1 /* 2 * mac80211 <-> driver interface 3 * 4 * Copyright 2002-2005, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #ifndef MAC80211_H 14 #define MAC80211_H 15 16 #include <linux/kernel.h> 17 #include <linux/if_ether.h> 18 #include <linux/skbuff.h> 19 #include <linux/wireless.h> 20 #include <linux/device.h> 21 #include <linux/ieee80211.h> 22 #include <net/cfg80211.h> 23 24 /** 25 * DOC: Introduction 26 * 27 * mac80211 is the Linux stack for 802.11 hardware that implements 28 * only partial functionality in hard- or firmware. This document 29 * defines the interface between mac80211 and low-level hardware 30 * drivers. 31 */ 32 33 /** 34 * DOC: Calling mac80211 from interrupts 35 * 36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be 37 * called in hardware interrupt context. The low-level driver must not call any 38 * other functions in hardware interrupt context. If there is a need for such 39 * call, the low-level driver should first ACK the interrupt and perform the 40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even 41 * tasklet function. 42 * 43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also 44 * use the non-IRQ-safe functions! 45 */ 46 47 /** 48 * DOC: Warning 49 * 50 * If you're reading this document and not the header file itself, it will 51 * be incomplete because not all documentation has been converted yet. 52 */ 53 54 /** 55 * DOC: Frame format 56 * 57 * As a general rule, when frames are passed between mac80211 and the driver, 58 * they start with the IEEE 802.11 header and include the same octets that are 59 * sent over the air except for the FCS which should be calculated by the 60 * hardware. 61 * 62 * There are, however, various exceptions to this rule for advanced features: 63 * 64 * The first exception is for hardware encryption and decryption offload 65 * where the IV/ICV may or may not be generated in hardware. 66 * 67 * Secondly, when the hardware handles fragmentation, the frame handed to 68 * the driver from mac80211 is the MSDU, not the MPDU. 69 * 70 * Finally, for received frames, the driver is able to indicate that it has 71 * filled a radiotap header and put that in front of the frame; if it does 72 * not do so then mac80211 may add this under certain circumstances. 73 */ 74 75 /** 76 * DOC: mac80211 workqueue 77 * 78 * mac80211 provides its own workqueue for drivers and internal mac80211 use. 79 * The workqueue is a single threaded workqueue and can only be accessed by 80 * helpers for sanity checking. Drivers must ensure all work added onto the 81 * mac80211 workqueue should be cancelled on the driver stop() callback. 82 * 83 * mac80211 will flushed the workqueue upon interface removal and during 84 * suspend. 85 * 86 * All work performed on the mac80211 workqueue must not acquire the RTNL lock. 87 * 88 */ 89 90 /** 91 * enum ieee80211_max_queues - maximum number of queues 92 * 93 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues. 94 */ 95 enum ieee80211_max_queues { 96 IEEE80211_MAX_QUEUES = 4, 97 }; 98 99 /** 100 * struct ieee80211_tx_queue_params - transmit queue configuration 101 * 102 * The information provided in this structure is required for QoS 103 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29. 104 * 105 * @aifs: arbitration interframe space [0..255] 106 * @cw_min: minimum contention window [a value of the form 107 * 2^n-1 in the range 1..32767] 108 * @cw_max: maximum contention window [like @cw_min] 109 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled 110 */ 111 struct ieee80211_tx_queue_params { 112 u16 txop; 113 u16 cw_min; 114 u16 cw_max; 115 u8 aifs; 116 }; 117 118 /** 119 * struct ieee80211_tx_queue_stats - transmit queue statistics 120 * 121 * @len: number of packets in queue 122 * @limit: queue length limit 123 * @count: number of frames sent 124 */ 125 struct ieee80211_tx_queue_stats { 126 unsigned int len; 127 unsigned int limit; 128 unsigned int count; 129 }; 130 131 struct ieee80211_low_level_stats { 132 unsigned int dot11ACKFailureCount; 133 unsigned int dot11RTSFailureCount; 134 unsigned int dot11FCSErrorCount; 135 unsigned int dot11RTSSuccessCount; 136 }; 137 138 /** 139 * enum ieee80211_bss_change - BSS change notification flags 140 * 141 * These flags are used with the bss_info_changed() callback 142 * to indicate which BSS parameter changed. 143 * 144 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated), 145 * also implies a change in the AID. 146 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed 147 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed 148 * @BSS_CHANGED_ERP_SLOT: slot timing changed 149 * @BSS_CHANGED_HT: 802.11n parameters changed 150 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed 151 * @BSS_CHANGED_BEACON_INT: Beacon interval changed 152 * @BSS_CHANGED_BSSID: BSSID changed, for whatever 153 * reason (IBSS and managed mode) 154 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve 155 * new beacon (beaconing modes) 156 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be 157 * enabled/disabled (beaconing modes) 158 */ 159 enum ieee80211_bss_change { 160 BSS_CHANGED_ASSOC = 1<<0, 161 BSS_CHANGED_ERP_CTS_PROT = 1<<1, 162 BSS_CHANGED_ERP_PREAMBLE = 1<<2, 163 BSS_CHANGED_ERP_SLOT = 1<<3, 164 BSS_CHANGED_HT = 1<<4, 165 BSS_CHANGED_BASIC_RATES = 1<<5, 166 BSS_CHANGED_BEACON_INT = 1<<6, 167 BSS_CHANGED_BSSID = 1<<7, 168 BSS_CHANGED_BEACON = 1<<8, 169 BSS_CHANGED_BEACON_ENABLED = 1<<9, 170 }; 171 172 /** 173 * struct ieee80211_bss_conf - holds the BSS's changing parameters 174 * 175 * This structure keeps information about a BSS (and an association 176 * to that BSS) that can change during the lifetime of the BSS. 177 * 178 * @assoc: association status 179 * @aid: association ID number, valid only when @assoc is true 180 * @use_cts_prot: use CTS protection 181 * @use_short_preamble: use 802.11b short preamble; 182 * if the hardware cannot handle this it must set the 183 * IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag 184 * @use_short_slot: use short slot time (only relevant for ERP); 185 * if the hardware cannot handle this it must set the 186 * IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag 187 * @dtim_period: num of beacons before the next DTIM, for PSM 188 * @timestamp: beacon timestamp 189 * @beacon_int: beacon interval 190 * @assoc_capability: capabilities taken from assoc resp 191 * @basic_rates: bitmap of basic rates, each bit stands for an 192 * index into the rate table configured by the driver in 193 * the current band. 194 * @bssid: The BSSID for this BSS 195 * @enable_beacon: whether beaconing should be enabled or not 196 * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info). 197 * This field is only valid when the channel type is one of the HT types. 198 */ 199 struct ieee80211_bss_conf { 200 const u8 *bssid; 201 /* association related data */ 202 bool assoc; 203 u16 aid; 204 /* erp related data */ 205 bool use_cts_prot; 206 bool use_short_preamble; 207 bool use_short_slot; 208 bool enable_beacon; 209 u8 dtim_period; 210 u16 beacon_int; 211 u16 assoc_capability; 212 u64 timestamp; 213 u32 basic_rates; 214 u16 ht_operation_mode; 215 }; 216 217 /** 218 * enum mac80211_tx_control_flags - flags to describe transmission information/status 219 * 220 * These flags are used with the @flags member of &ieee80211_tx_info. 221 * 222 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame. 223 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence 224 * number to this frame, taking care of not overwriting the fragment 225 * number and increasing the sequence number only when the 226 * IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly 227 * assign sequence numbers to QoS-data frames but cannot do so correctly 228 * for non-QoS-data and management frames because beacons need them from 229 * that counter as well and mac80211 cannot guarantee proper sequencing. 230 * If this flag is set, the driver should instruct the hardware to 231 * assign a sequence number to the frame or assign one itself. Cf. IEEE 232 * 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for 233 * beacons and always be clear for frames without a sequence number field. 234 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack 235 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination 236 * station 237 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame 238 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon 239 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU 240 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211. 241 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted 242 * because the destination STA was in powersave mode. Note that to 243 * avoid race conditions, the filter must be set by the hardware or 244 * firmware upon receiving a frame that indicates that the station 245 * went to sleep (must be done on device to filter frames already on 246 * the queue) and may only be unset after mac80211 gives the OK for 247 * that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above), 248 * since only then is it guaranteed that no more frames are in the 249 * hardware queue. 250 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged 251 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status 252 * is for the whole aggregation. 253 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned, 254 * so consider using block ack request (BAR). 255 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be 256 * set by rate control algorithms to indicate probe rate, will 257 * be cleared for fragmented frames (except on the last fragment) 258 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or 259 * set this flag in the driver; indicates that the rate control 260 * algorithm was used and should be notified of TX status 261 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211, 262 * used to indicate that a pending frame requires TX processing before 263 * it can be sent out. 264 * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211, 265 * used to indicate that a frame was already retried due to PS 266 * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211, 267 * used to indicate frame should not be encrypted 268 * @IEEE80211_TX_CTL_PSPOLL_RESPONSE: (internal?) 269 * This frame is a response to a PS-poll frame and should be sent 270 * although the station is in powersave mode. 271 * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the 272 * transmit function after the current frame, this can be used 273 * by drivers to kick the DMA queue only if unset or when the 274 * queue gets full. 275 */ 276 enum mac80211_tx_control_flags { 277 IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0), 278 IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1), 279 IEEE80211_TX_CTL_NO_ACK = BIT(2), 280 IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3), 281 IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4), 282 IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5), 283 IEEE80211_TX_CTL_AMPDU = BIT(6), 284 IEEE80211_TX_CTL_INJECTED = BIT(7), 285 IEEE80211_TX_STAT_TX_FILTERED = BIT(8), 286 IEEE80211_TX_STAT_ACK = BIT(9), 287 IEEE80211_TX_STAT_AMPDU = BIT(10), 288 IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11), 289 IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12), 290 IEEE80211_TX_INTFL_RCALGO = BIT(13), 291 IEEE80211_TX_INTFL_NEED_TXPROCESSING = BIT(14), 292 IEEE80211_TX_INTFL_RETRIED = BIT(15), 293 IEEE80211_TX_INTFL_DONT_ENCRYPT = BIT(16), 294 IEEE80211_TX_CTL_PSPOLL_RESPONSE = BIT(17), 295 IEEE80211_TX_CTL_MORE_FRAMES = BIT(18), 296 }; 297 298 /** 299 * enum mac80211_rate_control_flags - per-rate flags set by the 300 * Rate Control algorithm. 301 * 302 * These flags are set by the Rate control algorithm for each rate during tx, 303 * in the @flags member of struct ieee80211_tx_rate. 304 * 305 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate. 306 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required. 307 * This is set if the current BSS requires ERP protection. 308 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble. 309 * @IEEE80211_TX_RC_MCS: HT rate. 310 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in 311 * Greenfield mode. 312 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz. 313 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the 314 * adjacent 20 MHz channels, if the current channel type is 315 * NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS. 316 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate. 317 */ 318 enum mac80211_rate_control_flags { 319 IEEE80211_TX_RC_USE_RTS_CTS = BIT(0), 320 IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1), 321 IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2), 322 323 /* rate index is an MCS rate number instead of an index */ 324 IEEE80211_TX_RC_MCS = BIT(3), 325 IEEE80211_TX_RC_GREEN_FIELD = BIT(4), 326 IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5), 327 IEEE80211_TX_RC_DUP_DATA = BIT(6), 328 IEEE80211_TX_RC_SHORT_GI = BIT(7), 329 }; 330 331 332 /* there are 40 bytes if you don't need the rateset to be kept */ 333 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40 334 335 /* if you do need the rateset, then you have less space */ 336 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24 337 338 /* maximum number of rate stages */ 339 #define IEEE80211_TX_MAX_RATES 5 340 341 /** 342 * struct ieee80211_tx_rate - rate selection/status 343 * 344 * @idx: rate index to attempt to send with 345 * @flags: rate control flags (&enum mac80211_rate_control_flags) 346 * @count: number of tries in this rate before going to the next rate 347 * 348 * A value of -1 for @idx indicates an invalid rate and, if used 349 * in an array of retry rates, that no more rates should be tried. 350 * 351 * When used for transmit status reporting, the driver should 352 * always report the rate along with the flags it used. 353 * 354 * &struct ieee80211_tx_info contains an array of these structs 355 * in the control information, and it will be filled by the rate 356 * control algorithm according to what should be sent. For example, 357 * if this array contains, in the format { <idx>, <count> } the 358 * information 359 * { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 } 360 * then this means that the frame should be transmitted 361 * up to twice at rate 3, up to twice at rate 2, and up to four 362 * times at rate 1 if it doesn't get acknowledged. Say it gets 363 * acknowledged by the peer after the fifth attempt, the status 364 * information should then contain 365 * { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ... 366 * since it was transmitted twice at rate 3, twice at rate 2 367 * and once at rate 1 after which we received an acknowledgement. 368 */ 369 struct ieee80211_tx_rate { 370 s8 idx; 371 u8 count; 372 u8 flags; 373 } __attribute__((packed)); 374 375 /** 376 * struct ieee80211_tx_info - skb transmit information 377 * 378 * This structure is placed in skb->cb for three uses: 379 * (1) mac80211 TX control - mac80211 tells the driver what to do 380 * (2) driver internal use (if applicable) 381 * (3) TX status information - driver tells mac80211 what happened 382 * 383 * The TX control's sta pointer is only valid during the ->tx call, 384 * it may be NULL. 385 * 386 * @flags: transmit info flags, defined above 387 * @band: the band to transmit on (use for checking for races) 388 * @antenna_sel_tx: antenna to use, 0 for automatic diversity 389 * @pad: padding, ignore 390 * @control: union for control data 391 * @status: union for status data 392 * @driver_data: array of driver_data pointers 393 * @ampdu_ack_len: number of aggregated frames. 394 * relevant only if IEEE80211_TX_STATUS_AMPDU was set. 395 * @ampdu_ack_map: block ack bit map for the aggregation. 396 * relevant only if IEEE80211_TX_STATUS_AMPDU was set. 397 * @ack_signal: signal strength of the ACK frame 398 */ 399 struct ieee80211_tx_info { 400 /* common information */ 401 u32 flags; 402 u8 band; 403 404 u8 antenna_sel_tx; 405 406 /* 2 byte hole */ 407 u8 pad[2]; 408 409 union { 410 struct { 411 union { 412 /* rate control */ 413 struct { 414 struct ieee80211_tx_rate rates[ 415 IEEE80211_TX_MAX_RATES]; 416 s8 rts_cts_rate_idx; 417 }; 418 /* only needed before rate control */ 419 unsigned long jiffies; 420 }; 421 /* NB: vif can be NULL for injected frames */ 422 struct ieee80211_vif *vif; 423 struct ieee80211_key_conf *hw_key; 424 struct ieee80211_sta *sta; 425 } control; 426 struct { 427 struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES]; 428 u8 ampdu_ack_len; 429 u64 ampdu_ack_map; 430 int ack_signal; 431 /* 8 bytes free */ 432 } status; 433 struct { 434 struct ieee80211_tx_rate driver_rates[ 435 IEEE80211_TX_MAX_RATES]; 436 void *rate_driver_data[ 437 IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)]; 438 }; 439 void *driver_data[ 440 IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)]; 441 }; 442 }; 443 444 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb) 445 { 446 return (struct ieee80211_tx_info *)skb->cb; 447 } 448 449 static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb) 450 { 451 return (struct ieee80211_rx_status *)skb->cb; 452 } 453 454 /** 455 * ieee80211_tx_info_clear_status - clear TX status 456 * 457 * @info: The &struct ieee80211_tx_info to be cleared. 458 * 459 * When the driver passes an skb back to mac80211, it must report 460 * a number of things in TX status. This function clears everything 461 * in the TX status but the rate control information (it does clear 462 * the count since you need to fill that in anyway). 463 * 464 * NOTE: You can only use this function if you do NOT use 465 * info->driver_data! Use info->rate_driver_data 466 * instead if you need only the less space that allows. 467 */ 468 static inline void 469 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info) 470 { 471 int i; 472 473 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 474 offsetof(struct ieee80211_tx_info, control.rates)); 475 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 476 offsetof(struct ieee80211_tx_info, driver_rates)); 477 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8); 478 /* clear the rate counts */ 479 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) 480 info->status.rates[i].count = 0; 481 482 BUILD_BUG_ON( 483 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23); 484 memset(&info->status.ampdu_ack_len, 0, 485 sizeof(struct ieee80211_tx_info) - 486 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len)); 487 } 488 489 490 /** 491 * enum mac80211_rx_flags - receive flags 492 * 493 * These flags are used with the @flag member of &struct ieee80211_rx_status. 494 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame. 495 * Use together with %RX_FLAG_MMIC_STRIPPED. 496 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware. 497 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header. 498 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame, 499 * verification has been done by the hardware. 500 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame. 501 * If this flag is set, the stack cannot do any replay detection 502 * hence the driver or hardware will have to do that. 503 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on 504 * the frame. 505 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on 506 * the frame. 507 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field) 508 * is valid. This is useful in monitor mode and necessary for beacon frames 509 * to enable IBSS merging. 510 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame 511 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index 512 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used 513 * @RX_FLAG_SHORT_GI: Short guard interval was used 514 */ 515 enum mac80211_rx_flags { 516 RX_FLAG_MMIC_ERROR = 1<<0, 517 RX_FLAG_DECRYPTED = 1<<1, 518 RX_FLAG_RADIOTAP = 1<<2, 519 RX_FLAG_MMIC_STRIPPED = 1<<3, 520 RX_FLAG_IV_STRIPPED = 1<<4, 521 RX_FLAG_FAILED_FCS_CRC = 1<<5, 522 RX_FLAG_FAILED_PLCP_CRC = 1<<6, 523 RX_FLAG_TSFT = 1<<7, 524 RX_FLAG_SHORTPRE = 1<<8, 525 RX_FLAG_HT = 1<<9, 526 RX_FLAG_40MHZ = 1<<10, 527 RX_FLAG_SHORT_GI = 1<<11, 528 }; 529 530 /** 531 * struct ieee80211_rx_status - receive status 532 * 533 * The low-level driver should provide this information (the subset 534 * supported by hardware) to the 802.11 code with each received 535 * frame, in the skb's control buffer (cb). 536 * 537 * @mactime: value in microseconds of the 64-bit Time Synchronization Function 538 * (TSF) timer when the first data symbol (MPDU) arrived at the hardware. 539 * @band: the active band when this frame was received 540 * @freq: frequency the radio was tuned to when receiving this frame, in MHz 541 * @signal: signal strength when receiving this frame, either in dBm, in dB or 542 * unspecified depending on the hardware capabilities flags 543 * @IEEE80211_HW_SIGNAL_* 544 * @noise: noise when receiving this frame, in dBm. 545 * @qual: overall signal quality indication, in percent (0-100). 546 * @antenna: antenna used 547 * @rate_idx: index of data rate into band's supported rates or MCS index if 548 * HT rates are use (RX_FLAG_HT) 549 * @flag: %RX_FLAG_* 550 */ 551 struct ieee80211_rx_status { 552 u64 mactime; 553 enum ieee80211_band band; 554 int freq; 555 int signal; 556 int noise; 557 int qual; 558 int antenna; 559 int rate_idx; 560 int flag; 561 }; 562 563 /** 564 * enum ieee80211_conf_flags - configuration flags 565 * 566 * Flags to define PHY configuration options 567 * 568 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported) 569 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only) 570 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set 571 * the driver should be prepared to handle configuration requests but 572 * may turn the device off as much as possible. Typically, this flag will 573 * be set when an interface is set UP but not associated or scanning, but 574 * it can also be unset in that case when monitor interfaces are active. 575 */ 576 enum ieee80211_conf_flags { 577 IEEE80211_CONF_RADIOTAP = (1<<0), 578 IEEE80211_CONF_PS = (1<<1), 579 IEEE80211_CONF_IDLE = (1<<2), 580 }; 581 582 583 /** 584 * enum ieee80211_conf_changed - denotes which configuration changed 585 * 586 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed 587 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed 588 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed 589 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed 590 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed 591 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed 592 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed 593 */ 594 enum ieee80211_conf_changed { 595 IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2), 596 IEEE80211_CONF_CHANGE_RADIOTAP = BIT(3), 597 IEEE80211_CONF_CHANGE_PS = BIT(4), 598 IEEE80211_CONF_CHANGE_POWER = BIT(5), 599 IEEE80211_CONF_CHANGE_CHANNEL = BIT(6), 600 IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(7), 601 IEEE80211_CONF_CHANGE_IDLE = BIT(8), 602 }; 603 604 /** 605 * struct ieee80211_conf - configuration of the device 606 * 607 * This struct indicates how the driver shall configure the hardware. 608 * 609 * @flags: configuration flags defined above 610 * 611 * @listen_interval: listen interval in units of beacon interval 612 * @max_sleep_period: the maximum number of beacon intervals to sleep for 613 * before checking the beacon for a TIM bit (managed mode only); this 614 * value will be only achievable between DTIM frames, the hardware 615 * needs to check for the multicast traffic bit in DTIM beacons. 616 * This variable is valid only when the CONF_PS flag is set. 617 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the 618 * powersave documentation below. This variable is valid only when 619 * the CONF_PS flag is set. 620 * 621 * @power_level: requested transmit power (in dBm) 622 * 623 * @channel: the channel to tune to 624 * @channel_type: the channel (HT) type 625 * 626 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame 627 * (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11, 628 * but actually means the number of transmissions not the number of retries 629 * @short_frame_max_tx_count: Maximum number of transmissions for a "short" 630 * frame, called "dot11ShortRetryLimit" in 802.11, but actually means the 631 * number of transmissions not the number of retries 632 */ 633 struct ieee80211_conf { 634 u32 flags; 635 int power_level, dynamic_ps_timeout; 636 int max_sleep_period; 637 638 u16 listen_interval; 639 640 u8 long_frame_max_tx_count, short_frame_max_tx_count; 641 642 struct ieee80211_channel *channel; 643 enum nl80211_channel_type channel_type; 644 }; 645 646 /** 647 * struct ieee80211_vif - per-interface data 648 * 649 * Data in this structure is continually present for driver 650 * use during the life of a virtual interface. 651 * 652 * @type: type of this virtual interface 653 * @bss_conf: BSS configuration for this interface, either our own 654 * or the BSS we're associated to 655 * @drv_priv: data area for driver use, will always be aligned to 656 * sizeof(void *). 657 */ 658 struct ieee80211_vif { 659 enum nl80211_iftype type; 660 struct ieee80211_bss_conf bss_conf; 661 /* must be last */ 662 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *)))); 663 }; 664 665 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif) 666 { 667 #ifdef CONFIG_MAC80211_MESH 668 return vif->type == NL80211_IFTYPE_MESH_POINT; 669 #endif 670 return false; 671 } 672 673 /** 674 * struct ieee80211_if_init_conf - initial configuration of an interface 675 * 676 * @vif: pointer to a driver-use per-interface structure. The pointer 677 * itself is also used for various functions including 678 * ieee80211_beacon_get() and ieee80211_get_buffered_bc(). 679 * @type: one of &enum nl80211_iftype constants. Determines the type of 680 * added/removed interface. 681 * @mac_addr: pointer to MAC address of the interface. This pointer is valid 682 * until the interface is removed (i.e. it cannot be used after 683 * remove_interface() callback was called for this interface). 684 * 685 * This structure is used in add_interface() and remove_interface() 686 * callbacks of &struct ieee80211_hw. 687 * 688 * When you allow multiple interfaces to be added to your PHY, take care 689 * that the hardware can actually handle multiple MAC addresses. However, 690 * also take care that when there's no interface left with mac_addr != %NULL 691 * you remove the MAC address from the device to avoid acknowledging packets 692 * in pure monitor mode. 693 */ 694 struct ieee80211_if_init_conf { 695 enum nl80211_iftype type; 696 struct ieee80211_vif *vif; 697 void *mac_addr; 698 }; 699 700 /** 701 * enum ieee80211_key_alg - key algorithm 702 * @ALG_WEP: WEP40 or WEP104 703 * @ALG_TKIP: TKIP 704 * @ALG_CCMP: CCMP (AES) 705 * @ALG_AES_CMAC: AES-128-CMAC 706 */ 707 enum ieee80211_key_alg { 708 ALG_WEP, 709 ALG_TKIP, 710 ALG_CCMP, 711 ALG_AES_CMAC, 712 }; 713 714 /** 715 * enum ieee80211_key_flags - key flags 716 * 717 * These flags are used for communication about keys between the driver 718 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf. 719 * 720 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates 721 * that the STA this key will be used with could be using QoS. 722 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the 723 * driver to indicate that it requires IV generation for this 724 * particular key. 725 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by 726 * the driver for a TKIP key if it requires Michael MIC 727 * generation in software. 728 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates 729 * that the key is pairwise rather then a shared key. 730 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a 731 * CCMP key if it requires CCMP encryption of management frames (MFP) to 732 * be done in software. 733 */ 734 enum ieee80211_key_flags { 735 IEEE80211_KEY_FLAG_WMM_STA = 1<<0, 736 IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1, 737 IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2, 738 IEEE80211_KEY_FLAG_PAIRWISE = 1<<3, 739 IEEE80211_KEY_FLAG_SW_MGMT = 1<<4, 740 }; 741 742 /** 743 * struct ieee80211_key_conf - key information 744 * 745 * This key information is given by mac80211 to the driver by 746 * the set_key() callback in &struct ieee80211_ops. 747 * 748 * @hw_key_idx: To be set by the driver, this is the key index the driver 749 * wants to be given when a frame is transmitted and needs to be 750 * encrypted in hardware. 751 * @alg: The key algorithm. 752 * @flags: key flags, see &enum ieee80211_key_flags. 753 * @keyidx: the key index (0-3) 754 * @keylen: key material length 755 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte) 756 * data block: 757 * - Temporal Encryption Key (128 bits) 758 * - Temporal Authenticator Tx MIC Key (64 bits) 759 * - Temporal Authenticator Rx MIC Key (64 bits) 760 * @icv_len: The ICV length for this key type 761 * @iv_len: The IV length for this key type 762 */ 763 struct ieee80211_key_conf { 764 enum ieee80211_key_alg alg; 765 u8 icv_len; 766 u8 iv_len; 767 u8 hw_key_idx; 768 u8 flags; 769 s8 keyidx; 770 u8 keylen; 771 u8 key[0]; 772 }; 773 774 /** 775 * enum set_key_cmd - key command 776 * 777 * Used with the set_key() callback in &struct ieee80211_ops, this 778 * indicates whether a key is being removed or added. 779 * 780 * @SET_KEY: a key is set 781 * @DISABLE_KEY: a key must be disabled 782 */ 783 enum set_key_cmd { 784 SET_KEY, DISABLE_KEY, 785 }; 786 787 /** 788 * struct ieee80211_sta - station table entry 789 * 790 * A station table entry represents a station we are possibly 791 * communicating with. Since stations are RCU-managed in 792 * mac80211, any ieee80211_sta pointer you get access to must 793 * either be protected by rcu_read_lock() explicitly or implicitly, 794 * or you must take good care to not use such a pointer after a 795 * call to your sta_notify callback that removed it. 796 * 797 * @addr: MAC address 798 * @aid: AID we assigned to the station if we're an AP 799 * @supp_rates: Bitmap of supported rates (per band) 800 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities 801 * @drv_priv: data area for driver use, will always be aligned to 802 * sizeof(void *), size is determined in hw information. 803 */ 804 struct ieee80211_sta { 805 u32 supp_rates[IEEE80211_NUM_BANDS]; 806 u8 addr[ETH_ALEN]; 807 u16 aid; 808 struct ieee80211_sta_ht_cap ht_cap; 809 810 /* must be last */ 811 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *)))); 812 }; 813 814 /** 815 * enum sta_notify_cmd - sta notify command 816 * 817 * Used with the sta_notify() callback in &struct ieee80211_ops, this 818 * indicates addition and removal of a station to station table, 819 * or if a associated station made a power state transition. 820 * 821 * @STA_NOTIFY_ADD: a station was added to the station table 822 * @STA_NOTIFY_REMOVE: a station being removed from the station table 823 * @STA_NOTIFY_SLEEP: a station is now sleeping 824 * @STA_NOTIFY_AWAKE: a sleeping station woke up 825 */ 826 enum sta_notify_cmd { 827 STA_NOTIFY_ADD, STA_NOTIFY_REMOVE, 828 STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE, 829 }; 830 831 /** 832 * enum ieee80211_tkip_key_type - get tkip key 833 * 834 * Used by drivers which need to get a tkip key for skb. Some drivers need a 835 * phase 1 key, others need a phase 2 key. A single function allows the driver 836 * to get the key, this enum indicates what type of key is required. 837 * 838 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key 839 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key 840 */ 841 enum ieee80211_tkip_key_type { 842 IEEE80211_TKIP_P1_KEY, 843 IEEE80211_TKIP_P2_KEY, 844 }; 845 846 /** 847 * enum ieee80211_hw_flags - hardware flags 848 * 849 * These flags are used to indicate hardware capabilities to 850 * the stack. Generally, flags here should have their meaning 851 * done in a way that the simplest hardware doesn't need setting 852 * any particular flags. There are some exceptions to this rule, 853 * however, so you are advised to review these flags carefully. 854 * 855 * @IEEE80211_HW_RX_INCLUDES_FCS: 856 * Indicates that received frames passed to the stack include 857 * the FCS at the end. 858 * 859 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING: 860 * Some wireless LAN chipsets buffer broadcast/multicast frames 861 * for power saving stations in the hardware/firmware and others 862 * rely on the host system for such buffering. This option is used 863 * to configure the IEEE 802.11 upper layer to buffer broadcast and 864 * multicast frames when there are power saving stations so that 865 * the driver can fetch them with ieee80211_get_buffered_bc(). 866 * 867 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE: 868 * Hardware is not capable of short slot operation on the 2.4 GHz band. 869 * 870 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE: 871 * Hardware is not capable of receiving frames with short preamble on 872 * the 2.4 GHz band. 873 * 874 * @IEEE80211_HW_SIGNAL_UNSPEC: 875 * Hardware can provide signal values but we don't know its units. We 876 * expect values between 0 and @max_signal. 877 * If possible please provide dB or dBm instead. 878 * 879 * @IEEE80211_HW_SIGNAL_DBM: 880 * Hardware gives signal values in dBm, decibel difference from 881 * one milliwatt. This is the preferred method since it is standardized 882 * between different devices. @max_signal does not need to be set. 883 * 884 * @IEEE80211_HW_NOISE_DBM: 885 * Hardware can provide noise (radio interference) values in units dBm, 886 * decibel difference from one milliwatt. 887 * 888 * @IEEE80211_HW_SPECTRUM_MGMT: 889 * Hardware supports spectrum management defined in 802.11h 890 * Measurement, Channel Switch, Quieting, TPC 891 * 892 * @IEEE80211_HW_AMPDU_AGGREGATION: 893 * Hardware supports 11n A-MPDU aggregation. 894 * 895 * @IEEE80211_HW_SUPPORTS_PS: 896 * Hardware has power save support (i.e. can go to sleep). 897 * 898 * @IEEE80211_HW_PS_NULLFUNC_STACK: 899 * Hardware requires nullfunc frame handling in stack, implies 900 * stack support for dynamic PS. 901 * 902 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS: 903 * Hardware has support for dynamic PS. 904 * 905 * @IEEE80211_HW_MFP_CAPABLE: 906 * Hardware supports management frame protection (MFP, IEEE 802.11w). 907 * 908 * @IEEE80211_HW_BEACON_FILTER: 909 * Hardware supports dropping of irrelevant beacon frames to 910 * avoid waking up cpu. 911 */ 912 enum ieee80211_hw_flags { 913 IEEE80211_HW_RX_INCLUDES_FCS = 1<<1, 914 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2, 915 IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3, 916 IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4, 917 IEEE80211_HW_SIGNAL_UNSPEC = 1<<5, 918 IEEE80211_HW_SIGNAL_DBM = 1<<6, 919 IEEE80211_HW_NOISE_DBM = 1<<7, 920 IEEE80211_HW_SPECTRUM_MGMT = 1<<8, 921 IEEE80211_HW_AMPDU_AGGREGATION = 1<<9, 922 IEEE80211_HW_SUPPORTS_PS = 1<<10, 923 IEEE80211_HW_PS_NULLFUNC_STACK = 1<<11, 924 IEEE80211_HW_SUPPORTS_DYNAMIC_PS = 1<<12, 925 IEEE80211_HW_MFP_CAPABLE = 1<<13, 926 IEEE80211_HW_BEACON_FILTER = 1<<14, 927 }; 928 929 /** 930 * struct ieee80211_hw - hardware information and state 931 * 932 * This structure contains the configuration and hardware 933 * information for an 802.11 PHY. 934 * 935 * @wiphy: This points to the &struct wiphy allocated for this 936 * 802.11 PHY. You must fill in the @perm_addr and @dev 937 * members of this structure using SET_IEEE80211_DEV() 938 * and SET_IEEE80211_PERM_ADDR(). Additionally, all supported 939 * bands (with channels, bitrates) are registered here. 940 * 941 * @conf: &struct ieee80211_conf, device configuration, don't use. 942 * 943 * @priv: pointer to private area that was allocated for driver use 944 * along with this structure. 945 * 946 * @flags: hardware flags, see &enum ieee80211_hw_flags. 947 * 948 * @extra_tx_headroom: headroom to reserve in each transmit skb 949 * for use by the driver (e.g. for transmit headers.) 950 * 951 * @channel_change_time: time (in microseconds) it takes to change channels. 952 * 953 * @max_signal: Maximum value for signal (rssi) in RX information, used 954 * only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB 955 * 956 * @max_listen_interval: max listen interval in units of beacon interval 957 * that HW supports 958 * 959 * @queues: number of available hardware transmit queues for 960 * data packets. WMM/QoS requires at least four, these 961 * queues need to have configurable access parameters. 962 * 963 * @rate_control_algorithm: rate control algorithm for this hardware. 964 * If unset (NULL), the default algorithm will be used. Must be 965 * set before calling ieee80211_register_hw(). 966 * 967 * @vif_data_size: size (in bytes) of the drv_priv data area 968 * within &struct ieee80211_vif. 969 * @sta_data_size: size (in bytes) of the drv_priv data area 970 * within &struct ieee80211_sta. 971 * 972 * @max_rates: maximum number of alternate rate retry stages 973 * @max_rate_tries: maximum number of tries for each stage 974 */ 975 struct ieee80211_hw { 976 struct ieee80211_conf conf; 977 struct wiphy *wiphy; 978 const char *rate_control_algorithm; 979 void *priv; 980 u32 flags; 981 unsigned int extra_tx_headroom; 982 int channel_change_time; 983 int vif_data_size; 984 int sta_data_size; 985 u16 queues; 986 u16 max_listen_interval; 987 s8 max_signal; 988 u8 max_rates; 989 u8 max_rate_tries; 990 }; 991 992 /** 993 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy 994 * 995 * @wiphy: the &struct wiphy which we want to query 996 * 997 * mac80211 drivers can use this to get to their respective 998 * &struct ieee80211_hw. Drivers wishing to get to their own private 999 * structure can then access it via hw->priv. Note that mac802111 drivers should 1000 * not use wiphy_priv() to try to get their private driver structure as this 1001 * is already used internally by mac80211. 1002 */ 1003 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy); 1004 1005 /** 1006 * SET_IEEE80211_DEV - set device for 802.11 hardware 1007 * 1008 * @hw: the &struct ieee80211_hw to set the device for 1009 * @dev: the &struct device of this 802.11 device 1010 */ 1011 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev) 1012 { 1013 set_wiphy_dev(hw->wiphy, dev); 1014 } 1015 1016 /** 1017 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware 1018 * 1019 * @hw: the &struct ieee80211_hw to set the MAC address for 1020 * @addr: the address to set 1021 */ 1022 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr) 1023 { 1024 memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN); 1025 } 1026 1027 static inline struct ieee80211_rate * 1028 ieee80211_get_tx_rate(const struct ieee80211_hw *hw, 1029 const struct ieee80211_tx_info *c) 1030 { 1031 if (WARN_ON(c->control.rates[0].idx < 0)) 1032 return NULL; 1033 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx]; 1034 } 1035 1036 static inline struct ieee80211_rate * 1037 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw, 1038 const struct ieee80211_tx_info *c) 1039 { 1040 if (c->control.rts_cts_rate_idx < 0) 1041 return NULL; 1042 return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx]; 1043 } 1044 1045 static inline struct ieee80211_rate * 1046 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw, 1047 const struct ieee80211_tx_info *c, int idx) 1048 { 1049 if (c->control.rates[idx + 1].idx < 0) 1050 return NULL; 1051 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx]; 1052 } 1053 1054 /** 1055 * DOC: Hardware crypto acceleration 1056 * 1057 * mac80211 is capable of taking advantage of many hardware 1058 * acceleration designs for encryption and decryption operations. 1059 * 1060 * The set_key() callback in the &struct ieee80211_ops for a given 1061 * device is called to enable hardware acceleration of encryption and 1062 * decryption. The callback takes a @sta parameter that will be NULL 1063 * for default keys or keys used for transmission only, or point to 1064 * the station information for the peer for individual keys. 1065 * Multiple transmission keys with the same key index may be used when 1066 * VLANs are configured for an access point. 1067 * 1068 * When transmitting, the TX control data will use the @hw_key_idx 1069 * selected by the driver by modifying the &struct ieee80211_key_conf 1070 * pointed to by the @key parameter to the set_key() function. 1071 * 1072 * The set_key() call for the %SET_KEY command should return 0 if 1073 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be 1074 * added; if you return 0 then hw_key_idx must be assigned to the 1075 * hardware key index, you are free to use the full u8 range. 1076 * 1077 * When the cmd is %DISABLE_KEY then it must succeed. 1078 * 1079 * Note that it is permissible to not decrypt a frame even if a key 1080 * for it has been uploaded to hardware, the stack will not make any 1081 * decision based on whether a key has been uploaded or not but rather 1082 * based on the receive flags. 1083 * 1084 * The &struct ieee80211_key_conf structure pointed to by the @key 1085 * parameter is guaranteed to be valid until another call to set_key() 1086 * removes it, but it can only be used as a cookie to differentiate 1087 * keys. 1088 * 1089 * In TKIP some HW need to be provided a phase 1 key, for RX decryption 1090 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key 1091 * handler. 1092 * The update_tkip_key() call updates the driver with the new phase 1 key. 1093 * This happens everytime the iv16 wraps around (every 65536 packets). The 1094 * set_key() call will happen only once for each key (unless the AP did 1095 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is 1096 * provided by update_tkip_key only. The trigger that makes mac80211 call this 1097 * handler is software decryption with wrap around of iv16. 1098 */ 1099 1100 /** 1101 * DOC: Powersave support 1102 * 1103 * mac80211 has support for various powersave implementations. 1104 * 1105 * First, it can support hardware that handles all powersaving by 1106 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS 1107 * hardware flag. In that case, it will be told about the desired 1108 * powersave mode depending on the association status, and the driver 1109 * must take care of sending nullfunc frames when necessary, i.e. when 1110 * entering and leaving powersave mode. The driver is required to look at 1111 * the AID in beacons and signal to the AP that it woke up when it finds 1112 * traffic directed to it. This mode supports dynamic PS by simply 1113 * enabling/disabling PS. 1114 * 1115 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS 1116 * flag to indicate that it can support dynamic PS mode itself (see below). 1117 * 1118 * Other hardware designs cannot send nullfunc frames by themselves and also 1119 * need software support for parsing the TIM bitmap. This is also supported 1120 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and 1121 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still 1122 * required to pass up beacons. The hardware is still required to handle 1123 * waking up for multicast traffic; if it cannot the driver must handle that 1124 * as best as it can, mac80211 is too slow. 1125 * 1126 * Dynamic powersave mode is an extension to normal powersave mode in which 1127 * the hardware stays awake for a user-specified period of time after sending 1128 * a frame so that reply frames need not be buffered and therefore delayed 1129 * to the next wakeup. This can either be supported by hardware, in which case 1130 * the driver needs to look at the @dynamic_ps_timeout hardware configuration 1131 * value, or by the stack if all nullfunc handling is in the stack. 1132 */ 1133 1134 /** 1135 * DOC: Beacon filter support 1136 * 1137 * Some hardware have beacon filter support to reduce host cpu wakeups 1138 * which will reduce system power consumption. It usuallly works so that 1139 * the firmware creates a checksum of the beacon but omits all constantly 1140 * changing elements (TSF, TIM etc). Whenever the checksum changes the 1141 * beacon is forwarded to the host, otherwise it will be just dropped. That 1142 * way the host will only receive beacons where some relevant information 1143 * (for example ERP protection or WMM settings) have changed. 1144 * 1145 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER 1146 * hardware capability. The driver needs to enable beacon filter support 1147 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When 1148 * power save is enabled, the stack will not check for beacon loss and the 1149 * driver needs to notify about loss of beacons with ieee80211_beacon_loss(). 1150 * 1151 * The time (or number of beacons missed) until the firmware notifies the 1152 * driver of a beacon loss event (which in turn causes the driver to call 1153 * ieee80211_beacon_loss()) should be configurable and will be controlled 1154 * by mac80211 and the roaming algorithm in the future. 1155 * 1156 * Since there may be constantly changing information elements that nothing 1157 * in the software stack cares about, we will, in the future, have mac80211 1158 * tell the driver which information elements are interesting in the sense 1159 * that we want to see changes in them. This will include 1160 * - a list of information element IDs 1161 * - a list of OUIs for the vendor information element 1162 * 1163 * Ideally, the hardware would filter out any beacons without changes in the 1164 * requested elements, but if it cannot support that it may, at the expense 1165 * of some efficiency, filter out only a subset. For example, if the device 1166 * doesn't support checking for OUIs it should pass up all changes in all 1167 * vendor information elements. 1168 * 1169 * Note that change, for the sake of simplification, also includes information 1170 * elements appearing or disappearing from the beacon. 1171 * 1172 * Some hardware supports an "ignore list" instead, just make sure nothing 1173 * that was requested is on the ignore list, and include commonly changing 1174 * information element IDs in the ignore list, for example 11 (BSS load) and 1175 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136, 1176 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility 1177 * it could also include some currently unused IDs. 1178 * 1179 * 1180 * In addition to these capabilities, hardware should support notifying the 1181 * host of changes in the beacon RSSI. This is relevant to implement roaming 1182 * when no traffic is flowing (when traffic is flowing we see the RSSI of 1183 * the received data packets). This can consist in notifying the host when 1184 * the RSSI changes significantly or when it drops below or rises above 1185 * configurable thresholds. In the future these thresholds will also be 1186 * configured by mac80211 (which gets them from userspace) to implement 1187 * them as the roaming algorithm requires. 1188 * 1189 * If the hardware cannot implement this, the driver should ask it to 1190 * periodically pass beacon frames to the host so that software can do the 1191 * signal strength threshold checking. 1192 */ 1193 1194 /** 1195 * DOC: Frame filtering 1196 * 1197 * mac80211 requires to see many management frames for proper 1198 * operation, and users may want to see many more frames when 1199 * in monitor mode. However, for best CPU usage and power consumption, 1200 * having as few frames as possible percolate through the stack is 1201 * desirable. Hence, the hardware should filter as much as possible. 1202 * 1203 * To achieve this, mac80211 uses filter flags (see below) to tell 1204 * the driver's configure_filter() function which frames should be 1205 * passed to mac80211 and which should be filtered out. 1206 * 1207 * Before configure_filter() is invoked, the prepare_multicast() 1208 * callback is invoked with the parameters @mc_count and @mc_list 1209 * for the combined multicast address list of all virtual interfaces. 1210 * It's use is optional, and it returns a u64 that is passed to 1211 * configure_filter(). Additionally, configure_filter() has the 1212 * arguments @changed_flags telling which flags were changed and 1213 * @total_flags with the new flag states. 1214 * 1215 * If your device has no multicast address filters your driver will 1216 * need to check both the %FIF_ALLMULTI flag and the @mc_count 1217 * parameter to see whether multicast frames should be accepted 1218 * or dropped. 1219 * 1220 * All unsupported flags in @total_flags must be cleared. 1221 * Hardware does not support a flag if it is incapable of _passing_ 1222 * the frame to the stack. Otherwise the driver must ignore 1223 * the flag, but not clear it. 1224 * You must _only_ clear the flag (announce no support for the 1225 * flag to mac80211) if you are not able to pass the packet type 1226 * to the stack (so the hardware always filters it). 1227 * So for example, you should clear @FIF_CONTROL, if your hardware 1228 * always filters control frames. If your hardware always passes 1229 * control frames to the kernel and is incapable of filtering them, 1230 * you do _not_ clear the @FIF_CONTROL flag. 1231 * This rule applies to all other FIF flags as well. 1232 */ 1233 1234 /** 1235 * enum ieee80211_filter_flags - hardware filter flags 1236 * 1237 * These flags determine what the filter in hardware should be 1238 * programmed to let through and what should not be passed to the 1239 * stack. It is always safe to pass more frames than requested, 1240 * but this has negative impact on power consumption. 1241 * 1242 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS, 1243 * think of the BSS as your network segment and then this corresponds 1244 * to the regular ethernet device promiscuous mode. 1245 * 1246 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested 1247 * by the user or if the hardware is not capable of filtering by 1248 * multicast address. 1249 * 1250 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the 1251 * %RX_FLAG_FAILED_FCS_CRC for them) 1252 * 1253 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set 1254 * the %RX_FLAG_FAILED_PLCP_CRC for them 1255 * 1256 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate 1257 * to the hardware that it should not filter beacons or probe responses 1258 * by BSSID. Filtering them can greatly reduce the amount of processing 1259 * mac80211 needs to do and the amount of CPU wakeups, so you should 1260 * honour this flag if possible. 1261 * 1262 * @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS 1263 * is not set then only those addressed to this station. 1264 * 1265 * @FIF_OTHER_BSS: pass frames destined to other BSSes 1266 * 1267 * @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS is not set then only 1268 * those addressed to this station. 1269 */ 1270 enum ieee80211_filter_flags { 1271 FIF_PROMISC_IN_BSS = 1<<0, 1272 FIF_ALLMULTI = 1<<1, 1273 FIF_FCSFAIL = 1<<2, 1274 FIF_PLCPFAIL = 1<<3, 1275 FIF_BCN_PRBRESP_PROMISC = 1<<4, 1276 FIF_CONTROL = 1<<5, 1277 FIF_OTHER_BSS = 1<<6, 1278 FIF_PSPOLL = 1<<7, 1279 }; 1280 1281 /** 1282 * enum ieee80211_ampdu_mlme_action - A-MPDU actions 1283 * 1284 * These flags are used with the ampdu_action() callback in 1285 * &struct ieee80211_ops to indicate which action is needed. 1286 * @IEEE80211_AMPDU_RX_START: start Rx aggregation 1287 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation 1288 * @IEEE80211_AMPDU_TX_START: start Tx aggregation 1289 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation 1290 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational 1291 */ 1292 enum ieee80211_ampdu_mlme_action { 1293 IEEE80211_AMPDU_RX_START, 1294 IEEE80211_AMPDU_RX_STOP, 1295 IEEE80211_AMPDU_TX_START, 1296 IEEE80211_AMPDU_TX_STOP, 1297 IEEE80211_AMPDU_TX_OPERATIONAL, 1298 }; 1299 1300 /** 1301 * struct ieee80211_ops - callbacks from mac80211 to the driver 1302 * 1303 * This structure contains various callbacks that the driver may 1304 * handle or, in some cases, must handle, for example to configure 1305 * the hardware to a new channel or to transmit a frame. 1306 * 1307 * @tx: Handler that 802.11 module calls for each transmitted frame. 1308 * skb contains the buffer starting from the IEEE 802.11 header. 1309 * The low-level driver should send the frame out based on 1310 * configuration in the TX control data. This handler should, 1311 * preferably, never fail and stop queues appropriately, more 1312 * importantly, however, it must never fail for A-MPDU-queues. 1313 * This function should return NETDEV_TX_OK except in very 1314 * limited cases. 1315 * Must be implemented and atomic. 1316 * 1317 * @start: Called before the first netdevice attached to the hardware 1318 * is enabled. This should turn on the hardware and must turn on 1319 * frame reception (for possibly enabled monitor interfaces.) 1320 * Returns negative error codes, these may be seen in userspace, 1321 * or zero. 1322 * When the device is started it should not have a MAC address 1323 * to avoid acknowledging frames before a non-monitor device 1324 * is added. 1325 * Must be implemented. 1326 * 1327 * @stop: Called after last netdevice attached to the hardware 1328 * is disabled. This should turn off the hardware (at least 1329 * it must turn off frame reception.) 1330 * May be called right after add_interface if that rejects 1331 * an interface. If you added any work onto the mac80211 workqueue 1332 * you should ensure to cancel it on this callback. 1333 * Must be implemented. 1334 * 1335 * @add_interface: Called when a netdevice attached to the hardware is 1336 * enabled. Because it is not called for monitor mode devices, @start 1337 * and @stop must be implemented. 1338 * The driver should perform any initialization it needs before 1339 * the device can be enabled. The initial configuration for the 1340 * interface is given in the conf parameter. 1341 * The callback may refuse to add an interface by returning a 1342 * negative error code (which will be seen in userspace.) 1343 * Must be implemented. 1344 * 1345 * @remove_interface: Notifies a driver that an interface is going down. 1346 * The @stop callback is called after this if it is the last interface 1347 * and no monitor interfaces are present. 1348 * When all interfaces are removed, the MAC address in the hardware 1349 * must be cleared so the device no longer acknowledges packets, 1350 * the mac_addr member of the conf structure is, however, set to the 1351 * MAC address of the device going away. 1352 * Hence, this callback must be implemented. 1353 * 1354 * @config: Handler for configuration requests. IEEE 802.11 code calls this 1355 * function to change hardware configuration, e.g., channel. 1356 * This function should never fail but returns a negative error code 1357 * if it does. 1358 * 1359 * @bss_info_changed: Handler for configuration requests related to BSS 1360 * parameters that may vary during BSS's lifespan, and may affect low 1361 * level driver (e.g. assoc/disassoc status, erp parameters). 1362 * This function should not be used if no BSS has been set, unless 1363 * for association indication. The @changed parameter indicates which 1364 * of the bss parameters has changed when a call is made. 1365 * 1366 * @prepare_multicast: Prepare for multicast filter configuration. 1367 * This callback is optional, and its return value is passed 1368 * to configure_filter(). This callback must be atomic. 1369 * 1370 * @configure_filter: Configure the device's RX filter. 1371 * See the section "Frame filtering" for more information. 1372 * This callback must be implemented. 1373 * 1374 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit 1375 * must be set or cleared for a given STA. Must be atomic. 1376 * 1377 * @set_key: See the section "Hardware crypto acceleration" 1378 * This callback can sleep, and is only called between add_interface 1379 * and remove_interface calls, i.e. while the given virtual interface 1380 * is enabled. 1381 * Returns a negative error code if the key can't be added. 1382 * 1383 * @update_tkip_key: See the section "Hardware crypto acceleration" 1384 * This callback will be called in the context of Rx. Called for drivers 1385 * which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY. 1386 * 1387 * @hw_scan: Ask the hardware to service the scan request, no need to start 1388 * the scan state machine in stack. The scan must honour the channel 1389 * configuration done by the regulatory agent in the wiphy's 1390 * registered bands. The hardware (or the driver) needs to make sure 1391 * that power save is disabled. 1392 * The @req ie/ie_len members are rewritten by mac80211 to contain the 1393 * entire IEs after the SSID, so that drivers need not look at these 1394 * at all but just send them after the SSID -- mac80211 includes the 1395 * (extended) supported rates and HT information (where applicable). 1396 * When the scan finishes, ieee80211_scan_completed() must be called; 1397 * note that it also must be called when the scan cannot finish due to 1398 * any error unless this callback returned a negative error code. 1399 * 1400 * @sw_scan_start: Notifier function that is called just before a software scan 1401 * is started. Can be NULL, if the driver doesn't need this notification. 1402 * 1403 * @sw_scan_complete: Notifier function that is called just after a software scan 1404 * finished. Can be NULL, if the driver doesn't need this notification. 1405 * 1406 * @get_stats: Return low-level statistics. 1407 * Returns zero if statistics are available. 1408 * 1409 * @get_tkip_seq: If your device implements TKIP encryption in hardware this 1410 * callback should be provided to read the TKIP transmit IVs (both IV32 1411 * and IV16) for the given key from hardware. 1412 * 1413 * @set_rts_threshold: Configuration of RTS threshold (if device needs it) 1414 * 1415 * @sta_notify: Notifies low level driver about addition, removal or power 1416 * state transition of an associated station, AP, IBSS/WDS/mesh peer etc. 1417 * Must be atomic. 1418 * 1419 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), 1420 * bursting) for a hardware TX queue. 1421 * Returns a negative error code on failure. 1422 * 1423 * @get_tx_stats: Get statistics of the current TX queue status. This is used 1424 * to get number of currently queued packets (queue length), maximum queue 1425 * size (limit), and total number of packets sent using each TX queue 1426 * (count). The 'stats' pointer points to an array that has hw->queues 1427 * items. 1428 * 1429 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently, 1430 * this is only used for IBSS mode BSSID merging and debugging. Is not a 1431 * required function. 1432 * 1433 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware. 1434 * Currently, this is only used for IBSS mode debugging. Is not a 1435 * required function. 1436 * 1437 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize 1438 * with other STAs in the IBSS. This is only used in IBSS mode. This 1439 * function is optional if the firmware/hardware takes full care of 1440 * TSF synchronization. 1441 * 1442 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us. 1443 * This is needed only for IBSS mode and the result of this function is 1444 * used to determine whether to reply to Probe Requests. 1445 * Returns non-zero if this device sent the last beacon. 1446 * 1447 * @ampdu_action: Perform a certain A-MPDU action 1448 * The RA/TID combination determines the destination and TID we want 1449 * the ampdu action to be performed for. The action is defined through 1450 * ieee80211_ampdu_mlme_action. Starting sequence number (@ssn) 1451 * is the first frame we expect to perform the action on. Notice 1452 * that TX/RX_STOP can pass NULL for this parameter. 1453 * Returns a negative error code on failure. 1454 * 1455 * @rfkill_poll: Poll rfkill hardware state. If you need this, you also 1456 * need to set wiphy->rfkill_poll to %true before registration, 1457 * and need to call wiphy_rfkill_set_hw_state() in the callback. 1458 * 1459 * @testmode_cmd: Implement a cfg80211 test mode command. 1460 */ 1461 struct ieee80211_ops { 1462 int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb); 1463 int (*start)(struct ieee80211_hw *hw); 1464 void (*stop)(struct ieee80211_hw *hw); 1465 int (*add_interface)(struct ieee80211_hw *hw, 1466 struct ieee80211_if_init_conf *conf); 1467 void (*remove_interface)(struct ieee80211_hw *hw, 1468 struct ieee80211_if_init_conf *conf); 1469 int (*config)(struct ieee80211_hw *hw, u32 changed); 1470 void (*bss_info_changed)(struct ieee80211_hw *hw, 1471 struct ieee80211_vif *vif, 1472 struct ieee80211_bss_conf *info, 1473 u32 changed); 1474 u64 (*prepare_multicast)(struct ieee80211_hw *hw, 1475 int mc_count, struct dev_addr_list *mc_list); 1476 void (*configure_filter)(struct ieee80211_hw *hw, 1477 unsigned int changed_flags, 1478 unsigned int *total_flags, 1479 u64 multicast); 1480 int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 1481 bool set); 1482 int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1483 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 1484 struct ieee80211_key_conf *key); 1485 void (*update_tkip_key)(struct ieee80211_hw *hw, 1486 struct ieee80211_key_conf *conf, const u8 *address, 1487 u32 iv32, u16 *phase1key); 1488 int (*hw_scan)(struct ieee80211_hw *hw, 1489 struct cfg80211_scan_request *req); 1490 void (*sw_scan_start)(struct ieee80211_hw *hw); 1491 void (*sw_scan_complete)(struct ieee80211_hw *hw); 1492 int (*get_stats)(struct ieee80211_hw *hw, 1493 struct ieee80211_low_level_stats *stats); 1494 void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx, 1495 u32 *iv32, u16 *iv16); 1496 int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value); 1497 void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1498 enum sta_notify_cmd, struct ieee80211_sta *sta); 1499 int (*conf_tx)(struct ieee80211_hw *hw, u16 queue, 1500 const struct ieee80211_tx_queue_params *params); 1501 int (*get_tx_stats)(struct ieee80211_hw *hw, 1502 struct ieee80211_tx_queue_stats *stats); 1503 u64 (*get_tsf)(struct ieee80211_hw *hw); 1504 void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf); 1505 void (*reset_tsf)(struct ieee80211_hw *hw); 1506 int (*tx_last_beacon)(struct ieee80211_hw *hw); 1507 int (*ampdu_action)(struct ieee80211_hw *hw, 1508 enum ieee80211_ampdu_mlme_action action, 1509 struct ieee80211_sta *sta, u16 tid, u16 *ssn); 1510 1511 void (*rfkill_poll)(struct ieee80211_hw *hw); 1512 #ifdef CONFIG_NL80211_TESTMODE 1513 int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len); 1514 #endif 1515 }; 1516 1517 /** 1518 * ieee80211_alloc_hw - Allocate a new hardware device 1519 * 1520 * This must be called once for each hardware device. The returned pointer 1521 * must be used to refer to this device when calling other functions. 1522 * mac80211 allocates a private data area for the driver pointed to by 1523 * @priv in &struct ieee80211_hw, the size of this area is given as 1524 * @priv_data_len. 1525 * 1526 * @priv_data_len: length of private data 1527 * @ops: callbacks for this device 1528 */ 1529 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, 1530 const struct ieee80211_ops *ops); 1531 1532 /** 1533 * ieee80211_register_hw - Register hardware device 1534 * 1535 * You must call this function before any other functions in 1536 * mac80211. Note that before a hardware can be registered, you 1537 * need to fill the contained wiphy's information. 1538 * 1539 * @hw: the device to register as returned by ieee80211_alloc_hw() 1540 */ 1541 int ieee80211_register_hw(struct ieee80211_hw *hw); 1542 1543 #ifdef CONFIG_MAC80211_LEDS 1544 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw); 1545 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw); 1546 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw); 1547 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw); 1548 #endif 1549 /** 1550 * ieee80211_get_tx_led_name - get name of TX LED 1551 * 1552 * mac80211 creates a transmit LED trigger for each wireless hardware 1553 * that can be used to drive LEDs if your driver registers a LED device. 1554 * This function returns the name (or %NULL if not configured for LEDs) 1555 * of the trigger so you can automatically link the LED device. 1556 * 1557 * @hw: the hardware to get the LED trigger name for 1558 */ 1559 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw) 1560 { 1561 #ifdef CONFIG_MAC80211_LEDS 1562 return __ieee80211_get_tx_led_name(hw); 1563 #else 1564 return NULL; 1565 #endif 1566 } 1567 1568 /** 1569 * ieee80211_get_rx_led_name - get name of RX LED 1570 * 1571 * mac80211 creates a receive LED trigger for each wireless hardware 1572 * that can be used to drive LEDs if your driver registers a LED device. 1573 * This function returns the name (or %NULL if not configured for LEDs) 1574 * of the trigger so you can automatically link the LED device. 1575 * 1576 * @hw: the hardware to get the LED trigger name for 1577 */ 1578 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw) 1579 { 1580 #ifdef CONFIG_MAC80211_LEDS 1581 return __ieee80211_get_rx_led_name(hw); 1582 #else 1583 return NULL; 1584 #endif 1585 } 1586 1587 /** 1588 * ieee80211_get_assoc_led_name - get name of association LED 1589 * 1590 * mac80211 creates a association LED trigger for each wireless hardware 1591 * that can be used to drive LEDs if your driver registers a LED device. 1592 * This function returns the name (or %NULL if not configured for LEDs) 1593 * of the trigger so you can automatically link the LED device. 1594 * 1595 * @hw: the hardware to get the LED trigger name for 1596 */ 1597 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw) 1598 { 1599 #ifdef CONFIG_MAC80211_LEDS 1600 return __ieee80211_get_assoc_led_name(hw); 1601 #else 1602 return NULL; 1603 #endif 1604 } 1605 1606 /** 1607 * ieee80211_get_radio_led_name - get name of radio LED 1608 * 1609 * mac80211 creates a radio change LED trigger for each wireless hardware 1610 * that can be used to drive LEDs if your driver registers a LED device. 1611 * This function returns the name (or %NULL if not configured for LEDs) 1612 * of the trigger so you can automatically link the LED device. 1613 * 1614 * @hw: the hardware to get the LED trigger name for 1615 */ 1616 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw) 1617 { 1618 #ifdef CONFIG_MAC80211_LEDS 1619 return __ieee80211_get_radio_led_name(hw); 1620 #else 1621 return NULL; 1622 #endif 1623 } 1624 1625 /** 1626 * ieee80211_unregister_hw - Unregister a hardware device 1627 * 1628 * This function instructs mac80211 to free allocated resources 1629 * and unregister netdevices from the networking subsystem. 1630 * 1631 * @hw: the hardware to unregister 1632 */ 1633 void ieee80211_unregister_hw(struct ieee80211_hw *hw); 1634 1635 /** 1636 * ieee80211_free_hw - free hardware descriptor 1637 * 1638 * This function frees everything that was allocated, including the 1639 * private data for the driver. You must call ieee80211_unregister_hw() 1640 * before calling this function. 1641 * 1642 * @hw: the hardware to free 1643 */ 1644 void ieee80211_free_hw(struct ieee80211_hw *hw); 1645 1646 /** 1647 * ieee80211_restart_hw - restart hardware completely 1648 * 1649 * Call this function when the hardware was restarted for some reason 1650 * (hardware error, ...) and the driver is unable to restore its state 1651 * by itself. mac80211 assumes that at this point the driver/hardware 1652 * is completely uninitialised and stopped, it starts the process by 1653 * calling the ->start() operation. The driver will need to reset all 1654 * internal state that it has prior to calling this function. 1655 * 1656 * @hw: the hardware to restart 1657 */ 1658 void ieee80211_restart_hw(struct ieee80211_hw *hw); 1659 1660 /** 1661 * ieee80211_rx - receive frame 1662 * 1663 * Use this function to hand received frames to mac80211. The receive 1664 * buffer in @skb must start with an IEEE 802.11 header or a radiotap 1665 * header if %RX_FLAG_RADIOTAP is set in the @status flags. 1666 * 1667 * This function may not be called in IRQ context. Calls to this function 1668 * for a single hardware must be synchronized against each other. Calls 1669 * to this function and ieee80211_rx_irqsafe() may not be mixed for a 1670 * single hardware. 1671 * 1672 * @hw: the hardware this frame came in on 1673 * @skb: the buffer to receive, owned by mac80211 after this call 1674 */ 1675 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb); 1676 1677 /** 1678 * ieee80211_rx_irqsafe - receive frame 1679 * 1680 * Like ieee80211_rx() but can be called in IRQ context 1681 * (internally defers to a tasklet.) 1682 * 1683 * Calls to this function and ieee80211_rx() may not be mixed for a 1684 * single hardware. 1685 * 1686 * @hw: the hardware this frame came in on 1687 * @skb: the buffer to receive, owned by mac80211 after this call 1688 */ 1689 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb); 1690 1691 /** 1692 * ieee80211_tx_status - transmit status callback 1693 * 1694 * Call this function for all transmitted frames after they have been 1695 * transmitted. It is permissible to not call this function for 1696 * multicast frames but this can affect statistics. 1697 * 1698 * This function may not be called in IRQ context. Calls to this function 1699 * for a single hardware must be synchronized against each other. Calls 1700 * to this function and ieee80211_tx_status_irqsafe() may not be mixed 1701 * for a single hardware. 1702 * 1703 * @hw: the hardware the frame was transmitted by 1704 * @skb: the frame that was transmitted, owned by mac80211 after this call 1705 */ 1706 void ieee80211_tx_status(struct ieee80211_hw *hw, 1707 struct sk_buff *skb); 1708 1709 /** 1710 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback 1711 * 1712 * Like ieee80211_tx_status() but can be called in IRQ context 1713 * (internally defers to a tasklet.) 1714 * 1715 * Calls to this function and ieee80211_tx_status() may not be mixed for a 1716 * single hardware. 1717 * 1718 * @hw: the hardware the frame was transmitted by 1719 * @skb: the frame that was transmitted, owned by mac80211 after this call 1720 */ 1721 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, 1722 struct sk_buff *skb); 1723 1724 /** 1725 * ieee80211_beacon_get - beacon generation function 1726 * @hw: pointer obtained from ieee80211_alloc_hw(). 1727 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1728 * 1729 * If the beacon frames are generated by the host system (i.e., not in 1730 * hardware/firmware), the low-level driver uses this function to receive 1731 * the next beacon frame from the 802.11 code. The low-level is responsible 1732 * for calling this function before beacon data is needed (e.g., based on 1733 * hardware interrupt). Returned skb is used only once and low-level driver 1734 * is responsible for freeing it. 1735 */ 1736 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, 1737 struct ieee80211_vif *vif); 1738 1739 /** 1740 * ieee80211_rts_get - RTS frame generation function 1741 * @hw: pointer obtained from ieee80211_alloc_hw(). 1742 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1743 * @frame: pointer to the frame that is going to be protected by the RTS. 1744 * @frame_len: the frame length (in octets). 1745 * @frame_txctl: &struct ieee80211_tx_info of the frame. 1746 * @rts: The buffer where to store the RTS frame. 1747 * 1748 * If the RTS frames are generated by the host system (i.e., not in 1749 * hardware/firmware), the low-level driver uses this function to receive 1750 * the next RTS frame from the 802.11 code. The low-level is responsible 1751 * for calling this function before and RTS frame is needed. 1752 */ 1753 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1754 const void *frame, size_t frame_len, 1755 const struct ieee80211_tx_info *frame_txctl, 1756 struct ieee80211_rts *rts); 1757 1758 /** 1759 * ieee80211_rts_duration - Get the duration field for an RTS frame 1760 * @hw: pointer obtained from ieee80211_alloc_hw(). 1761 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1762 * @frame_len: the length of the frame that is going to be protected by the RTS. 1763 * @frame_txctl: &struct ieee80211_tx_info of the frame. 1764 * 1765 * If the RTS is generated in firmware, but the host system must provide 1766 * the duration field, the low-level driver uses this function to receive 1767 * the duration field value in little-endian byteorder. 1768 */ 1769 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 1770 struct ieee80211_vif *vif, size_t frame_len, 1771 const struct ieee80211_tx_info *frame_txctl); 1772 1773 /** 1774 * ieee80211_ctstoself_get - CTS-to-self frame generation function 1775 * @hw: pointer obtained from ieee80211_alloc_hw(). 1776 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1777 * @frame: pointer to the frame that is going to be protected by the CTS-to-self. 1778 * @frame_len: the frame length (in octets). 1779 * @frame_txctl: &struct ieee80211_tx_info of the frame. 1780 * @cts: The buffer where to store the CTS-to-self frame. 1781 * 1782 * If the CTS-to-self frames are generated by the host system (i.e., not in 1783 * hardware/firmware), the low-level driver uses this function to receive 1784 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible 1785 * for calling this function before and CTS-to-self frame is needed. 1786 */ 1787 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, 1788 struct ieee80211_vif *vif, 1789 const void *frame, size_t frame_len, 1790 const struct ieee80211_tx_info *frame_txctl, 1791 struct ieee80211_cts *cts); 1792 1793 /** 1794 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame 1795 * @hw: pointer obtained from ieee80211_alloc_hw(). 1796 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1797 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self. 1798 * @frame_txctl: &struct ieee80211_tx_info of the frame. 1799 * 1800 * If the CTS-to-self is generated in firmware, but the host system must provide 1801 * the duration field, the low-level driver uses this function to receive 1802 * the duration field value in little-endian byteorder. 1803 */ 1804 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 1805 struct ieee80211_vif *vif, 1806 size_t frame_len, 1807 const struct ieee80211_tx_info *frame_txctl); 1808 1809 /** 1810 * ieee80211_generic_frame_duration - Calculate the duration field for a frame 1811 * @hw: pointer obtained from ieee80211_alloc_hw(). 1812 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1813 * @frame_len: the length of the frame. 1814 * @rate: the rate at which the frame is going to be transmitted. 1815 * 1816 * Calculate the duration field of some generic frame, given its 1817 * length and transmission rate (in 100kbps). 1818 */ 1819 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 1820 struct ieee80211_vif *vif, 1821 size_t frame_len, 1822 struct ieee80211_rate *rate); 1823 1824 /** 1825 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames 1826 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1827 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1828 * 1829 * Function for accessing buffered broadcast and multicast frames. If 1830 * hardware/firmware does not implement buffering of broadcast/multicast 1831 * frames when power saving is used, 802.11 code buffers them in the host 1832 * memory. The low-level driver uses this function to fetch next buffered 1833 * frame. In most cases, this is used when generating beacon frame. This 1834 * function returns a pointer to the next buffered skb or NULL if no more 1835 * buffered frames are available. 1836 * 1837 * Note: buffered frames are returned only after DTIM beacon frame was 1838 * generated with ieee80211_beacon_get() and the low-level driver must thus 1839 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns 1840 * NULL if the previous generated beacon was not DTIM, so the low-level driver 1841 * does not need to check for DTIM beacons separately and should be able to 1842 * use common code for all beacons. 1843 */ 1844 struct sk_buff * 1845 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 1846 1847 /** 1848 * ieee80211_get_tkip_key - get a TKIP rc4 for skb 1849 * 1850 * This function computes a TKIP rc4 key for an skb. It computes 1851 * a phase 1 key if needed (iv16 wraps around). This function is to 1852 * be used by drivers which can do HW encryption but need to compute 1853 * to phase 1/2 key in SW. 1854 * 1855 * @keyconf: the parameter passed with the set key 1856 * @skb: the skb for which the key is needed 1857 * @type: TBD 1858 * @key: a buffer to which the key will be written 1859 */ 1860 void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf, 1861 struct sk_buff *skb, 1862 enum ieee80211_tkip_key_type type, u8 *key); 1863 /** 1864 * ieee80211_wake_queue - wake specific queue 1865 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1866 * @queue: queue number (counted from zero). 1867 * 1868 * Drivers should use this function instead of netif_wake_queue. 1869 */ 1870 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue); 1871 1872 /** 1873 * ieee80211_stop_queue - stop specific queue 1874 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1875 * @queue: queue number (counted from zero). 1876 * 1877 * Drivers should use this function instead of netif_stop_queue. 1878 */ 1879 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue); 1880 1881 /** 1882 * ieee80211_queue_stopped - test status of the queue 1883 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1884 * @queue: queue number (counted from zero). 1885 * 1886 * Drivers should use this function instead of netif_stop_queue. 1887 */ 1888 1889 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue); 1890 1891 /** 1892 * ieee80211_stop_queues - stop all queues 1893 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1894 * 1895 * Drivers should use this function instead of netif_stop_queue. 1896 */ 1897 void ieee80211_stop_queues(struct ieee80211_hw *hw); 1898 1899 /** 1900 * ieee80211_wake_queues - wake all queues 1901 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1902 * 1903 * Drivers should use this function instead of netif_wake_queue. 1904 */ 1905 void ieee80211_wake_queues(struct ieee80211_hw *hw); 1906 1907 /** 1908 * ieee80211_scan_completed - completed hardware scan 1909 * 1910 * When hardware scan offload is used (i.e. the hw_scan() callback is 1911 * assigned) this function needs to be called by the driver to notify 1912 * mac80211 that the scan finished. 1913 * 1914 * @hw: the hardware that finished the scan 1915 * @aborted: set to true if scan was aborted 1916 */ 1917 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted); 1918 1919 /** 1920 * ieee80211_iterate_active_interfaces - iterate active interfaces 1921 * 1922 * This function iterates over the interfaces associated with a given 1923 * hardware that are currently active and calls the callback for them. 1924 * This function allows the iterator function to sleep, when the iterator 1925 * function is atomic @ieee80211_iterate_active_interfaces_atomic can 1926 * be used. 1927 * 1928 * @hw: the hardware struct of which the interfaces should be iterated over 1929 * @iterator: the iterator function to call 1930 * @data: first argument of the iterator function 1931 */ 1932 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw, 1933 void (*iterator)(void *data, u8 *mac, 1934 struct ieee80211_vif *vif), 1935 void *data); 1936 1937 /** 1938 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces 1939 * 1940 * This function iterates over the interfaces associated with a given 1941 * hardware that are currently active and calls the callback for them. 1942 * This function requires the iterator callback function to be atomic, 1943 * if that is not desired, use @ieee80211_iterate_active_interfaces instead. 1944 * 1945 * @hw: the hardware struct of which the interfaces should be iterated over 1946 * @iterator: the iterator function to call, cannot sleep 1947 * @data: first argument of the iterator function 1948 */ 1949 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw, 1950 void (*iterator)(void *data, 1951 u8 *mac, 1952 struct ieee80211_vif *vif), 1953 void *data); 1954 1955 /** 1956 * ieee80211_queue_work - add work onto the mac80211 workqueue 1957 * 1958 * Drivers and mac80211 use this to add work onto the mac80211 workqueue. 1959 * This helper ensures drivers are not queueing work when they should not be. 1960 * 1961 * @hw: the hardware struct for the interface we are adding work for 1962 * @work: the work we want to add onto the mac80211 workqueue 1963 */ 1964 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work); 1965 1966 /** 1967 * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue 1968 * 1969 * Drivers and mac80211 use this to queue delayed work onto the mac80211 1970 * workqueue. 1971 * 1972 * @hw: the hardware struct for the interface we are adding work for 1973 * @dwork: delayable work to queue onto the mac80211 workqueue 1974 * @delay: number of jiffies to wait before queueing 1975 */ 1976 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 1977 struct delayed_work *dwork, 1978 unsigned long delay); 1979 1980 /** 1981 * ieee80211_start_tx_ba_session - Start a tx Block Ack session. 1982 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1983 * @ra: receiver address of the BA session recipient 1984 * @tid: the TID to BA on. 1985 * 1986 * Return: success if addBA request was sent, failure otherwise 1987 * 1988 * Although mac80211/low level driver/user space application can estimate 1989 * the need to start aggregation on a certain RA/TID, the session level 1990 * will be managed by the mac80211. 1991 */ 1992 int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid); 1993 1994 /** 1995 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate. 1996 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1997 * @ra: receiver address of the BA session recipient. 1998 * @tid: the TID to BA on. 1999 * 2000 * This function must be called by low level driver once it has 2001 * finished with preparations for the BA session. 2002 */ 2003 void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid); 2004 2005 /** 2006 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate. 2007 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2008 * @ra: receiver address of the BA session recipient. 2009 * @tid: the TID to BA on. 2010 * 2011 * This function must be called by low level driver once it has 2012 * finished with preparations for the BA session. 2013 * This version of the function is IRQ-safe. 2014 */ 2015 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra, 2016 u16 tid); 2017 2018 /** 2019 * ieee80211_stop_tx_ba_session - Stop a Block Ack session. 2020 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2021 * @ra: receiver address of the BA session recipient 2022 * @tid: the TID to stop BA. 2023 * @initiator: if indicates initiator DELBA frame will be sent. 2024 * 2025 * Return: error if no sta with matching da found, success otherwise 2026 * 2027 * Although mac80211/low level driver/user space application can estimate 2028 * the need to stop aggregation on a certain RA/TID, the session level 2029 * will be managed by the mac80211. 2030 */ 2031 int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw, 2032 u8 *ra, u16 tid, 2033 enum ieee80211_back_parties initiator); 2034 2035 /** 2036 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate. 2037 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2038 * @ra: receiver address of the BA session recipient. 2039 * @tid: the desired TID to BA on. 2040 * 2041 * This function must be called by low level driver once it has 2042 * finished with preparations for the BA session tear down. 2043 */ 2044 void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid); 2045 2046 /** 2047 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate. 2048 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2049 * @ra: receiver address of the BA session recipient. 2050 * @tid: the desired TID to BA on. 2051 * 2052 * This function must be called by low level driver once it has 2053 * finished with preparations for the BA session tear down. 2054 * This version of the function is IRQ-safe. 2055 */ 2056 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra, 2057 u16 tid); 2058 2059 /** 2060 * ieee80211_find_sta - find a station 2061 * 2062 * @hw: pointer as obtained from ieee80211_alloc_hw() 2063 * @addr: station's address 2064 * 2065 * This function must be called under RCU lock and the 2066 * resulting pointer is only valid under RCU lock as well. 2067 */ 2068 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw, 2069 const u8 *addr); 2070 2071 /** 2072 * ieee80211_beacon_loss - inform hardware does not receive beacons 2073 * 2074 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 2075 * 2076 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and 2077 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the 2078 * hardware is not receiving beacons with this function. 2079 */ 2080 void ieee80211_beacon_loss(struct ieee80211_vif *vif); 2081 2082 /* Rate control API */ 2083 2084 /** 2085 * enum rate_control_changed - flags to indicate which parameter changed 2086 * 2087 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have 2088 * changed, rate control algorithm can update its internal state if needed. 2089 */ 2090 enum rate_control_changed { 2091 IEEE80211_RC_HT_CHANGED = BIT(0) 2092 }; 2093 2094 /** 2095 * struct ieee80211_tx_rate_control - rate control information for/from RC algo 2096 * 2097 * @hw: The hardware the algorithm is invoked for. 2098 * @sband: The band this frame is being transmitted on. 2099 * @bss_conf: the current BSS configuration 2100 * @reported_rate: The rate control algorithm can fill this in to indicate 2101 * which rate should be reported to userspace as the current rate and 2102 * used for rate calculations in the mesh network. 2103 * @rts: whether RTS will be used for this frame because it is longer than the 2104 * RTS threshold 2105 * @short_preamble: whether mac80211 will request short-preamble transmission 2106 * if the selected rate supports it 2107 * @max_rate_idx: user-requested maximum rate (not MCS for now) 2108 * @skb: the skb that will be transmitted, the control information in it needs 2109 * to be filled in 2110 */ 2111 struct ieee80211_tx_rate_control { 2112 struct ieee80211_hw *hw; 2113 struct ieee80211_supported_band *sband; 2114 struct ieee80211_bss_conf *bss_conf; 2115 struct sk_buff *skb; 2116 struct ieee80211_tx_rate reported_rate; 2117 bool rts, short_preamble; 2118 u8 max_rate_idx; 2119 }; 2120 2121 struct rate_control_ops { 2122 struct module *module; 2123 const char *name; 2124 void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir); 2125 void (*free)(void *priv); 2126 2127 void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp); 2128 void (*rate_init)(void *priv, struct ieee80211_supported_band *sband, 2129 struct ieee80211_sta *sta, void *priv_sta); 2130 void (*rate_update)(void *priv, struct ieee80211_supported_band *sband, 2131 struct ieee80211_sta *sta, 2132 void *priv_sta, u32 changed); 2133 void (*free_sta)(void *priv, struct ieee80211_sta *sta, 2134 void *priv_sta); 2135 2136 void (*tx_status)(void *priv, struct ieee80211_supported_band *sband, 2137 struct ieee80211_sta *sta, void *priv_sta, 2138 struct sk_buff *skb); 2139 void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta, 2140 struct ieee80211_tx_rate_control *txrc); 2141 2142 void (*add_sta_debugfs)(void *priv, void *priv_sta, 2143 struct dentry *dir); 2144 void (*remove_sta_debugfs)(void *priv, void *priv_sta); 2145 }; 2146 2147 static inline int rate_supported(struct ieee80211_sta *sta, 2148 enum ieee80211_band band, 2149 int index) 2150 { 2151 return (sta == NULL || sta->supp_rates[band] & BIT(index)); 2152 } 2153 2154 /** 2155 * rate_control_send_low - helper for drivers for management/no-ack frames 2156 * 2157 * Rate control algorithms that agree to use the lowest rate to 2158 * send management frames and NO_ACK data with the respective hw 2159 * retries should use this in the beginning of their mac80211 get_rate 2160 * callback. If true is returned the rate control can simply return. 2161 * If false is returned we guarantee that sta and sta and priv_sta is 2162 * not null. 2163 * 2164 * Rate control algorithms wishing to do more intelligent selection of 2165 * rate for multicast/broadcast frames may choose to not use this. 2166 * 2167 * @sta: &struct ieee80211_sta pointer to the target destination. Note 2168 * that this may be null. 2169 * @priv_sta: private rate control structure. This may be null. 2170 * @txrc: rate control information we sholud populate for mac80211. 2171 */ 2172 bool rate_control_send_low(struct ieee80211_sta *sta, 2173 void *priv_sta, 2174 struct ieee80211_tx_rate_control *txrc); 2175 2176 2177 static inline s8 2178 rate_lowest_index(struct ieee80211_supported_band *sband, 2179 struct ieee80211_sta *sta) 2180 { 2181 int i; 2182 2183 for (i = 0; i < sband->n_bitrates; i++) 2184 if (rate_supported(sta, sband->band, i)) 2185 return i; 2186 2187 /* warn when we cannot find a rate. */ 2188 WARN_ON(1); 2189 2190 return 0; 2191 } 2192 2193 static inline 2194 bool rate_usable_index_exists(struct ieee80211_supported_band *sband, 2195 struct ieee80211_sta *sta) 2196 { 2197 unsigned int i; 2198 2199 for (i = 0; i < sband->n_bitrates; i++) 2200 if (rate_supported(sta, sband->band, i)) 2201 return true; 2202 return false; 2203 } 2204 2205 int ieee80211_rate_control_register(struct rate_control_ops *ops); 2206 void ieee80211_rate_control_unregister(struct rate_control_ops *ops); 2207 2208 static inline bool 2209 conf_is_ht20(struct ieee80211_conf *conf) 2210 { 2211 return conf->channel_type == NL80211_CHAN_HT20; 2212 } 2213 2214 static inline bool 2215 conf_is_ht40_minus(struct ieee80211_conf *conf) 2216 { 2217 return conf->channel_type == NL80211_CHAN_HT40MINUS; 2218 } 2219 2220 static inline bool 2221 conf_is_ht40_plus(struct ieee80211_conf *conf) 2222 { 2223 return conf->channel_type == NL80211_CHAN_HT40PLUS; 2224 } 2225 2226 static inline bool 2227 conf_is_ht40(struct ieee80211_conf *conf) 2228 { 2229 return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf); 2230 } 2231 2232 static inline bool 2233 conf_is_ht(struct ieee80211_conf *conf) 2234 { 2235 return conf->channel_type != NL80211_CHAN_NO_HT; 2236 } 2237 2238 #endif /* MAC80211_H */ 2239