1 /* 2 * mac80211 <-> driver interface 3 * 4 * Copyright 2002-2005, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #ifndef MAC80211_H 14 #define MAC80211_H 15 16 #include <linux/kernel.h> 17 #include <linux/if_ether.h> 18 #include <linux/skbuff.h> 19 #include <linux/wireless.h> 20 #include <linux/device.h> 21 #include <linux/ieee80211.h> 22 #include <net/cfg80211.h> 23 24 /** 25 * DOC: Introduction 26 * 27 * mac80211 is the Linux stack for 802.11 hardware that implements 28 * only partial functionality in hard- or firmware. This document 29 * defines the interface between mac80211 and low-level hardware 30 * drivers. 31 */ 32 33 /** 34 * DOC: Calling mac80211 from interrupts 35 * 36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be 37 * called in hardware interrupt context. The low-level driver must not call any 38 * other functions in hardware interrupt context. If there is a need for such 39 * call, the low-level driver should first ACK the interrupt and perform the 40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even 41 * tasklet function. 42 * 43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also 44 * use the non-IRQ-safe functions! 45 */ 46 47 /** 48 * DOC: Warning 49 * 50 * If you're reading this document and not the header file itself, it will 51 * be incomplete because not all documentation has been converted yet. 52 */ 53 54 /** 55 * DOC: Frame format 56 * 57 * As a general rule, when frames are passed between mac80211 and the driver, 58 * they start with the IEEE 802.11 header and include the same octets that are 59 * sent over the air except for the FCS which should be calculated by the 60 * hardware. 61 * 62 * There are, however, various exceptions to this rule for advanced features: 63 * 64 * The first exception is for hardware encryption and decryption offload 65 * where the IV/ICV may or may not be generated in hardware. 66 * 67 * Secondly, when the hardware handles fragmentation, the frame handed to 68 * the driver from mac80211 is the MSDU, not the MPDU. 69 * 70 * Finally, for received frames, the driver is able to indicate that it has 71 * filled a radiotap header and put that in front of the frame; if it does 72 * not do so then mac80211 may add this under certain circumstances. 73 */ 74 75 /** 76 * DOC: mac80211 workqueue 77 * 78 * mac80211 provides its own workqueue for drivers and internal mac80211 use. 79 * The workqueue is a single threaded workqueue and can only be accessed by 80 * helpers for sanity checking. Drivers must ensure all work added onto the 81 * mac80211 workqueue should be cancelled on the driver stop() callback. 82 * 83 * mac80211 will flushed the workqueue upon interface removal and during 84 * suspend. 85 * 86 * All work performed on the mac80211 workqueue must not acquire the RTNL lock. 87 * 88 */ 89 90 /** 91 * enum ieee80211_max_queues - maximum number of queues 92 * 93 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues. 94 */ 95 enum ieee80211_max_queues { 96 IEEE80211_MAX_QUEUES = 4, 97 }; 98 99 /** 100 * enum ieee80211_ac_numbers - AC numbers as used in mac80211 101 * @IEEE80211_AC_VO: voice 102 * @IEEE80211_AC_VI: video 103 * @IEEE80211_AC_BE: best effort 104 * @IEEE80211_AC_BK: background 105 */ 106 enum ieee80211_ac_numbers { 107 IEEE80211_AC_VO = 0, 108 IEEE80211_AC_VI = 1, 109 IEEE80211_AC_BE = 2, 110 IEEE80211_AC_BK = 3, 111 }; 112 113 /** 114 * struct ieee80211_tx_queue_params - transmit queue configuration 115 * 116 * The information provided in this structure is required for QoS 117 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29. 118 * 119 * @aifs: arbitration interframe space [0..255] 120 * @cw_min: minimum contention window [a value of the form 121 * 2^n-1 in the range 1..32767] 122 * @cw_max: maximum contention window [like @cw_min] 123 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled 124 * @uapsd: is U-APSD mode enabled for the queue 125 */ 126 struct ieee80211_tx_queue_params { 127 u16 txop; 128 u16 cw_min; 129 u16 cw_max; 130 u8 aifs; 131 bool uapsd; 132 }; 133 134 struct ieee80211_low_level_stats { 135 unsigned int dot11ACKFailureCount; 136 unsigned int dot11RTSFailureCount; 137 unsigned int dot11FCSErrorCount; 138 unsigned int dot11RTSSuccessCount; 139 }; 140 141 /** 142 * enum ieee80211_bss_change - BSS change notification flags 143 * 144 * These flags are used with the bss_info_changed() callback 145 * to indicate which BSS parameter changed. 146 * 147 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated), 148 * also implies a change in the AID. 149 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed 150 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed 151 * @BSS_CHANGED_ERP_SLOT: slot timing changed 152 * @BSS_CHANGED_HT: 802.11n parameters changed 153 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed 154 * @BSS_CHANGED_BEACON_INT: Beacon interval changed 155 * @BSS_CHANGED_BSSID: BSSID changed, for whatever 156 * reason (IBSS and managed mode) 157 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve 158 * new beacon (beaconing modes) 159 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be 160 * enabled/disabled (beaconing modes) 161 * @BSS_CHANGED_CQM: Connection quality monitor config changed 162 * @BSS_CHANGED_IBSS: IBSS join status changed 163 * @BSS_CHANGED_ARP_FILTER: Hardware ARP filter address list or state changed. 164 * @BSS_CHANGED_QOS: QoS for this association was enabled/disabled. Note 165 * that it is only ever disabled for station mode. 166 * @BSS_CHANGED_IDLE: Idle changed for this BSS/interface. 167 */ 168 enum ieee80211_bss_change { 169 BSS_CHANGED_ASSOC = 1<<0, 170 BSS_CHANGED_ERP_CTS_PROT = 1<<1, 171 BSS_CHANGED_ERP_PREAMBLE = 1<<2, 172 BSS_CHANGED_ERP_SLOT = 1<<3, 173 BSS_CHANGED_HT = 1<<4, 174 BSS_CHANGED_BASIC_RATES = 1<<5, 175 BSS_CHANGED_BEACON_INT = 1<<6, 176 BSS_CHANGED_BSSID = 1<<7, 177 BSS_CHANGED_BEACON = 1<<8, 178 BSS_CHANGED_BEACON_ENABLED = 1<<9, 179 BSS_CHANGED_CQM = 1<<10, 180 BSS_CHANGED_IBSS = 1<<11, 181 BSS_CHANGED_ARP_FILTER = 1<<12, 182 BSS_CHANGED_QOS = 1<<13, 183 BSS_CHANGED_IDLE = 1<<14, 184 185 /* when adding here, make sure to change ieee80211_reconfig */ 186 }; 187 188 /* 189 * The maximum number of IPv4 addresses listed for ARP filtering. If the number 190 * of addresses for an interface increase beyond this value, hardware ARP 191 * filtering will be disabled. 192 */ 193 #define IEEE80211_BSS_ARP_ADDR_LIST_LEN 4 194 195 /** 196 * struct ieee80211_bss_conf - holds the BSS's changing parameters 197 * 198 * This structure keeps information about a BSS (and an association 199 * to that BSS) that can change during the lifetime of the BSS. 200 * 201 * @assoc: association status 202 * @ibss_joined: indicates whether this station is part of an IBSS 203 * or not 204 * @aid: association ID number, valid only when @assoc is true 205 * @use_cts_prot: use CTS protection 206 * @use_short_preamble: use 802.11b short preamble; 207 * if the hardware cannot handle this it must set the 208 * IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag 209 * @use_short_slot: use short slot time (only relevant for ERP); 210 * if the hardware cannot handle this it must set the 211 * IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag 212 * @dtim_period: num of beacons before the next DTIM, for beaconing, 213 * valid in station mode only while @assoc is true and if also 214 * requested by %IEEE80211_HW_NEED_DTIM_PERIOD (cf. also hw conf 215 * @ps_dtim_period) 216 * @timestamp: beacon timestamp 217 * @beacon_int: beacon interval 218 * @assoc_capability: capabilities taken from assoc resp 219 * @basic_rates: bitmap of basic rates, each bit stands for an 220 * index into the rate table configured by the driver in 221 * the current band. 222 * @mcast_rate: per-band multicast rate index + 1 (0: disabled) 223 * @bssid: The BSSID for this BSS 224 * @enable_beacon: whether beaconing should be enabled or not 225 * @channel_type: Channel type for this BSS -- the hardware might be 226 * configured for HT40+ while this BSS only uses no-HT, for 227 * example. 228 * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info). 229 * This field is only valid when the channel type is one of the HT types. 230 * @cqm_rssi_thold: Connection quality monitor RSSI threshold, a zero value 231 * implies disabled 232 * @cqm_rssi_hyst: Connection quality monitor RSSI hysteresis 233 * @arp_addr_list: List of IPv4 addresses for hardware ARP filtering. The 234 * may filter ARP queries targeted for other addresses than listed here. 235 * The driver must allow ARP queries targeted for all address listed here 236 * to pass through. An empty list implies no ARP queries need to pass. 237 * @arp_addr_cnt: Number of addresses currently on the list. 238 * @arp_filter_enabled: Enable ARP filtering - if enabled, the hardware may 239 * filter ARP queries based on the @arp_addr_list, if disabled, the 240 * hardware must not perform any ARP filtering. Note, that the filter will 241 * be enabled also in promiscuous mode. 242 * @qos: This is a QoS-enabled BSS. 243 * @idle: This interface is idle. There's also a global idle flag in the 244 * hardware config which may be more appropriate depending on what 245 * your driver/device needs to do. 246 */ 247 struct ieee80211_bss_conf { 248 const u8 *bssid; 249 /* association related data */ 250 bool assoc, ibss_joined; 251 u16 aid; 252 /* erp related data */ 253 bool use_cts_prot; 254 bool use_short_preamble; 255 bool use_short_slot; 256 bool enable_beacon; 257 u8 dtim_period; 258 u16 beacon_int; 259 u16 assoc_capability; 260 u64 timestamp; 261 u32 basic_rates; 262 int mcast_rate[IEEE80211_NUM_BANDS]; 263 u16 ht_operation_mode; 264 s32 cqm_rssi_thold; 265 u32 cqm_rssi_hyst; 266 enum nl80211_channel_type channel_type; 267 __be32 arp_addr_list[IEEE80211_BSS_ARP_ADDR_LIST_LEN]; 268 u8 arp_addr_cnt; 269 bool arp_filter_enabled; 270 bool qos; 271 bool idle; 272 }; 273 274 /** 275 * enum mac80211_tx_control_flags - flags to describe transmission information/status 276 * 277 * These flags are used with the @flags member of &ieee80211_tx_info. 278 * 279 * @IEEE80211_TX_CTL_REQ_TX_STATUS: require TX status callback for this frame. 280 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence 281 * number to this frame, taking care of not overwriting the fragment 282 * number and increasing the sequence number only when the 283 * IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly 284 * assign sequence numbers to QoS-data frames but cannot do so correctly 285 * for non-QoS-data and management frames because beacons need them from 286 * that counter as well and mac80211 cannot guarantee proper sequencing. 287 * If this flag is set, the driver should instruct the hardware to 288 * assign a sequence number to the frame or assign one itself. Cf. IEEE 289 * 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for 290 * beacons and always be clear for frames without a sequence number field. 291 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack 292 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination 293 * station 294 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame 295 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon 296 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU 297 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211. 298 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted 299 * because the destination STA was in powersave mode. Note that to 300 * avoid race conditions, the filter must be set by the hardware or 301 * firmware upon receiving a frame that indicates that the station 302 * went to sleep (must be done on device to filter frames already on 303 * the queue) and may only be unset after mac80211 gives the OK for 304 * that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above), 305 * since only then is it guaranteed that no more frames are in the 306 * hardware queue. 307 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged 308 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status 309 * is for the whole aggregation. 310 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned, 311 * so consider using block ack request (BAR). 312 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be 313 * set by rate control algorithms to indicate probe rate, will 314 * be cleared for fragmented frames (except on the last fragment) 315 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211, 316 * used to indicate that a pending frame requires TX processing before 317 * it can be sent out. 318 * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211, 319 * used to indicate that a frame was already retried due to PS 320 * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211, 321 * used to indicate frame should not be encrypted 322 * @IEEE80211_TX_CTL_PSPOLL_RESPONSE: (internal?) 323 * This frame is a response to a PS-poll frame and should be sent 324 * although the station is in powersave mode. 325 * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the 326 * transmit function after the current frame, this can be used 327 * by drivers to kick the DMA queue only if unset or when the 328 * queue gets full. 329 * @IEEE80211_TX_INTFL_RETRANSMISSION: This frame is being retransmitted 330 * after TX status because the destination was asleep, it must not 331 * be modified again (no seqno assignment, crypto, etc.) 332 * @IEEE80211_TX_INTFL_HAS_RADIOTAP: This frame was injected and still 333 * has a radiotap header at skb->data. 334 * @IEEE80211_TX_INTFL_NL80211_FRAME_TX: Frame was requested through nl80211 335 * MLME command (internal to mac80211 to figure out whether to send TX 336 * status to user space) 337 * @IEEE80211_TX_CTL_LDPC: tells the driver to use LDPC for this frame 338 * @IEEE80211_TX_CTL_STBC: Enables Space-Time Block Coding (STBC) for this 339 * frame and selects the maximum number of streams that it can use. 340 * 341 * Note: If you have to add new flags to the enumeration, then don't 342 * forget to update %IEEE80211_TX_TEMPORARY_FLAGS when necessary. 343 */ 344 enum mac80211_tx_control_flags { 345 IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0), 346 IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1), 347 IEEE80211_TX_CTL_NO_ACK = BIT(2), 348 IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3), 349 IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4), 350 IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5), 351 IEEE80211_TX_CTL_AMPDU = BIT(6), 352 IEEE80211_TX_CTL_INJECTED = BIT(7), 353 IEEE80211_TX_STAT_TX_FILTERED = BIT(8), 354 IEEE80211_TX_STAT_ACK = BIT(9), 355 IEEE80211_TX_STAT_AMPDU = BIT(10), 356 IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11), 357 IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12), 358 IEEE80211_TX_INTFL_NEED_TXPROCESSING = BIT(14), 359 IEEE80211_TX_INTFL_RETRIED = BIT(15), 360 IEEE80211_TX_INTFL_DONT_ENCRYPT = BIT(16), 361 IEEE80211_TX_CTL_PSPOLL_RESPONSE = BIT(17), 362 IEEE80211_TX_CTL_MORE_FRAMES = BIT(18), 363 IEEE80211_TX_INTFL_RETRANSMISSION = BIT(19), 364 IEEE80211_TX_INTFL_HAS_RADIOTAP = BIT(20), 365 IEEE80211_TX_INTFL_NL80211_FRAME_TX = BIT(21), 366 IEEE80211_TX_CTL_LDPC = BIT(22), 367 IEEE80211_TX_CTL_STBC = BIT(23) | BIT(24), 368 IEEE80211_TX_CTL_TX_OFFCHAN = BIT(25), 369 }; 370 371 #define IEEE80211_TX_CTL_STBC_SHIFT 23 372 373 /* 374 * This definition is used as a mask to clear all temporary flags, which are 375 * set by the tx handlers for each transmission attempt by the mac80211 stack. 376 */ 377 #define IEEE80211_TX_TEMPORARY_FLAGS (IEEE80211_TX_CTL_NO_ACK | \ 378 IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT | \ 379 IEEE80211_TX_CTL_SEND_AFTER_DTIM | IEEE80211_TX_CTL_AMPDU | \ 380 IEEE80211_TX_STAT_TX_FILTERED | IEEE80211_TX_STAT_ACK | \ 381 IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_STAT_AMPDU_NO_BACK | \ 382 IEEE80211_TX_CTL_RATE_CTRL_PROBE | IEEE80211_TX_CTL_PSPOLL_RESPONSE | \ 383 IEEE80211_TX_CTL_MORE_FRAMES | IEEE80211_TX_CTL_LDPC | \ 384 IEEE80211_TX_CTL_STBC) 385 386 /** 387 * enum mac80211_rate_control_flags - per-rate flags set by the 388 * Rate Control algorithm. 389 * 390 * These flags are set by the Rate control algorithm for each rate during tx, 391 * in the @flags member of struct ieee80211_tx_rate. 392 * 393 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate. 394 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required. 395 * This is set if the current BSS requires ERP protection. 396 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble. 397 * @IEEE80211_TX_RC_MCS: HT rate. 398 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in 399 * Greenfield mode. 400 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz. 401 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the 402 * adjacent 20 MHz channels, if the current channel type is 403 * NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS. 404 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate. 405 */ 406 enum mac80211_rate_control_flags { 407 IEEE80211_TX_RC_USE_RTS_CTS = BIT(0), 408 IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1), 409 IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2), 410 411 /* rate index is an MCS rate number instead of an index */ 412 IEEE80211_TX_RC_MCS = BIT(3), 413 IEEE80211_TX_RC_GREEN_FIELD = BIT(4), 414 IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5), 415 IEEE80211_TX_RC_DUP_DATA = BIT(6), 416 IEEE80211_TX_RC_SHORT_GI = BIT(7), 417 }; 418 419 420 /* there are 40 bytes if you don't need the rateset to be kept */ 421 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40 422 423 /* if you do need the rateset, then you have less space */ 424 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24 425 426 /* maximum number of rate stages */ 427 #define IEEE80211_TX_MAX_RATES 5 428 429 /** 430 * struct ieee80211_tx_rate - rate selection/status 431 * 432 * @idx: rate index to attempt to send with 433 * @flags: rate control flags (&enum mac80211_rate_control_flags) 434 * @count: number of tries in this rate before going to the next rate 435 * 436 * A value of -1 for @idx indicates an invalid rate and, if used 437 * in an array of retry rates, that no more rates should be tried. 438 * 439 * When used for transmit status reporting, the driver should 440 * always report the rate along with the flags it used. 441 * 442 * &struct ieee80211_tx_info contains an array of these structs 443 * in the control information, and it will be filled by the rate 444 * control algorithm according to what should be sent. For example, 445 * if this array contains, in the format { <idx>, <count> } the 446 * information 447 * { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 } 448 * then this means that the frame should be transmitted 449 * up to twice at rate 3, up to twice at rate 2, and up to four 450 * times at rate 1 if it doesn't get acknowledged. Say it gets 451 * acknowledged by the peer after the fifth attempt, the status 452 * information should then contain 453 * { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ... 454 * since it was transmitted twice at rate 3, twice at rate 2 455 * and once at rate 1 after which we received an acknowledgement. 456 */ 457 struct ieee80211_tx_rate { 458 s8 idx; 459 u8 count; 460 u8 flags; 461 } __packed; 462 463 /** 464 * struct ieee80211_tx_info - skb transmit information 465 * 466 * This structure is placed in skb->cb for three uses: 467 * (1) mac80211 TX control - mac80211 tells the driver what to do 468 * (2) driver internal use (if applicable) 469 * (3) TX status information - driver tells mac80211 what happened 470 * 471 * The TX control's sta pointer is only valid during the ->tx call, 472 * it may be NULL. 473 * 474 * @flags: transmit info flags, defined above 475 * @band: the band to transmit on (use for checking for races) 476 * @antenna_sel_tx: antenna to use, 0 for automatic diversity 477 * @pad: padding, ignore 478 * @control: union for control data 479 * @status: union for status data 480 * @driver_data: array of driver_data pointers 481 * @ampdu_ack_len: number of acked aggregated frames. 482 * relevant only if IEEE80211_TX_STAT_AMPDU was set. 483 * @ampdu_len: number of aggregated frames. 484 * relevant only if IEEE80211_TX_STAT_AMPDU was set. 485 * @ack_signal: signal strength of the ACK frame 486 */ 487 struct ieee80211_tx_info { 488 /* common information */ 489 u32 flags; 490 u8 band; 491 492 u8 antenna_sel_tx; 493 494 /* 2 byte hole */ 495 u8 pad[2]; 496 497 union { 498 struct { 499 union { 500 /* rate control */ 501 struct { 502 struct ieee80211_tx_rate rates[ 503 IEEE80211_TX_MAX_RATES]; 504 s8 rts_cts_rate_idx; 505 }; 506 /* only needed before rate control */ 507 unsigned long jiffies; 508 }; 509 /* NB: vif can be NULL for injected frames */ 510 struct ieee80211_vif *vif; 511 struct ieee80211_key_conf *hw_key; 512 struct ieee80211_sta *sta; 513 } control; 514 struct { 515 struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES]; 516 u8 ampdu_ack_len; 517 int ack_signal; 518 u8 ampdu_len; 519 /* 15 bytes free */ 520 } status; 521 struct { 522 struct ieee80211_tx_rate driver_rates[ 523 IEEE80211_TX_MAX_RATES]; 524 void *rate_driver_data[ 525 IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)]; 526 }; 527 void *driver_data[ 528 IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)]; 529 }; 530 }; 531 532 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb) 533 { 534 return (struct ieee80211_tx_info *)skb->cb; 535 } 536 537 static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb) 538 { 539 return (struct ieee80211_rx_status *)skb->cb; 540 } 541 542 /** 543 * ieee80211_tx_info_clear_status - clear TX status 544 * 545 * @info: The &struct ieee80211_tx_info to be cleared. 546 * 547 * When the driver passes an skb back to mac80211, it must report 548 * a number of things in TX status. This function clears everything 549 * in the TX status but the rate control information (it does clear 550 * the count since you need to fill that in anyway). 551 * 552 * NOTE: You can only use this function if you do NOT use 553 * info->driver_data! Use info->rate_driver_data 554 * instead if you need only the less space that allows. 555 */ 556 static inline void 557 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info) 558 { 559 int i; 560 561 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 562 offsetof(struct ieee80211_tx_info, control.rates)); 563 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 564 offsetof(struct ieee80211_tx_info, driver_rates)); 565 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8); 566 /* clear the rate counts */ 567 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) 568 info->status.rates[i].count = 0; 569 570 BUILD_BUG_ON( 571 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23); 572 memset(&info->status.ampdu_ack_len, 0, 573 sizeof(struct ieee80211_tx_info) - 574 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len)); 575 } 576 577 578 /** 579 * enum mac80211_rx_flags - receive flags 580 * 581 * These flags are used with the @flag member of &struct ieee80211_rx_status. 582 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame. 583 * Use together with %RX_FLAG_MMIC_STRIPPED. 584 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware. 585 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame, 586 * verification has been done by the hardware. 587 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame. 588 * If this flag is set, the stack cannot do any replay detection 589 * hence the driver or hardware will have to do that. 590 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on 591 * the frame. 592 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on 593 * the frame. 594 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field) 595 * is valid. This is useful in monitor mode and necessary for beacon frames 596 * to enable IBSS merging. 597 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame 598 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index 599 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used 600 * @RX_FLAG_SHORT_GI: Short guard interval was used 601 */ 602 enum mac80211_rx_flags { 603 RX_FLAG_MMIC_ERROR = 1<<0, 604 RX_FLAG_DECRYPTED = 1<<1, 605 RX_FLAG_MMIC_STRIPPED = 1<<3, 606 RX_FLAG_IV_STRIPPED = 1<<4, 607 RX_FLAG_FAILED_FCS_CRC = 1<<5, 608 RX_FLAG_FAILED_PLCP_CRC = 1<<6, 609 RX_FLAG_TSFT = 1<<7, 610 RX_FLAG_SHORTPRE = 1<<8, 611 RX_FLAG_HT = 1<<9, 612 RX_FLAG_40MHZ = 1<<10, 613 RX_FLAG_SHORT_GI = 1<<11, 614 }; 615 616 /** 617 * struct ieee80211_rx_status - receive status 618 * 619 * The low-level driver should provide this information (the subset 620 * supported by hardware) to the 802.11 code with each received 621 * frame, in the skb's control buffer (cb). 622 * 623 * @mactime: value in microseconds of the 64-bit Time Synchronization Function 624 * (TSF) timer when the first data symbol (MPDU) arrived at the hardware. 625 * @band: the active band when this frame was received 626 * @freq: frequency the radio was tuned to when receiving this frame, in MHz 627 * @signal: signal strength when receiving this frame, either in dBm, in dB or 628 * unspecified depending on the hardware capabilities flags 629 * @IEEE80211_HW_SIGNAL_* 630 * @antenna: antenna used 631 * @rate_idx: index of data rate into band's supported rates or MCS index if 632 * HT rates are use (RX_FLAG_HT) 633 * @flag: %RX_FLAG_* 634 * @rx_flags: internal RX flags for mac80211 635 */ 636 struct ieee80211_rx_status { 637 u64 mactime; 638 enum ieee80211_band band; 639 int freq; 640 int signal; 641 int antenna; 642 int rate_idx; 643 int flag; 644 unsigned int rx_flags; 645 }; 646 647 /** 648 * enum ieee80211_conf_flags - configuration flags 649 * 650 * Flags to define PHY configuration options 651 * 652 * @IEEE80211_CONF_MONITOR: there's a monitor interface present -- use this 653 * to determine for example whether to calculate timestamps for packets 654 * or not, do not use instead of filter flags! 655 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only). 656 * This is the power save mode defined by IEEE 802.11-2007 section 11.2, 657 * meaning that the hardware still wakes up for beacons, is able to 658 * transmit frames and receive the possible acknowledgment frames. 659 * Not to be confused with hardware specific wakeup/sleep states, 660 * driver is responsible for that. See the section "Powersave support" 661 * for more. 662 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set 663 * the driver should be prepared to handle configuration requests but 664 * may turn the device off as much as possible. Typically, this flag will 665 * be set when an interface is set UP but not associated or scanning, but 666 * it can also be unset in that case when monitor interfaces are active. 667 * @IEEE80211_CONF_OFFCHANNEL: The device is currently not on its main 668 * operating channel. 669 */ 670 enum ieee80211_conf_flags { 671 IEEE80211_CONF_MONITOR = (1<<0), 672 IEEE80211_CONF_PS = (1<<1), 673 IEEE80211_CONF_IDLE = (1<<2), 674 IEEE80211_CONF_OFFCHANNEL = (1<<3), 675 }; 676 677 678 /** 679 * enum ieee80211_conf_changed - denotes which configuration changed 680 * 681 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed 682 * @IEEE80211_CONF_CHANGE_MONITOR: the monitor flag changed 683 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed 684 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed 685 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed 686 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed 687 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed 688 * @IEEE80211_CONF_CHANGE_SMPS: Spatial multiplexing powersave mode changed 689 */ 690 enum ieee80211_conf_changed { 691 IEEE80211_CONF_CHANGE_SMPS = BIT(1), 692 IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2), 693 IEEE80211_CONF_CHANGE_MONITOR = BIT(3), 694 IEEE80211_CONF_CHANGE_PS = BIT(4), 695 IEEE80211_CONF_CHANGE_POWER = BIT(5), 696 IEEE80211_CONF_CHANGE_CHANNEL = BIT(6), 697 IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(7), 698 IEEE80211_CONF_CHANGE_IDLE = BIT(8), 699 }; 700 701 /** 702 * enum ieee80211_smps_mode - spatial multiplexing power save mode 703 * 704 * @IEEE80211_SMPS_AUTOMATIC: automatic 705 * @IEEE80211_SMPS_OFF: off 706 * @IEEE80211_SMPS_STATIC: static 707 * @IEEE80211_SMPS_DYNAMIC: dynamic 708 * @IEEE80211_SMPS_NUM_MODES: internal, don't use 709 */ 710 enum ieee80211_smps_mode { 711 IEEE80211_SMPS_AUTOMATIC, 712 IEEE80211_SMPS_OFF, 713 IEEE80211_SMPS_STATIC, 714 IEEE80211_SMPS_DYNAMIC, 715 716 /* keep last */ 717 IEEE80211_SMPS_NUM_MODES, 718 }; 719 720 /** 721 * struct ieee80211_conf - configuration of the device 722 * 723 * This struct indicates how the driver shall configure the hardware. 724 * 725 * @flags: configuration flags defined above 726 * 727 * @listen_interval: listen interval in units of beacon interval 728 * @max_sleep_period: the maximum number of beacon intervals to sleep for 729 * before checking the beacon for a TIM bit (managed mode only); this 730 * value will be only achievable between DTIM frames, the hardware 731 * needs to check for the multicast traffic bit in DTIM beacons. 732 * This variable is valid only when the CONF_PS flag is set. 733 * @ps_dtim_period: The DTIM period of the AP we're connected to, for use 734 * in power saving. Power saving will not be enabled until a beacon 735 * has been received and the DTIM period is known. 736 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the 737 * powersave documentation below. This variable is valid only when 738 * the CONF_PS flag is set. 739 * 740 * @power_level: requested transmit power (in dBm) 741 * 742 * @channel: the channel to tune to 743 * @channel_type: the channel (HT) type 744 * 745 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame 746 * (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11, 747 * but actually means the number of transmissions not the number of retries 748 * @short_frame_max_tx_count: Maximum number of transmissions for a "short" 749 * frame, called "dot11ShortRetryLimit" in 802.11, but actually means the 750 * number of transmissions not the number of retries 751 * 752 * @smps_mode: spatial multiplexing powersave mode; note that 753 * %IEEE80211_SMPS_STATIC is used when the device is not 754 * configured for an HT channel 755 */ 756 struct ieee80211_conf { 757 u32 flags; 758 int power_level, dynamic_ps_timeout; 759 int max_sleep_period; 760 761 u16 listen_interval; 762 u8 ps_dtim_period; 763 764 u8 long_frame_max_tx_count, short_frame_max_tx_count; 765 766 struct ieee80211_channel *channel; 767 enum nl80211_channel_type channel_type; 768 enum ieee80211_smps_mode smps_mode; 769 }; 770 771 /** 772 * struct ieee80211_channel_switch - holds the channel switch data 773 * 774 * The information provided in this structure is required for channel switch 775 * operation. 776 * 777 * @timestamp: value in microseconds of the 64-bit Time Synchronization 778 * Function (TSF) timer when the frame containing the channel switch 779 * announcement was received. This is simply the rx.mactime parameter 780 * the driver passed into mac80211. 781 * @block_tx: Indicates whether transmission must be blocked before the 782 * scheduled channel switch, as indicated by the AP. 783 * @channel: the new channel to switch to 784 * @count: the number of TBTT's until the channel switch event 785 */ 786 struct ieee80211_channel_switch { 787 u64 timestamp; 788 bool block_tx; 789 struct ieee80211_channel *channel; 790 u8 count; 791 }; 792 793 /** 794 * struct ieee80211_vif - per-interface data 795 * 796 * Data in this structure is continually present for driver 797 * use during the life of a virtual interface. 798 * 799 * @type: type of this virtual interface 800 * @bss_conf: BSS configuration for this interface, either our own 801 * or the BSS we're associated to 802 * @addr: address of this interface 803 * @p2p: indicates whether this AP or STA interface is a p2p 804 * interface, i.e. a GO or p2p-sta respectively 805 * @drv_priv: data area for driver use, will always be aligned to 806 * sizeof(void *). 807 */ 808 struct ieee80211_vif { 809 enum nl80211_iftype type; 810 struct ieee80211_bss_conf bss_conf; 811 u8 addr[ETH_ALEN]; 812 bool p2p; 813 /* must be last */ 814 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *)))); 815 }; 816 817 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif) 818 { 819 #ifdef CONFIG_MAC80211_MESH 820 return vif->type == NL80211_IFTYPE_MESH_POINT; 821 #endif 822 return false; 823 } 824 825 /** 826 * enum ieee80211_key_flags - key flags 827 * 828 * These flags are used for communication about keys between the driver 829 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf. 830 * 831 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates 832 * that the STA this key will be used with could be using QoS. 833 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the 834 * driver to indicate that it requires IV generation for this 835 * particular key. 836 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by 837 * the driver for a TKIP key if it requires Michael MIC 838 * generation in software. 839 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates 840 * that the key is pairwise rather then a shared key. 841 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a 842 * CCMP key if it requires CCMP encryption of management frames (MFP) to 843 * be done in software. 844 */ 845 enum ieee80211_key_flags { 846 IEEE80211_KEY_FLAG_WMM_STA = 1<<0, 847 IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1, 848 IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2, 849 IEEE80211_KEY_FLAG_PAIRWISE = 1<<3, 850 IEEE80211_KEY_FLAG_SW_MGMT = 1<<4, 851 }; 852 853 /** 854 * struct ieee80211_key_conf - key information 855 * 856 * This key information is given by mac80211 to the driver by 857 * the set_key() callback in &struct ieee80211_ops. 858 * 859 * @hw_key_idx: To be set by the driver, this is the key index the driver 860 * wants to be given when a frame is transmitted and needs to be 861 * encrypted in hardware. 862 * @cipher: The key's cipher suite selector. 863 * @flags: key flags, see &enum ieee80211_key_flags. 864 * @keyidx: the key index (0-3) 865 * @keylen: key material length 866 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte) 867 * data block: 868 * - Temporal Encryption Key (128 bits) 869 * - Temporal Authenticator Tx MIC Key (64 bits) 870 * - Temporal Authenticator Rx MIC Key (64 bits) 871 * @icv_len: The ICV length for this key type 872 * @iv_len: The IV length for this key type 873 */ 874 struct ieee80211_key_conf { 875 u32 cipher; 876 u8 icv_len; 877 u8 iv_len; 878 u8 hw_key_idx; 879 u8 flags; 880 s8 keyidx; 881 u8 keylen; 882 u8 key[0]; 883 }; 884 885 /** 886 * enum set_key_cmd - key command 887 * 888 * Used with the set_key() callback in &struct ieee80211_ops, this 889 * indicates whether a key is being removed or added. 890 * 891 * @SET_KEY: a key is set 892 * @DISABLE_KEY: a key must be disabled 893 */ 894 enum set_key_cmd { 895 SET_KEY, DISABLE_KEY, 896 }; 897 898 /** 899 * struct ieee80211_sta - station table entry 900 * 901 * A station table entry represents a station we are possibly 902 * communicating with. Since stations are RCU-managed in 903 * mac80211, any ieee80211_sta pointer you get access to must 904 * either be protected by rcu_read_lock() explicitly or implicitly, 905 * or you must take good care to not use such a pointer after a 906 * call to your sta_remove callback that removed it. 907 * 908 * @addr: MAC address 909 * @aid: AID we assigned to the station if we're an AP 910 * @supp_rates: Bitmap of supported rates (per band) 911 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities 912 * @drv_priv: data area for driver use, will always be aligned to 913 * sizeof(void *), size is determined in hw information. 914 */ 915 struct ieee80211_sta { 916 u32 supp_rates[IEEE80211_NUM_BANDS]; 917 u8 addr[ETH_ALEN]; 918 u16 aid; 919 struct ieee80211_sta_ht_cap ht_cap; 920 921 /* must be last */ 922 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *)))); 923 }; 924 925 /** 926 * enum sta_notify_cmd - sta notify command 927 * 928 * Used with the sta_notify() callback in &struct ieee80211_ops, this 929 * indicates if an associated station made a power state transition. 930 * 931 * @STA_NOTIFY_SLEEP: a station is now sleeping 932 * @STA_NOTIFY_AWAKE: a sleeping station woke up 933 */ 934 enum sta_notify_cmd { 935 STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE, 936 }; 937 938 /** 939 * enum ieee80211_tkip_key_type - get tkip key 940 * 941 * Used by drivers which need to get a tkip key for skb. Some drivers need a 942 * phase 1 key, others need a phase 2 key. A single function allows the driver 943 * to get the key, this enum indicates what type of key is required. 944 * 945 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key 946 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key 947 */ 948 enum ieee80211_tkip_key_type { 949 IEEE80211_TKIP_P1_KEY, 950 IEEE80211_TKIP_P2_KEY, 951 }; 952 953 /** 954 * enum ieee80211_hw_flags - hardware flags 955 * 956 * These flags are used to indicate hardware capabilities to 957 * the stack. Generally, flags here should have their meaning 958 * done in a way that the simplest hardware doesn't need setting 959 * any particular flags. There are some exceptions to this rule, 960 * however, so you are advised to review these flags carefully. 961 * 962 * @IEEE80211_HW_HAS_RATE_CONTROL: 963 * The hardware or firmware includes rate control, and cannot be 964 * controlled by the stack. As such, no rate control algorithm 965 * should be instantiated, and the TX rate reported to userspace 966 * will be taken from the TX status instead of the rate control 967 * algorithm. 968 * Note that this requires that the driver implement a number of 969 * callbacks so it has the correct information, it needs to have 970 * the @set_rts_threshold callback and must look at the BSS config 971 * @use_cts_prot for G/N protection, @use_short_slot for slot 972 * timing in 2.4 GHz and @use_short_preamble for preambles for 973 * CCK frames. 974 * 975 * @IEEE80211_HW_RX_INCLUDES_FCS: 976 * Indicates that received frames passed to the stack include 977 * the FCS at the end. 978 * 979 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING: 980 * Some wireless LAN chipsets buffer broadcast/multicast frames 981 * for power saving stations in the hardware/firmware and others 982 * rely on the host system for such buffering. This option is used 983 * to configure the IEEE 802.11 upper layer to buffer broadcast and 984 * multicast frames when there are power saving stations so that 985 * the driver can fetch them with ieee80211_get_buffered_bc(). 986 * 987 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE: 988 * Hardware is not capable of short slot operation on the 2.4 GHz band. 989 * 990 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE: 991 * Hardware is not capable of receiving frames with short preamble on 992 * the 2.4 GHz band. 993 * 994 * @IEEE80211_HW_SIGNAL_UNSPEC: 995 * Hardware can provide signal values but we don't know its units. We 996 * expect values between 0 and @max_signal. 997 * If possible please provide dB or dBm instead. 998 * 999 * @IEEE80211_HW_SIGNAL_DBM: 1000 * Hardware gives signal values in dBm, decibel difference from 1001 * one milliwatt. This is the preferred method since it is standardized 1002 * between different devices. @max_signal does not need to be set. 1003 * 1004 * @IEEE80211_HW_SPECTRUM_MGMT: 1005 * Hardware supports spectrum management defined in 802.11h 1006 * Measurement, Channel Switch, Quieting, TPC 1007 * 1008 * @IEEE80211_HW_AMPDU_AGGREGATION: 1009 * Hardware supports 11n A-MPDU aggregation. 1010 * 1011 * @IEEE80211_HW_SUPPORTS_PS: 1012 * Hardware has power save support (i.e. can go to sleep). 1013 * 1014 * @IEEE80211_HW_PS_NULLFUNC_STACK: 1015 * Hardware requires nullfunc frame handling in stack, implies 1016 * stack support for dynamic PS. 1017 * 1018 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS: 1019 * Hardware has support for dynamic PS. 1020 * 1021 * @IEEE80211_HW_MFP_CAPABLE: 1022 * Hardware supports management frame protection (MFP, IEEE 802.11w). 1023 * 1024 * @IEEE80211_HW_BEACON_FILTER: 1025 * Hardware supports dropping of irrelevant beacon frames to 1026 * avoid waking up cpu. 1027 * 1028 * @IEEE80211_HW_SUPPORTS_STATIC_SMPS: 1029 * Hardware supports static spatial multiplexing powersave, 1030 * ie. can turn off all but one chain even on HT connections 1031 * that should be using more chains. 1032 * 1033 * @IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS: 1034 * Hardware supports dynamic spatial multiplexing powersave, 1035 * ie. can turn off all but one chain and then wake the rest 1036 * up as required after, for example, rts/cts handshake. 1037 * 1038 * @IEEE80211_HW_SUPPORTS_UAPSD: 1039 * Hardware supports Unscheduled Automatic Power Save Delivery 1040 * (U-APSD) in managed mode. The mode is configured with 1041 * conf_tx() operation. 1042 * 1043 * @IEEE80211_HW_REPORTS_TX_ACK_STATUS: 1044 * Hardware can provide ack status reports of Tx frames to 1045 * the stack. 1046 * 1047 * @IEEE80211_HW_CONNECTION_MONITOR: 1048 * The hardware performs its own connection monitoring, including 1049 * periodic keep-alives to the AP and probing the AP on beacon loss. 1050 * When this flag is set, signaling beacon-loss will cause an immediate 1051 * change to disassociated state. 1052 * 1053 * @IEEE80211_HW_SUPPORTS_CQM_RSSI: 1054 * Hardware can do connection quality monitoring - i.e. it can monitor 1055 * connection quality related parameters, such as the RSSI level and 1056 * provide notifications if configured trigger levels are reached. 1057 * 1058 * @IEEE80211_HW_NEED_DTIM_PERIOD: 1059 * This device needs to know the DTIM period for the BSS before 1060 * associating. 1061 * 1062 * @IEEE80211_HW_SUPPORTS_PER_STA_GTK: The device's crypto engine supports 1063 * per-station GTKs as used by IBSS RSN or during fast transition. If 1064 * the device doesn't support per-station GTKs, but can be asked not 1065 * to decrypt group addressed frames, then IBSS RSN support is still 1066 * possible but software crypto will be used. Advertise the wiphy flag 1067 * only in that case. 1068 */ 1069 enum ieee80211_hw_flags { 1070 IEEE80211_HW_HAS_RATE_CONTROL = 1<<0, 1071 IEEE80211_HW_RX_INCLUDES_FCS = 1<<1, 1072 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2, 1073 IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3, 1074 IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4, 1075 IEEE80211_HW_SIGNAL_UNSPEC = 1<<5, 1076 IEEE80211_HW_SIGNAL_DBM = 1<<6, 1077 IEEE80211_HW_NEED_DTIM_PERIOD = 1<<7, 1078 IEEE80211_HW_SPECTRUM_MGMT = 1<<8, 1079 IEEE80211_HW_AMPDU_AGGREGATION = 1<<9, 1080 IEEE80211_HW_SUPPORTS_PS = 1<<10, 1081 IEEE80211_HW_PS_NULLFUNC_STACK = 1<<11, 1082 IEEE80211_HW_SUPPORTS_DYNAMIC_PS = 1<<12, 1083 IEEE80211_HW_MFP_CAPABLE = 1<<13, 1084 IEEE80211_HW_BEACON_FILTER = 1<<14, 1085 IEEE80211_HW_SUPPORTS_STATIC_SMPS = 1<<15, 1086 IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS = 1<<16, 1087 IEEE80211_HW_SUPPORTS_UAPSD = 1<<17, 1088 IEEE80211_HW_REPORTS_TX_ACK_STATUS = 1<<18, 1089 IEEE80211_HW_CONNECTION_MONITOR = 1<<19, 1090 IEEE80211_HW_SUPPORTS_CQM_RSSI = 1<<20, 1091 IEEE80211_HW_SUPPORTS_PER_STA_GTK = 1<<21, 1092 }; 1093 1094 /** 1095 * struct ieee80211_hw - hardware information and state 1096 * 1097 * This structure contains the configuration and hardware 1098 * information for an 802.11 PHY. 1099 * 1100 * @wiphy: This points to the &struct wiphy allocated for this 1101 * 802.11 PHY. You must fill in the @perm_addr and @dev 1102 * members of this structure using SET_IEEE80211_DEV() 1103 * and SET_IEEE80211_PERM_ADDR(). Additionally, all supported 1104 * bands (with channels, bitrates) are registered here. 1105 * 1106 * @conf: &struct ieee80211_conf, device configuration, don't use. 1107 * 1108 * @priv: pointer to private area that was allocated for driver use 1109 * along with this structure. 1110 * 1111 * @flags: hardware flags, see &enum ieee80211_hw_flags. 1112 * 1113 * @extra_tx_headroom: headroom to reserve in each transmit skb 1114 * for use by the driver (e.g. for transmit headers.) 1115 * 1116 * @channel_change_time: time (in microseconds) it takes to change channels. 1117 * 1118 * @max_signal: Maximum value for signal (rssi) in RX information, used 1119 * only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB 1120 * 1121 * @max_listen_interval: max listen interval in units of beacon interval 1122 * that HW supports 1123 * 1124 * @queues: number of available hardware transmit queues for 1125 * data packets. WMM/QoS requires at least four, these 1126 * queues need to have configurable access parameters. 1127 * 1128 * @rate_control_algorithm: rate control algorithm for this hardware. 1129 * If unset (NULL), the default algorithm will be used. Must be 1130 * set before calling ieee80211_register_hw(). 1131 * 1132 * @vif_data_size: size (in bytes) of the drv_priv data area 1133 * within &struct ieee80211_vif. 1134 * @sta_data_size: size (in bytes) of the drv_priv data area 1135 * within &struct ieee80211_sta. 1136 * 1137 * @max_rates: maximum number of alternate rate retry stages the hw 1138 * can handle. 1139 * @max_report_rates: maximum number of alternate rate retry stages 1140 * the hw can report back. 1141 * @max_rate_tries: maximum number of tries for each stage 1142 * 1143 * @napi_weight: weight used for NAPI polling. You must specify an 1144 * appropriate value here if a napi_poll operation is provided 1145 * by your driver. 1146 */ 1147 struct ieee80211_hw { 1148 struct ieee80211_conf conf; 1149 struct wiphy *wiphy; 1150 const char *rate_control_algorithm; 1151 void *priv; 1152 u32 flags; 1153 unsigned int extra_tx_headroom; 1154 int channel_change_time; 1155 int vif_data_size; 1156 int sta_data_size; 1157 int napi_weight; 1158 u16 queues; 1159 u16 max_listen_interval; 1160 s8 max_signal; 1161 u8 max_rates; 1162 u8 max_report_rates; 1163 u8 max_rate_tries; 1164 }; 1165 1166 /** 1167 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy 1168 * 1169 * @wiphy: the &struct wiphy which we want to query 1170 * 1171 * mac80211 drivers can use this to get to their respective 1172 * &struct ieee80211_hw. Drivers wishing to get to their own private 1173 * structure can then access it via hw->priv. Note that mac802111 drivers should 1174 * not use wiphy_priv() to try to get their private driver structure as this 1175 * is already used internally by mac80211. 1176 */ 1177 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy); 1178 1179 /** 1180 * SET_IEEE80211_DEV - set device for 802.11 hardware 1181 * 1182 * @hw: the &struct ieee80211_hw to set the device for 1183 * @dev: the &struct device of this 802.11 device 1184 */ 1185 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev) 1186 { 1187 set_wiphy_dev(hw->wiphy, dev); 1188 } 1189 1190 /** 1191 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware 1192 * 1193 * @hw: the &struct ieee80211_hw to set the MAC address for 1194 * @addr: the address to set 1195 */ 1196 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr) 1197 { 1198 memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN); 1199 } 1200 1201 static inline struct ieee80211_rate * 1202 ieee80211_get_tx_rate(const struct ieee80211_hw *hw, 1203 const struct ieee80211_tx_info *c) 1204 { 1205 if (WARN_ON(c->control.rates[0].idx < 0)) 1206 return NULL; 1207 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx]; 1208 } 1209 1210 static inline struct ieee80211_rate * 1211 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw, 1212 const struct ieee80211_tx_info *c) 1213 { 1214 if (c->control.rts_cts_rate_idx < 0) 1215 return NULL; 1216 return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx]; 1217 } 1218 1219 static inline struct ieee80211_rate * 1220 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw, 1221 const struct ieee80211_tx_info *c, int idx) 1222 { 1223 if (c->control.rates[idx + 1].idx < 0) 1224 return NULL; 1225 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx]; 1226 } 1227 1228 /** 1229 * DOC: Hardware crypto acceleration 1230 * 1231 * mac80211 is capable of taking advantage of many hardware 1232 * acceleration designs for encryption and decryption operations. 1233 * 1234 * The set_key() callback in the &struct ieee80211_ops for a given 1235 * device is called to enable hardware acceleration of encryption and 1236 * decryption. The callback takes a @sta parameter that will be NULL 1237 * for default keys or keys used for transmission only, or point to 1238 * the station information for the peer for individual keys. 1239 * Multiple transmission keys with the same key index may be used when 1240 * VLANs are configured for an access point. 1241 * 1242 * When transmitting, the TX control data will use the @hw_key_idx 1243 * selected by the driver by modifying the &struct ieee80211_key_conf 1244 * pointed to by the @key parameter to the set_key() function. 1245 * 1246 * The set_key() call for the %SET_KEY command should return 0 if 1247 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be 1248 * added; if you return 0 then hw_key_idx must be assigned to the 1249 * hardware key index, you are free to use the full u8 range. 1250 * 1251 * When the cmd is %DISABLE_KEY then it must succeed. 1252 * 1253 * Note that it is permissible to not decrypt a frame even if a key 1254 * for it has been uploaded to hardware, the stack will not make any 1255 * decision based on whether a key has been uploaded or not but rather 1256 * based on the receive flags. 1257 * 1258 * The &struct ieee80211_key_conf structure pointed to by the @key 1259 * parameter is guaranteed to be valid until another call to set_key() 1260 * removes it, but it can only be used as a cookie to differentiate 1261 * keys. 1262 * 1263 * In TKIP some HW need to be provided a phase 1 key, for RX decryption 1264 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key 1265 * handler. 1266 * The update_tkip_key() call updates the driver with the new phase 1 key. 1267 * This happens everytime the iv16 wraps around (every 65536 packets). The 1268 * set_key() call will happen only once for each key (unless the AP did 1269 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is 1270 * provided by update_tkip_key only. The trigger that makes mac80211 call this 1271 * handler is software decryption with wrap around of iv16. 1272 */ 1273 1274 /** 1275 * DOC: Powersave support 1276 * 1277 * mac80211 has support for various powersave implementations. 1278 * 1279 * First, it can support hardware that handles all powersaving by itself, 1280 * such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS hardware 1281 * flag. In that case, it will be told about the desired powersave mode 1282 * with the %IEEE80211_CONF_PS flag depending on the association status. 1283 * The hardware must take care of sending nullfunc frames when necessary, 1284 * i.e. when entering and leaving powersave mode. The hardware is required 1285 * to look at the AID in beacons and signal to the AP that it woke up when 1286 * it finds traffic directed to it. 1287 * 1288 * %IEEE80211_CONF_PS flag enabled means that the powersave mode defined in 1289 * IEEE 802.11-2007 section 11.2 is enabled. This is not to be confused 1290 * with hardware wakeup and sleep states. Driver is responsible for waking 1291 * up the hardware before issuing commands to the hardware and putting it 1292 * back to sleep at appropriate times. 1293 * 1294 * When PS is enabled, hardware needs to wakeup for beacons and receive the 1295 * buffered multicast/broadcast frames after the beacon. Also it must be 1296 * possible to send frames and receive the acknowledment frame. 1297 * 1298 * Other hardware designs cannot send nullfunc frames by themselves and also 1299 * need software support for parsing the TIM bitmap. This is also supported 1300 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and 1301 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still 1302 * required to pass up beacons. The hardware is still required to handle 1303 * waking up for multicast traffic; if it cannot the driver must handle that 1304 * as best as it can, mac80211 is too slow to do that. 1305 * 1306 * Dynamic powersave is an extension to normal powersave in which the 1307 * hardware stays awake for a user-specified period of time after sending a 1308 * frame so that reply frames need not be buffered and therefore delayed to 1309 * the next wakeup. It's compromise of getting good enough latency when 1310 * there's data traffic and still saving significantly power in idle 1311 * periods. 1312 * 1313 * Dynamic powersave is simply supported by mac80211 enabling and disabling 1314 * PS based on traffic. Driver needs to only set %IEEE80211_HW_SUPPORTS_PS 1315 * flag and mac80211 will handle everything automatically. Additionally, 1316 * hardware having support for the dynamic PS feature may set the 1317 * %IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support 1318 * dynamic PS mode itself. The driver needs to look at the 1319 * @dynamic_ps_timeout hardware configuration value and use it that value 1320 * whenever %IEEE80211_CONF_PS is set. In this case mac80211 will disable 1321 * dynamic PS feature in stack and will just keep %IEEE80211_CONF_PS 1322 * enabled whenever user has enabled powersave. 1323 * 1324 * Some hardware need to toggle a single shared antenna between WLAN and 1325 * Bluetooth to facilitate co-existence. These types of hardware set 1326 * limitations on the use of host controlled dynamic powersave whenever there 1327 * is simultaneous WLAN and Bluetooth traffic. For these types of hardware, the 1328 * driver may request temporarily going into full power save, in order to 1329 * enable toggling the antenna between BT and WLAN. If the driver requests 1330 * disabling dynamic powersave, the @dynamic_ps_timeout value will be 1331 * temporarily set to zero until the driver re-enables dynamic powersave. 1332 * 1333 * Driver informs U-APSD client support by enabling 1334 * %IEEE80211_HW_SUPPORTS_UAPSD flag. The mode is configured through the 1335 * uapsd paramater in conf_tx() operation. Hardware needs to send the QoS 1336 * Nullfunc frames and stay awake until the service period has ended. To 1337 * utilize U-APSD, dynamic powersave is disabled for voip AC and all frames 1338 * from that AC are transmitted with powersave enabled. 1339 * 1340 * Note: U-APSD client mode is not yet supported with 1341 * %IEEE80211_HW_PS_NULLFUNC_STACK. 1342 */ 1343 1344 /** 1345 * DOC: Beacon filter support 1346 * 1347 * Some hardware have beacon filter support to reduce host cpu wakeups 1348 * which will reduce system power consumption. It usuallly works so that 1349 * the firmware creates a checksum of the beacon but omits all constantly 1350 * changing elements (TSF, TIM etc). Whenever the checksum changes the 1351 * beacon is forwarded to the host, otherwise it will be just dropped. That 1352 * way the host will only receive beacons where some relevant information 1353 * (for example ERP protection or WMM settings) have changed. 1354 * 1355 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER 1356 * hardware capability. The driver needs to enable beacon filter support 1357 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When 1358 * power save is enabled, the stack will not check for beacon loss and the 1359 * driver needs to notify about loss of beacons with ieee80211_beacon_loss(). 1360 * 1361 * The time (or number of beacons missed) until the firmware notifies the 1362 * driver of a beacon loss event (which in turn causes the driver to call 1363 * ieee80211_beacon_loss()) should be configurable and will be controlled 1364 * by mac80211 and the roaming algorithm in the future. 1365 * 1366 * Since there may be constantly changing information elements that nothing 1367 * in the software stack cares about, we will, in the future, have mac80211 1368 * tell the driver which information elements are interesting in the sense 1369 * that we want to see changes in them. This will include 1370 * - a list of information element IDs 1371 * - a list of OUIs for the vendor information element 1372 * 1373 * Ideally, the hardware would filter out any beacons without changes in the 1374 * requested elements, but if it cannot support that it may, at the expense 1375 * of some efficiency, filter out only a subset. For example, if the device 1376 * doesn't support checking for OUIs it should pass up all changes in all 1377 * vendor information elements. 1378 * 1379 * Note that change, for the sake of simplification, also includes information 1380 * elements appearing or disappearing from the beacon. 1381 * 1382 * Some hardware supports an "ignore list" instead, just make sure nothing 1383 * that was requested is on the ignore list, and include commonly changing 1384 * information element IDs in the ignore list, for example 11 (BSS load) and 1385 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136, 1386 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility 1387 * it could also include some currently unused IDs. 1388 * 1389 * 1390 * In addition to these capabilities, hardware should support notifying the 1391 * host of changes in the beacon RSSI. This is relevant to implement roaming 1392 * when no traffic is flowing (when traffic is flowing we see the RSSI of 1393 * the received data packets). This can consist in notifying the host when 1394 * the RSSI changes significantly or when it drops below or rises above 1395 * configurable thresholds. In the future these thresholds will also be 1396 * configured by mac80211 (which gets them from userspace) to implement 1397 * them as the roaming algorithm requires. 1398 * 1399 * If the hardware cannot implement this, the driver should ask it to 1400 * periodically pass beacon frames to the host so that software can do the 1401 * signal strength threshold checking. 1402 */ 1403 1404 /** 1405 * DOC: Spatial multiplexing power save 1406 * 1407 * SMPS (Spatial multiplexing power save) is a mechanism to conserve 1408 * power in an 802.11n implementation. For details on the mechanism 1409 * and rationale, please refer to 802.11 (as amended by 802.11n-2009) 1410 * "11.2.3 SM power save". 1411 * 1412 * The mac80211 implementation is capable of sending action frames 1413 * to update the AP about the station's SMPS mode, and will instruct 1414 * the driver to enter the specific mode. It will also announce the 1415 * requested SMPS mode during the association handshake. Hardware 1416 * support for this feature is required, and can be indicated by 1417 * hardware flags. 1418 * 1419 * The default mode will be "automatic", which nl80211/cfg80211 1420 * defines to be dynamic SMPS in (regular) powersave, and SMPS 1421 * turned off otherwise. 1422 * 1423 * To support this feature, the driver must set the appropriate 1424 * hardware support flags, and handle the SMPS flag to the config() 1425 * operation. It will then with this mechanism be instructed to 1426 * enter the requested SMPS mode while associated to an HT AP. 1427 */ 1428 1429 /** 1430 * DOC: Frame filtering 1431 * 1432 * mac80211 requires to see many management frames for proper 1433 * operation, and users may want to see many more frames when 1434 * in monitor mode. However, for best CPU usage and power consumption, 1435 * having as few frames as possible percolate through the stack is 1436 * desirable. Hence, the hardware should filter as much as possible. 1437 * 1438 * To achieve this, mac80211 uses filter flags (see below) to tell 1439 * the driver's configure_filter() function which frames should be 1440 * passed to mac80211 and which should be filtered out. 1441 * 1442 * Before configure_filter() is invoked, the prepare_multicast() 1443 * callback is invoked with the parameters @mc_count and @mc_list 1444 * for the combined multicast address list of all virtual interfaces. 1445 * It's use is optional, and it returns a u64 that is passed to 1446 * configure_filter(). Additionally, configure_filter() has the 1447 * arguments @changed_flags telling which flags were changed and 1448 * @total_flags with the new flag states. 1449 * 1450 * If your device has no multicast address filters your driver will 1451 * need to check both the %FIF_ALLMULTI flag and the @mc_count 1452 * parameter to see whether multicast frames should be accepted 1453 * or dropped. 1454 * 1455 * All unsupported flags in @total_flags must be cleared. 1456 * Hardware does not support a flag if it is incapable of _passing_ 1457 * the frame to the stack. Otherwise the driver must ignore 1458 * the flag, but not clear it. 1459 * You must _only_ clear the flag (announce no support for the 1460 * flag to mac80211) if you are not able to pass the packet type 1461 * to the stack (so the hardware always filters it). 1462 * So for example, you should clear @FIF_CONTROL, if your hardware 1463 * always filters control frames. If your hardware always passes 1464 * control frames to the kernel and is incapable of filtering them, 1465 * you do _not_ clear the @FIF_CONTROL flag. 1466 * This rule applies to all other FIF flags as well. 1467 */ 1468 1469 /** 1470 * enum ieee80211_filter_flags - hardware filter flags 1471 * 1472 * These flags determine what the filter in hardware should be 1473 * programmed to let through and what should not be passed to the 1474 * stack. It is always safe to pass more frames than requested, 1475 * but this has negative impact on power consumption. 1476 * 1477 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS, 1478 * think of the BSS as your network segment and then this corresponds 1479 * to the regular ethernet device promiscuous mode. 1480 * 1481 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested 1482 * by the user or if the hardware is not capable of filtering by 1483 * multicast address. 1484 * 1485 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the 1486 * %RX_FLAG_FAILED_FCS_CRC for them) 1487 * 1488 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set 1489 * the %RX_FLAG_FAILED_PLCP_CRC for them 1490 * 1491 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate 1492 * to the hardware that it should not filter beacons or probe responses 1493 * by BSSID. Filtering them can greatly reduce the amount of processing 1494 * mac80211 needs to do and the amount of CPU wakeups, so you should 1495 * honour this flag if possible. 1496 * 1497 * @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS 1498 * is not set then only those addressed to this station. 1499 * 1500 * @FIF_OTHER_BSS: pass frames destined to other BSSes 1501 * 1502 * @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS is not set then only 1503 * those addressed to this station. 1504 * 1505 * @FIF_PROBE_REQ: pass probe request frames 1506 */ 1507 enum ieee80211_filter_flags { 1508 FIF_PROMISC_IN_BSS = 1<<0, 1509 FIF_ALLMULTI = 1<<1, 1510 FIF_FCSFAIL = 1<<2, 1511 FIF_PLCPFAIL = 1<<3, 1512 FIF_BCN_PRBRESP_PROMISC = 1<<4, 1513 FIF_CONTROL = 1<<5, 1514 FIF_OTHER_BSS = 1<<6, 1515 FIF_PSPOLL = 1<<7, 1516 FIF_PROBE_REQ = 1<<8, 1517 }; 1518 1519 /** 1520 * enum ieee80211_ampdu_mlme_action - A-MPDU actions 1521 * 1522 * These flags are used with the ampdu_action() callback in 1523 * &struct ieee80211_ops to indicate which action is needed. 1524 * 1525 * Note that drivers MUST be able to deal with a TX aggregation 1526 * session being stopped even before they OK'ed starting it by 1527 * calling ieee80211_start_tx_ba_cb_irqsafe, because the peer 1528 * might receive the addBA frame and send a delBA right away! 1529 * 1530 * @IEEE80211_AMPDU_RX_START: start Rx aggregation 1531 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation 1532 * @IEEE80211_AMPDU_TX_START: start Tx aggregation 1533 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation 1534 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational 1535 */ 1536 enum ieee80211_ampdu_mlme_action { 1537 IEEE80211_AMPDU_RX_START, 1538 IEEE80211_AMPDU_RX_STOP, 1539 IEEE80211_AMPDU_TX_START, 1540 IEEE80211_AMPDU_TX_STOP, 1541 IEEE80211_AMPDU_TX_OPERATIONAL, 1542 }; 1543 1544 /** 1545 * struct ieee80211_ops - callbacks from mac80211 to the driver 1546 * 1547 * This structure contains various callbacks that the driver may 1548 * handle or, in some cases, must handle, for example to configure 1549 * the hardware to a new channel or to transmit a frame. 1550 * 1551 * @tx: Handler that 802.11 module calls for each transmitted frame. 1552 * skb contains the buffer starting from the IEEE 802.11 header. 1553 * The low-level driver should send the frame out based on 1554 * configuration in the TX control data. This handler should, 1555 * preferably, never fail and stop queues appropriately, more 1556 * importantly, however, it must never fail for A-MPDU-queues. 1557 * This function should return NETDEV_TX_OK except in very 1558 * limited cases. 1559 * Must be implemented and atomic. 1560 * 1561 * @start: Called before the first netdevice attached to the hardware 1562 * is enabled. This should turn on the hardware and must turn on 1563 * frame reception (for possibly enabled monitor interfaces.) 1564 * Returns negative error codes, these may be seen in userspace, 1565 * or zero. 1566 * When the device is started it should not have a MAC address 1567 * to avoid acknowledging frames before a non-monitor device 1568 * is added. 1569 * Must be implemented and can sleep. 1570 * 1571 * @stop: Called after last netdevice attached to the hardware 1572 * is disabled. This should turn off the hardware (at least 1573 * it must turn off frame reception.) 1574 * May be called right after add_interface if that rejects 1575 * an interface. If you added any work onto the mac80211 workqueue 1576 * you should ensure to cancel it on this callback. 1577 * Must be implemented and can sleep. 1578 * 1579 * @add_interface: Called when a netdevice attached to the hardware is 1580 * enabled. Because it is not called for monitor mode devices, @start 1581 * and @stop must be implemented. 1582 * The driver should perform any initialization it needs before 1583 * the device can be enabled. The initial configuration for the 1584 * interface is given in the conf parameter. 1585 * The callback may refuse to add an interface by returning a 1586 * negative error code (which will be seen in userspace.) 1587 * Must be implemented and can sleep. 1588 * 1589 * @change_interface: Called when a netdevice changes type. This callback 1590 * is optional, but only if it is supported can interface types be 1591 * switched while the interface is UP. The callback may sleep. 1592 * Note that while an interface is being switched, it will not be 1593 * found by the interface iteration callbacks. 1594 * 1595 * @remove_interface: Notifies a driver that an interface is going down. 1596 * The @stop callback is called after this if it is the last interface 1597 * and no monitor interfaces are present. 1598 * When all interfaces are removed, the MAC address in the hardware 1599 * must be cleared so the device no longer acknowledges packets, 1600 * the mac_addr member of the conf structure is, however, set to the 1601 * MAC address of the device going away. 1602 * Hence, this callback must be implemented. It can sleep. 1603 * 1604 * @config: Handler for configuration requests. IEEE 802.11 code calls this 1605 * function to change hardware configuration, e.g., channel. 1606 * This function should never fail but returns a negative error code 1607 * if it does. The callback can sleep. 1608 * 1609 * @bss_info_changed: Handler for configuration requests related to BSS 1610 * parameters that may vary during BSS's lifespan, and may affect low 1611 * level driver (e.g. assoc/disassoc status, erp parameters). 1612 * This function should not be used if no BSS has been set, unless 1613 * for association indication. The @changed parameter indicates which 1614 * of the bss parameters has changed when a call is made. The callback 1615 * can sleep. 1616 * 1617 * @prepare_multicast: Prepare for multicast filter configuration. 1618 * This callback is optional, and its return value is passed 1619 * to configure_filter(). This callback must be atomic. 1620 * 1621 * @configure_filter: Configure the device's RX filter. 1622 * See the section "Frame filtering" for more information. 1623 * This callback must be implemented and can sleep. 1624 * 1625 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit 1626 * must be set or cleared for a given STA. Must be atomic. 1627 * 1628 * @set_key: See the section "Hardware crypto acceleration" 1629 * This callback is only called between add_interface and 1630 * remove_interface calls, i.e. while the given virtual interface 1631 * is enabled. 1632 * Returns a negative error code if the key can't be added. 1633 * The callback can sleep. 1634 * 1635 * @update_tkip_key: See the section "Hardware crypto acceleration" 1636 * This callback will be called in the context of Rx. Called for drivers 1637 * which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY. 1638 * The callback must be atomic. 1639 * 1640 * @hw_scan: Ask the hardware to service the scan request, no need to start 1641 * the scan state machine in stack. The scan must honour the channel 1642 * configuration done by the regulatory agent in the wiphy's 1643 * registered bands. The hardware (or the driver) needs to make sure 1644 * that power save is disabled. 1645 * The @req ie/ie_len members are rewritten by mac80211 to contain the 1646 * entire IEs after the SSID, so that drivers need not look at these 1647 * at all but just send them after the SSID -- mac80211 includes the 1648 * (extended) supported rates and HT information (where applicable). 1649 * When the scan finishes, ieee80211_scan_completed() must be called; 1650 * note that it also must be called when the scan cannot finish due to 1651 * any error unless this callback returned a negative error code. 1652 * The callback can sleep. 1653 * 1654 * @sw_scan_start: Notifier function that is called just before a software scan 1655 * is started. Can be NULL, if the driver doesn't need this notification. 1656 * The callback can sleep. 1657 * 1658 * @sw_scan_complete: Notifier function that is called just after a 1659 * software scan finished. Can be NULL, if the driver doesn't need 1660 * this notification. 1661 * The callback can sleep. 1662 * 1663 * @get_stats: Return low-level statistics. 1664 * Returns zero if statistics are available. 1665 * The callback can sleep. 1666 * 1667 * @get_tkip_seq: If your device implements TKIP encryption in hardware this 1668 * callback should be provided to read the TKIP transmit IVs (both IV32 1669 * and IV16) for the given key from hardware. 1670 * The callback must be atomic. 1671 * 1672 * @set_frag_threshold: Configuration of fragmentation threshold. Assign this 1673 * if the device does fragmentation by itself; if this callback is 1674 * implemented then the stack will not do fragmentation. 1675 * The callback can sleep. 1676 * 1677 * @set_rts_threshold: Configuration of RTS threshold (if device needs it) 1678 * The callback can sleep. 1679 * 1680 * @sta_add: Notifies low level driver about addition of an associated station, 1681 * AP, IBSS/WDS/mesh peer etc. This callback can sleep. 1682 * 1683 * @sta_remove: Notifies low level driver about removal of an associated 1684 * station, AP, IBSS/WDS/mesh peer etc. This callback can sleep. 1685 * 1686 * @sta_notify: Notifies low level driver about power state transition of an 1687 * associated station, AP, IBSS/WDS/mesh peer etc. Must be atomic. 1688 * 1689 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), 1690 * bursting) for a hardware TX queue. 1691 * Returns a negative error code on failure. 1692 * The callback can sleep. 1693 * 1694 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently, 1695 * this is only used for IBSS mode BSSID merging and debugging. Is not a 1696 * required function. 1697 * The callback can sleep. 1698 * 1699 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware. 1700 * Currently, this is only used for IBSS mode debugging. Is not a 1701 * required function. 1702 * The callback can sleep. 1703 * 1704 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize 1705 * with other STAs in the IBSS. This is only used in IBSS mode. This 1706 * function is optional if the firmware/hardware takes full care of 1707 * TSF synchronization. 1708 * The callback can sleep. 1709 * 1710 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us. 1711 * This is needed only for IBSS mode and the result of this function is 1712 * used to determine whether to reply to Probe Requests. 1713 * Returns non-zero if this device sent the last beacon. 1714 * The callback can sleep. 1715 * 1716 * @ampdu_action: Perform a certain A-MPDU action 1717 * The RA/TID combination determines the destination and TID we want 1718 * the ampdu action to be performed for. The action is defined through 1719 * ieee80211_ampdu_mlme_action. Starting sequence number (@ssn) 1720 * is the first frame we expect to perform the action on. Notice 1721 * that TX/RX_STOP can pass NULL for this parameter. 1722 * Returns a negative error code on failure. 1723 * The callback can sleep. 1724 * 1725 * @get_survey: Return per-channel survey information 1726 * 1727 * @rfkill_poll: Poll rfkill hardware state. If you need this, you also 1728 * need to set wiphy->rfkill_poll to %true before registration, 1729 * and need to call wiphy_rfkill_set_hw_state() in the callback. 1730 * The callback can sleep. 1731 * 1732 * @set_coverage_class: Set slot time for given coverage class as specified 1733 * in IEEE 802.11-2007 section 17.3.8.6 and modify ACK timeout 1734 * accordingly. This callback is not required and may sleep. 1735 * 1736 * @testmode_cmd: Implement a cfg80211 test mode command. 1737 * The callback can sleep. 1738 * 1739 * @flush: Flush all pending frames from the hardware queue, making sure 1740 * that the hardware queues are empty. If the parameter @drop is set 1741 * to %true, pending frames may be dropped. The callback can sleep. 1742 * 1743 * @channel_switch: Drivers that need (or want) to offload the channel 1744 * switch operation for CSAs received from the AP may implement this 1745 * callback. They must then call ieee80211_chswitch_done() to indicate 1746 * completion of the channel switch. 1747 * 1748 * @napi_poll: Poll Rx queue for incoming data frames. 1749 * 1750 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device. 1751 * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may 1752 * reject TX/RX mask combinations they cannot support by returning -EINVAL 1753 * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX). 1754 * 1755 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant). 1756 */ 1757 struct ieee80211_ops { 1758 int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb); 1759 int (*start)(struct ieee80211_hw *hw); 1760 void (*stop)(struct ieee80211_hw *hw); 1761 int (*add_interface)(struct ieee80211_hw *hw, 1762 struct ieee80211_vif *vif); 1763 int (*change_interface)(struct ieee80211_hw *hw, 1764 struct ieee80211_vif *vif, 1765 enum nl80211_iftype new_type, bool p2p); 1766 void (*remove_interface)(struct ieee80211_hw *hw, 1767 struct ieee80211_vif *vif); 1768 int (*config)(struct ieee80211_hw *hw, u32 changed); 1769 void (*bss_info_changed)(struct ieee80211_hw *hw, 1770 struct ieee80211_vif *vif, 1771 struct ieee80211_bss_conf *info, 1772 u32 changed); 1773 u64 (*prepare_multicast)(struct ieee80211_hw *hw, 1774 struct netdev_hw_addr_list *mc_list); 1775 void (*configure_filter)(struct ieee80211_hw *hw, 1776 unsigned int changed_flags, 1777 unsigned int *total_flags, 1778 u64 multicast); 1779 int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 1780 bool set); 1781 int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1782 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 1783 struct ieee80211_key_conf *key); 1784 void (*update_tkip_key)(struct ieee80211_hw *hw, 1785 struct ieee80211_vif *vif, 1786 struct ieee80211_key_conf *conf, 1787 struct ieee80211_sta *sta, 1788 u32 iv32, u16 *phase1key); 1789 int (*hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1790 struct cfg80211_scan_request *req); 1791 void (*sw_scan_start)(struct ieee80211_hw *hw); 1792 void (*sw_scan_complete)(struct ieee80211_hw *hw); 1793 int (*get_stats)(struct ieee80211_hw *hw, 1794 struct ieee80211_low_level_stats *stats); 1795 void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx, 1796 u32 *iv32, u16 *iv16); 1797 int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value); 1798 int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value); 1799 int (*sta_add)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1800 struct ieee80211_sta *sta); 1801 int (*sta_remove)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1802 struct ieee80211_sta *sta); 1803 void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1804 enum sta_notify_cmd, struct ieee80211_sta *sta); 1805 int (*conf_tx)(struct ieee80211_hw *hw, u16 queue, 1806 const struct ieee80211_tx_queue_params *params); 1807 u64 (*get_tsf)(struct ieee80211_hw *hw); 1808 void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf); 1809 void (*reset_tsf)(struct ieee80211_hw *hw); 1810 int (*tx_last_beacon)(struct ieee80211_hw *hw); 1811 int (*ampdu_action)(struct ieee80211_hw *hw, 1812 struct ieee80211_vif *vif, 1813 enum ieee80211_ampdu_mlme_action action, 1814 struct ieee80211_sta *sta, u16 tid, u16 *ssn); 1815 int (*get_survey)(struct ieee80211_hw *hw, int idx, 1816 struct survey_info *survey); 1817 void (*rfkill_poll)(struct ieee80211_hw *hw); 1818 void (*set_coverage_class)(struct ieee80211_hw *hw, u8 coverage_class); 1819 #ifdef CONFIG_NL80211_TESTMODE 1820 int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len); 1821 #endif 1822 void (*flush)(struct ieee80211_hw *hw, bool drop); 1823 void (*channel_switch)(struct ieee80211_hw *hw, 1824 struct ieee80211_channel_switch *ch_switch); 1825 int (*napi_poll)(struct ieee80211_hw *hw, int budget); 1826 int (*set_antenna)(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); 1827 int (*get_antenna)(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); 1828 1829 int (*remain_on_channel)(struct ieee80211_hw *hw, 1830 struct ieee80211_channel *chan, 1831 enum nl80211_channel_type channel_type, 1832 int duration); 1833 int (*cancel_remain_on_channel)(struct ieee80211_hw *hw); 1834 }; 1835 1836 /** 1837 * ieee80211_alloc_hw - Allocate a new hardware device 1838 * 1839 * This must be called once for each hardware device. The returned pointer 1840 * must be used to refer to this device when calling other functions. 1841 * mac80211 allocates a private data area for the driver pointed to by 1842 * @priv in &struct ieee80211_hw, the size of this area is given as 1843 * @priv_data_len. 1844 * 1845 * @priv_data_len: length of private data 1846 * @ops: callbacks for this device 1847 */ 1848 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, 1849 const struct ieee80211_ops *ops); 1850 1851 /** 1852 * ieee80211_register_hw - Register hardware device 1853 * 1854 * You must call this function before any other functions in 1855 * mac80211. Note that before a hardware can be registered, you 1856 * need to fill the contained wiphy's information. 1857 * 1858 * @hw: the device to register as returned by ieee80211_alloc_hw() 1859 */ 1860 int ieee80211_register_hw(struct ieee80211_hw *hw); 1861 1862 /** 1863 * struct ieee80211_tpt_blink - throughput blink description 1864 * @throughput: throughput in Kbit/sec 1865 * @blink_time: blink time in milliseconds 1866 * (full cycle, ie. one off + one on period) 1867 */ 1868 struct ieee80211_tpt_blink { 1869 int throughput; 1870 int blink_time; 1871 }; 1872 1873 /** 1874 * enum ieee80211_tpt_led_trigger_flags - throughput trigger flags 1875 * @IEEE80211_TPT_LEDTRIG_FL_RADIO: enable blinking with radio 1876 * @IEEE80211_TPT_LEDTRIG_FL_WORK: enable blinking when working 1877 * @IEEE80211_TPT_LEDTRIG_FL_CONNECTED: enable blinking when at least one 1878 * interface is connected in some way, including being an AP 1879 */ 1880 enum ieee80211_tpt_led_trigger_flags { 1881 IEEE80211_TPT_LEDTRIG_FL_RADIO = BIT(0), 1882 IEEE80211_TPT_LEDTRIG_FL_WORK = BIT(1), 1883 IEEE80211_TPT_LEDTRIG_FL_CONNECTED = BIT(2), 1884 }; 1885 1886 #ifdef CONFIG_MAC80211_LEDS 1887 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw); 1888 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw); 1889 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw); 1890 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw); 1891 extern char *__ieee80211_create_tpt_led_trigger( 1892 struct ieee80211_hw *hw, unsigned int flags, 1893 const struct ieee80211_tpt_blink *blink_table, 1894 unsigned int blink_table_len); 1895 #endif 1896 /** 1897 * ieee80211_get_tx_led_name - get name of TX LED 1898 * 1899 * mac80211 creates a transmit LED trigger for each wireless hardware 1900 * that can be used to drive LEDs if your driver registers a LED device. 1901 * This function returns the name (or %NULL if not configured for LEDs) 1902 * of the trigger so you can automatically link the LED device. 1903 * 1904 * @hw: the hardware to get the LED trigger name for 1905 */ 1906 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw) 1907 { 1908 #ifdef CONFIG_MAC80211_LEDS 1909 return __ieee80211_get_tx_led_name(hw); 1910 #else 1911 return NULL; 1912 #endif 1913 } 1914 1915 /** 1916 * ieee80211_get_rx_led_name - get name of RX LED 1917 * 1918 * mac80211 creates a receive LED trigger for each wireless hardware 1919 * that can be used to drive LEDs if your driver registers a LED device. 1920 * This function returns the name (or %NULL if not configured for LEDs) 1921 * of the trigger so you can automatically link the LED device. 1922 * 1923 * @hw: the hardware to get the LED trigger name for 1924 */ 1925 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw) 1926 { 1927 #ifdef CONFIG_MAC80211_LEDS 1928 return __ieee80211_get_rx_led_name(hw); 1929 #else 1930 return NULL; 1931 #endif 1932 } 1933 1934 /** 1935 * ieee80211_get_assoc_led_name - get name of association LED 1936 * 1937 * mac80211 creates a association LED trigger for each wireless hardware 1938 * that can be used to drive LEDs if your driver registers a LED device. 1939 * This function returns the name (or %NULL if not configured for LEDs) 1940 * of the trigger so you can automatically link the LED device. 1941 * 1942 * @hw: the hardware to get the LED trigger name for 1943 */ 1944 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw) 1945 { 1946 #ifdef CONFIG_MAC80211_LEDS 1947 return __ieee80211_get_assoc_led_name(hw); 1948 #else 1949 return NULL; 1950 #endif 1951 } 1952 1953 /** 1954 * ieee80211_get_radio_led_name - get name of radio LED 1955 * 1956 * mac80211 creates a radio change LED trigger for each wireless hardware 1957 * that can be used to drive LEDs if your driver registers a LED device. 1958 * This function returns the name (or %NULL if not configured for LEDs) 1959 * of the trigger so you can automatically link the LED device. 1960 * 1961 * @hw: the hardware to get the LED trigger name for 1962 */ 1963 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw) 1964 { 1965 #ifdef CONFIG_MAC80211_LEDS 1966 return __ieee80211_get_radio_led_name(hw); 1967 #else 1968 return NULL; 1969 #endif 1970 } 1971 1972 /** 1973 * ieee80211_create_tpt_led_trigger - create throughput LED trigger 1974 * @hw: the hardware to create the trigger for 1975 * @flags: trigger flags, see &enum ieee80211_tpt_led_trigger_flags 1976 * @blink_table: the blink table -- needs to be ordered by throughput 1977 * @blink_table_len: size of the blink table 1978 * 1979 * This function returns %NULL (in case of error, or if no LED 1980 * triggers are configured) or the name of the new trigger. 1981 * This function must be called before ieee80211_register_hw(). 1982 */ 1983 static inline char * 1984 ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, unsigned int flags, 1985 const struct ieee80211_tpt_blink *blink_table, 1986 unsigned int blink_table_len) 1987 { 1988 #ifdef CONFIG_MAC80211_LEDS 1989 return __ieee80211_create_tpt_led_trigger(hw, flags, blink_table, 1990 blink_table_len); 1991 #else 1992 return NULL; 1993 #endif 1994 } 1995 1996 /** 1997 * ieee80211_unregister_hw - Unregister a hardware device 1998 * 1999 * This function instructs mac80211 to free allocated resources 2000 * and unregister netdevices from the networking subsystem. 2001 * 2002 * @hw: the hardware to unregister 2003 */ 2004 void ieee80211_unregister_hw(struct ieee80211_hw *hw); 2005 2006 /** 2007 * ieee80211_free_hw - free hardware descriptor 2008 * 2009 * This function frees everything that was allocated, including the 2010 * private data for the driver. You must call ieee80211_unregister_hw() 2011 * before calling this function. 2012 * 2013 * @hw: the hardware to free 2014 */ 2015 void ieee80211_free_hw(struct ieee80211_hw *hw); 2016 2017 /** 2018 * ieee80211_restart_hw - restart hardware completely 2019 * 2020 * Call this function when the hardware was restarted for some reason 2021 * (hardware error, ...) and the driver is unable to restore its state 2022 * by itself. mac80211 assumes that at this point the driver/hardware 2023 * is completely uninitialised and stopped, it starts the process by 2024 * calling the ->start() operation. The driver will need to reset all 2025 * internal state that it has prior to calling this function. 2026 * 2027 * @hw: the hardware to restart 2028 */ 2029 void ieee80211_restart_hw(struct ieee80211_hw *hw); 2030 2031 /** ieee80211_napi_schedule - schedule NAPI poll 2032 * 2033 * Use this function to schedule NAPI polling on a device. 2034 * 2035 * @hw: the hardware to start polling 2036 */ 2037 void ieee80211_napi_schedule(struct ieee80211_hw *hw); 2038 2039 /** ieee80211_napi_complete - complete NAPI polling 2040 * 2041 * Use this function to finish NAPI polling on a device. 2042 * 2043 * @hw: the hardware to stop polling 2044 */ 2045 void ieee80211_napi_complete(struct ieee80211_hw *hw); 2046 2047 /** 2048 * ieee80211_rx - receive frame 2049 * 2050 * Use this function to hand received frames to mac80211. The receive 2051 * buffer in @skb must start with an IEEE 802.11 header. In case of a 2052 * paged @skb is used, the driver is recommended to put the ieee80211 2053 * header of the frame on the linear part of the @skb to avoid memory 2054 * allocation and/or memcpy by the stack. 2055 * 2056 * This function may not be called in IRQ context. Calls to this function 2057 * for a single hardware must be synchronized against each other. Calls to 2058 * this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be 2059 * mixed for a single hardware. 2060 * 2061 * In process context use instead ieee80211_rx_ni(). 2062 * 2063 * @hw: the hardware this frame came in on 2064 * @skb: the buffer to receive, owned by mac80211 after this call 2065 */ 2066 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb); 2067 2068 /** 2069 * ieee80211_rx_irqsafe - receive frame 2070 * 2071 * Like ieee80211_rx() but can be called in IRQ context 2072 * (internally defers to a tasklet.) 2073 * 2074 * Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not 2075 * be mixed for a single hardware. 2076 * 2077 * @hw: the hardware this frame came in on 2078 * @skb: the buffer to receive, owned by mac80211 after this call 2079 */ 2080 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb); 2081 2082 /** 2083 * ieee80211_rx_ni - receive frame (in process context) 2084 * 2085 * Like ieee80211_rx() but can be called in process context 2086 * (internally disables bottom halves). 2087 * 2088 * Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe() may 2089 * not be mixed for a single hardware. 2090 * 2091 * @hw: the hardware this frame came in on 2092 * @skb: the buffer to receive, owned by mac80211 after this call 2093 */ 2094 static inline void ieee80211_rx_ni(struct ieee80211_hw *hw, 2095 struct sk_buff *skb) 2096 { 2097 local_bh_disable(); 2098 ieee80211_rx(hw, skb); 2099 local_bh_enable(); 2100 } 2101 2102 /* 2103 * The TX headroom reserved by mac80211 for its own tx_status functions. 2104 * This is enough for the radiotap header. 2105 */ 2106 #define IEEE80211_TX_STATUS_HEADROOM 13 2107 2108 /** 2109 * ieee80211_tx_status - transmit status callback 2110 * 2111 * Call this function for all transmitted frames after they have been 2112 * transmitted. It is permissible to not call this function for 2113 * multicast frames but this can affect statistics. 2114 * 2115 * This function may not be called in IRQ context. Calls to this function 2116 * for a single hardware must be synchronized against each other. Calls 2117 * to this function, ieee80211_tx_status_ni() and ieee80211_tx_status_irqsafe() 2118 * may not be mixed for a single hardware. 2119 * 2120 * @hw: the hardware the frame was transmitted by 2121 * @skb: the frame that was transmitted, owned by mac80211 after this call 2122 */ 2123 void ieee80211_tx_status(struct ieee80211_hw *hw, 2124 struct sk_buff *skb); 2125 2126 /** 2127 * ieee80211_tx_status_ni - transmit status callback (in process context) 2128 * 2129 * Like ieee80211_tx_status() but can be called in process context. 2130 * 2131 * Calls to this function, ieee80211_tx_status() and 2132 * ieee80211_tx_status_irqsafe() may not be mixed 2133 * for a single hardware. 2134 * 2135 * @hw: the hardware the frame was transmitted by 2136 * @skb: the frame that was transmitted, owned by mac80211 after this call 2137 */ 2138 static inline void ieee80211_tx_status_ni(struct ieee80211_hw *hw, 2139 struct sk_buff *skb) 2140 { 2141 local_bh_disable(); 2142 ieee80211_tx_status(hw, skb); 2143 local_bh_enable(); 2144 } 2145 2146 /** 2147 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback 2148 * 2149 * Like ieee80211_tx_status() but can be called in IRQ context 2150 * (internally defers to a tasklet.) 2151 * 2152 * Calls to this function, ieee80211_tx_status() and 2153 * ieee80211_tx_status_ni() may not be mixed for a single hardware. 2154 * 2155 * @hw: the hardware the frame was transmitted by 2156 * @skb: the frame that was transmitted, owned by mac80211 after this call 2157 */ 2158 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, 2159 struct sk_buff *skb); 2160 2161 /** 2162 * ieee80211_beacon_get_tim - beacon generation function 2163 * @hw: pointer obtained from ieee80211_alloc_hw(). 2164 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2165 * @tim_offset: pointer to variable that will receive the TIM IE offset. 2166 * Set to 0 if invalid (in non-AP modes). 2167 * @tim_length: pointer to variable that will receive the TIM IE length, 2168 * (including the ID and length bytes!). 2169 * Set to 0 if invalid (in non-AP modes). 2170 * 2171 * If the driver implements beaconing modes, it must use this function to 2172 * obtain the beacon frame/template. 2173 * 2174 * If the beacon frames are generated by the host system (i.e., not in 2175 * hardware/firmware), the driver uses this function to get each beacon 2176 * frame from mac80211 -- it is responsible for calling this function 2177 * before the beacon is needed (e.g. based on hardware interrupt). 2178 * 2179 * If the beacon frames are generated by the device, then the driver 2180 * must use the returned beacon as the template and change the TIM IE 2181 * according to the current DTIM parameters/TIM bitmap. 2182 * 2183 * The driver is responsible for freeing the returned skb. 2184 */ 2185 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, 2186 struct ieee80211_vif *vif, 2187 u16 *tim_offset, u16 *tim_length); 2188 2189 /** 2190 * ieee80211_beacon_get - beacon generation function 2191 * @hw: pointer obtained from ieee80211_alloc_hw(). 2192 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2193 * 2194 * See ieee80211_beacon_get_tim(). 2195 */ 2196 static inline struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, 2197 struct ieee80211_vif *vif) 2198 { 2199 return ieee80211_beacon_get_tim(hw, vif, NULL, NULL); 2200 } 2201 2202 /** 2203 * ieee80211_pspoll_get - retrieve a PS Poll template 2204 * @hw: pointer obtained from ieee80211_alloc_hw(). 2205 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2206 * 2207 * Creates a PS Poll a template which can, for example, uploaded to 2208 * hardware. The template must be updated after association so that correct 2209 * AID, BSSID and MAC address is used. 2210 * 2211 * Note: Caller (or hardware) is responsible for setting the 2212 * &IEEE80211_FCTL_PM bit. 2213 */ 2214 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, 2215 struct ieee80211_vif *vif); 2216 2217 /** 2218 * ieee80211_nullfunc_get - retrieve a nullfunc template 2219 * @hw: pointer obtained from ieee80211_alloc_hw(). 2220 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2221 * 2222 * Creates a Nullfunc template which can, for example, uploaded to 2223 * hardware. The template must be updated after association so that correct 2224 * BSSID and address is used. 2225 * 2226 * Note: Caller (or hardware) is responsible for setting the 2227 * &IEEE80211_FCTL_PM bit as well as Duration and Sequence Control fields. 2228 */ 2229 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, 2230 struct ieee80211_vif *vif); 2231 2232 /** 2233 * ieee80211_probereq_get - retrieve a Probe Request template 2234 * @hw: pointer obtained from ieee80211_alloc_hw(). 2235 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2236 * @ssid: SSID buffer 2237 * @ssid_len: length of SSID 2238 * @ie: buffer containing all IEs except SSID for the template 2239 * @ie_len: length of the IE buffer 2240 * 2241 * Creates a Probe Request template which can, for example, be uploaded to 2242 * hardware. 2243 */ 2244 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, 2245 struct ieee80211_vif *vif, 2246 const u8 *ssid, size_t ssid_len, 2247 const u8 *ie, size_t ie_len); 2248 2249 /** 2250 * ieee80211_rts_get - RTS frame generation function 2251 * @hw: pointer obtained from ieee80211_alloc_hw(). 2252 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2253 * @frame: pointer to the frame that is going to be protected by the RTS. 2254 * @frame_len: the frame length (in octets). 2255 * @frame_txctl: &struct ieee80211_tx_info of the frame. 2256 * @rts: The buffer where to store the RTS frame. 2257 * 2258 * If the RTS frames are generated by the host system (i.e., not in 2259 * hardware/firmware), the low-level driver uses this function to receive 2260 * the next RTS frame from the 802.11 code. The low-level is responsible 2261 * for calling this function before and RTS frame is needed. 2262 */ 2263 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2264 const void *frame, size_t frame_len, 2265 const struct ieee80211_tx_info *frame_txctl, 2266 struct ieee80211_rts *rts); 2267 2268 /** 2269 * ieee80211_rts_duration - Get the duration field for an RTS frame 2270 * @hw: pointer obtained from ieee80211_alloc_hw(). 2271 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2272 * @frame_len: the length of the frame that is going to be protected by the RTS. 2273 * @frame_txctl: &struct ieee80211_tx_info of the frame. 2274 * 2275 * If the RTS is generated in firmware, but the host system must provide 2276 * the duration field, the low-level driver uses this function to receive 2277 * the duration field value in little-endian byteorder. 2278 */ 2279 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 2280 struct ieee80211_vif *vif, size_t frame_len, 2281 const struct ieee80211_tx_info *frame_txctl); 2282 2283 /** 2284 * ieee80211_ctstoself_get - CTS-to-self frame generation function 2285 * @hw: pointer obtained from ieee80211_alloc_hw(). 2286 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2287 * @frame: pointer to the frame that is going to be protected by the CTS-to-self. 2288 * @frame_len: the frame length (in octets). 2289 * @frame_txctl: &struct ieee80211_tx_info of the frame. 2290 * @cts: The buffer where to store the CTS-to-self frame. 2291 * 2292 * If the CTS-to-self frames are generated by the host system (i.e., not in 2293 * hardware/firmware), the low-level driver uses this function to receive 2294 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible 2295 * for calling this function before and CTS-to-self frame is needed. 2296 */ 2297 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, 2298 struct ieee80211_vif *vif, 2299 const void *frame, size_t frame_len, 2300 const struct ieee80211_tx_info *frame_txctl, 2301 struct ieee80211_cts *cts); 2302 2303 /** 2304 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame 2305 * @hw: pointer obtained from ieee80211_alloc_hw(). 2306 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2307 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self. 2308 * @frame_txctl: &struct ieee80211_tx_info of the frame. 2309 * 2310 * If the CTS-to-self is generated in firmware, but the host system must provide 2311 * the duration field, the low-level driver uses this function to receive 2312 * the duration field value in little-endian byteorder. 2313 */ 2314 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 2315 struct ieee80211_vif *vif, 2316 size_t frame_len, 2317 const struct ieee80211_tx_info *frame_txctl); 2318 2319 /** 2320 * ieee80211_generic_frame_duration - Calculate the duration field for a frame 2321 * @hw: pointer obtained from ieee80211_alloc_hw(). 2322 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2323 * @frame_len: the length of the frame. 2324 * @rate: the rate at which the frame is going to be transmitted. 2325 * 2326 * Calculate the duration field of some generic frame, given its 2327 * length and transmission rate (in 100kbps). 2328 */ 2329 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 2330 struct ieee80211_vif *vif, 2331 size_t frame_len, 2332 struct ieee80211_rate *rate); 2333 2334 /** 2335 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames 2336 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2337 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2338 * 2339 * Function for accessing buffered broadcast and multicast frames. If 2340 * hardware/firmware does not implement buffering of broadcast/multicast 2341 * frames when power saving is used, 802.11 code buffers them in the host 2342 * memory. The low-level driver uses this function to fetch next buffered 2343 * frame. In most cases, this is used when generating beacon frame. This 2344 * function returns a pointer to the next buffered skb or NULL if no more 2345 * buffered frames are available. 2346 * 2347 * Note: buffered frames are returned only after DTIM beacon frame was 2348 * generated with ieee80211_beacon_get() and the low-level driver must thus 2349 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns 2350 * NULL if the previous generated beacon was not DTIM, so the low-level driver 2351 * does not need to check for DTIM beacons separately and should be able to 2352 * use common code for all beacons. 2353 */ 2354 struct sk_buff * 2355 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 2356 2357 /** 2358 * ieee80211_get_tkip_key - get a TKIP rc4 for skb 2359 * 2360 * This function computes a TKIP rc4 key for an skb. It computes 2361 * a phase 1 key if needed (iv16 wraps around). This function is to 2362 * be used by drivers which can do HW encryption but need to compute 2363 * to phase 1/2 key in SW. 2364 * 2365 * @keyconf: the parameter passed with the set key 2366 * @skb: the skb for which the key is needed 2367 * @type: TBD 2368 * @key: a buffer to which the key will be written 2369 */ 2370 void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf, 2371 struct sk_buff *skb, 2372 enum ieee80211_tkip_key_type type, u8 *key); 2373 /** 2374 * ieee80211_wake_queue - wake specific queue 2375 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2376 * @queue: queue number (counted from zero). 2377 * 2378 * Drivers should use this function instead of netif_wake_queue. 2379 */ 2380 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue); 2381 2382 /** 2383 * ieee80211_stop_queue - stop specific queue 2384 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2385 * @queue: queue number (counted from zero). 2386 * 2387 * Drivers should use this function instead of netif_stop_queue. 2388 */ 2389 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue); 2390 2391 /** 2392 * ieee80211_queue_stopped - test status of the queue 2393 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2394 * @queue: queue number (counted from zero). 2395 * 2396 * Drivers should use this function instead of netif_stop_queue. 2397 */ 2398 2399 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue); 2400 2401 /** 2402 * ieee80211_stop_queues - stop all queues 2403 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2404 * 2405 * Drivers should use this function instead of netif_stop_queue. 2406 */ 2407 void ieee80211_stop_queues(struct ieee80211_hw *hw); 2408 2409 /** 2410 * ieee80211_wake_queues - wake all queues 2411 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2412 * 2413 * Drivers should use this function instead of netif_wake_queue. 2414 */ 2415 void ieee80211_wake_queues(struct ieee80211_hw *hw); 2416 2417 /** 2418 * ieee80211_scan_completed - completed hardware scan 2419 * 2420 * When hardware scan offload is used (i.e. the hw_scan() callback is 2421 * assigned) this function needs to be called by the driver to notify 2422 * mac80211 that the scan finished. This function can be called from 2423 * any context, including hardirq context. 2424 * 2425 * @hw: the hardware that finished the scan 2426 * @aborted: set to true if scan was aborted 2427 */ 2428 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted); 2429 2430 /** 2431 * ieee80211_iterate_active_interfaces - iterate active interfaces 2432 * 2433 * This function iterates over the interfaces associated with a given 2434 * hardware that are currently active and calls the callback for them. 2435 * This function allows the iterator function to sleep, when the iterator 2436 * function is atomic @ieee80211_iterate_active_interfaces_atomic can 2437 * be used. 2438 * Does not iterate over a new interface during add_interface() 2439 * 2440 * @hw: the hardware struct of which the interfaces should be iterated over 2441 * @iterator: the iterator function to call 2442 * @data: first argument of the iterator function 2443 */ 2444 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw, 2445 void (*iterator)(void *data, u8 *mac, 2446 struct ieee80211_vif *vif), 2447 void *data); 2448 2449 /** 2450 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces 2451 * 2452 * This function iterates over the interfaces associated with a given 2453 * hardware that are currently active and calls the callback for them. 2454 * This function requires the iterator callback function to be atomic, 2455 * if that is not desired, use @ieee80211_iterate_active_interfaces instead. 2456 * Does not iterate over a new interface during add_interface() 2457 * 2458 * @hw: the hardware struct of which the interfaces should be iterated over 2459 * @iterator: the iterator function to call, cannot sleep 2460 * @data: first argument of the iterator function 2461 */ 2462 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw, 2463 void (*iterator)(void *data, 2464 u8 *mac, 2465 struct ieee80211_vif *vif), 2466 void *data); 2467 2468 /** 2469 * ieee80211_queue_work - add work onto the mac80211 workqueue 2470 * 2471 * Drivers and mac80211 use this to add work onto the mac80211 workqueue. 2472 * This helper ensures drivers are not queueing work when they should not be. 2473 * 2474 * @hw: the hardware struct for the interface we are adding work for 2475 * @work: the work we want to add onto the mac80211 workqueue 2476 */ 2477 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work); 2478 2479 /** 2480 * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue 2481 * 2482 * Drivers and mac80211 use this to queue delayed work onto the mac80211 2483 * workqueue. 2484 * 2485 * @hw: the hardware struct for the interface we are adding work for 2486 * @dwork: delayable work to queue onto the mac80211 workqueue 2487 * @delay: number of jiffies to wait before queueing 2488 */ 2489 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 2490 struct delayed_work *dwork, 2491 unsigned long delay); 2492 2493 /** 2494 * ieee80211_start_tx_ba_session - Start a tx Block Ack session. 2495 * @sta: the station for which to start a BA session 2496 * @tid: the TID to BA on. 2497 * @timeout: session timeout value (in TUs) 2498 * 2499 * Return: success if addBA request was sent, failure otherwise 2500 * 2501 * Although mac80211/low level driver/user space application can estimate 2502 * the need to start aggregation on a certain RA/TID, the session level 2503 * will be managed by the mac80211. 2504 */ 2505 int ieee80211_start_tx_ba_session(struct ieee80211_sta *sta, u16 tid, 2506 u16 timeout); 2507 2508 /** 2509 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate. 2510 * @vif: &struct ieee80211_vif pointer from the add_interface callback 2511 * @ra: receiver address of the BA session recipient. 2512 * @tid: the TID to BA on. 2513 * 2514 * This function must be called by low level driver once it has 2515 * finished with preparations for the BA session. It can be called 2516 * from any context. 2517 */ 2518 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, 2519 u16 tid); 2520 2521 /** 2522 * ieee80211_stop_tx_ba_session - Stop a Block Ack session. 2523 * @sta: the station whose BA session to stop 2524 * @tid: the TID to stop BA. 2525 * 2526 * Return: negative error if the TID is invalid, or no aggregation active 2527 * 2528 * Although mac80211/low level driver/user space application can estimate 2529 * the need to stop aggregation on a certain RA/TID, the session level 2530 * will be managed by the mac80211. 2531 */ 2532 int ieee80211_stop_tx_ba_session(struct ieee80211_sta *sta, u16 tid); 2533 2534 /** 2535 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate. 2536 * @vif: &struct ieee80211_vif pointer from the add_interface callback 2537 * @ra: receiver address of the BA session recipient. 2538 * @tid: the desired TID to BA on. 2539 * 2540 * This function must be called by low level driver once it has 2541 * finished with preparations for the BA session tear down. It 2542 * can be called from any context. 2543 */ 2544 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, 2545 u16 tid); 2546 2547 /** 2548 * ieee80211_find_sta - find a station 2549 * 2550 * @vif: virtual interface to look for station on 2551 * @addr: station's address 2552 * 2553 * This function must be called under RCU lock and the 2554 * resulting pointer is only valid under RCU lock as well. 2555 */ 2556 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 2557 const u8 *addr); 2558 2559 /** 2560 * ieee80211_find_sta_by_ifaddr - find a station on hardware 2561 * 2562 * @hw: pointer as obtained from ieee80211_alloc_hw() 2563 * @addr: remote station's address 2564 * @localaddr: local address (vif->sdata->vif.addr). Use NULL for 'any'. 2565 * 2566 * This function must be called under RCU lock and the 2567 * resulting pointer is only valid under RCU lock as well. 2568 * 2569 * NOTE: You may pass NULL for localaddr, but then you will just get 2570 * the first STA that matches the remote address 'addr'. 2571 * We can have multiple STA associated with multiple 2572 * logical stations (e.g. consider a station connecting to another 2573 * BSSID on the same AP hardware without disconnecting first). 2574 * In this case, the result of this method with localaddr NULL 2575 * is not reliable. 2576 * 2577 * DO NOT USE THIS FUNCTION with localaddr NULL if at all possible. 2578 */ 2579 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 2580 const u8 *addr, 2581 const u8 *localaddr); 2582 2583 /** 2584 * ieee80211_sta_block_awake - block station from waking up 2585 * @hw: the hardware 2586 * @pubsta: the station 2587 * @block: whether to block or unblock 2588 * 2589 * Some devices require that all frames that are on the queues 2590 * for a specific station that went to sleep are flushed before 2591 * a poll response or frames after the station woke up can be 2592 * delivered to that it. Note that such frames must be rejected 2593 * by the driver as filtered, with the appropriate status flag. 2594 * 2595 * This function allows implementing this mode in a race-free 2596 * manner. 2597 * 2598 * To do this, a driver must keep track of the number of frames 2599 * still enqueued for a specific station. If this number is not 2600 * zero when the station goes to sleep, the driver must call 2601 * this function to force mac80211 to consider the station to 2602 * be asleep regardless of the station's actual state. Once the 2603 * number of outstanding frames reaches zero, the driver must 2604 * call this function again to unblock the station. That will 2605 * cause mac80211 to be able to send ps-poll responses, and if 2606 * the station queried in the meantime then frames will also 2607 * be sent out as a result of this. Additionally, the driver 2608 * will be notified that the station woke up some time after 2609 * it is unblocked, regardless of whether the station actually 2610 * woke up while blocked or not. 2611 */ 2612 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 2613 struct ieee80211_sta *pubsta, bool block); 2614 2615 /** 2616 * ieee80211_ap_probereq_get - retrieve a Probe Request template 2617 * @hw: pointer obtained from ieee80211_alloc_hw(). 2618 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2619 * 2620 * Creates a Probe Request template which can, for example, be uploaded to 2621 * hardware. The template is filled with bssid, ssid and supported rate 2622 * information. This function must only be called from within the 2623 * .bss_info_changed callback function and only in managed mode. The function 2624 * is only useful when the interface is associated, otherwise it will return 2625 * NULL. 2626 */ 2627 struct sk_buff *ieee80211_ap_probereq_get(struct ieee80211_hw *hw, 2628 struct ieee80211_vif *vif); 2629 2630 /** 2631 * ieee80211_beacon_loss - inform hardware does not receive beacons 2632 * 2633 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2634 * 2635 * When beacon filtering is enabled with %IEEE80211_HW_BEACON_FILTER and 2636 * %IEEE80211_CONF_PS is set, the driver needs to inform whenever the 2637 * hardware is not receiving beacons with this function. 2638 */ 2639 void ieee80211_beacon_loss(struct ieee80211_vif *vif); 2640 2641 /** 2642 * ieee80211_connection_loss - inform hardware has lost connection to the AP 2643 * 2644 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2645 * 2646 * When beacon filtering is enabled with %IEEE80211_HW_BEACON_FILTER, and 2647 * %IEEE80211_CONF_PS and %IEEE80211_HW_CONNECTION_MONITOR are set, the driver 2648 * needs to inform if the connection to the AP has been lost. 2649 * 2650 * This function will cause immediate change to disassociated state, 2651 * without connection recovery attempts. 2652 */ 2653 void ieee80211_connection_loss(struct ieee80211_vif *vif); 2654 2655 /** 2656 * ieee80211_disable_dyn_ps - force mac80211 to temporarily disable dynamic psm 2657 * 2658 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2659 * 2660 * Some hardware require full power save to manage simultaneous BT traffic 2661 * on the WLAN frequency. Full PSM is required periodically, whenever there are 2662 * burst of BT traffic. The hardware gets information of BT traffic via 2663 * hardware co-existence lines, and consequentially requests mac80211 to 2664 * (temporarily) enter full psm. 2665 * This function will only temporarily disable dynamic PS, not enable PSM if 2666 * it was not already enabled. 2667 * The driver must make sure to re-enable dynamic PS using 2668 * ieee80211_enable_dyn_ps() if the driver has disabled it. 2669 * 2670 */ 2671 void ieee80211_disable_dyn_ps(struct ieee80211_vif *vif); 2672 2673 /** 2674 * ieee80211_enable_dyn_ps - restore dynamic psm after being disabled 2675 * 2676 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2677 * 2678 * This function restores dynamic PS after being temporarily disabled via 2679 * ieee80211_disable_dyn_ps(). Each ieee80211_disable_dyn_ps() call must 2680 * be coupled with an eventual call to this function. 2681 * 2682 */ 2683 void ieee80211_enable_dyn_ps(struct ieee80211_vif *vif); 2684 2685 /** 2686 * ieee80211_cqm_rssi_notify - inform a configured connection quality monitoring 2687 * rssi threshold triggered 2688 * 2689 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2690 * @rssi_event: the RSSI trigger event type 2691 * @gfp: context flags 2692 * 2693 * When the %IEEE80211_HW_SUPPORTS_CQM_RSSI is set, and a connection quality 2694 * monitoring is configured with an rssi threshold, the driver will inform 2695 * whenever the rssi level reaches the threshold. 2696 */ 2697 void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif, 2698 enum nl80211_cqm_rssi_threshold_event rssi_event, 2699 gfp_t gfp); 2700 2701 /** 2702 * ieee80211_chswitch_done - Complete channel switch process 2703 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2704 * @success: make the channel switch successful or not 2705 * 2706 * Complete the channel switch post-process: set the new operational channel 2707 * and wake up the suspended queues. 2708 */ 2709 void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success); 2710 2711 /** 2712 * ieee80211_request_smps - request SM PS transition 2713 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2714 * @smps_mode: new SM PS mode 2715 * 2716 * This allows the driver to request an SM PS transition in managed 2717 * mode. This is useful when the driver has more information than 2718 * the stack about possible interference, for example by bluetooth. 2719 */ 2720 void ieee80211_request_smps(struct ieee80211_vif *vif, 2721 enum ieee80211_smps_mode smps_mode); 2722 2723 /** 2724 * ieee80211_key_removed - disable hw acceleration for key 2725 * @key_conf: The key hw acceleration should be disabled for 2726 * 2727 * This allows drivers to indicate that the given key has been 2728 * removed from hardware acceleration, due to a new key that 2729 * was added. Don't use this if the key can continue to be used 2730 * for TX, if the key restriction is on RX only it is permitted 2731 * to keep the key for TX only and not call this function. 2732 * 2733 * Due to locking constraints, it may only be called during 2734 * @set_key. This function must be allowed to sleep, and the 2735 * key it tries to disable may still be used until it returns. 2736 */ 2737 void ieee80211_key_removed(struct ieee80211_key_conf *key_conf); 2738 2739 /** 2740 * ieee80211_ready_on_channel - notification of remain-on-channel start 2741 * @hw: pointer as obtained from ieee80211_alloc_hw() 2742 */ 2743 void ieee80211_ready_on_channel(struct ieee80211_hw *hw); 2744 2745 /** 2746 * ieee80211_remain_on_channel_expired - remain_on_channel duration expired 2747 * @hw: pointer as obtained from ieee80211_alloc_hw() 2748 */ 2749 void ieee80211_remain_on_channel_expired(struct ieee80211_hw *hw); 2750 2751 /* Rate control API */ 2752 2753 /** 2754 * enum rate_control_changed - flags to indicate which parameter changed 2755 * 2756 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have 2757 * changed, rate control algorithm can update its internal state if needed. 2758 */ 2759 enum rate_control_changed { 2760 IEEE80211_RC_HT_CHANGED = BIT(0) 2761 }; 2762 2763 /** 2764 * struct ieee80211_tx_rate_control - rate control information for/from RC algo 2765 * 2766 * @hw: The hardware the algorithm is invoked for. 2767 * @sband: The band this frame is being transmitted on. 2768 * @bss_conf: the current BSS configuration 2769 * @reported_rate: The rate control algorithm can fill this in to indicate 2770 * which rate should be reported to userspace as the current rate and 2771 * used for rate calculations in the mesh network. 2772 * @rts: whether RTS will be used for this frame because it is longer than the 2773 * RTS threshold 2774 * @short_preamble: whether mac80211 will request short-preamble transmission 2775 * if the selected rate supports it 2776 * @max_rate_idx: user-requested maximum rate (not MCS for now) 2777 * (deprecated; this will be removed once drivers get updated to use 2778 * rate_idx_mask) 2779 * @rate_idx_mask: user-requested rate mask (not MCS for now) 2780 * @skb: the skb that will be transmitted, the control information in it needs 2781 * to be filled in 2782 * @bss: whether this frame is sent out in AP or IBSS mode 2783 */ 2784 struct ieee80211_tx_rate_control { 2785 struct ieee80211_hw *hw; 2786 struct ieee80211_supported_band *sband; 2787 struct ieee80211_bss_conf *bss_conf; 2788 struct sk_buff *skb; 2789 struct ieee80211_tx_rate reported_rate; 2790 bool rts, short_preamble; 2791 u8 max_rate_idx; 2792 u32 rate_idx_mask; 2793 bool bss; 2794 }; 2795 2796 struct rate_control_ops { 2797 struct module *module; 2798 const char *name; 2799 void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir); 2800 void (*free)(void *priv); 2801 2802 void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp); 2803 void (*rate_init)(void *priv, struct ieee80211_supported_band *sband, 2804 struct ieee80211_sta *sta, void *priv_sta); 2805 void (*rate_update)(void *priv, struct ieee80211_supported_band *sband, 2806 struct ieee80211_sta *sta, 2807 void *priv_sta, u32 changed, 2808 enum nl80211_channel_type oper_chan_type); 2809 void (*free_sta)(void *priv, struct ieee80211_sta *sta, 2810 void *priv_sta); 2811 2812 void (*tx_status)(void *priv, struct ieee80211_supported_band *sband, 2813 struct ieee80211_sta *sta, void *priv_sta, 2814 struct sk_buff *skb); 2815 void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta, 2816 struct ieee80211_tx_rate_control *txrc); 2817 2818 void (*add_sta_debugfs)(void *priv, void *priv_sta, 2819 struct dentry *dir); 2820 void (*remove_sta_debugfs)(void *priv, void *priv_sta); 2821 }; 2822 2823 static inline int rate_supported(struct ieee80211_sta *sta, 2824 enum ieee80211_band band, 2825 int index) 2826 { 2827 return (sta == NULL || sta->supp_rates[band] & BIT(index)); 2828 } 2829 2830 /** 2831 * rate_control_send_low - helper for drivers for management/no-ack frames 2832 * 2833 * Rate control algorithms that agree to use the lowest rate to 2834 * send management frames and NO_ACK data with the respective hw 2835 * retries should use this in the beginning of their mac80211 get_rate 2836 * callback. If true is returned the rate control can simply return. 2837 * If false is returned we guarantee that sta and sta and priv_sta is 2838 * not null. 2839 * 2840 * Rate control algorithms wishing to do more intelligent selection of 2841 * rate for multicast/broadcast frames may choose to not use this. 2842 * 2843 * @sta: &struct ieee80211_sta pointer to the target destination. Note 2844 * that this may be null. 2845 * @priv_sta: private rate control structure. This may be null. 2846 * @txrc: rate control information we sholud populate for mac80211. 2847 */ 2848 bool rate_control_send_low(struct ieee80211_sta *sta, 2849 void *priv_sta, 2850 struct ieee80211_tx_rate_control *txrc); 2851 2852 2853 static inline s8 2854 rate_lowest_index(struct ieee80211_supported_band *sband, 2855 struct ieee80211_sta *sta) 2856 { 2857 int i; 2858 2859 for (i = 0; i < sband->n_bitrates; i++) 2860 if (rate_supported(sta, sband->band, i)) 2861 return i; 2862 2863 /* warn when we cannot find a rate. */ 2864 WARN_ON(1); 2865 2866 return 0; 2867 } 2868 2869 static inline 2870 bool rate_usable_index_exists(struct ieee80211_supported_band *sband, 2871 struct ieee80211_sta *sta) 2872 { 2873 unsigned int i; 2874 2875 for (i = 0; i < sband->n_bitrates; i++) 2876 if (rate_supported(sta, sband->band, i)) 2877 return true; 2878 return false; 2879 } 2880 2881 int ieee80211_rate_control_register(struct rate_control_ops *ops); 2882 void ieee80211_rate_control_unregister(struct rate_control_ops *ops); 2883 2884 static inline bool 2885 conf_is_ht20(struct ieee80211_conf *conf) 2886 { 2887 return conf->channel_type == NL80211_CHAN_HT20; 2888 } 2889 2890 static inline bool 2891 conf_is_ht40_minus(struct ieee80211_conf *conf) 2892 { 2893 return conf->channel_type == NL80211_CHAN_HT40MINUS; 2894 } 2895 2896 static inline bool 2897 conf_is_ht40_plus(struct ieee80211_conf *conf) 2898 { 2899 return conf->channel_type == NL80211_CHAN_HT40PLUS; 2900 } 2901 2902 static inline bool 2903 conf_is_ht40(struct ieee80211_conf *conf) 2904 { 2905 return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf); 2906 } 2907 2908 static inline bool 2909 conf_is_ht(struct ieee80211_conf *conf) 2910 { 2911 return conf->channel_type != NL80211_CHAN_NO_HT; 2912 } 2913 2914 static inline enum nl80211_iftype 2915 ieee80211_iftype_p2p(enum nl80211_iftype type, bool p2p) 2916 { 2917 if (p2p) { 2918 switch (type) { 2919 case NL80211_IFTYPE_STATION: 2920 return NL80211_IFTYPE_P2P_CLIENT; 2921 case NL80211_IFTYPE_AP: 2922 return NL80211_IFTYPE_P2P_GO; 2923 default: 2924 break; 2925 } 2926 } 2927 return type; 2928 } 2929 2930 static inline enum nl80211_iftype 2931 ieee80211_vif_type_p2p(struct ieee80211_vif *vif) 2932 { 2933 return ieee80211_iftype_p2p(vif->type, vif->p2p); 2934 } 2935 2936 #endif /* MAC80211_H */ 2937