================
11 
12 	Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
13 	for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
14 
15 	This file codes a "divisionless" version of RED algorithm
16 	as written down in Fig.17 of the paper.
17 
18 	Short description.
19 	------------------
20 
21 	When a new packet arrives we calculate the average queue length:
22 
23 	avg = (1-W)*avg + W*current_queue_len,
24 
25 	W is the filter time constant (chosen as 2^(-Wlog)), it controls
26 	the inertia of the algorithm. To allow larger bursts, W should be
27 	decreased.
28 
29 	if (avg > th_max) -> packet marked (dropped).
30 	if (avg < th_min) -> packet passes.
31 	if (th_min < avg < th_max) we calculate probability:
32 
33 	Pb = max_P * (avg - th_min)/(th_max-th_min)
34 
35 	and mark (drop) packet with this probability.
36 	Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
37 	max_P should be small (not 1), usually 0.01..0.02 is good value.
38 
39 	max_P is chosen as a number, so that max_P/(th_max-th_min)
40 	is a negative power of two in order arithmetics to contain
41 	only shifts.
42 
43 
44 	Parameters, settable by user:
45 	-----------------------------
46 
47 	qth_min		- bytes (should be < qth_max/2)
48 	qth_max		- bytes (should be at least 2*qth_min and less limit)
49 	Wlog	       	- bits (<32) log(1/W).
50 	Plog	       	- bits (<32)
51 
52 	Plog is related to max_P by formula:
53 
54 	max_P = (qth_max-qth_min)/2^Plog;
55 
56 	F.e. if qth_max=128K and qth_min=32K, then Plog=22
57 	corresponds to max_P=0.02
58 
59 	Scell_log
60 	Stab
61 
62 	Lookup table for log((1-W)^(t/t_ave).
63 
64 
65 	NOTES:
66 
67 	Upper bound on W.
68 	-----------------
69 
70 	If you want to allow bursts of L packets of size S,
71 	you should choose W:
72 
73 	L + 1 - th_min/S < (1-(1-W)^L)/W
74 
75 	th_min/S = 32         th_min/S = 4
76 
77 	log(W)	L
78 	-1	33
79 	-2	35
80 	-3	39
81 	-4	46
82 	-5	57
83 	-6	75
84 	-7	101
85 	-8	135
86 	-9	190
87 	etc.
88  */
89 
90 #define RED_STAB_SIZE	256
91 #define RED_STAB_MASK	(RED_STAB_SIZE - 1)
92 
93 struct red_stats {
94 	u32		prob_drop;	/* Early probability drops */
95 	u32		prob_mark;	/* Early probability marks */
96 	u32		forced_drop;	/* Forced drops, qavg > max_thresh */
97 	u32		forced_mark;	/* Forced marks, qavg > max_thresh */
98 	u32		pdrop;          /* Drops due to queue limits */
99 	u32		other;          /* Drops due to drop() calls */
100 	u32		backlog;
101 };
102 
103 struct red_parms {
104 	/* Parameters */
105 	u32		qth_min;	/* Min avg length threshold: A scaled */
106 	u32		qth_max;	/* Max avg length threshold: A scaled */
107 	u32		Scell_max;
108 	u32		Rmask;		/* Cached random mask, see red_rmask */
109 	u8		Scell_log;
110 	u8		Wlog;		/* log(W)		*/
111 	u8		Plog;		/* random number bits	*/
112 	u8		Stab[RED_STAB_SIZE];
113 
114 	/* Variables */
115 	int		qcount;		/* Number of packets since last random
116 					   number generation */
117 	u32		qR;		/* Cached random number */
118 
119 	unsigned long	qavg;		/* Average queue length: A scaled */
120 	psched_time_t	qidlestart;	/* Start of current idle period */
121 };
122 
123 static inline u32 red_rmask(u8 Plog)
124 {
125 	return Plog < 32 ? ((1 << Plog) - 1) : ~0UL;
126 }
127 
128 static inline void red_set_parms(struct red_parms *p,
129 				 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
130 				 u8 Scell_log, u8 *stab)
131 {
132 	/* Reset average queue length, the value is strictly bound
133 	 * to the parameters below, reseting hurts a bit but leaving
134 	 * it might result in an unreasonable qavg for a while. --TGR
135 	 */
136 	p->qavg		= 0;
137 
138 	p->qcount	= -1;
139 	p->qth_min	= qth_min << Wlog;
140 	p->qth_max	= qth_max << Wlog;
141 	p->Wlog		= Wlog;
142 	p->Plog		= Plog;
143 	p->Rmask	= red_rmask(Plog);
144 	p->Scell_log	= Scell_log;
145 	p->Scell_max	= (255 << Scell_log);
146 
147 	memcpy(p->Stab, stab, sizeof(p->Stab));
148 }
149 
150 static inline int red_is_idling(struct red_parms *p)
151 {
152 	return p->qidlestart != PSCHED_PASTPERFECT;
153 }
154 
155 static inline void red_start_of_idle_period(struct red_parms *p)
156 {
157 	p->qidlestart = psched_get_time();
158 }
159 
160 static inline void red_end_of_idle_period(struct red_parms *p)
161 {
162 	p->qidlestart = PSCHED_PASTPERFECT;
163 }
164 
165 static inline void red_restart(struct red_parms *p)
166 {
167 	red_end_of_idle_period(p);
168 	p->qavg = 0;
169 	p->qcount = -1;
170 }
171 
172 static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p)
173 {
174 	psched_time_t now;
175 	long us_idle;
176 	int  shift;
177 
178 	now = psched_get_time();
179 	us_idle = psched_tdiff_bounded(now, p->qidlestart, p->Scell_max);
180 
181 	/*
182 	 * The problem: ideally, average length queue recalcultion should
183 	 * be done over constant clock intervals. This is too expensive, so
184 	 * that the calculation is driven by outgoing packets.
185 	 * When the queue is idle we have to model this clock by hand.
186 	 *
187 	 * SF+VJ proposed to "generate":
188 	 *
189 	 *	m = idletime / (average_pkt_size / bandwidth)
190 	 *
191 	 * dummy packets as a burst after idle time, i.e.
192 	 *
193 	 * 	p->qavg *= (1-W)^m
194 	 *
195 	 * This is an apparently overcomplicated solution (f.e. we have to
196 	 * precompute a table to make this calculation in reasonable time)
197 	 * I believe that a simpler model may be used here,
198 	 * but it is field for experiments.
199 	 */
200 
201 	shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
202 
203 	if (shift)
204 		return p->qavg >> shift;
205 	else {
206 		/* Approximate initial part of exponent with linear function:
207 		 *
208 		 * 	(1-W)^m ~= 1-mW + ...
209 		 *
210 		 * Seems, it is the best solution to
211 		 * problem of too coarse exponent tabulation.
212 		 */
213 		us_idle = (p->qavg * (u64)us_idle) >> p->Scell_log;
214 
215 		if (us_idle < (p->qavg >> 1))
216 			return p->qavg - us_idle;
217 		else
218 			return p->qavg >> 1;
219 	}
220 }
221 
222 static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p,
223 						       unsigned int backlog)
224 {
225 	/*
226 	 * NOTE: p->qavg is fixed point number with point at Wlog.
227 	 * The formula below is equvalent to floating point
228 	 * version:
229 	 *
230 	 * 	qavg = qavg*(1-W) + backlog*W;
231 	 *
232 	 * --ANK (980924)
233 	 */
234 	return p->qavg + (backlog - (p->qavg >> p->Wlog));
235 }
236 
237 static inline unsigned long red_calc_qavg(struct red_parms *p,
238 					  unsigned int backlog)
239 {
240 	if (!red_is_idling(p))
241 		return red_calc_qavg_no_idle_time(p, backlog);
242 	else
243 		return red_calc_qavg_from_idle_time(p);
244 }
245 
246 static inline u32 red_random(struct red_parms *p)
247 {
248 	return net_random() & p->Rmask;
249 }
250 
251 static inline int red_mark_probability(struct red_parms *p, unsigned long qavg)
252 {
253 	/* The formula used below causes questions.
254 
255 	   OK. qR is random number in the interval 0..Rmask
256 	   i.e. 0..(2^Plog). If we used floating point
257 	   arithmetics, it would be: (2^Plog)*rnd_num,
258 	   where rnd_num is less 1.
259 
260 	   Taking into account, that qavg have fixed
261 	   point at Wlog, and Plog is related to max_P by
262 	   max_P = (qth_max-qth_min)/2^Plog; two lines
263 	   below have the following floating point equivalent:
264 
265 	   max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
266 
267 	   Any questions? --ANK (980924)
268 	 */
269 	return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR);
270 }
271 
272 enum {
273 	RED_BELOW_MIN_THRESH,
274 	RED_BETWEEN_TRESH,
275 	RED_ABOVE_MAX_TRESH,
276 };
277 
278 static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg)
279 {
280 	if (qavg < p->qth_min)
281 		return RED_BELOW_MIN_THRESH;
282 	else if (qavg >= p->qth_max)
283 		return RED_ABOVE_MAX_TRESH;
284 	else
285 		return RED_BETWEEN_TRESH;
286 }
287 
288 enum {
289 	RED_DONT_MARK,
290 	RED_PROB_MARK,
291 	RED_HARD_MARK,
292 };
293 
294 static inline int red_action(struct red_parms *p, unsigned long qavg)
295 {
296 	switch (red_cmp_thresh(p, qavg)) {
297 		case RED_BELOW_MIN_THRESH:
298 			p->qcount = -1;
299 			return RED_DONT_MARK;
300 
301 		case RED_BETWEEN_TRESH:
302 			if (++p->qcount) {
303 				if (red_mark_probability(p, qavg)) {
304 					p->qcount = 0;
305 					p->qR = red_random(p);
306 					return RED_PROB_MARK;
307 				}
308 			} else
309 				p->qR = red_random(p);
310 
311 			return RED_DONT_MARK;
312 
313 		case RED_ABOVE_MAX_TRESH:
314 			p->qcount = -1;
315 			return RED_HARD_MARK;
316 	}
317 
318 	BUG();
319 	return RED_DONT_MARK;
320 }
321 
322 #endif
323