xref: /openbmc/linux/include/net/mac80211.h (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * mac80211 <-> driver interface
3  *
4  * Copyright 2002-2005, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #ifndef MAC80211_H
14 #define MAC80211_H
15 
16 #include <linux/kernel.h>
17 #include <linux/if_ether.h>
18 #include <linux/skbuff.h>
19 #include <linux/wireless.h>
20 #include <linux/device.h>
21 #include <linux/ieee80211.h>
22 #include <net/cfg80211.h>
23 
24 /**
25  * DOC: Introduction
26  *
27  * mac80211 is the Linux stack for 802.11 hardware that implements
28  * only partial functionality in hard- or firmware. This document
29  * defines the interface between mac80211 and low-level hardware
30  * drivers.
31  */
32 
33 /**
34  * DOC: Calling mac80211 from interrupts
35  *
36  * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37  * called in hardware interrupt context. The low-level driver must not call any
38  * other functions in hardware interrupt context. If there is a need for such
39  * call, the low-level driver should first ACK the interrupt and perform the
40  * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41  * tasklet function.
42  *
43  * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44  *	 use the non-IRQ-safe functions!
45  */
46 
47 /**
48  * DOC: Warning
49  *
50  * If you're reading this document and not the header file itself, it will
51  * be incomplete because not all documentation has been converted yet.
52  */
53 
54 /**
55  * DOC: Frame format
56  *
57  * As a general rule, when frames are passed between mac80211 and the driver,
58  * they start with the IEEE 802.11 header and include the same octets that are
59  * sent over the air except for the FCS which should be calculated by the
60  * hardware.
61  *
62  * There are, however, various exceptions to this rule for advanced features:
63  *
64  * The first exception is for hardware encryption and decryption offload
65  * where the IV/ICV may or may not be generated in hardware.
66  *
67  * Secondly, when the hardware handles fragmentation, the frame handed to
68  * the driver from mac80211 is the MSDU, not the MPDU.
69  *
70  * Finally, for received frames, the driver is able to indicate that it has
71  * filled a radiotap header and put that in front of the frame; if it does
72  * not do so then mac80211 may add this under certain circumstances.
73  */
74 
75 /**
76  * DOC: mac80211 workqueue
77  *
78  * mac80211 provides its own workqueue for drivers and internal mac80211 use.
79  * The workqueue is a single threaded workqueue and can only be accessed by
80  * helpers for sanity checking. Drivers must ensure all work added onto the
81  * mac80211 workqueue should be cancelled on the driver stop() callback.
82  *
83  * mac80211 will flushed the workqueue upon interface removal and during
84  * suspend.
85  *
86  * All work performed on the mac80211 workqueue must not acquire the RTNL lock.
87  *
88  */
89 
90 /**
91  * enum ieee80211_max_queues - maximum number of queues
92  *
93  * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
94  */
95 enum ieee80211_max_queues {
96 	IEEE80211_MAX_QUEUES =		4,
97 };
98 
99 /**
100  * enum ieee80211_ac_numbers - AC numbers as used in mac80211
101  * @IEEE80211_AC_VO: voice
102  * @IEEE80211_AC_VI: video
103  * @IEEE80211_AC_BE: best effort
104  * @IEEE80211_AC_BK: background
105  */
106 enum ieee80211_ac_numbers {
107 	IEEE80211_AC_VO		= 0,
108 	IEEE80211_AC_VI		= 1,
109 	IEEE80211_AC_BE		= 2,
110 	IEEE80211_AC_BK		= 3,
111 };
112 
113 /**
114  * struct ieee80211_tx_queue_params - transmit queue configuration
115  *
116  * The information provided in this structure is required for QoS
117  * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
118  *
119  * @aifs: arbitration interframe space [0..255]
120  * @cw_min: minimum contention window [a value of the form
121  *	2^n-1 in the range 1..32767]
122  * @cw_max: maximum contention window [like @cw_min]
123  * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
124  * @uapsd: is U-APSD mode enabled for the queue
125  */
126 struct ieee80211_tx_queue_params {
127 	u16 txop;
128 	u16 cw_min;
129 	u16 cw_max;
130 	u8 aifs;
131 	bool uapsd;
132 };
133 
134 struct ieee80211_low_level_stats {
135 	unsigned int dot11ACKFailureCount;
136 	unsigned int dot11RTSFailureCount;
137 	unsigned int dot11FCSErrorCount;
138 	unsigned int dot11RTSSuccessCount;
139 };
140 
141 /**
142  * enum ieee80211_bss_change - BSS change notification flags
143  *
144  * These flags are used with the bss_info_changed() callback
145  * to indicate which BSS parameter changed.
146  *
147  * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
148  *	also implies a change in the AID.
149  * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
150  * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
151  * @BSS_CHANGED_ERP_SLOT: slot timing changed
152  * @BSS_CHANGED_HT: 802.11n parameters changed
153  * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
154  * @BSS_CHANGED_BEACON_INT: Beacon interval changed
155  * @BSS_CHANGED_BSSID: BSSID changed, for whatever
156  *	reason (IBSS and managed mode)
157  * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
158  *	new beacon (beaconing modes)
159  * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
160  *	enabled/disabled (beaconing modes)
161  * @BSS_CHANGED_CQM: Connection quality monitor config changed
162  * @BSS_CHANGED_IBSS: IBSS join status changed
163  * @BSS_CHANGED_ARP_FILTER: Hardware ARP filter address list or state changed.
164  * @BSS_CHANGED_QOS: QoS for this association was enabled/disabled. Note
165  *	that it is only ever disabled for station mode.
166  * @BSS_CHANGED_IDLE: Idle changed for this BSS/interface.
167  */
168 enum ieee80211_bss_change {
169 	BSS_CHANGED_ASSOC		= 1<<0,
170 	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
171 	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
172 	BSS_CHANGED_ERP_SLOT		= 1<<3,
173 	BSS_CHANGED_HT                  = 1<<4,
174 	BSS_CHANGED_BASIC_RATES		= 1<<5,
175 	BSS_CHANGED_BEACON_INT		= 1<<6,
176 	BSS_CHANGED_BSSID		= 1<<7,
177 	BSS_CHANGED_BEACON		= 1<<8,
178 	BSS_CHANGED_BEACON_ENABLED	= 1<<9,
179 	BSS_CHANGED_CQM			= 1<<10,
180 	BSS_CHANGED_IBSS		= 1<<11,
181 	BSS_CHANGED_ARP_FILTER		= 1<<12,
182 	BSS_CHANGED_QOS			= 1<<13,
183 	BSS_CHANGED_IDLE		= 1<<14,
184 
185 	/* when adding here, make sure to change ieee80211_reconfig */
186 };
187 
188 /*
189  * The maximum number of IPv4 addresses listed for ARP filtering. If the number
190  * of addresses for an interface increase beyond this value, hardware ARP
191  * filtering will be disabled.
192  */
193 #define IEEE80211_BSS_ARP_ADDR_LIST_LEN 4
194 
195 /**
196  * struct ieee80211_bss_conf - holds the BSS's changing parameters
197  *
198  * This structure keeps information about a BSS (and an association
199  * to that BSS) that can change during the lifetime of the BSS.
200  *
201  * @assoc: association status
202  * @ibss_joined: indicates whether this station is part of an IBSS
203  *	or not
204  * @aid: association ID number, valid only when @assoc is true
205  * @use_cts_prot: use CTS protection
206  * @use_short_preamble: use 802.11b short preamble;
207  *	if the hardware cannot handle this it must set the
208  *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
209  * @use_short_slot: use short slot time (only relevant for ERP);
210  *	if the hardware cannot handle this it must set the
211  *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
212  * @dtim_period: num of beacons before the next DTIM, for beaconing,
213  *	valid in station mode only while @assoc is true and if also
214  *	requested by %IEEE80211_HW_NEED_DTIM_PERIOD (cf. also hw conf
215  *	@ps_dtim_period)
216  * @timestamp: beacon timestamp
217  * @beacon_int: beacon interval
218  * @assoc_capability: capabilities taken from assoc resp
219  * @basic_rates: bitmap of basic rates, each bit stands for an
220  *	index into the rate table configured by the driver in
221  *	the current band.
222  * @mcast_rate: per-band multicast rate index + 1 (0: disabled)
223  * @bssid: The BSSID for this BSS
224  * @enable_beacon: whether beaconing should be enabled or not
225  * @channel_type: Channel type for this BSS -- the hardware might be
226  *	configured for HT40+ while this BSS only uses no-HT, for
227  *	example.
228  * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
229  *	This field is only valid when the channel type is one of the HT types.
230  * @cqm_rssi_thold: Connection quality monitor RSSI threshold, a zero value
231  *	implies disabled
232  * @cqm_rssi_hyst: Connection quality monitor RSSI hysteresis
233  * @arp_addr_list: List of IPv4 addresses for hardware ARP filtering. The
234  *	may filter ARP queries targeted for other addresses than listed here.
235  *	The driver must allow ARP queries targeted for all address listed here
236  *	to pass through. An empty list implies no ARP queries need to pass.
237  * @arp_addr_cnt: Number of addresses currently on the list.
238  * @arp_filter_enabled: Enable ARP filtering - if enabled, the hardware may
239  *	filter ARP queries based on the @arp_addr_list, if disabled, the
240  *	hardware must not perform any ARP filtering. Note, that the filter will
241  *	be enabled also in promiscuous mode.
242  * @qos: This is a QoS-enabled BSS.
243  * @idle: This interface is idle. There's also a global idle flag in the
244  *	hardware config which may be more appropriate depending on what
245  *	your driver/device needs to do.
246  */
247 struct ieee80211_bss_conf {
248 	const u8 *bssid;
249 	/* association related data */
250 	bool assoc, ibss_joined;
251 	u16 aid;
252 	/* erp related data */
253 	bool use_cts_prot;
254 	bool use_short_preamble;
255 	bool use_short_slot;
256 	bool enable_beacon;
257 	u8 dtim_period;
258 	u16 beacon_int;
259 	u16 assoc_capability;
260 	u64 timestamp;
261 	u32 basic_rates;
262 	int mcast_rate[IEEE80211_NUM_BANDS];
263 	u16 ht_operation_mode;
264 	s32 cqm_rssi_thold;
265 	u32 cqm_rssi_hyst;
266 	enum nl80211_channel_type channel_type;
267 	__be32 arp_addr_list[IEEE80211_BSS_ARP_ADDR_LIST_LEN];
268 	u8 arp_addr_cnt;
269 	bool arp_filter_enabled;
270 	bool qos;
271 	bool idle;
272 };
273 
274 /**
275  * enum mac80211_tx_control_flags - flags to describe transmission information/status
276  *
277  * These flags are used with the @flags member of &ieee80211_tx_info.
278  *
279  * @IEEE80211_TX_CTL_REQ_TX_STATUS: require TX status callback for this frame.
280  * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
281  *	number to this frame, taking care of not overwriting the fragment
282  *	number and increasing the sequence number only when the
283  *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
284  *	assign sequence numbers to QoS-data frames but cannot do so correctly
285  *	for non-QoS-data and management frames because beacons need them from
286  *	that counter as well and mac80211 cannot guarantee proper sequencing.
287  *	If this flag is set, the driver should instruct the hardware to
288  *	assign a sequence number to the frame or assign one itself. Cf. IEEE
289  *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
290  *	beacons and always be clear for frames without a sequence number field.
291  * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
292  * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
293  *	station
294  * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
295  * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
296  * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
297  * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
298  * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
299  *	because the destination STA was in powersave mode. Note that to
300  *	avoid race conditions, the filter must be set by the hardware or
301  *	firmware upon receiving a frame that indicates that the station
302  *	went to sleep (must be done on device to filter frames already on
303  *	the queue) and may only be unset after mac80211 gives the OK for
304  *	that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above),
305  *	since only then is it guaranteed that no more frames are in the
306  *	hardware queue.
307  * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
308  * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
309  * 	is for the whole aggregation.
310  * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
311  * 	so consider using block ack request (BAR).
312  * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
313  *	set by rate control algorithms to indicate probe rate, will
314  *	be cleared for fragmented frames (except on the last fragment)
315  * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
316  *	used to indicate that a pending frame requires TX processing before
317  *	it can be sent out.
318  * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211,
319  *	used to indicate that a frame was already retried due to PS
320  * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211,
321  *	used to indicate frame should not be encrypted
322  * @IEEE80211_TX_CTL_PSPOLL_RESPONSE: (internal?)
323  *	This frame is a response to a PS-poll frame and should be sent
324  *	although the station is in powersave mode.
325  * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the
326  *	transmit function after the current frame, this can be used
327  *	by drivers to kick the DMA queue only if unset or when the
328  *	queue gets full.
329  * @IEEE80211_TX_INTFL_RETRANSMISSION: This frame is being retransmitted
330  *	after TX status because the destination was asleep, it must not
331  *	be modified again (no seqno assignment, crypto, etc.)
332  * @IEEE80211_TX_INTFL_HAS_RADIOTAP: This frame was injected and still
333  *	has a radiotap header at skb->data.
334  * @IEEE80211_TX_INTFL_NL80211_FRAME_TX: Frame was requested through nl80211
335  *	MLME command (internal to mac80211 to figure out whether to send TX
336  *	status to user space)
337  * @IEEE80211_TX_CTL_LDPC: tells the driver to use LDPC for this frame
338  * @IEEE80211_TX_CTL_STBC: Enables Space-Time Block Coding (STBC) for this
339  *	frame and selects the maximum number of streams that it can use.
340  * @IEEE80211_TX_CTL_TX_OFFCHAN: Marks this packet to be transmitted on
341  *	the off-channel channel when a remain-on-channel offload is done
342  *	in hardware -- normal packets still flow and are expected to be
343  *	handled properly by the device.
344  *
345  * Note: If you have to add new flags to the enumeration, then don't
346  *	 forget to update %IEEE80211_TX_TEMPORARY_FLAGS when necessary.
347  */
348 enum mac80211_tx_control_flags {
349 	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
350 	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
351 	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
352 	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
353 	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
354 	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
355 	IEEE80211_TX_CTL_AMPDU			= BIT(6),
356 	IEEE80211_TX_CTL_INJECTED		= BIT(7),
357 	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
358 	IEEE80211_TX_STAT_ACK			= BIT(9),
359 	IEEE80211_TX_STAT_AMPDU			= BIT(10),
360 	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
361 	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
362 	IEEE80211_TX_INTFL_NEED_TXPROCESSING	= BIT(14),
363 	IEEE80211_TX_INTFL_RETRIED		= BIT(15),
364 	IEEE80211_TX_INTFL_DONT_ENCRYPT		= BIT(16),
365 	IEEE80211_TX_CTL_PSPOLL_RESPONSE	= BIT(17),
366 	IEEE80211_TX_CTL_MORE_FRAMES		= BIT(18),
367 	IEEE80211_TX_INTFL_RETRANSMISSION	= BIT(19),
368 	IEEE80211_TX_INTFL_HAS_RADIOTAP		= BIT(20),
369 	IEEE80211_TX_INTFL_NL80211_FRAME_TX	= BIT(21),
370 	IEEE80211_TX_CTL_LDPC			= BIT(22),
371 	IEEE80211_TX_CTL_STBC			= BIT(23) | BIT(24),
372 	IEEE80211_TX_CTL_TX_OFFCHAN		= BIT(25),
373 };
374 
375 #define IEEE80211_TX_CTL_STBC_SHIFT		23
376 
377 /*
378  * This definition is used as a mask to clear all temporary flags, which are
379  * set by the tx handlers for each transmission attempt by the mac80211 stack.
380  */
381 #define IEEE80211_TX_TEMPORARY_FLAGS (IEEE80211_TX_CTL_NO_ACK |		      \
382 	IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT |    \
383 	IEEE80211_TX_CTL_SEND_AFTER_DTIM | IEEE80211_TX_CTL_AMPDU |	      \
384 	IEEE80211_TX_STAT_TX_FILTERED |	IEEE80211_TX_STAT_ACK |		      \
385 	IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_STAT_AMPDU_NO_BACK |	      \
386 	IEEE80211_TX_CTL_RATE_CTRL_PROBE | IEEE80211_TX_CTL_PSPOLL_RESPONSE | \
387 	IEEE80211_TX_CTL_MORE_FRAMES | IEEE80211_TX_CTL_LDPC |		      \
388 	IEEE80211_TX_CTL_STBC)
389 
390 /**
391  * enum mac80211_rate_control_flags - per-rate flags set by the
392  *	Rate Control algorithm.
393  *
394  * These flags are set by the Rate control algorithm for each rate during tx,
395  * in the @flags member of struct ieee80211_tx_rate.
396  *
397  * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
398  * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
399  *	This is set if the current BSS requires ERP protection.
400  * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
401  * @IEEE80211_TX_RC_MCS: HT rate.
402  * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
403  *	Greenfield mode.
404  * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
405  * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
406  *	adjacent 20 MHz channels, if the current channel type is
407  *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
408  * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
409  */
410 enum mac80211_rate_control_flags {
411 	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
412 	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
413 	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
414 
415 	/* rate index is an MCS rate number instead of an index */
416 	IEEE80211_TX_RC_MCS			= BIT(3),
417 	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
418 	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
419 	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
420 	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
421 };
422 
423 
424 /* there are 40 bytes if you don't need the rateset to be kept */
425 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
426 
427 /* if you do need the rateset, then you have less space */
428 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
429 
430 /* maximum number of rate stages */
431 #define IEEE80211_TX_MAX_RATES	5
432 
433 /**
434  * struct ieee80211_tx_rate - rate selection/status
435  *
436  * @idx: rate index to attempt to send with
437  * @flags: rate control flags (&enum mac80211_rate_control_flags)
438  * @count: number of tries in this rate before going to the next rate
439  *
440  * A value of -1 for @idx indicates an invalid rate and, if used
441  * in an array of retry rates, that no more rates should be tried.
442  *
443  * When used for transmit status reporting, the driver should
444  * always report the rate along with the flags it used.
445  *
446  * &struct ieee80211_tx_info contains an array of these structs
447  * in the control information, and it will be filled by the rate
448  * control algorithm according to what should be sent. For example,
449  * if this array contains, in the format { <idx>, <count> } the
450  * information
451  *    { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 }
452  * then this means that the frame should be transmitted
453  * up to twice at rate 3, up to twice at rate 2, and up to four
454  * times at rate 1 if it doesn't get acknowledged. Say it gets
455  * acknowledged by the peer after the fifth attempt, the status
456  * information should then contain
457  *   { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ...
458  * since it was transmitted twice at rate 3, twice at rate 2
459  * and once at rate 1 after which we received an acknowledgement.
460  */
461 struct ieee80211_tx_rate {
462 	s8 idx;
463 	u8 count;
464 	u8 flags;
465 } __packed;
466 
467 /**
468  * struct ieee80211_tx_info - skb transmit information
469  *
470  * This structure is placed in skb->cb for three uses:
471  *  (1) mac80211 TX control - mac80211 tells the driver what to do
472  *  (2) driver internal use (if applicable)
473  *  (3) TX status information - driver tells mac80211 what happened
474  *
475  * The TX control's sta pointer is only valid during the ->tx call,
476  * it may be NULL.
477  *
478  * @flags: transmit info flags, defined above
479  * @band: the band to transmit on (use for checking for races)
480  * @antenna_sel_tx: antenna to use, 0 for automatic diversity
481  * @pad: padding, ignore
482  * @control: union for control data
483  * @status: union for status data
484  * @driver_data: array of driver_data pointers
485  * @ampdu_ack_len: number of acked aggregated frames.
486  * 	relevant only if IEEE80211_TX_STAT_AMPDU was set.
487  * @ampdu_len: number of aggregated frames.
488  * 	relevant only if IEEE80211_TX_STAT_AMPDU was set.
489  * @ack_signal: signal strength of the ACK frame
490  */
491 struct ieee80211_tx_info {
492 	/* common information */
493 	u32 flags;
494 	u8 band;
495 
496 	u8 antenna_sel_tx;
497 
498 	/* 2 byte hole */
499 	u8 pad[2];
500 
501 	union {
502 		struct {
503 			union {
504 				/* rate control */
505 				struct {
506 					struct ieee80211_tx_rate rates[
507 						IEEE80211_TX_MAX_RATES];
508 					s8 rts_cts_rate_idx;
509 				};
510 				/* only needed before rate control */
511 				unsigned long jiffies;
512 			};
513 			/* NB: vif can be NULL for injected frames */
514 			struct ieee80211_vif *vif;
515 			struct ieee80211_key_conf *hw_key;
516 			struct ieee80211_sta *sta;
517 		} control;
518 		struct {
519 			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
520 			u8 ampdu_ack_len;
521 			int ack_signal;
522 			u8 ampdu_len;
523 			/* 15 bytes free */
524 		} status;
525 		struct {
526 			struct ieee80211_tx_rate driver_rates[
527 				IEEE80211_TX_MAX_RATES];
528 			void *rate_driver_data[
529 				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
530 		};
531 		void *driver_data[
532 			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
533 	};
534 };
535 
536 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
537 {
538 	return (struct ieee80211_tx_info *)skb->cb;
539 }
540 
541 static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb)
542 {
543 	return (struct ieee80211_rx_status *)skb->cb;
544 }
545 
546 /**
547  * ieee80211_tx_info_clear_status - clear TX status
548  *
549  * @info: The &struct ieee80211_tx_info to be cleared.
550  *
551  * When the driver passes an skb back to mac80211, it must report
552  * a number of things in TX status. This function clears everything
553  * in the TX status but the rate control information (it does clear
554  * the count since you need to fill that in anyway).
555  *
556  * NOTE: You can only use this function if you do NOT use
557  *	 info->driver_data! Use info->rate_driver_data
558  *	 instead if you need only the less space that allows.
559  */
560 static inline void
561 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
562 {
563 	int i;
564 
565 	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
566 		     offsetof(struct ieee80211_tx_info, control.rates));
567 	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
568 		     offsetof(struct ieee80211_tx_info, driver_rates));
569 	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
570 	/* clear the rate counts */
571 	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
572 		info->status.rates[i].count = 0;
573 
574 	BUILD_BUG_ON(
575 	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
576 	memset(&info->status.ampdu_ack_len, 0,
577 	       sizeof(struct ieee80211_tx_info) -
578 	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
579 }
580 
581 
582 /**
583  * enum mac80211_rx_flags - receive flags
584  *
585  * These flags are used with the @flag member of &struct ieee80211_rx_status.
586  * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
587  *	Use together with %RX_FLAG_MMIC_STRIPPED.
588  * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
589  * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
590  *	verification has been done by the hardware.
591  * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
592  *	If this flag is set, the stack cannot do any replay detection
593  *	hence the driver or hardware will have to do that.
594  * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
595  *	the frame.
596  * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
597  *	the frame.
598  * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
599  *	is valid. This is useful in monitor mode and necessary for beacon frames
600  *	to enable IBSS merging.
601  * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
602  * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
603  * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
604  * @RX_FLAG_SHORT_GI: Short guard interval was used
605  */
606 enum mac80211_rx_flags {
607 	RX_FLAG_MMIC_ERROR	= 1<<0,
608 	RX_FLAG_DECRYPTED	= 1<<1,
609 	RX_FLAG_MMIC_STRIPPED	= 1<<3,
610 	RX_FLAG_IV_STRIPPED	= 1<<4,
611 	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
612 	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
613 	RX_FLAG_TSFT		= 1<<7,
614 	RX_FLAG_SHORTPRE	= 1<<8,
615 	RX_FLAG_HT		= 1<<9,
616 	RX_FLAG_40MHZ		= 1<<10,
617 	RX_FLAG_SHORT_GI	= 1<<11,
618 };
619 
620 /**
621  * struct ieee80211_rx_status - receive status
622  *
623  * The low-level driver should provide this information (the subset
624  * supported by hardware) to the 802.11 code with each received
625  * frame, in the skb's control buffer (cb).
626  *
627  * @mactime: value in microseconds of the 64-bit Time Synchronization Function
628  * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
629  * @band: the active band when this frame was received
630  * @freq: frequency the radio was tuned to when receiving this frame, in MHz
631  * @signal: signal strength when receiving this frame, either in dBm, in dB or
632  *	unspecified depending on the hardware capabilities flags
633  *	@IEEE80211_HW_SIGNAL_*
634  * @antenna: antenna used
635  * @rate_idx: index of data rate into band's supported rates or MCS index if
636  *	HT rates are use (RX_FLAG_HT)
637  * @flag: %RX_FLAG_*
638  * @rx_flags: internal RX flags for mac80211
639  */
640 struct ieee80211_rx_status {
641 	u64 mactime;
642 	enum ieee80211_band band;
643 	int freq;
644 	int signal;
645 	int antenna;
646 	int rate_idx;
647 	int flag;
648 	unsigned int rx_flags;
649 };
650 
651 /**
652  * enum ieee80211_conf_flags - configuration flags
653  *
654  * Flags to define PHY configuration options
655  *
656  * @IEEE80211_CONF_MONITOR: there's a monitor interface present -- use this
657  *	to determine for example whether to calculate timestamps for packets
658  *	or not, do not use instead of filter flags!
659  * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only).
660  *	This is the power save mode defined by IEEE 802.11-2007 section 11.2,
661  *	meaning that the hardware still wakes up for beacons, is able to
662  *	transmit frames and receive the possible acknowledgment frames.
663  *	Not to be confused with hardware specific wakeup/sleep states,
664  *	driver is responsible for that. See the section "Powersave support"
665  *	for more.
666  * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
667  *	the driver should be prepared to handle configuration requests but
668  *	may turn the device off as much as possible. Typically, this flag will
669  *	be set when an interface is set UP but not associated or scanning, but
670  *	it can also be unset in that case when monitor interfaces are active.
671  * @IEEE80211_CONF_OFFCHANNEL: The device is currently not on its main
672  *	operating channel.
673  */
674 enum ieee80211_conf_flags {
675 	IEEE80211_CONF_MONITOR		= (1<<0),
676 	IEEE80211_CONF_PS		= (1<<1),
677 	IEEE80211_CONF_IDLE		= (1<<2),
678 	IEEE80211_CONF_OFFCHANNEL	= (1<<3),
679 };
680 
681 
682 /**
683  * enum ieee80211_conf_changed - denotes which configuration changed
684  *
685  * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
686  * @IEEE80211_CONF_CHANGE_MONITOR: the monitor flag changed
687  * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
688  * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
689  * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
690  * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
691  * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
692  * @IEEE80211_CONF_CHANGE_SMPS: Spatial multiplexing powersave mode changed
693  */
694 enum ieee80211_conf_changed {
695 	IEEE80211_CONF_CHANGE_SMPS		= BIT(1),
696 	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
697 	IEEE80211_CONF_CHANGE_MONITOR		= BIT(3),
698 	IEEE80211_CONF_CHANGE_PS		= BIT(4),
699 	IEEE80211_CONF_CHANGE_POWER		= BIT(5),
700 	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(6),
701 	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(7),
702 	IEEE80211_CONF_CHANGE_IDLE		= BIT(8),
703 };
704 
705 /**
706  * enum ieee80211_smps_mode - spatial multiplexing power save mode
707  *
708  * @IEEE80211_SMPS_AUTOMATIC: automatic
709  * @IEEE80211_SMPS_OFF: off
710  * @IEEE80211_SMPS_STATIC: static
711  * @IEEE80211_SMPS_DYNAMIC: dynamic
712  * @IEEE80211_SMPS_NUM_MODES: internal, don't use
713  */
714 enum ieee80211_smps_mode {
715 	IEEE80211_SMPS_AUTOMATIC,
716 	IEEE80211_SMPS_OFF,
717 	IEEE80211_SMPS_STATIC,
718 	IEEE80211_SMPS_DYNAMIC,
719 
720 	/* keep last */
721 	IEEE80211_SMPS_NUM_MODES,
722 };
723 
724 /**
725  * struct ieee80211_conf - configuration of the device
726  *
727  * This struct indicates how the driver shall configure the hardware.
728  *
729  * @flags: configuration flags defined above
730  *
731  * @listen_interval: listen interval in units of beacon interval
732  * @max_sleep_period: the maximum number of beacon intervals to sleep for
733  *	before checking the beacon for a TIM bit (managed mode only); this
734  *	value will be only achievable between DTIM frames, the hardware
735  *	needs to check for the multicast traffic bit in DTIM beacons.
736  *	This variable is valid only when the CONF_PS flag is set.
737  * @ps_dtim_period: The DTIM period of the AP we're connected to, for use
738  *	in power saving. Power saving will not be enabled until a beacon
739  *	has been received and the DTIM period is known.
740  * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
741  *	powersave documentation below. This variable is valid only when
742  *	the CONF_PS flag is set.
743  *
744  * @power_level: requested transmit power (in dBm)
745  *
746  * @channel: the channel to tune to
747  * @channel_type: the channel (HT) type
748  *
749  * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
750  *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
751  *    but actually means the number of transmissions not the number of retries
752  * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
753  *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
754  *    number of transmissions not the number of retries
755  *
756  * @smps_mode: spatial multiplexing powersave mode; note that
757  *	%IEEE80211_SMPS_STATIC is used when the device is not
758  *	configured for an HT channel
759  */
760 struct ieee80211_conf {
761 	u32 flags;
762 	int power_level, dynamic_ps_timeout;
763 	int max_sleep_period;
764 
765 	u16 listen_interval;
766 	u8 ps_dtim_period;
767 
768 	u8 long_frame_max_tx_count, short_frame_max_tx_count;
769 
770 	struct ieee80211_channel *channel;
771 	enum nl80211_channel_type channel_type;
772 	enum ieee80211_smps_mode smps_mode;
773 };
774 
775 /**
776  * struct ieee80211_channel_switch - holds the channel switch data
777  *
778  * The information provided in this structure is required for channel switch
779  * operation.
780  *
781  * @timestamp: value in microseconds of the 64-bit Time Synchronization
782  *	Function (TSF) timer when the frame containing the channel switch
783  *	announcement was received. This is simply the rx.mactime parameter
784  *	the driver passed into mac80211.
785  * @block_tx: Indicates whether transmission must be blocked before the
786  *	scheduled channel switch, as indicated by the AP.
787  * @channel: the new channel to switch to
788  * @count: the number of TBTT's until the channel switch event
789  */
790 struct ieee80211_channel_switch {
791 	u64 timestamp;
792 	bool block_tx;
793 	struct ieee80211_channel *channel;
794 	u8 count;
795 };
796 
797 /**
798  * struct ieee80211_vif - per-interface data
799  *
800  * Data in this structure is continually present for driver
801  * use during the life of a virtual interface.
802  *
803  * @type: type of this virtual interface
804  * @bss_conf: BSS configuration for this interface, either our own
805  *	or the BSS we're associated to
806  * @addr: address of this interface
807  * @p2p: indicates whether this AP or STA interface is a p2p
808  *	interface, i.e. a GO or p2p-sta respectively
809  * @drv_priv: data area for driver use, will always be aligned to
810  *	sizeof(void *).
811  */
812 struct ieee80211_vif {
813 	enum nl80211_iftype type;
814 	struct ieee80211_bss_conf bss_conf;
815 	u8 addr[ETH_ALEN];
816 	bool p2p;
817 	/* must be last */
818 	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
819 };
820 
821 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
822 {
823 #ifdef CONFIG_MAC80211_MESH
824 	return vif->type == NL80211_IFTYPE_MESH_POINT;
825 #endif
826 	return false;
827 }
828 
829 /**
830  * enum ieee80211_key_flags - key flags
831  *
832  * These flags are used for communication about keys between the driver
833  * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
834  *
835  * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
836  *	that the STA this key will be used with could be using QoS.
837  * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
838  *	driver to indicate that it requires IV generation for this
839  *	particular key.
840  * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
841  *	the driver for a TKIP key if it requires Michael MIC
842  *	generation in software.
843  * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
844  *	that the key is pairwise rather then a shared key.
845  * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
846  *	CCMP key if it requires CCMP encryption of management frames (MFP) to
847  *	be done in software.
848  */
849 enum ieee80211_key_flags {
850 	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
851 	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
852 	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
853 	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
854 	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
855 };
856 
857 /**
858  * struct ieee80211_key_conf - key information
859  *
860  * This key information is given by mac80211 to the driver by
861  * the set_key() callback in &struct ieee80211_ops.
862  *
863  * @hw_key_idx: To be set by the driver, this is the key index the driver
864  *	wants to be given when a frame is transmitted and needs to be
865  *	encrypted in hardware.
866  * @cipher: The key's cipher suite selector.
867  * @flags: key flags, see &enum ieee80211_key_flags.
868  * @keyidx: the key index (0-3)
869  * @keylen: key material length
870  * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
871  * 	data block:
872  * 	- Temporal Encryption Key (128 bits)
873  * 	- Temporal Authenticator Tx MIC Key (64 bits)
874  * 	- Temporal Authenticator Rx MIC Key (64 bits)
875  * @icv_len: The ICV length for this key type
876  * @iv_len: The IV length for this key type
877  */
878 struct ieee80211_key_conf {
879 	u32 cipher;
880 	u8 icv_len;
881 	u8 iv_len;
882 	u8 hw_key_idx;
883 	u8 flags;
884 	s8 keyidx;
885 	u8 keylen;
886 	u8 key[0];
887 };
888 
889 /**
890  * enum set_key_cmd - key command
891  *
892  * Used with the set_key() callback in &struct ieee80211_ops, this
893  * indicates whether a key is being removed or added.
894  *
895  * @SET_KEY: a key is set
896  * @DISABLE_KEY: a key must be disabled
897  */
898 enum set_key_cmd {
899 	SET_KEY, DISABLE_KEY,
900 };
901 
902 /**
903  * struct ieee80211_sta - station table entry
904  *
905  * A station table entry represents a station we are possibly
906  * communicating with. Since stations are RCU-managed in
907  * mac80211, any ieee80211_sta pointer you get access to must
908  * either be protected by rcu_read_lock() explicitly or implicitly,
909  * or you must take good care to not use such a pointer after a
910  * call to your sta_remove callback that removed it.
911  *
912  * @addr: MAC address
913  * @aid: AID we assigned to the station if we're an AP
914  * @supp_rates: Bitmap of supported rates (per band)
915  * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
916  * @drv_priv: data area for driver use, will always be aligned to
917  *	sizeof(void *), size is determined in hw information.
918  */
919 struct ieee80211_sta {
920 	u32 supp_rates[IEEE80211_NUM_BANDS];
921 	u8 addr[ETH_ALEN];
922 	u16 aid;
923 	struct ieee80211_sta_ht_cap ht_cap;
924 
925 	/* must be last */
926 	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
927 };
928 
929 /**
930  * enum sta_notify_cmd - sta notify command
931  *
932  * Used with the sta_notify() callback in &struct ieee80211_ops, this
933  * indicates if an associated station made a power state transition.
934  *
935  * @STA_NOTIFY_SLEEP: a station is now sleeping
936  * @STA_NOTIFY_AWAKE: a sleeping station woke up
937  */
938 enum sta_notify_cmd {
939 	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
940 };
941 
942 /**
943  * enum ieee80211_tkip_key_type - get tkip key
944  *
945  * Used by drivers which need to get a tkip key for skb. Some drivers need a
946  * phase 1 key, others need a phase 2 key. A single function allows the driver
947  * to get the key, this enum indicates what type of key is required.
948  *
949  * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
950  * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
951  */
952 enum ieee80211_tkip_key_type {
953 	IEEE80211_TKIP_P1_KEY,
954 	IEEE80211_TKIP_P2_KEY,
955 };
956 
957 /**
958  * enum ieee80211_hw_flags - hardware flags
959  *
960  * These flags are used to indicate hardware capabilities to
961  * the stack. Generally, flags here should have their meaning
962  * done in a way that the simplest hardware doesn't need setting
963  * any particular flags. There are some exceptions to this rule,
964  * however, so you are advised to review these flags carefully.
965  *
966  * @IEEE80211_HW_HAS_RATE_CONTROL:
967  *	The hardware or firmware includes rate control, and cannot be
968  *	controlled by the stack. As such, no rate control algorithm
969  *	should be instantiated, and the TX rate reported to userspace
970  *	will be taken from the TX status instead of the rate control
971  *	algorithm.
972  *	Note that this requires that the driver implement a number of
973  *	callbacks so it has the correct information, it needs to have
974  *	the @set_rts_threshold callback and must look at the BSS config
975  *	@use_cts_prot for G/N protection, @use_short_slot for slot
976  *	timing in 2.4 GHz and @use_short_preamble for preambles for
977  *	CCK frames.
978  *
979  * @IEEE80211_HW_RX_INCLUDES_FCS:
980  *	Indicates that received frames passed to the stack include
981  *	the FCS at the end.
982  *
983  * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
984  *	Some wireless LAN chipsets buffer broadcast/multicast frames
985  *	for power saving stations in the hardware/firmware and others
986  *	rely on the host system for such buffering. This option is used
987  *	to configure the IEEE 802.11 upper layer to buffer broadcast and
988  *	multicast frames when there are power saving stations so that
989  *	the driver can fetch them with ieee80211_get_buffered_bc().
990  *
991  * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
992  *	Hardware is not capable of short slot operation on the 2.4 GHz band.
993  *
994  * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
995  *	Hardware is not capable of receiving frames with short preamble on
996  *	the 2.4 GHz band.
997  *
998  * @IEEE80211_HW_SIGNAL_UNSPEC:
999  *	Hardware can provide signal values but we don't know its units. We
1000  *	expect values between 0 and @max_signal.
1001  *	If possible please provide dB or dBm instead.
1002  *
1003  * @IEEE80211_HW_SIGNAL_DBM:
1004  *	Hardware gives signal values in dBm, decibel difference from
1005  *	one milliwatt. This is the preferred method since it is standardized
1006  *	between different devices. @max_signal does not need to be set.
1007  *
1008  * @IEEE80211_HW_SPECTRUM_MGMT:
1009  * 	Hardware supports spectrum management defined in 802.11h
1010  * 	Measurement, Channel Switch, Quieting, TPC
1011  *
1012  * @IEEE80211_HW_AMPDU_AGGREGATION:
1013  *	Hardware supports 11n A-MPDU aggregation.
1014  *
1015  * @IEEE80211_HW_SUPPORTS_PS:
1016  *	Hardware has power save support (i.e. can go to sleep).
1017  *
1018  * @IEEE80211_HW_PS_NULLFUNC_STACK:
1019  *	Hardware requires nullfunc frame handling in stack, implies
1020  *	stack support for dynamic PS.
1021  *
1022  * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
1023  *	Hardware has support for dynamic PS.
1024  *
1025  * @IEEE80211_HW_MFP_CAPABLE:
1026  *	Hardware supports management frame protection (MFP, IEEE 802.11w).
1027  *
1028  * @IEEE80211_HW_BEACON_FILTER:
1029  *	Hardware supports dropping of irrelevant beacon frames to
1030  *	avoid waking up cpu.
1031  *
1032  * @IEEE80211_HW_SUPPORTS_STATIC_SMPS:
1033  *	Hardware supports static spatial multiplexing powersave,
1034  *	ie. can turn off all but one chain even on HT connections
1035  *	that should be using more chains.
1036  *
1037  * @IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS:
1038  *	Hardware supports dynamic spatial multiplexing powersave,
1039  *	ie. can turn off all but one chain and then wake the rest
1040  *	up as required after, for example, rts/cts handshake.
1041  *
1042  * @IEEE80211_HW_SUPPORTS_UAPSD:
1043  *	Hardware supports Unscheduled Automatic Power Save Delivery
1044  *	(U-APSD) in managed mode. The mode is configured with
1045  *	conf_tx() operation.
1046  *
1047  * @IEEE80211_HW_REPORTS_TX_ACK_STATUS:
1048  *	Hardware can provide ack status reports of Tx frames to
1049  *	the stack.
1050  *
1051  * @IEEE80211_HW_CONNECTION_MONITOR:
1052  *      The hardware performs its own connection monitoring, including
1053  *      periodic keep-alives to the AP and probing the AP on beacon loss.
1054  *      When this flag is set, signaling beacon-loss will cause an immediate
1055  *      change to disassociated state.
1056  *
1057  * @IEEE80211_HW_SUPPORTS_CQM_RSSI:
1058  *	Hardware can do connection quality monitoring - i.e. it can monitor
1059  *	connection quality related parameters, such as the RSSI level and
1060  *	provide notifications if configured trigger levels are reached.
1061  *
1062  * @IEEE80211_HW_NEED_DTIM_PERIOD:
1063  *	This device needs to know the DTIM period for the BSS before
1064  *	associating.
1065  *
1066  * @IEEE80211_HW_SUPPORTS_PER_STA_GTK: The device's crypto engine supports
1067  *	per-station GTKs as used by IBSS RSN or during fast transition. If
1068  *	the device doesn't support per-station GTKs, but can be asked not
1069  *	to decrypt group addressed frames, then IBSS RSN support is still
1070  *	possible but software crypto will be used. Advertise the wiphy flag
1071  *	only in that case.
1072  */
1073 enum ieee80211_hw_flags {
1074 	IEEE80211_HW_HAS_RATE_CONTROL			= 1<<0,
1075 	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
1076 	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
1077 	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
1078 	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
1079 	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
1080 	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
1081 	IEEE80211_HW_NEED_DTIM_PERIOD			= 1<<7,
1082 	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
1083 	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
1084 	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
1085 	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
1086 	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
1087 	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
1088 	IEEE80211_HW_BEACON_FILTER			= 1<<14,
1089 	IEEE80211_HW_SUPPORTS_STATIC_SMPS		= 1<<15,
1090 	IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS		= 1<<16,
1091 	IEEE80211_HW_SUPPORTS_UAPSD			= 1<<17,
1092 	IEEE80211_HW_REPORTS_TX_ACK_STATUS		= 1<<18,
1093 	IEEE80211_HW_CONNECTION_MONITOR			= 1<<19,
1094 	IEEE80211_HW_SUPPORTS_CQM_RSSI			= 1<<20,
1095 	IEEE80211_HW_SUPPORTS_PER_STA_GTK		= 1<<21,
1096 };
1097 
1098 /**
1099  * struct ieee80211_hw - hardware information and state
1100  *
1101  * This structure contains the configuration and hardware
1102  * information for an 802.11 PHY.
1103  *
1104  * @wiphy: This points to the &struct wiphy allocated for this
1105  *	802.11 PHY. You must fill in the @perm_addr and @dev
1106  *	members of this structure using SET_IEEE80211_DEV()
1107  *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
1108  *	bands (with channels, bitrates) are registered here.
1109  *
1110  * @conf: &struct ieee80211_conf, device configuration, don't use.
1111  *
1112  * @priv: pointer to private area that was allocated for driver use
1113  *	along with this structure.
1114  *
1115  * @flags: hardware flags, see &enum ieee80211_hw_flags.
1116  *
1117  * @extra_tx_headroom: headroom to reserve in each transmit skb
1118  *	for use by the driver (e.g. for transmit headers.)
1119  *
1120  * @channel_change_time: time (in microseconds) it takes to change channels.
1121  *
1122  * @max_signal: Maximum value for signal (rssi) in RX information, used
1123  *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
1124  *
1125  * @max_listen_interval: max listen interval in units of beacon interval
1126  *     that HW supports
1127  *
1128  * @queues: number of available hardware transmit queues for
1129  *	data packets. WMM/QoS requires at least four, these
1130  *	queues need to have configurable access parameters.
1131  *
1132  * @rate_control_algorithm: rate control algorithm for this hardware.
1133  *	If unset (NULL), the default algorithm will be used. Must be
1134  *	set before calling ieee80211_register_hw().
1135  *
1136  * @vif_data_size: size (in bytes) of the drv_priv data area
1137  *	within &struct ieee80211_vif.
1138  * @sta_data_size: size (in bytes) of the drv_priv data area
1139  *	within &struct ieee80211_sta.
1140  *
1141  * @max_rates: maximum number of alternate rate retry stages the hw
1142  *	can handle.
1143  * @max_report_rates: maximum number of alternate rate retry stages
1144  *	the hw can report back.
1145  * @max_rate_tries: maximum number of tries for each stage
1146  *
1147  * @napi_weight: weight used for NAPI polling.  You must specify an
1148  *	appropriate value here if a napi_poll operation is provided
1149  *	by your driver.
1150  */
1151 struct ieee80211_hw {
1152 	struct ieee80211_conf conf;
1153 	struct wiphy *wiphy;
1154 	const char *rate_control_algorithm;
1155 	void *priv;
1156 	u32 flags;
1157 	unsigned int extra_tx_headroom;
1158 	int channel_change_time;
1159 	int vif_data_size;
1160 	int sta_data_size;
1161 	int napi_weight;
1162 	u16 queues;
1163 	u16 max_listen_interval;
1164 	s8 max_signal;
1165 	u8 max_rates;
1166 	u8 max_report_rates;
1167 	u8 max_rate_tries;
1168 };
1169 
1170 /**
1171  * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
1172  *
1173  * @wiphy: the &struct wiphy which we want to query
1174  *
1175  * mac80211 drivers can use this to get to their respective
1176  * &struct ieee80211_hw. Drivers wishing to get to their own private
1177  * structure can then access it via hw->priv. Note that mac802111 drivers should
1178  * not use wiphy_priv() to try to get their private driver structure as this
1179  * is already used internally by mac80211.
1180  */
1181 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
1182 
1183 /**
1184  * SET_IEEE80211_DEV - set device for 802.11 hardware
1185  *
1186  * @hw: the &struct ieee80211_hw to set the device for
1187  * @dev: the &struct device of this 802.11 device
1188  */
1189 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
1190 {
1191 	set_wiphy_dev(hw->wiphy, dev);
1192 }
1193 
1194 /**
1195  * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1196  *
1197  * @hw: the &struct ieee80211_hw to set the MAC address for
1198  * @addr: the address to set
1199  */
1200 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1201 {
1202 	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1203 }
1204 
1205 static inline struct ieee80211_rate *
1206 ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1207 		      const struct ieee80211_tx_info *c)
1208 {
1209 	if (WARN_ON(c->control.rates[0].idx < 0))
1210 		return NULL;
1211 	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1212 }
1213 
1214 static inline struct ieee80211_rate *
1215 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1216 			   const struct ieee80211_tx_info *c)
1217 {
1218 	if (c->control.rts_cts_rate_idx < 0)
1219 		return NULL;
1220 	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1221 }
1222 
1223 static inline struct ieee80211_rate *
1224 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1225 			     const struct ieee80211_tx_info *c, int idx)
1226 {
1227 	if (c->control.rates[idx + 1].idx < 0)
1228 		return NULL;
1229 	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1230 }
1231 
1232 /**
1233  * DOC: Hardware crypto acceleration
1234  *
1235  * mac80211 is capable of taking advantage of many hardware
1236  * acceleration designs for encryption and decryption operations.
1237  *
1238  * The set_key() callback in the &struct ieee80211_ops for a given
1239  * device is called to enable hardware acceleration of encryption and
1240  * decryption. The callback takes a @sta parameter that will be NULL
1241  * for default keys or keys used for transmission only, or point to
1242  * the station information for the peer for individual keys.
1243  * Multiple transmission keys with the same key index may be used when
1244  * VLANs are configured for an access point.
1245  *
1246  * When transmitting, the TX control data will use the @hw_key_idx
1247  * selected by the driver by modifying the &struct ieee80211_key_conf
1248  * pointed to by the @key parameter to the set_key() function.
1249  *
1250  * The set_key() call for the %SET_KEY command should return 0 if
1251  * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1252  * added; if you return 0 then hw_key_idx must be assigned to the
1253  * hardware key index, you are free to use the full u8 range.
1254  *
1255  * When the cmd is %DISABLE_KEY then it must succeed.
1256  *
1257  * Note that it is permissible to not decrypt a frame even if a key
1258  * for it has been uploaded to hardware, the stack will not make any
1259  * decision based on whether a key has been uploaded or not but rather
1260  * based on the receive flags.
1261  *
1262  * The &struct ieee80211_key_conf structure pointed to by the @key
1263  * parameter is guaranteed to be valid until another call to set_key()
1264  * removes it, but it can only be used as a cookie to differentiate
1265  * keys.
1266  *
1267  * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1268  * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1269  * handler.
1270  * The update_tkip_key() call updates the driver with the new phase 1 key.
1271  * This happens everytime the iv16 wraps around (every 65536 packets). The
1272  * set_key() call will happen only once for each key (unless the AP did
1273  * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1274  * provided by update_tkip_key only. The trigger that makes mac80211 call this
1275  * handler is software decryption with wrap around of iv16.
1276  */
1277 
1278 /**
1279  * DOC: Powersave support
1280  *
1281  * mac80211 has support for various powersave implementations.
1282  *
1283  * First, it can support hardware that handles all powersaving by itself,
1284  * such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS hardware
1285  * flag. In that case, it will be told about the desired powersave mode
1286  * with the %IEEE80211_CONF_PS flag depending on the association status.
1287  * The hardware must take care of sending nullfunc frames when necessary,
1288  * i.e. when entering and leaving powersave mode. The hardware is required
1289  * to look at the AID in beacons and signal to the AP that it woke up when
1290  * it finds traffic directed to it.
1291  *
1292  * %IEEE80211_CONF_PS flag enabled means that the powersave mode defined in
1293  * IEEE 802.11-2007 section 11.2 is enabled. This is not to be confused
1294  * with hardware wakeup and sleep states. Driver is responsible for waking
1295  * up the hardware before issuing commands to the hardware and putting it
1296  * back to sleep at appropriate times.
1297  *
1298  * When PS is enabled, hardware needs to wakeup for beacons and receive the
1299  * buffered multicast/broadcast frames after the beacon. Also it must be
1300  * possible to send frames and receive the acknowledment frame.
1301  *
1302  * Other hardware designs cannot send nullfunc frames by themselves and also
1303  * need software support for parsing the TIM bitmap. This is also supported
1304  * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1305  * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1306  * required to pass up beacons. The hardware is still required to handle
1307  * waking up for multicast traffic; if it cannot the driver must handle that
1308  * as best as it can, mac80211 is too slow to do that.
1309  *
1310  * Dynamic powersave is an extension to normal powersave in which the
1311  * hardware stays awake for a user-specified period of time after sending a
1312  * frame so that reply frames need not be buffered and therefore delayed to
1313  * the next wakeup. It's compromise of getting good enough latency when
1314  * there's data traffic and still saving significantly power in idle
1315  * periods.
1316  *
1317  * Dynamic powersave is simply supported by mac80211 enabling and disabling
1318  * PS based on traffic. Driver needs to only set %IEEE80211_HW_SUPPORTS_PS
1319  * flag and mac80211 will handle everything automatically. Additionally,
1320  * hardware having support for the dynamic PS feature may set the
1321  * %IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support
1322  * dynamic PS mode itself. The driver needs to look at the
1323  * @dynamic_ps_timeout hardware configuration value and use it that value
1324  * whenever %IEEE80211_CONF_PS is set. In this case mac80211 will disable
1325  * dynamic PS feature in stack and will just keep %IEEE80211_CONF_PS
1326  * enabled whenever user has enabled powersave.
1327  *
1328  * Some hardware need to toggle a single shared antenna between WLAN and
1329  * Bluetooth to facilitate co-existence. These types of hardware set
1330  * limitations on the use of host controlled dynamic powersave whenever there
1331  * is simultaneous WLAN and Bluetooth traffic. For these types of hardware, the
1332  * driver may request temporarily going into full power save, in order to
1333  * enable toggling the antenna between BT and WLAN. If the driver requests
1334  * disabling dynamic powersave, the @dynamic_ps_timeout value will be
1335  * temporarily set to zero until the driver re-enables dynamic powersave.
1336  *
1337  * Driver informs U-APSD client support by enabling
1338  * %IEEE80211_HW_SUPPORTS_UAPSD flag. The mode is configured through the
1339  * uapsd paramater in conf_tx() operation. Hardware needs to send the QoS
1340  * Nullfunc frames and stay awake until the service period has ended. To
1341  * utilize U-APSD, dynamic powersave is disabled for voip AC and all frames
1342  * from that AC are transmitted with powersave enabled.
1343  *
1344  * Note: U-APSD client mode is not yet supported with
1345  * %IEEE80211_HW_PS_NULLFUNC_STACK.
1346  */
1347 
1348 /**
1349  * DOC: Beacon filter support
1350  *
1351  * Some hardware have beacon filter support to reduce host cpu wakeups
1352  * which will reduce system power consumption. It usuallly works so that
1353  * the firmware creates a checksum of the beacon but omits all constantly
1354  * changing elements (TSF, TIM etc). Whenever the checksum changes the
1355  * beacon is forwarded to the host, otherwise it will be just dropped. That
1356  * way the host will only receive beacons where some relevant information
1357  * (for example ERP protection or WMM settings) have changed.
1358  *
1359  * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1360  * hardware capability. The driver needs to enable beacon filter support
1361  * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1362  * power save is enabled, the stack will not check for beacon loss and the
1363  * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1364  *
1365  * The time (or number of beacons missed) until the firmware notifies the
1366  * driver of a beacon loss event (which in turn causes the driver to call
1367  * ieee80211_beacon_loss()) should be configurable and will be controlled
1368  * by mac80211 and the roaming algorithm in the future.
1369  *
1370  * Since there may be constantly changing information elements that nothing
1371  * in the software stack cares about, we will, in the future, have mac80211
1372  * tell the driver which information elements are interesting in the sense
1373  * that we want to see changes in them. This will include
1374  *  - a list of information element IDs
1375  *  - a list of OUIs for the vendor information element
1376  *
1377  * Ideally, the hardware would filter out any beacons without changes in the
1378  * requested elements, but if it cannot support that it may, at the expense
1379  * of some efficiency, filter out only a subset. For example, if the device
1380  * doesn't support checking for OUIs it should pass up all changes in all
1381  * vendor information elements.
1382  *
1383  * Note that change, for the sake of simplification, also includes information
1384  * elements appearing or disappearing from the beacon.
1385  *
1386  * Some hardware supports an "ignore list" instead, just make sure nothing
1387  * that was requested is on the ignore list, and include commonly changing
1388  * information element IDs in the ignore list, for example 11 (BSS load) and
1389  * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1390  * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1391  * it could also include some currently unused IDs.
1392  *
1393  *
1394  * In addition to these capabilities, hardware should support notifying the
1395  * host of changes in the beacon RSSI. This is relevant to implement roaming
1396  * when no traffic is flowing (when traffic is flowing we see the RSSI of
1397  * the received data packets). This can consist in notifying the host when
1398  * the RSSI changes significantly or when it drops below or rises above
1399  * configurable thresholds. In the future these thresholds will also be
1400  * configured by mac80211 (which gets them from userspace) to implement
1401  * them as the roaming algorithm requires.
1402  *
1403  * If the hardware cannot implement this, the driver should ask it to
1404  * periodically pass beacon frames to the host so that software can do the
1405  * signal strength threshold checking.
1406  */
1407 
1408 /**
1409  * DOC: Spatial multiplexing power save
1410  *
1411  * SMPS (Spatial multiplexing power save) is a mechanism to conserve
1412  * power in an 802.11n implementation. For details on the mechanism
1413  * and rationale, please refer to 802.11 (as amended by 802.11n-2009)
1414  * "11.2.3 SM power save".
1415  *
1416  * The mac80211 implementation is capable of sending action frames
1417  * to update the AP about the station's SMPS mode, and will instruct
1418  * the driver to enter the specific mode. It will also announce the
1419  * requested SMPS mode during the association handshake. Hardware
1420  * support for this feature is required, and can be indicated by
1421  * hardware flags.
1422  *
1423  * The default mode will be "automatic", which nl80211/cfg80211
1424  * defines to be dynamic SMPS in (regular) powersave, and SMPS
1425  * turned off otherwise.
1426  *
1427  * To support this feature, the driver must set the appropriate
1428  * hardware support flags, and handle the SMPS flag to the config()
1429  * operation. It will then with this mechanism be instructed to
1430  * enter the requested SMPS mode while associated to an HT AP.
1431  */
1432 
1433 /**
1434  * DOC: Frame filtering
1435  *
1436  * mac80211 requires to see many management frames for proper
1437  * operation, and users may want to see many more frames when
1438  * in monitor mode. However, for best CPU usage and power consumption,
1439  * having as few frames as possible percolate through the stack is
1440  * desirable. Hence, the hardware should filter as much as possible.
1441  *
1442  * To achieve this, mac80211 uses filter flags (see below) to tell
1443  * the driver's configure_filter() function which frames should be
1444  * passed to mac80211 and which should be filtered out.
1445  *
1446  * Before configure_filter() is invoked, the prepare_multicast()
1447  * callback is invoked with the parameters @mc_count and @mc_list
1448  * for the combined multicast address list of all virtual interfaces.
1449  * It's use is optional, and it returns a u64 that is passed to
1450  * configure_filter(). Additionally, configure_filter() has the
1451  * arguments @changed_flags telling which flags were changed and
1452  * @total_flags with the new flag states.
1453  *
1454  * If your device has no multicast address filters your driver will
1455  * need to check both the %FIF_ALLMULTI flag and the @mc_count
1456  * parameter to see whether multicast frames should be accepted
1457  * or dropped.
1458  *
1459  * All unsupported flags in @total_flags must be cleared.
1460  * Hardware does not support a flag if it is incapable of _passing_
1461  * the frame to the stack. Otherwise the driver must ignore
1462  * the flag, but not clear it.
1463  * You must _only_ clear the flag (announce no support for the
1464  * flag to mac80211) if you are not able to pass the packet type
1465  * to the stack (so the hardware always filters it).
1466  * So for example, you should clear @FIF_CONTROL, if your hardware
1467  * always filters control frames. If your hardware always passes
1468  * control frames to the kernel and is incapable of filtering them,
1469  * you do _not_ clear the @FIF_CONTROL flag.
1470  * This rule applies to all other FIF flags as well.
1471  */
1472 
1473 /**
1474  * enum ieee80211_filter_flags - hardware filter flags
1475  *
1476  * These flags determine what the filter in hardware should be
1477  * programmed to let through and what should not be passed to the
1478  * stack. It is always safe to pass more frames than requested,
1479  * but this has negative impact on power consumption.
1480  *
1481  * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1482  *	think of the BSS as your network segment and then this corresponds
1483  *	to the regular ethernet device promiscuous mode.
1484  *
1485  * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1486  *	by the user or if the hardware is not capable of filtering by
1487  *	multicast address.
1488  *
1489  * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1490  *	%RX_FLAG_FAILED_FCS_CRC for them)
1491  *
1492  * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1493  *	the %RX_FLAG_FAILED_PLCP_CRC for them
1494  *
1495  * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1496  *	to the hardware that it should not filter beacons or probe responses
1497  *	by BSSID. Filtering them can greatly reduce the amount of processing
1498  *	mac80211 needs to do and the amount of CPU wakeups, so you should
1499  *	honour this flag if possible.
1500  *
1501  * @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS
1502  * 	is not set then only those addressed to this station.
1503  *
1504  * @FIF_OTHER_BSS: pass frames destined to other BSSes
1505  *
1506  * @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS is not set then only
1507  * 	those addressed to this station.
1508  *
1509  * @FIF_PROBE_REQ: pass probe request frames
1510  */
1511 enum ieee80211_filter_flags {
1512 	FIF_PROMISC_IN_BSS	= 1<<0,
1513 	FIF_ALLMULTI		= 1<<1,
1514 	FIF_FCSFAIL		= 1<<2,
1515 	FIF_PLCPFAIL		= 1<<3,
1516 	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1517 	FIF_CONTROL		= 1<<5,
1518 	FIF_OTHER_BSS		= 1<<6,
1519 	FIF_PSPOLL		= 1<<7,
1520 	FIF_PROBE_REQ		= 1<<8,
1521 };
1522 
1523 /**
1524  * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1525  *
1526  * These flags are used with the ampdu_action() callback in
1527  * &struct ieee80211_ops to indicate which action is needed.
1528  *
1529  * Note that drivers MUST be able to deal with a TX aggregation
1530  * session being stopped even before they OK'ed starting it by
1531  * calling ieee80211_start_tx_ba_cb_irqsafe, because the peer
1532  * might receive the addBA frame and send a delBA right away!
1533  *
1534  * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1535  * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1536  * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1537  * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1538  * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1539  */
1540 enum ieee80211_ampdu_mlme_action {
1541 	IEEE80211_AMPDU_RX_START,
1542 	IEEE80211_AMPDU_RX_STOP,
1543 	IEEE80211_AMPDU_TX_START,
1544 	IEEE80211_AMPDU_TX_STOP,
1545 	IEEE80211_AMPDU_TX_OPERATIONAL,
1546 };
1547 
1548 /**
1549  * struct ieee80211_ops - callbacks from mac80211 to the driver
1550  *
1551  * This structure contains various callbacks that the driver may
1552  * handle or, in some cases, must handle, for example to configure
1553  * the hardware to a new channel or to transmit a frame.
1554  *
1555  * @tx: Handler that 802.11 module calls for each transmitted frame.
1556  *	skb contains the buffer starting from the IEEE 802.11 header.
1557  *	The low-level driver should send the frame out based on
1558  *	configuration in the TX control data. This handler should,
1559  *	preferably, never fail and stop queues appropriately, more
1560  *	importantly, however, it must never fail for A-MPDU-queues.
1561  *	This function should return NETDEV_TX_OK except in very
1562  *	limited cases.
1563  *	Must be implemented and atomic.
1564  *
1565  * @start: Called before the first netdevice attached to the hardware
1566  *	is enabled. This should turn on the hardware and must turn on
1567  *	frame reception (for possibly enabled monitor interfaces.)
1568  *	Returns negative error codes, these may be seen in userspace,
1569  *	or zero.
1570  *	When the device is started it should not have a MAC address
1571  *	to avoid acknowledging frames before a non-monitor device
1572  *	is added.
1573  *	Must be implemented and can sleep.
1574  *
1575  * @stop: Called after last netdevice attached to the hardware
1576  *	is disabled. This should turn off the hardware (at least
1577  *	it must turn off frame reception.)
1578  *	May be called right after add_interface if that rejects
1579  *	an interface. If you added any work onto the mac80211 workqueue
1580  *	you should ensure to cancel it on this callback.
1581  *	Must be implemented and can sleep.
1582  *
1583  * @add_interface: Called when a netdevice attached to the hardware is
1584  *	enabled. Because it is not called for monitor mode devices, @start
1585  *	and @stop must be implemented.
1586  *	The driver should perform any initialization it needs before
1587  *	the device can be enabled. The initial configuration for the
1588  *	interface is given in the conf parameter.
1589  *	The callback may refuse to add an interface by returning a
1590  *	negative error code (which will be seen in userspace.)
1591  *	Must be implemented and can sleep.
1592  *
1593  * @change_interface: Called when a netdevice changes type. This callback
1594  *	is optional, but only if it is supported can interface types be
1595  *	switched while the interface is UP. The callback may sleep.
1596  *	Note that while an interface is being switched, it will not be
1597  *	found by the interface iteration callbacks.
1598  *
1599  * @remove_interface: Notifies a driver that an interface is going down.
1600  *	The @stop callback is called after this if it is the last interface
1601  *	and no monitor interfaces are present.
1602  *	When all interfaces are removed, the MAC address in the hardware
1603  *	must be cleared so the device no longer acknowledges packets,
1604  *	the mac_addr member of the conf structure is, however, set to the
1605  *	MAC address of the device going away.
1606  *	Hence, this callback must be implemented. It can sleep.
1607  *
1608  * @config: Handler for configuration requests. IEEE 802.11 code calls this
1609  *	function to change hardware configuration, e.g., channel.
1610  *	This function should never fail but returns a negative error code
1611  *	if it does. The callback can sleep.
1612  *
1613  * @bss_info_changed: Handler for configuration requests related to BSS
1614  *	parameters that may vary during BSS's lifespan, and may affect low
1615  *	level driver (e.g. assoc/disassoc status, erp parameters).
1616  *	This function should not be used if no BSS has been set, unless
1617  *	for association indication. The @changed parameter indicates which
1618  *	of the bss parameters has changed when a call is made. The callback
1619  *	can sleep.
1620  *
1621  * @prepare_multicast: Prepare for multicast filter configuration.
1622  *	This callback is optional, and its return value is passed
1623  *	to configure_filter(). This callback must be atomic.
1624  *
1625  * @configure_filter: Configure the device's RX filter.
1626  *	See the section "Frame filtering" for more information.
1627  *	This callback must be implemented and can sleep.
1628  *
1629  * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1630  * 	must be set or cleared for a given STA. Must be atomic.
1631  *
1632  * @set_key: See the section "Hardware crypto acceleration"
1633  *	This callback is only called between add_interface and
1634  *	remove_interface calls, i.e. while the given virtual interface
1635  *	is enabled.
1636  *	Returns a negative error code if the key can't be added.
1637  *	The callback can sleep.
1638  *
1639  * @update_tkip_key: See the section "Hardware crypto acceleration"
1640  * 	This callback will be called in the context of Rx. Called for drivers
1641  * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1642  *	The callback must be atomic.
1643  *
1644  * @hw_scan: Ask the hardware to service the scan request, no need to start
1645  *	the scan state machine in stack. The scan must honour the channel
1646  *	configuration done by the regulatory agent in the wiphy's
1647  *	registered bands. The hardware (or the driver) needs to make sure
1648  *	that power save is disabled.
1649  *	The @req ie/ie_len members are rewritten by mac80211 to contain the
1650  *	entire IEs after the SSID, so that drivers need not look at these
1651  *	at all but just send them after the SSID -- mac80211 includes the
1652  *	(extended) supported rates and HT information (where applicable).
1653  *	When the scan finishes, ieee80211_scan_completed() must be called;
1654  *	note that it also must be called when the scan cannot finish due to
1655  *	any error unless this callback returned a negative error code.
1656  *	The callback can sleep.
1657  *
1658  * @sw_scan_start: Notifier function that is called just before a software scan
1659  *	is started. Can be NULL, if the driver doesn't need this notification.
1660  *	The callback can sleep.
1661  *
1662  * @sw_scan_complete: Notifier function that is called just after a
1663  *	software scan finished. Can be NULL, if the driver doesn't need
1664  *	this notification.
1665  *	The callback can sleep.
1666  *
1667  * @get_stats: Return low-level statistics.
1668  * 	Returns zero if statistics are available.
1669  *	The callback can sleep.
1670  *
1671  * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1672  *	callback should be provided to read the TKIP transmit IVs (both IV32
1673  *	and IV16) for the given key from hardware.
1674  *	The callback must be atomic.
1675  *
1676  * @set_frag_threshold: Configuration of fragmentation threshold. Assign this
1677  *	if the device does fragmentation by itself; if this callback is
1678  *	implemented then the stack will not do fragmentation.
1679  *	The callback can sleep.
1680  *
1681  * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1682  *	The callback can sleep.
1683  *
1684  * @sta_add: Notifies low level driver about addition of an associated station,
1685  *	AP, IBSS/WDS/mesh peer etc. This callback can sleep.
1686  *
1687  * @sta_remove: Notifies low level driver about removal of an associated
1688  *	station, AP, IBSS/WDS/mesh peer etc. This callback can sleep.
1689  *
1690  * @sta_notify: Notifies low level driver about power state transition of an
1691  *	associated station, AP,  IBSS/WDS/mesh peer etc. Must be atomic.
1692  *
1693  * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1694  *	bursting) for a hardware TX queue.
1695  *	Returns a negative error code on failure.
1696  *	The callback can sleep.
1697  *
1698  * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1699  *	this is only used for IBSS mode BSSID merging and debugging. Is not a
1700  *	required function.
1701  *	The callback can sleep.
1702  *
1703  * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1704  *      Currently, this is only used for IBSS mode debugging. Is not a
1705  *	required function.
1706  *	The callback can sleep.
1707  *
1708  * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1709  *	with other STAs in the IBSS. This is only used in IBSS mode. This
1710  *	function is optional if the firmware/hardware takes full care of
1711  *	TSF synchronization.
1712  *	The callback can sleep.
1713  *
1714  * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1715  *	This is needed only for IBSS mode and the result of this function is
1716  *	used to determine whether to reply to Probe Requests.
1717  *	Returns non-zero if this device sent the last beacon.
1718  *	The callback can sleep.
1719  *
1720  * @ampdu_action: Perform a certain A-MPDU action
1721  * 	The RA/TID combination determines the destination and TID we want
1722  * 	the ampdu action to be performed for. The action is defined through
1723  * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1724  * 	is the first frame we expect to perform the action on. Notice
1725  * 	that TX/RX_STOP can pass NULL for this parameter.
1726  *	Returns a negative error code on failure.
1727  *	The callback can sleep.
1728  *
1729  * @get_survey: Return per-channel survey information
1730  *
1731  * @rfkill_poll: Poll rfkill hardware state. If you need this, you also
1732  *	need to set wiphy->rfkill_poll to %true before registration,
1733  *	and need to call wiphy_rfkill_set_hw_state() in the callback.
1734  *	The callback can sleep.
1735  *
1736  * @set_coverage_class: Set slot time for given coverage class as specified
1737  *	in IEEE 802.11-2007 section 17.3.8.6 and modify ACK timeout
1738  *	accordingly. This callback is not required and may sleep.
1739  *
1740  * @testmode_cmd: Implement a cfg80211 test mode command.
1741  *	The callback can sleep.
1742  *
1743  * @flush: Flush all pending frames from the hardware queue, making sure
1744  *	that the hardware queues are empty. If the parameter @drop is set
1745  *	to %true, pending frames may be dropped. The callback can sleep.
1746  *
1747  * @channel_switch: Drivers that need (or want) to offload the channel
1748  *	switch operation for CSAs received from the AP may implement this
1749  *	callback. They must then call ieee80211_chswitch_done() to indicate
1750  *	completion of the channel switch.
1751  *
1752  * @napi_poll: Poll Rx queue for incoming data frames.
1753  *
1754  * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device.
1755  *	Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may
1756  *	reject TX/RX mask combinations they cannot support by returning -EINVAL
1757  *	(also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX).
1758  *
1759  * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant).
1760  *
1761  * @remain_on_channel: Starts an off-channel period on the given channel, must
1762  *	call back to ieee80211_ready_on_channel() when on that channel. Note
1763  *	that normal channel traffic is not stopped as this is intended for hw
1764  *	offload. Frames to transmit on the off-channel channel are transmitted
1765  *	normally except for the %IEEE80211_TX_CTL_TX_OFFCHAN flag. When the
1766  *	duration (which will always be non-zero) expires, the driver must call
1767  *	ieee80211_remain_on_channel_expired(). This callback may sleep.
1768  * @cancel_remain_on_channel: Requests that an ongoing off-channel period is
1769  *	aborted before it expires. This callback may sleep.
1770  */
1771 struct ieee80211_ops {
1772 	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1773 	int (*start)(struct ieee80211_hw *hw);
1774 	void (*stop)(struct ieee80211_hw *hw);
1775 	int (*add_interface)(struct ieee80211_hw *hw,
1776 			     struct ieee80211_vif *vif);
1777 	int (*change_interface)(struct ieee80211_hw *hw,
1778 				struct ieee80211_vif *vif,
1779 				enum nl80211_iftype new_type, bool p2p);
1780 	void (*remove_interface)(struct ieee80211_hw *hw,
1781 				 struct ieee80211_vif *vif);
1782 	int (*config)(struct ieee80211_hw *hw, u32 changed);
1783 	void (*bss_info_changed)(struct ieee80211_hw *hw,
1784 				 struct ieee80211_vif *vif,
1785 				 struct ieee80211_bss_conf *info,
1786 				 u32 changed);
1787 	u64 (*prepare_multicast)(struct ieee80211_hw *hw,
1788 				 struct netdev_hw_addr_list *mc_list);
1789 	void (*configure_filter)(struct ieee80211_hw *hw,
1790 				 unsigned int changed_flags,
1791 				 unsigned int *total_flags,
1792 				 u64 multicast);
1793 	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1794 		       bool set);
1795 	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1796 		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1797 		       struct ieee80211_key_conf *key);
1798 	void (*update_tkip_key)(struct ieee80211_hw *hw,
1799 				struct ieee80211_vif *vif,
1800 				struct ieee80211_key_conf *conf,
1801 				struct ieee80211_sta *sta,
1802 				u32 iv32, u16 *phase1key);
1803 	int (*hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1804 		       struct cfg80211_scan_request *req);
1805 	void (*sw_scan_start)(struct ieee80211_hw *hw);
1806 	void (*sw_scan_complete)(struct ieee80211_hw *hw);
1807 	int (*get_stats)(struct ieee80211_hw *hw,
1808 			 struct ieee80211_low_level_stats *stats);
1809 	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1810 			     u32 *iv32, u16 *iv16);
1811 	int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value);
1812 	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1813 	int (*sta_add)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1814 		       struct ieee80211_sta *sta);
1815 	int (*sta_remove)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1816 			  struct ieee80211_sta *sta);
1817 	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1818 			enum sta_notify_cmd, struct ieee80211_sta *sta);
1819 	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1820 		       const struct ieee80211_tx_queue_params *params);
1821 	u64 (*get_tsf)(struct ieee80211_hw *hw);
1822 	void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1823 	void (*reset_tsf)(struct ieee80211_hw *hw);
1824 	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1825 	int (*ampdu_action)(struct ieee80211_hw *hw,
1826 			    struct ieee80211_vif *vif,
1827 			    enum ieee80211_ampdu_mlme_action action,
1828 			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1829 	int (*get_survey)(struct ieee80211_hw *hw, int idx,
1830 		struct survey_info *survey);
1831 	void (*rfkill_poll)(struct ieee80211_hw *hw);
1832 	void (*set_coverage_class)(struct ieee80211_hw *hw, u8 coverage_class);
1833 #ifdef CONFIG_NL80211_TESTMODE
1834 	int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len);
1835 #endif
1836 	void (*flush)(struct ieee80211_hw *hw, bool drop);
1837 	void (*channel_switch)(struct ieee80211_hw *hw,
1838 			       struct ieee80211_channel_switch *ch_switch);
1839 	int (*napi_poll)(struct ieee80211_hw *hw, int budget);
1840 	int (*set_antenna)(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1841 	int (*get_antenna)(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1842 
1843 	int (*remain_on_channel)(struct ieee80211_hw *hw,
1844 				 struct ieee80211_channel *chan,
1845 				 enum nl80211_channel_type channel_type,
1846 				 int duration);
1847 	int (*cancel_remain_on_channel)(struct ieee80211_hw *hw);
1848 };
1849 
1850 /**
1851  * ieee80211_alloc_hw -  Allocate a new hardware device
1852  *
1853  * This must be called once for each hardware device. The returned pointer
1854  * must be used to refer to this device when calling other functions.
1855  * mac80211 allocates a private data area for the driver pointed to by
1856  * @priv in &struct ieee80211_hw, the size of this area is given as
1857  * @priv_data_len.
1858  *
1859  * @priv_data_len: length of private data
1860  * @ops: callbacks for this device
1861  */
1862 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1863 					const struct ieee80211_ops *ops);
1864 
1865 /**
1866  * ieee80211_register_hw - Register hardware device
1867  *
1868  * You must call this function before any other functions in
1869  * mac80211. Note that before a hardware can be registered, you
1870  * need to fill the contained wiphy's information.
1871  *
1872  * @hw: the device to register as returned by ieee80211_alloc_hw()
1873  */
1874 int ieee80211_register_hw(struct ieee80211_hw *hw);
1875 
1876 /**
1877  * struct ieee80211_tpt_blink - throughput blink description
1878  * @throughput: throughput in Kbit/sec
1879  * @blink_time: blink time in milliseconds
1880  *	(full cycle, ie. one off + one on period)
1881  */
1882 struct ieee80211_tpt_blink {
1883 	int throughput;
1884 	int blink_time;
1885 };
1886 
1887 /**
1888  * enum ieee80211_tpt_led_trigger_flags - throughput trigger flags
1889  * @IEEE80211_TPT_LEDTRIG_FL_RADIO: enable blinking with radio
1890  * @IEEE80211_TPT_LEDTRIG_FL_WORK: enable blinking when working
1891  * @IEEE80211_TPT_LEDTRIG_FL_CONNECTED: enable blinking when at least one
1892  *	interface is connected in some way, including being an AP
1893  */
1894 enum ieee80211_tpt_led_trigger_flags {
1895 	IEEE80211_TPT_LEDTRIG_FL_RADIO		= BIT(0),
1896 	IEEE80211_TPT_LEDTRIG_FL_WORK		= BIT(1),
1897 	IEEE80211_TPT_LEDTRIG_FL_CONNECTED	= BIT(2),
1898 };
1899 
1900 #ifdef CONFIG_MAC80211_LEDS
1901 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1902 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1903 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1904 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1905 extern char *__ieee80211_create_tpt_led_trigger(
1906 				struct ieee80211_hw *hw, unsigned int flags,
1907 				const struct ieee80211_tpt_blink *blink_table,
1908 				unsigned int blink_table_len);
1909 #endif
1910 /**
1911  * ieee80211_get_tx_led_name - get name of TX LED
1912  *
1913  * mac80211 creates a transmit LED trigger for each wireless hardware
1914  * that can be used to drive LEDs if your driver registers a LED device.
1915  * This function returns the name (or %NULL if not configured for LEDs)
1916  * of the trigger so you can automatically link the LED device.
1917  *
1918  * @hw: the hardware to get the LED trigger name for
1919  */
1920 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1921 {
1922 #ifdef CONFIG_MAC80211_LEDS
1923 	return __ieee80211_get_tx_led_name(hw);
1924 #else
1925 	return NULL;
1926 #endif
1927 }
1928 
1929 /**
1930  * ieee80211_get_rx_led_name - get name of RX LED
1931  *
1932  * mac80211 creates a receive LED trigger for each wireless hardware
1933  * that can be used to drive LEDs if your driver registers a LED device.
1934  * This function returns the name (or %NULL if not configured for LEDs)
1935  * of the trigger so you can automatically link the LED device.
1936  *
1937  * @hw: the hardware to get the LED trigger name for
1938  */
1939 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1940 {
1941 #ifdef CONFIG_MAC80211_LEDS
1942 	return __ieee80211_get_rx_led_name(hw);
1943 #else
1944 	return NULL;
1945 #endif
1946 }
1947 
1948 /**
1949  * ieee80211_get_assoc_led_name - get name of association LED
1950  *
1951  * mac80211 creates a association LED trigger for each wireless hardware
1952  * that can be used to drive LEDs if your driver registers a LED device.
1953  * This function returns the name (or %NULL if not configured for LEDs)
1954  * of the trigger so you can automatically link the LED device.
1955  *
1956  * @hw: the hardware to get the LED trigger name for
1957  */
1958 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1959 {
1960 #ifdef CONFIG_MAC80211_LEDS
1961 	return __ieee80211_get_assoc_led_name(hw);
1962 #else
1963 	return NULL;
1964 #endif
1965 }
1966 
1967 /**
1968  * ieee80211_get_radio_led_name - get name of radio LED
1969  *
1970  * mac80211 creates a radio change LED trigger for each wireless hardware
1971  * that can be used to drive LEDs if your driver registers a LED device.
1972  * This function returns the name (or %NULL if not configured for LEDs)
1973  * of the trigger so you can automatically link the LED device.
1974  *
1975  * @hw: the hardware to get the LED trigger name for
1976  */
1977 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1978 {
1979 #ifdef CONFIG_MAC80211_LEDS
1980 	return __ieee80211_get_radio_led_name(hw);
1981 #else
1982 	return NULL;
1983 #endif
1984 }
1985 
1986 /**
1987  * ieee80211_create_tpt_led_trigger - create throughput LED trigger
1988  * @hw: the hardware to create the trigger for
1989  * @flags: trigger flags, see &enum ieee80211_tpt_led_trigger_flags
1990  * @blink_table: the blink table -- needs to be ordered by throughput
1991  * @blink_table_len: size of the blink table
1992  *
1993  * This function returns %NULL (in case of error, or if no LED
1994  * triggers are configured) or the name of the new trigger.
1995  * This function must be called before ieee80211_register_hw().
1996  */
1997 static inline char *
1998 ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, unsigned int flags,
1999 				 const struct ieee80211_tpt_blink *blink_table,
2000 				 unsigned int blink_table_len)
2001 {
2002 #ifdef CONFIG_MAC80211_LEDS
2003 	return __ieee80211_create_tpt_led_trigger(hw, flags, blink_table,
2004 						  blink_table_len);
2005 #else
2006 	return NULL;
2007 #endif
2008 }
2009 
2010 /**
2011  * ieee80211_unregister_hw - Unregister a hardware device
2012  *
2013  * This function instructs mac80211 to free allocated resources
2014  * and unregister netdevices from the networking subsystem.
2015  *
2016  * @hw: the hardware to unregister
2017  */
2018 void ieee80211_unregister_hw(struct ieee80211_hw *hw);
2019 
2020 /**
2021  * ieee80211_free_hw - free hardware descriptor
2022  *
2023  * This function frees everything that was allocated, including the
2024  * private data for the driver. You must call ieee80211_unregister_hw()
2025  * before calling this function.
2026  *
2027  * @hw: the hardware to free
2028  */
2029 void ieee80211_free_hw(struct ieee80211_hw *hw);
2030 
2031 /**
2032  * ieee80211_restart_hw - restart hardware completely
2033  *
2034  * Call this function when the hardware was restarted for some reason
2035  * (hardware error, ...) and the driver is unable to restore its state
2036  * by itself. mac80211 assumes that at this point the driver/hardware
2037  * is completely uninitialised and stopped, it starts the process by
2038  * calling the ->start() operation. The driver will need to reset all
2039  * internal state that it has prior to calling this function.
2040  *
2041  * @hw: the hardware to restart
2042  */
2043 void ieee80211_restart_hw(struct ieee80211_hw *hw);
2044 
2045 /** ieee80211_napi_schedule - schedule NAPI poll
2046  *
2047  * Use this function to schedule NAPI polling on a device.
2048  *
2049  * @hw: the hardware to start polling
2050  */
2051 void ieee80211_napi_schedule(struct ieee80211_hw *hw);
2052 
2053 /** ieee80211_napi_complete - complete NAPI polling
2054  *
2055  * Use this function to finish NAPI polling on a device.
2056  *
2057  * @hw: the hardware to stop polling
2058  */
2059 void ieee80211_napi_complete(struct ieee80211_hw *hw);
2060 
2061 /**
2062  * ieee80211_rx - receive frame
2063  *
2064  * Use this function to hand received frames to mac80211. The receive
2065  * buffer in @skb must start with an IEEE 802.11 header. In case of a
2066  * paged @skb is used, the driver is recommended to put the ieee80211
2067  * header of the frame on the linear part of the @skb to avoid memory
2068  * allocation and/or memcpy by the stack.
2069  *
2070  * This function may not be called in IRQ context. Calls to this function
2071  * for a single hardware must be synchronized against each other. Calls to
2072  * this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be
2073  * mixed for a single hardware.
2074  *
2075  * In process context use instead ieee80211_rx_ni().
2076  *
2077  * @hw: the hardware this frame came in on
2078  * @skb: the buffer to receive, owned by mac80211 after this call
2079  */
2080 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb);
2081 
2082 /**
2083  * ieee80211_rx_irqsafe - receive frame
2084  *
2085  * Like ieee80211_rx() but can be called in IRQ context
2086  * (internally defers to a tasklet.)
2087  *
2088  * Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not
2089  * be mixed for a single hardware.
2090  *
2091  * @hw: the hardware this frame came in on
2092  * @skb: the buffer to receive, owned by mac80211 after this call
2093  */
2094 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);
2095 
2096 /**
2097  * ieee80211_rx_ni - receive frame (in process context)
2098  *
2099  * Like ieee80211_rx() but can be called in process context
2100  * (internally disables bottom halves).
2101  *
2102  * Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe() may
2103  * not be mixed for a single hardware.
2104  *
2105  * @hw: the hardware this frame came in on
2106  * @skb: the buffer to receive, owned by mac80211 after this call
2107  */
2108 static inline void ieee80211_rx_ni(struct ieee80211_hw *hw,
2109 				   struct sk_buff *skb)
2110 {
2111 	local_bh_disable();
2112 	ieee80211_rx(hw, skb);
2113 	local_bh_enable();
2114 }
2115 
2116 /*
2117  * The TX headroom reserved by mac80211 for its own tx_status functions.
2118  * This is enough for the radiotap header.
2119  */
2120 #define IEEE80211_TX_STATUS_HEADROOM	13
2121 
2122 /**
2123  * ieee80211_tx_status - transmit status callback
2124  *
2125  * Call this function for all transmitted frames after they have been
2126  * transmitted. It is permissible to not call this function for
2127  * multicast frames but this can affect statistics.
2128  *
2129  * This function may not be called in IRQ context. Calls to this function
2130  * for a single hardware must be synchronized against each other. Calls
2131  * to this function, ieee80211_tx_status_ni() and ieee80211_tx_status_irqsafe()
2132  * may not be mixed for a single hardware.
2133  *
2134  * @hw: the hardware the frame was transmitted by
2135  * @skb: the frame that was transmitted, owned by mac80211 after this call
2136  */
2137 void ieee80211_tx_status(struct ieee80211_hw *hw,
2138 			 struct sk_buff *skb);
2139 
2140 /**
2141  * ieee80211_tx_status_ni - transmit status callback (in process context)
2142  *
2143  * Like ieee80211_tx_status() but can be called in process context.
2144  *
2145  * Calls to this function, ieee80211_tx_status() and
2146  * ieee80211_tx_status_irqsafe() may not be mixed
2147  * for a single hardware.
2148  *
2149  * @hw: the hardware the frame was transmitted by
2150  * @skb: the frame that was transmitted, owned by mac80211 after this call
2151  */
2152 static inline void ieee80211_tx_status_ni(struct ieee80211_hw *hw,
2153 					  struct sk_buff *skb)
2154 {
2155 	local_bh_disable();
2156 	ieee80211_tx_status(hw, skb);
2157 	local_bh_enable();
2158 }
2159 
2160 /**
2161  * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
2162  *
2163  * Like ieee80211_tx_status() but can be called in IRQ context
2164  * (internally defers to a tasklet.)
2165  *
2166  * Calls to this function, ieee80211_tx_status() and
2167  * ieee80211_tx_status_ni() may not be mixed for a single hardware.
2168  *
2169  * @hw: the hardware the frame was transmitted by
2170  * @skb: the frame that was transmitted, owned by mac80211 after this call
2171  */
2172 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
2173 				 struct sk_buff *skb);
2174 
2175 /**
2176  * ieee80211_beacon_get_tim - beacon generation function
2177  * @hw: pointer obtained from ieee80211_alloc_hw().
2178  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2179  * @tim_offset: pointer to variable that will receive the TIM IE offset.
2180  *	Set to 0 if invalid (in non-AP modes).
2181  * @tim_length: pointer to variable that will receive the TIM IE length,
2182  *	(including the ID and length bytes!).
2183  *	Set to 0 if invalid (in non-AP modes).
2184  *
2185  * If the driver implements beaconing modes, it must use this function to
2186  * obtain the beacon frame/template.
2187  *
2188  * If the beacon frames are generated by the host system (i.e., not in
2189  * hardware/firmware), the driver uses this function to get each beacon
2190  * frame from mac80211 -- it is responsible for calling this function
2191  * before the beacon is needed (e.g. based on hardware interrupt).
2192  *
2193  * If the beacon frames are generated by the device, then the driver
2194  * must use the returned beacon as the template and change the TIM IE
2195  * according to the current DTIM parameters/TIM bitmap.
2196  *
2197  * The driver is responsible for freeing the returned skb.
2198  */
2199 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
2200 					 struct ieee80211_vif *vif,
2201 					 u16 *tim_offset, u16 *tim_length);
2202 
2203 /**
2204  * ieee80211_beacon_get - beacon generation function
2205  * @hw: pointer obtained from ieee80211_alloc_hw().
2206  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2207  *
2208  * See ieee80211_beacon_get_tim().
2209  */
2210 static inline struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
2211 						   struct ieee80211_vif *vif)
2212 {
2213 	return ieee80211_beacon_get_tim(hw, vif, NULL, NULL);
2214 }
2215 
2216 /**
2217  * ieee80211_pspoll_get - retrieve a PS Poll template
2218  * @hw: pointer obtained from ieee80211_alloc_hw().
2219  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2220  *
2221  * Creates a PS Poll a template which can, for example, uploaded to
2222  * hardware. The template must be updated after association so that correct
2223  * AID, BSSID and MAC address is used.
2224  *
2225  * Note: Caller (or hardware) is responsible for setting the
2226  * &IEEE80211_FCTL_PM bit.
2227  */
2228 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
2229 				     struct ieee80211_vif *vif);
2230 
2231 /**
2232  * ieee80211_nullfunc_get - retrieve a nullfunc template
2233  * @hw: pointer obtained from ieee80211_alloc_hw().
2234  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2235  *
2236  * Creates a Nullfunc template which can, for example, uploaded to
2237  * hardware. The template must be updated after association so that correct
2238  * BSSID and address is used.
2239  *
2240  * Note: Caller (or hardware) is responsible for setting the
2241  * &IEEE80211_FCTL_PM bit as well as Duration and Sequence Control fields.
2242  */
2243 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
2244 				       struct ieee80211_vif *vif);
2245 
2246 /**
2247  * ieee80211_probereq_get - retrieve a Probe Request template
2248  * @hw: pointer obtained from ieee80211_alloc_hw().
2249  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2250  * @ssid: SSID buffer
2251  * @ssid_len: length of SSID
2252  * @ie: buffer containing all IEs except SSID for the template
2253  * @ie_len: length of the IE buffer
2254  *
2255  * Creates a Probe Request template which can, for example, be uploaded to
2256  * hardware.
2257  */
2258 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
2259 				       struct ieee80211_vif *vif,
2260 				       const u8 *ssid, size_t ssid_len,
2261 				       const u8 *ie, size_t ie_len);
2262 
2263 /**
2264  * ieee80211_rts_get - RTS frame generation function
2265  * @hw: pointer obtained from ieee80211_alloc_hw().
2266  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2267  * @frame: pointer to the frame that is going to be protected by the RTS.
2268  * @frame_len: the frame length (in octets).
2269  * @frame_txctl: &struct ieee80211_tx_info of the frame.
2270  * @rts: The buffer where to store the RTS frame.
2271  *
2272  * If the RTS frames are generated by the host system (i.e., not in
2273  * hardware/firmware), the low-level driver uses this function to receive
2274  * the next RTS frame from the 802.11 code. The low-level is responsible
2275  * for calling this function before and RTS frame is needed.
2276  */
2277 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2278 		       const void *frame, size_t frame_len,
2279 		       const struct ieee80211_tx_info *frame_txctl,
2280 		       struct ieee80211_rts *rts);
2281 
2282 /**
2283  * ieee80211_rts_duration - Get the duration field for an RTS frame
2284  * @hw: pointer obtained from ieee80211_alloc_hw().
2285  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2286  * @frame_len: the length of the frame that is going to be protected by the RTS.
2287  * @frame_txctl: &struct ieee80211_tx_info of the frame.
2288  *
2289  * If the RTS is generated in firmware, but the host system must provide
2290  * the duration field, the low-level driver uses this function to receive
2291  * the duration field value in little-endian byteorder.
2292  */
2293 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
2294 			      struct ieee80211_vif *vif, size_t frame_len,
2295 			      const struct ieee80211_tx_info *frame_txctl);
2296 
2297 /**
2298  * ieee80211_ctstoself_get - CTS-to-self frame generation function
2299  * @hw: pointer obtained from ieee80211_alloc_hw().
2300  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2301  * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
2302  * @frame_len: the frame length (in octets).
2303  * @frame_txctl: &struct ieee80211_tx_info of the frame.
2304  * @cts: The buffer where to store the CTS-to-self frame.
2305  *
2306  * If the CTS-to-self frames are generated by the host system (i.e., not in
2307  * hardware/firmware), the low-level driver uses this function to receive
2308  * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
2309  * for calling this function before and CTS-to-self frame is needed.
2310  */
2311 void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
2312 			     struct ieee80211_vif *vif,
2313 			     const void *frame, size_t frame_len,
2314 			     const struct ieee80211_tx_info *frame_txctl,
2315 			     struct ieee80211_cts *cts);
2316 
2317 /**
2318  * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
2319  * @hw: pointer obtained from ieee80211_alloc_hw().
2320  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2321  * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
2322  * @frame_txctl: &struct ieee80211_tx_info of the frame.
2323  *
2324  * If the CTS-to-self is generated in firmware, but the host system must provide
2325  * the duration field, the low-level driver uses this function to receive
2326  * the duration field value in little-endian byteorder.
2327  */
2328 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
2329 				    struct ieee80211_vif *vif,
2330 				    size_t frame_len,
2331 				    const struct ieee80211_tx_info *frame_txctl);
2332 
2333 /**
2334  * ieee80211_generic_frame_duration - Calculate the duration field for a frame
2335  * @hw: pointer obtained from ieee80211_alloc_hw().
2336  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2337  * @frame_len: the length of the frame.
2338  * @rate: the rate at which the frame is going to be transmitted.
2339  *
2340  * Calculate the duration field of some generic frame, given its
2341  * length and transmission rate (in 100kbps).
2342  */
2343 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
2344 					struct ieee80211_vif *vif,
2345 					size_t frame_len,
2346 					struct ieee80211_rate *rate);
2347 
2348 /**
2349  * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
2350  * @hw: pointer as obtained from ieee80211_alloc_hw().
2351  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2352  *
2353  * Function for accessing buffered broadcast and multicast frames. If
2354  * hardware/firmware does not implement buffering of broadcast/multicast
2355  * frames when power saving is used, 802.11 code buffers them in the host
2356  * memory. The low-level driver uses this function to fetch next buffered
2357  * frame. In most cases, this is used when generating beacon frame. This
2358  * function returns a pointer to the next buffered skb or NULL if no more
2359  * buffered frames are available.
2360  *
2361  * Note: buffered frames are returned only after DTIM beacon frame was
2362  * generated with ieee80211_beacon_get() and the low-level driver must thus
2363  * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
2364  * NULL if the previous generated beacon was not DTIM, so the low-level driver
2365  * does not need to check for DTIM beacons separately and should be able to
2366  * use common code for all beacons.
2367  */
2368 struct sk_buff *
2369 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
2370 
2371 /**
2372  * ieee80211_get_tkip_key - get a TKIP rc4 for skb
2373  *
2374  * This function computes a TKIP rc4 key for an skb. It computes
2375  * a phase 1 key if needed (iv16 wraps around). This function is to
2376  * be used by drivers which can do HW encryption but need to compute
2377  * to phase 1/2 key in SW.
2378  *
2379  * @keyconf: the parameter passed with the set key
2380  * @skb: the skb for which the key is needed
2381  * @type: TBD
2382  * @key: a buffer to which the key will be written
2383  */
2384 void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
2385 				struct sk_buff *skb,
2386 				enum ieee80211_tkip_key_type type, u8 *key);
2387 /**
2388  * ieee80211_wake_queue - wake specific queue
2389  * @hw: pointer as obtained from ieee80211_alloc_hw().
2390  * @queue: queue number (counted from zero).
2391  *
2392  * Drivers should use this function instead of netif_wake_queue.
2393  */
2394 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
2395 
2396 /**
2397  * ieee80211_stop_queue - stop specific queue
2398  * @hw: pointer as obtained from ieee80211_alloc_hw().
2399  * @queue: queue number (counted from zero).
2400  *
2401  * Drivers should use this function instead of netif_stop_queue.
2402  */
2403 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
2404 
2405 /**
2406  * ieee80211_queue_stopped - test status of the queue
2407  * @hw: pointer as obtained from ieee80211_alloc_hw().
2408  * @queue: queue number (counted from zero).
2409  *
2410  * Drivers should use this function instead of netif_stop_queue.
2411  */
2412 
2413 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
2414 
2415 /**
2416  * ieee80211_stop_queues - stop all queues
2417  * @hw: pointer as obtained from ieee80211_alloc_hw().
2418  *
2419  * Drivers should use this function instead of netif_stop_queue.
2420  */
2421 void ieee80211_stop_queues(struct ieee80211_hw *hw);
2422 
2423 /**
2424  * ieee80211_wake_queues - wake all queues
2425  * @hw: pointer as obtained from ieee80211_alloc_hw().
2426  *
2427  * Drivers should use this function instead of netif_wake_queue.
2428  */
2429 void ieee80211_wake_queues(struct ieee80211_hw *hw);
2430 
2431 /**
2432  * ieee80211_scan_completed - completed hardware scan
2433  *
2434  * When hardware scan offload is used (i.e. the hw_scan() callback is
2435  * assigned) this function needs to be called by the driver to notify
2436  * mac80211 that the scan finished. This function can be called from
2437  * any context, including hardirq context.
2438  *
2439  * @hw: the hardware that finished the scan
2440  * @aborted: set to true if scan was aborted
2441  */
2442 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
2443 
2444 /**
2445  * ieee80211_iterate_active_interfaces - iterate active interfaces
2446  *
2447  * This function iterates over the interfaces associated with a given
2448  * hardware that are currently active and calls the callback for them.
2449  * This function allows the iterator function to sleep, when the iterator
2450  * function is atomic @ieee80211_iterate_active_interfaces_atomic can
2451  * be used.
2452  * Does not iterate over a new interface during add_interface()
2453  *
2454  * @hw: the hardware struct of which the interfaces should be iterated over
2455  * @iterator: the iterator function to call
2456  * @data: first argument of the iterator function
2457  */
2458 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
2459 					 void (*iterator)(void *data, u8 *mac,
2460 						struct ieee80211_vif *vif),
2461 					 void *data);
2462 
2463 /**
2464  * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
2465  *
2466  * This function iterates over the interfaces associated with a given
2467  * hardware that are currently active and calls the callback for them.
2468  * This function requires the iterator callback function to be atomic,
2469  * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
2470  * Does not iterate over a new interface during add_interface()
2471  *
2472  * @hw: the hardware struct of which the interfaces should be iterated over
2473  * @iterator: the iterator function to call, cannot sleep
2474  * @data: first argument of the iterator function
2475  */
2476 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
2477 						void (*iterator)(void *data,
2478 						    u8 *mac,
2479 						    struct ieee80211_vif *vif),
2480 						void *data);
2481 
2482 /**
2483  * ieee80211_queue_work - add work onto the mac80211 workqueue
2484  *
2485  * Drivers and mac80211 use this to add work onto the mac80211 workqueue.
2486  * This helper ensures drivers are not queueing work when they should not be.
2487  *
2488  * @hw: the hardware struct for the interface we are adding work for
2489  * @work: the work we want to add onto the mac80211 workqueue
2490  */
2491 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work);
2492 
2493 /**
2494  * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue
2495  *
2496  * Drivers and mac80211 use this to queue delayed work onto the mac80211
2497  * workqueue.
2498  *
2499  * @hw: the hardware struct for the interface we are adding work for
2500  * @dwork: delayable work to queue onto the mac80211 workqueue
2501  * @delay: number of jiffies to wait before queueing
2502  */
2503 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
2504 				  struct delayed_work *dwork,
2505 				  unsigned long delay);
2506 
2507 /**
2508  * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
2509  * @sta: the station for which to start a BA session
2510  * @tid: the TID to BA on.
2511  * @timeout: session timeout value (in TUs)
2512  *
2513  * Return: success if addBA request was sent, failure otherwise
2514  *
2515  * Although mac80211/low level driver/user space application can estimate
2516  * the need to start aggregation on a certain RA/TID, the session level
2517  * will be managed by the mac80211.
2518  */
2519 int ieee80211_start_tx_ba_session(struct ieee80211_sta *sta, u16 tid,
2520 				  u16 timeout);
2521 
2522 /**
2523  * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
2524  * @vif: &struct ieee80211_vif pointer from the add_interface callback
2525  * @ra: receiver address of the BA session recipient.
2526  * @tid: the TID to BA on.
2527  *
2528  * This function must be called by low level driver once it has
2529  * finished with preparations for the BA session. It can be called
2530  * from any context.
2531  */
2532 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra,
2533 				      u16 tid);
2534 
2535 /**
2536  * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
2537  * @sta: the station whose BA session to stop
2538  * @tid: the TID to stop BA.
2539  *
2540  * Return: negative error if the TID is invalid, or no aggregation active
2541  *
2542  * Although mac80211/low level driver/user space application can estimate
2543  * the need to stop aggregation on a certain RA/TID, the session level
2544  * will be managed by the mac80211.
2545  */
2546 int ieee80211_stop_tx_ba_session(struct ieee80211_sta *sta, u16 tid);
2547 
2548 /**
2549  * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
2550  * @vif: &struct ieee80211_vif pointer from the add_interface callback
2551  * @ra: receiver address of the BA session recipient.
2552  * @tid: the desired TID to BA on.
2553  *
2554  * This function must be called by low level driver once it has
2555  * finished with preparations for the BA session tear down. It
2556  * can be called from any context.
2557  */
2558 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra,
2559 				     u16 tid);
2560 
2561 /**
2562  * ieee80211_find_sta - find a station
2563  *
2564  * @vif: virtual interface to look for station on
2565  * @addr: station's address
2566  *
2567  * This function must be called under RCU lock and the
2568  * resulting pointer is only valid under RCU lock as well.
2569  */
2570 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
2571 					 const u8 *addr);
2572 
2573 /**
2574  * ieee80211_find_sta_by_ifaddr - find a station on hardware
2575  *
2576  * @hw: pointer as obtained from ieee80211_alloc_hw()
2577  * @addr: remote station's address
2578  * @localaddr: local address (vif->sdata->vif.addr). Use NULL for 'any'.
2579  *
2580  * This function must be called under RCU lock and the
2581  * resulting pointer is only valid under RCU lock as well.
2582  *
2583  * NOTE: You may pass NULL for localaddr, but then you will just get
2584  *      the first STA that matches the remote address 'addr'.
2585  *      We can have multiple STA associated with multiple
2586  *      logical stations (e.g. consider a station connecting to another
2587  *      BSSID on the same AP hardware without disconnecting first).
2588  *      In this case, the result of this method with localaddr NULL
2589  *      is not reliable.
2590  *
2591  * DO NOT USE THIS FUNCTION with localaddr NULL if at all possible.
2592  */
2593 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
2594 					       const u8 *addr,
2595 					       const u8 *localaddr);
2596 
2597 /**
2598  * ieee80211_sta_block_awake - block station from waking up
2599  * @hw: the hardware
2600  * @pubsta: the station
2601  * @block: whether to block or unblock
2602  *
2603  * Some devices require that all frames that are on the queues
2604  * for a specific station that went to sleep are flushed before
2605  * a poll response or frames after the station woke up can be
2606  * delivered to that it. Note that such frames must be rejected
2607  * by the driver as filtered, with the appropriate status flag.
2608  *
2609  * This function allows implementing this mode in a race-free
2610  * manner.
2611  *
2612  * To do this, a driver must keep track of the number of frames
2613  * still enqueued for a specific station. If this number is not
2614  * zero when the station goes to sleep, the driver must call
2615  * this function to force mac80211 to consider the station to
2616  * be asleep regardless of the station's actual state. Once the
2617  * number of outstanding frames reaches zero, the driver must
2618  * call this function again to unblock the station. That will
2619  * cause mac80211 to be able to send ps-poll responses, and if
2620  * the station queried in the meantime then frames will also
2621  * be sent out as a result of this. Additionally, the driver
2622  * will be notified that the station woke up some time after
2623  * it is unblocked, regardless of whether the station actually
2624  * woke up while blocked or not.
2625  */
2626 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
2627 			       struct ieee80211_sta *pubsta, bool block);
2628 
2629 /**
2630  * ieee80211_ap_probereq_get - retrieve a Probe Request template
2631  * @hw: pointer obtained from ieee80211_alloc_hw().
2632  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2633  *
2634  * Creates a Probe Request template which can, for example, be uploaded to
2635  * hardware. The template is filled with bssid, ssid and supported rate
2636  * information. This function must only be called from within the
2637  * .bss_info_changed callback function and only in managed mode. The function
2638  * is only useful when the interface is associated, otherwise it will return
2639  * NULL.
2640  */
2641 struct sk_buff *ieee80211_ap_probereq_get(struct ieee80211_hw *hw,
2642 					  struct ieee80211_vif *vif);
2643 
2644 /**
2645  * ieee80211_beacon_loss - inform hardware does not receive beacons
2646  *
2647  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2648  *
2649  * When beacon filtering is enabled with %IEEE80211_HW_BEACON_FILTER and
2650  * %IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2651  * hardware is not receiving beacons with this function.
2652  */
2653 void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2654 
2655 /**
2656  * ieee80211_connection_loss - inform hardware has lost connection to the AP
2657  *
2658  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2659  *
2660  * When beacon filtering is enabled with %IEEE80211_HW_BEACON_FILTER, and
2661  * %IEEE80211_CONF_PS and %IEEE80211_HW_CONNECTION_MONITOR are set, the driver
2662  * needs to inform if the connection to the AP has been lost.
2663  *
2664  * This function will cause immediate change to disassociated state,
2665  * without connection recovery attempts.
2666  */
2667 void ieee80211_connection_loss(struct ieee80211_vif *vif);
2668 
2669 /**
2670  * ieee80211_disable_dyn_ps - force mac80211 to temporarily disable dynamic psm
2671  *
2672  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2673  *
2674  * Some hardware require full power save to manage simultaneous BT traffic
2675  * on the WLAN frequency. Full PSM is required periodically, whenever there are
2676  * burst of BT traffic. The hardware gets information of BT traffic via
2677  * hardware co-existence lines, and consequentially requests mac80211 to
2678  * (temporarily) enter full psm.
2679  * This function will only temporarily disable dynamic PS, not enable PSM if
2680  * it was not already enabled.
2681  * The driver must make sure to re-enable dynamic PS using
2682  * ieee80211_enable_dyn_ps() if the driver has disabled it.
2683  *
2684  */
2685 void ieee80211_disable_dyn_ps(struct ieee80211_vif *vif);
2686 
2687 /**
2688  * ieee80211_enable_dyn_ps - restore dynamic psm after being disabled
2689  *
2690  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2691  *
2692  * This function restores dynamic PS after being temporarily disabled via
2693  * ieee80211_disable_dyn_ps(). Each ieee80211_disable_dyn_ps() call must
2694  * be coupled with an eventual call to this function.
2695  *
2696  */
2697 void ieee80211_enable_dyn_ps(struct ieee80211_vif *vif);
2698 
2699 /**
2700  * ieee80211_cqm_rssi_notify - inform a configured connection quality monitoring
2701  *	rssi threshold triggered
2702  *
2703  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2704  * @rssi_event: the RSSI trigger event type
2705  * @gfp: context flags
2706  *
2707  * When the %IEEE80211_HW_SUPPORTS_CQM_RSSI is set, and a connection quality
2708  * monitoring is configured with an rssi threshold, the driver will inform
2709  * whenever the rssi level reaches the threshold.
2710  */
2711 void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif,
2712 			       enum nl80211_cqm_rssi_threshold_event rssi_event,
2713 			       gfp_t gfp);
2714 
2715 /**
2716  * ieee80211_chswitch_done - Complete channel switch process
2717  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2718  * @success: make the channel switch successful or not
2719  *
2720  * Complete the channel switch post-process: set the new operational channel
2721  * and wake up the suspended queues.
2722  */
2723 void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success);
2724 
2725 /**
2726  * ieee80211_request_smps - request SM PS transition
2727  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2728  * @smps_mode: new SM PS mode
2729  *
2730  * This allows the driver to request an SM PS transition in managed
2731  * mode. This is useful when the driver has more information than
2732  * the stack about possible interference, for example by bluetooth.
2733  */
2734 void ieee80211_request_smps(struct ieee80211_vif *vif,
2735 			    enum ieee80211_smps_mode smps_mode);
2736 
2737 /**
2738  * ieee80211_key_removed - disable hw acceleration for key
2739  * @key_conf: The key hw acceleration should be disabled for
2740  *
2741  * This allows drivers to indicate that the given key has been
2742  * removed from hardware acceleration, due to a new key that
2743  * was added. Don't use this if the key can continue to be used
2744  * for TX, if the key restriction is on RX only it is permitted
2745  * to keep the key for TX only and not call this function.
2746  *
2747  * Due to locking constraints, it may only be called during
2748  * @set_key. This function must be allowed to sleep, and the
2749  * key it tries to disable may still be used until it returns.
2750  */
2751 void ieee80211_key_removed(struct ieee80211_key_conf *key_conf);
2752 
2753 /**
2754  * ieee80211_ready_on_channel - notification of remain-on-channel start
2755  * @hw: pointer as obtained from ieee80211_alloc_hw()
2756  */
2757 void ieee80211_ready_on_channel(struct ieee80211_hw *hw);
2758 
2759 /**
2760  * ieee80211_remain_on_channel_expired - remain_on_channel duration expired
2761  * @hw: pointer as obtained from ieee80211_alloc_hw()
2762  */
2763 void ieee80211_remain_on_channel_expired(struct ieee80211_hw *hw);
2764 
2765 /* Rate control API */
2766 
2767 /**
2768  * enum rate_control_changed - flags to indicate which parameter changed
2769  *
2770  * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2771  *	changed, rate control algorithm can update its internal state if needed.
2772  */
2773 enum rate_control_changed {
2774 	IEEE80211_RC_HT_CHANGED = BIT(0)
2775 };
2776 
2777 /**
2778  * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2779  *
2780  * @hw: The hardware the algorithm is invoked for.
2781  * @sband: The band this frame is being transmitted on.
2782  * @bss_conf: the current BSS configuration
2783  * @reported_rate: The rate control algorithm can fill this in to indicate
2784  *	which rate should be reported to userspace as the current rate and
2785  *	used for rate calculations in the mesh network.
2786  * @rts: whether RTS will be used for this frame because it is longer than the
2787  *	RTS threshold
2788  * @short_preamble: whether mac80211 will request short-preamble transmission
2789  *	if the selected rate supports it
2790  * @max_rate_idx: user-requested maximum rate (not MCS for now)
2791  *	(deprecated; this will be removed once drivers get updated to use
2792  *	rate_idx_mask)
2793  * @rate_idx_mask: user-requested rate mask (not MCS for now)
2794  * @skb: the skb that will be transmitted, the control information in it needs
2795  *	to be filled in
2796  * @bss: whether this frame is sent out in AP or IBSS mode
2797  */
2798 struct ieee80211_tx_rate_control {
2799 	struct ieee80211_hw *hw;
2800 	struct ieee80211_supported_band *sband;
2801 	struct ieee80211_bss_conf *bss_conf;
2802 	struct sk_buff *skb;
2803 	struct ieee80211_tx_rate reported_rate;
2804 	bool rts, short_preamble;
2805 	u8 max_rate_idx;
2806 	u32 rate_idx_mask;
2807 	bool bss;
2808 };
2809 
2810 struct rate_control_ops {
2811 	struct module *module;
2812 	const char *name;
2813 	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2814 	void (*free)(void *priv);
2815 
2816 	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2817 	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2818 			  struct ieee80211_sta *sta, void *priv_sta);
2819 	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2820 			    struct ieee80211_sta *sta,
2821 			    void *priv_sta, u32 changed,
2822 			    enum nl80211_channel_type oper_chan_type);
2823 	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2824 			 void *priv_sta);
2825 
2826 	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2827 			  struct ieee80211_sta *sta, void *priv_sta,
2828 			  struct sk_buff *skb);
2829 	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2830 			 struct ieee80211_tx_rate_control *txrc);
2831 
2832 	void (*add_sta_debugfs)(void *priv, void *priv_sta,
2833 				struct dentry *dir);
2834 	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2835 };
2836 
2837 static inline int rate_supported(struct ieee80211_sta *sta,
2838 				 enum ieee80211_band band,
2839 				 int index)
2840 {
2841 	return (sta == NULL || sta->supp_rates[band] & BIT(index));
2842 }
2843 
2844 /**
2845  * rate_control_send_low - helper for drivers for management/no-ack frames
2846  *
2847  * Rate control algorithms that agree to use the lowest rate to
2848  * send management frames and NO_ACK data with the respective hw
2849  * retries should use this in the beginning of their mac80211 get_rate
2850  * callback. If true is returned the rate control can simply return.
2851  * If false is returned we guarantee that sta and sta and priv_sta is
2852  * not null.
2853  *
2854  * Rate control algorithms wishing to do more intelligent selection of
2855  * rate for multicast/broadcast frames may choose to not use this.
2856  *
2857  * @sta: &struct ieee80211_sta pointer to the target destination. Note
2858  * 	that this may be null.
2859  * @priv_sta: private rate control structure. This may be null.
2860  * @txrc: rate control information we sholud populate for mac80211.
2861  */
2862 bool rate_control_send_low(struct ieee80211_sta *sta,
2863 			   void *priv_sta,
2864 			   struct ieee80211_tx_rate_control *txrc);
2865 
2866 
2867 static inline s8
2868 rate_lowest_index(struct ieee80211_supported_band *sband,
2869 		  struct ieee80211_sta *sta)
2870 {
2871 	int i;
2872 
2873 	for (i = 0; i < sband->n_bitrates; i++)
2874 		if (rate_supported(sta, sband->band, i))
2875 			return i;
2876 
2877 	/* warn when we cannot find a rate. */
2878 	WARN_ON(1);
2879 
2880 	return 0;
2881 }
2882 
2883 static inline
2884 bool rate_usable_index_exists(struct ieee80211_supported_band *sband,
2885 			      struct ieee80211_sta *sta)
2886 {
2887 	unsigned int i;
2888 
2889 	for (i = 0; i < sband->n_bitrates; i++)
2890 		if (rate_supported(sta, sband->band, i))
2891 			return true;
2892 	return false;
2893 }
2894 
2895 int ieee80211_rate_control_register(struct rate_control_ops *ops);
2896 void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2897 
2898 static inline bool
2899 conf_is_ht20(struct ieee80211_conf *conf)
2900 {
2901 	return conf->channel_type == NL80211_CHAN_HT20;
2902 }
2903 
2904 static inline bool
2905 conf_is_ht40_minus(struct ieee80211_conf *conf)
2906 {
2907 	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2908 }
2909 
2910 static inline bool
2911 conf_is_ht40_plus(struct ieee80211_conf *conf)
2912 {
2913 	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2914 }
2915 
2916 static inline bool
2917 conf_is_ht40(struct ieee80211_conf *conf)
2918 {
2919 	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2920 }
2921 
2922 static inline bool
2923 conf_is_ht(struct ieee80211_conf *conf)
2924 {
2925 	return conf->channel_type != NL80211_CHAN_NO_HT;
2926 }
2927 
2928 static inline enum nl80211_iftype
2929 ieee80211_iftype_p2p(enum nl80211_iftype type, bool p2p)
2930 {
2931 	if (p2p) {
2932 		switch (type) {
2933 		case NL80211_IFTYPE_STATION:
2934 			return NL80211_IFTYPE_P2P_CLIENT;
2935 		case NL80211_IFTYPE_AP:
2936 			return NL80211_IFTYPE_P2P_GO;
2937 		default:
2938 			break;
2939 		}
2940 	}
2941 	return type;
2942 }
2943 
2944 static inline enum nl80211_iftype
2945 ieee80211_vif_type_p2p(struct ieee80211_vif *vif)
2946 {
2947 	return ieee80211_iftype_p2p(vif->type, vif->p2p);
2948 }
2949 
2950 #endif /* MAC80211_H */
2951