xref: /openbmc/linux/include/net/mac80211.h (revision b6dcefde)
1 /*
2  * mac80211 <-> driver interface
3  *
4  * Copyright 2002-2005, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #ifndef MAC80211_H
14 #define MAC80211_H
15 
16 #include <linux/kernel.h>
17 #include <linux/if_ether.h>
18 #include <linux/skbuff.h>
19 #include <linux/wireless.h>
20 #include <linux/device.h>
21 #include <linux/ieee80211.h>
22 #include <net/cfg80211.h>
23 
24 /**
25  * DOC: Introduction
26  *
27  * mac80211 is the Linux stack for 802.11 hardware that implements
28  * only partial functionality in hard- or firmware. This document
29  * defines the interface between mac80211 and low-level hardware
30  * drivers.
31  */
32 
33 /**
34  * DOC: Calling mac80211 from interrupts
35  *
36  * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37  * called in hardware interrupt context. The low-level driver must not call any
38  * other functions in hardware interrupt context. If there is a need for such
39  * call, the low-level driver should first ACK the interrupt and perform the
40  * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41  * tasklet function.
42  *
43  * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44  *	 use the non-IRQ-safe functions!
45  */
46 
47 /**
48  * DOC: Warning
49  *
50  * If you're reading this document and not the header file itself, it will
51  * be incomplete because not all documentation has been converted yet.
52  */
53 
54 /**
55  * DOC: Frame format
56  *
57  * As a general rule, when frames are passed between mac80211 and the driver,
58  * they start with the IEEE 802.11 header and include the same octets that are
59  * sent over the air except for the FCS which should be calculated by the
60  * hardware.
61  *
62  * There are, however, various exceptions to this rule for advanced features:
63  *
64  * The first exception is for hardware encryption and decryption offload
65  * where the IV/ICV may or may not be generated in hardware.
66  *
67  * Secondly, when the hardware handles fragmentation, the frame handed to
68  * the driver from mac80211 is the MSDU, not the MPDU.
69  *
70  * Finally, for received frames, the driver is able to indicate that it has
71  * filled a radiotap header and put that in front of the frame; if it does
72  * not do so then mac80211 may add this under certain circumstances.
73  */
74 
75 /**
76  * DOC: mac80211 workqueue
77  *
78  * mac80211 provides its own workqueue for drivers and internal mac80211 use.
79  * The workqueue is a single threaded workqueue and can only be accessed by
80  * helpers for sanity checking. Drivers must ensure all work added onto the
81  * mac80211 workqueue should be cancelled on the driver stop() callback.
82  *
83  * mac80211 will flushed the workqueue upon interface removal and during
84  * suspend.
85  *
86  * All work performed on the mac80211 workqueue must not acquire the RTNL lock.
87  *
88  */
89 
90 /**
91  * enum ieee80211_max_queues - maximum number of queues
92  *
93  * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
94  */
95 enum ieee80211_max_queues {
96 	IEEE80211_MAX_QUEUES =		4,
97 };
98 
99 /**
100  * struct ieee80211_tx_queue_params - transmit queue configuration
101  *
102  * The information provided in this structure is required for QoS
103  * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
104  *
105  * @aifs: arbitration interframe space [0..255]
106  * @cw_min: minimum contention window [a value of the form
107  *	2^n-1 in the range 1..32767]
108  * @cw_max: maximum contention window [like @cw_min]
109  * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
110  */
111 struct ieee80211_tx_queue_params {
112 	u16 txop;
113 	u16 cw_min;
114 	u16 cw_max;
115 	u8 aifs;
116 };
117 
118 /**
119  * struct ieee80211_tx_queue_stats - transmit queue statistics
120  *
121  * @len: number of packets in queue
122  * @limit: queue length limit
123  * @count: number of frames sent
124  */
125 struct ieee80211_tx_queue_stats {
126 	unsigned int len;
127 	unsigned int limit;
128 	unsigned int count;
129 };
130 
131 struct ieee80211_low_level_stats {
132 	unsigned int dot11ACKFailureCount;
133 	unsigned int dot11RTSFailureCount;
134 	unsigned int dot11FCSErrorCount;
135 	unsigned int dot11RTSSuccessCount;
136 };
137 
138 /**
139  * enum ieee80211_bss_change - BSS change notification flags
140  *
141  * These flags are used with the bss_info_changed() callback
142  * to indicate which BSS parameter changed.
143  *
144  * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
145  *	also implies a change in the AID.
146  * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
147  * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
148  * @BSS_CHANGED_ERP_SLOT: slot timing changed
149  * @BSS_CHANGED_HT: 802.11n parameters changed
150  * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
151  * @BSS_CHANGED_BEACON_INT: Beacon interval changed
152  * @BSS_CHANGED_BSSID: BSSID changed, for whatever
153  *	reason (IBSS and managed mode)
154  * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
155  *	new beacon (beaconing modes)
156  * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
157  *	enabled/disabled (beaconing modes)
158  */
159 enum ieee80211_bss_change {
160 	BSS_CHANGED_ASSOC		= 1<<0,
161 	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
162 	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
163 	BSS_CHANGED_ERP_SLOT		= 1<<3,
164 	BSS_CHANGED_HT                  = 1<<4,
165 	BSS_CHANGED_BASIC_RATES		= 1<<5,
166 	BSS_CHANGED_BEACON_INT		= 1<<6,
167 	BSS_CHANGED_BSSID		= 1<<7,
168 	BSS_CHANGED_BEACON		= 1<<8,
169 	BSS_CHANGED_BEACON_ENABLED	= 1<<9,
170 };
171 
172 /**
173  * struct ieee80211_bss_conf - holds the BSS's changing parameters
174  *
175  * This structure keeps information about a BSS (and an association
176  * to that BSS) that can change during the lifetime of the BSS.
177  *
178  * @assoc: association status
179  * @aid: association ID number, valid only when @assoc is true
180  * @use_cts_prot: use CTS protection
181  * @use_short_preamble: use 802.11b short preamble;
182  *	if the hardware cannot handle this it must set the
183  *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
184  * @use_short_slot: use short slot time (only relevant for ERP);
185  *	if the hardware cannot handle this it must set the
186  *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
187  * @dtim_period: num of beacons before the next DTIM, for PSM
188  * @timestamp: beacon timestamp
189  * @beacon_int: beacon interval
190  * @assoc_capability: capabilities taken from assoc resp
191  * @basic_rates: bitmap of basic rates, each bit stands for an
192  *	index into the rate table configured by the driver in
193  *	the current band.
194  * @bssid: The BSSID for this BSS
195  * @enable_beacon: whether beaconing should be enabled or not
196  * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
197  *	This field is only valid when the channel type is one of the HT types.
198  */
199 struct ieee80211_bss_conf {
200 	const u8 *bssid;
201 	/* association related data */
202 	bool assoc;
203 	u16 aid;
204 	/* erp related data */
205 	bool use_cts_prot;
206 	bool use_short_preamble;
207 	bool use_short_slot;
208 	bool enable_beacon;
209 	u8 dtim_period;
210 	u16 beacon_int;
211 	u16 assoc_capability;
212 	u64 timestamp;
213 	u32 basic_rates;
214 	u16 ht_operation_mode;
215 };
216 
217 /**
218  * enum mac80211_tx_control_flags - flags to describe transmission information/status
219  *
220  * These flags are used with the @flags member of &ieee80211_tx_info.
221  *
222  * @IEEE80211_TX_CTL_REQ_TX_STATUS: require TX status callback for this frame.
223  * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
224  *	number to this frame, taking care of not overwriting the fragment
225  *	number and increasing the sequence number only when the
226  *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
227  *	assign sequence numbers to QoS-data frames but cannot do so correctly
228  *	for non-QoS-data and management frames because beacons need them from
229  *	that counter as well and mac80211 cannot guarantee proper sequencing.
230  *	If this flag is set, the driver should instruct the hardware to
231  *	assign a sequence number to the frame or assign one itself. Cf. IEEE
232  *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
233  *	beacons and always be clear for frames without a sequence number field.
234  * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
235  * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
236  *	station
237  * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
238  * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
239  * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
240  * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
241  * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
242  *	because the destination STA was in powersave mode. Note that to
243  *	avoid race conditions, the filter must be set by the hardware or
244  *	firmware upon receiving a frame that indicates that the station
245  *	went to sleep (must be done on device to filter frames already on
246  *	the queue) and may only be unset after mac80211 gives the OK for
247  *	that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above),
248  *	since only then is it guaranteed that no more frames are in the
249  *	hardware queue.
250  * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
251  * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
252  * 	is for the whole aggregation.
253  * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
254  * 	so consider using block ack request (BAR).
255  * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
256  *	set by rate control algorithms to indicate probe rate, will
257  *	be cleared for fragmented frames (except on the last fragment)
258  * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
259  *	set this flag in the driver; indicates that the rate control
260  *	algorithm was used and should be notified of TX status
261  * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
262  *	used to indicate that a pending frame requires TX processing before
263  *	it can be sent out.
264  * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211,
265  *	used to indicate that a frame was already retried due to PS
266  * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211,
267  *	used to indicate frame should not be encrypted
268  * @IEEE80211_TX_CTL_PSPOLL_RESPONSE: (internal?)
269  *	This frame is a response to a PS-poll frame and should be sent
270  *	although the station is in powersave mode.
271  * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the
272  *	transmit function after the current frame, this can be used
273  *	by drivers to kick the DMA queue only if unset or when the
274  *	queue gets full.
275  */
276 enum mac80211_tx_control_flags {
277 	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
278 	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
279 	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
280 	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
281 	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
282 	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
283 	IEEE80211_TX_CTL_AMPDU			= BIT(6),
284 	IEEE80211_TX_CTL_INJECTED		= BIT(7),
285 	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
286 	IEEE80211_TX_STAT_ACK			= BIT(9),
287 	IEEE80211_TX_STAT_AMPDU			= BIT(10),
288 	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
289 	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
290 	IEEE80211_TX_INTFL_RCALGO		= BIT(13),
291 	IEEE80211_TX_INTFL_NEED_TXPROCESSING	= BIT(14),
292 	IEEE80211_TX_INTFL_RETRIED		= BIT(15),
293 	IEEE80211_TX_INTFL_DONT_ENCRYPT		= BIT(16),
294 	IEEE80211_TX_CTL_PSPOLL_RESPONSE	= BIT(17),
295 	IEEE80211_TX_CTL_MORE_FRAMES		= BIT(18),
296 };
297 
298 /**
299  * enum mac80211_rate_control_flags - per-rate flags set by the
300  *	Rate Control algorithm.
301  *
302  * These flags are set by the Rate control algorithm for each rate during tx,
303  * in the @flags member of struct ieee80211_tx_rate.
304  *
305  * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
306  * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
307  *	This is set if the current BSS requires ERP protection.
308  * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
309  * @IEEE80211_TX_RC_MCS: HT rate.
310  * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
311  *	Greenfield mode.
312  * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
313  * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
314  *	adjacent 20 MHz channels, if the current channel type is
315  *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
316  * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
317  */
318 enum mac80211_rate_control_flags {
319 	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
320 	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
321 	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),
322 
323 	/* rate index is an MCS rate number instead of an index */
324 	IEEE80211_TX_RC_MCS			= BIT(3),
325 	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
326 	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
327 	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
328 	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
329 };
330 
331 
332 /* there are 40 bytes if you don't need the rateset to be kept */
333 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
334 
335 /* if you do need the rateset, then you have less space */
336 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
337 
338 /* maximum number of rate stages */
339 #define IEEE80211_TX_MAX_RATES	5
340 
341 /**
342  * struct ieee80211_tx_rate - rate selection/status
343  *
344  * @idx: rate index to attempt to send with
345  * @flags: rate control flags (&enum mac80211_rate_control_flags)
346  * @count: number of tries in this rate before going to the next rate
347  *
348  * A value of -1 for @idx indicates an invalid rate and, if used
349  * in an array of retry rates, that no more rates should be tried.
350  *
351  * When used for transmit status reporting, the driver should
352  * always report the rate along with the flags it used.
353  *
354  * &struct ieee80211_tx_info contains an array of these structs
355  * in the control information, and it will be filled by the rate
356  * control algorithm according to what should be sent. For example,
357  * if this array contains, in the format { <idx>, <count> } the
358  * information
359  *    { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 }
360  * then this means that the frame should be transmitted
361  * up to twice at rate 3, up to twice at rate 2, and up to four
362  * times at rate 1 if it doesn't get acknowledged. Say it gets
363  * acknowledged by the peer after the fifth attempt, the status
364  * information should then contain
365  *   { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ...
366  * since it was transmitted twice at rate 3, twice at rate 2
367  * and once at rate 1 after which we received an acknowledgement.
368  */
369 struct ieee80211_tx_rate {
370 	s8 idx;
371 	u8 count;
372 	u8 flags;
373 } __attribute__((packed));
374 
375 /**
376  * struct ieee80211_tx_info - skb transmit information
377  *
378  * This structure is placed in skb->cb for three uses:
379  *  (1) mac80211 TX control - mac80211 tells the driver what to do
380  *  (2) driver internal use (if applicable)
381  *  (3) TX status information - driver tells mac80211 what happened
382  *
383  * The TX control's sta pointer is only valid during the ->tx call,
384  * it may be NULL.
385  *
386  * @flags: transmit info flags, defined above
387  * @band: the band to transmit on (use for checking for races)
388  * @antenna_sel_tx: antenna to use, 0 for automatic diversity
389  * @pad: padding, ignore
390  * @control: union for control data
391  * @status: union for status data
392  * @driver_data: array of driver_data pointers
393  * @ampdu_ack_len: number of acked aggregated frames.
394  * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
395  * @ampdu_ack_map: block ack bit map for the aggregation.
396  * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
397  * @ampdu_len: number of aggregated frames.
398  * 	relevant only if IEEE80211_TX_STATUS_AMPDU was set.
399  * @ack_signal: signal strength of the ACK frame
400  */
401 struct ieee80211_tx_info {
402 	/* common information */
403 	u32 flags;
404 	u8 band;
405 
406 	u8 antenna_sel_tx;
407 
408 	/* 2 byte hole */
409 	u8 pad[2];
410 
411 	union {
412 		struct {
413 			union {
414 				/* rate control */
415 				struct {
416 					struct ieee80211_tx_rate rates[
417 						IEEE80211_TX_MAX_RATES];
418 					s8 rts_cts_rate_idx;
419 				};
420 				/* only needed before rate control */
421 				unsigned long jiffies;
422 			};
423 			/* NB: vif can be NULL for injected frames */
424 			struct ieee80211_vif *vif;
425 			struct ieee80211_key_conf *hw_key;
426 			struct ieee80211_sta *sta;
427 		} control;
428 		struct {
429 			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
430 			u8 ampdu_ack_len;
431 			u64 ampdu_ack_map;
432 			int ack_signal;
433 			u8 ampdu_len;
434 			/* 7 bytes free */
435 		} status;
436 		struct {
437 			struct ieee80211_tx_rate driver_rates[
438 				IEEE80211_TX_MAX_RATES];
439 			void *rate_driver_data[
440 				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
441 		};
442 		void *driver_data[
443 			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
444 	};
445 };
446 
447 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
448 {
449 	return (struct ieee80211_tx_info *)skb->cb;
450 }
451 
452 static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb)
453 {
454 	return (struct ieee80211_rx_status *)skb->cb;
455 }
456 
457 /**
458  * ieee80211_tx_info_clear_status - clear TX status
459  *
460  * @info: The &struct ieee80211_tx_info to be cleared.
461  *
462  * When the driver passes an skb back to mac80211, it must report
463  * a number of things in TX status. This function clears everything
464  * in the TX status but the rate control information (it does clear
465  * the count since you need to fill that in anyway).
466  *
467  * NOTE: You can only use this function if you do NOT use
468  *	 info->driver_data! Use info->rate_driver_data
469  *	 instead if you need only the less space that allows.
470  */
471 static inline void
472 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
473 {
474 	int i;
475 
476 	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
477 		     offsetof(struct ieee80211_tx_info, control.rates));
478 	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
479 		     offsetof(struct ieee80211_tx_info, driver_rates));
480 	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
481 	/* clear the rate counts */
482 	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
483 		info->status.rates[i].count = 0;
484 
485 	BUILD_BUG_ON(
486 	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
487 	memset(&info->status.ampdu_ack_len, 0,
488 	       sizeof(struct ieee80211_tx_info) -
489 	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
490 }
491 
492 
493 /**
494  * enum mac80211_rx_flags - receive flags
495  *
496  * These flags are used with the @flag member of &struct ieee80211_rx_status.
497  * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
498  *	Use together with %RX_FLAG_MMIC_STRIPPED.
499  * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
500  * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
501  *	verification has been done by the hardware.
502  * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
503  *	If this flag is set, the stack cannot do any replay detection
504  *	hence the driver or hardware will have to do that.
505  * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
506  *	the frame.
507  * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
508  *	the frame.
509  * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
510  *	is valid. This is useful in monitor mode and necessary for beacon frames
511  *	to enable IBSS merging.
512  * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
513  * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
514  * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
515  * @RX_FLAG_SHORT_GI: Short guard interval was used
516  * @RX_FLAG_INTERNAL_CMTR: set internally after frame was reported
517  *	on cooked monitor to avoid double-reporting it for multiple
518  *	virtual interfaces
519  */
520 enum mac80211_rx_flags {
521 	RX_FLAG_MMIC_ERROR	= 1<<0,
522 	RX_FLAG_DECRYPTED	= 1<<1,
523 	RX_FLAG_MMIC_STRIPPED	= 1<<3,
524 	RX_FLAG_IV_STRIPPED	= 1<<4,
525 	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
526 	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
527 	RX_FLAG_TSFT		= 1<<7,
528 	RX_FLAG_SHORTPRE	= 1<<8,
529 	RX_FLAG_HT		= 1<<9,
530 	RX_FLAG_40MHZ		= 1<<10,
531 	RX_FLAG_SHORT_GI	= 1<<11,
532 	RX_FLAG_INTERNAL_CMTR	= 1<<12,
533 };
534 
535 /**
536  * struct ieee80211_rx_status - receive status
537  *
538  * The low-level driver should provide this information (the subset
539  * supported by hardware) to the 802.11 code with each received
540  * frame, in the skb's control buffer (cb).
541  *
542  * @mactime: value in microseconds of the 64-bit Time Synchronization Function
543  * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
544  * @band: the active band when this frame was received
545  * @freq: frequency the radio was tuned to when receiving this frame, in MHz
546  * @signal: signal strength when receiving this frame, either in dBm, in dB or
547  *	unspecified depending on the hardware capabilities flags
548  *	@IEEE80211_HW_SIGNAL_*
549  * @noise: noise when receiving this frame, in dBm.
550  * @antenna: antenna used
551  * @rate_idx: index of data rate into band's supported rates or MCS index if
552  *	HT rates are use (RX_FLAG_HT)
553  * @flag: %RX_FLAG_*
554  */
555 struct ieee80211_rx_status {
556 	u64 mactime;
557 	enum ieee80211_band band;
558 	int freq;
559 	int signal;
560 	int noise;
561 	int antenna;
562 	int rate_idx;
563 	int flag;
564 };
565 
566 /**
567  * enum ieee80211_conf_flags - configuration flags
568  *
569  * Flags to define PHY configuration options
570  *
571  * @IEEE80211_CONF_MONITOR: there's a monitor interface present -- use this
572  *	to determine for example whether to calculate timestamps for packets
573  *	or not, do not use instead of filter flags!
574  * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only)
575  * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
576  *	the driver should be prepared to handle configuration requests but
577  *	may turn the device off as much as possible. Typically, this flag will
578  *	be set when an interface is set UP but not associated or scanning, but
579  *	it can also be unset in that case when monitor interfaces are active.
580  */
581 enum ieee80211_conf_flags {
582 	IEEE80211_CONF_MONITOR		= (1<<0),
583 	IEEE80211_CONF_PS		= (1<<1),
584 	IEEE80211_CONF_IDLE		= (1<<2),
585 };
586 
587 
588 /**
589  * enum ieee80211_conf_changed - denotes which configuration changed
590  *
591  * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
592  * @IEEE80211_CONF_CHANGE_MONITOR: the monitor flag changed
593  * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
594  * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
595  * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
596  * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
597  * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
598  */
599 enum ieee80211_conf_changed {
600 	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
601 	IEEE80211_CONF_CHANGE_MONITOR		= BIT(3),
602 	IEEE80211_CONF_CHANGE_PS		= BIT(4),
603 	IEEE80211_CONF_CHANGE_POWER		= BIT(5),
604 	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(6),
605 	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(7),
606 	IEEE80211_CONF_CHANGE_IDLE		= BIT(8),
607 };
608 
609 /**
610  * struct ieee80211_conf - configuration of the device
611  *
612  * This struct indicates how the driver shall configure the hardware.
613  *
614  * @flags: configuration flags defined above
615  *
616  * @listen_interval: listen interval in units of beacon interval
617  * @max_sleep_period: the maximum number of beacon intervals to sleep for
618  *	before checking the beacon for a TIM bit (managed mode only); this
619  *	value will be only achievable between DTIM frames, the hardware
620  *	needs to check for the multicast traffic bit in DTIM beacons.
621  *	This variable is valid only when the CONF_PS flag is set.
622  * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
623  *	powersave documentation below. This variable is valid only when
624  *	the CONF_PS flag is set.
625  *
626  * @power_level: requested transmit power (in dBm)
627  *
628  * @channel: the channel to tune to
629  * @channel_type: the channel (HT) type
630  *
631  * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
632  *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
633  *    but actually means the number of transmissions not the number of retries
634  * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
635  *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
636  *    number of transmissions not the number of retries
637  */
638 struct ieee80211_conf {
639 	u32 flags;
640 	int power_level, dynamic_ps_timeout;
641 	int max_sleep_period;
642 
643 	u16 listen_interval;
644 
645 	u8 long_frame_max_tx_count, short_frame_max_tx_count;
646 
647 	struct ieee80211_channel *channel;
648 	enum nl80211_channel_type channel_type;
649 };
650 
651 /**
652  * struct ieee80211_vif - per-interface data
653  *
654  * Data in this structure is continually present for driver
655  * use during the life of a virtual interface.
656  *
657  * @type: type of this virtual interface
658  * @bss_conf: BSS configuration for this interface, either our own
659  *	or the BSS we're associated to
660  * @drv_priv: data area for driver use, will always be aligned to
661  *	sizeof(void *).
662  */
663 struct ieee80211_vif {
664 	enum nl80211_iftype type;
665 	struct ieee80211_bss_conf bss_conf;
666 	/* must be last */
667 	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
668 };
669 
670 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
671 {
672 #ifdef CONFIG_MAC80211_MESH
673 	return vif->type == NL80211_IFTYPE_MESH_POINT;
674 #endif
675 	return false;
676 }
677 
678 /**
679  * struct ieee80211_if_init_conf - initial configuration of an interface
680  *
681  * @vif: pointer to a driver-use per-interface structure. The pointer
682  *	itself is also used for various functions including
683  *	ieee80211_beacon_get() and ieee80211_get_buffered_bc().
684  * @type: one of &enum nl80211_iftype constants. Determines the type of
685  *	added/removed interface.
686  * @mac_addr: pointer to MAC address of the interface. This pointer is valid
687  *	until the interface is removed (i.e. it cannot be used after
688  *	remove_interface() callback was called for this interface).
689  *
690  * This structure is used in add_interface() and remove_interface()
691  * callbacks of &struct ieee80211_hw.
692  *
693  * When you allow multiple interfaces to be added to your PHY, take care
694  * that the hardware can actually handle multiple MAC addresses. However,
695  * also take care that when there's no interface left with mac_addr != %NULL
696  * you remove the MAC address from the device to avoid acknowledging packets
697  * in pure monitor mode.
698  */
699 struct ieee80211_if_init_conf {
700 	enum nl80211_iftype type;
701 	struct ieee80211_vif *vif;
702 	void *mac_addr;
703 };
704 
705 /**
706  * enum ieee80211_key_alg - key algorithm
707  * @ALG_WEP: WEP40 or WEP104
708  * @ALG_TKIP: TKIP
709  * @ALG_CCMP: CCMP (AES)
710  * @ALG_AES_CMAC: AES-128-CMAC
711  */
712 enum ieee80211_key_alg {
713 	ALG_WEP,
714 	ALG_TKIP,
715 	ALG_CCMP,
716 	ALG_AES_CMAC,
717 };
718 
719 /**
720  * enum ieee80211_key_flags - key flags
721  *
722  * These flags are used for communication about keys between the driver
723  * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
724  *
725  * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
726  *	that the STA this key will be used with could be using QoS.
727  * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
728  *	driver to indicate that it requires IV generation for this
729  *	particular key.
730  * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
731  *	the driver for a TKIP key if it requires Michael MIC
732  *	generation in software.
733  * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
734  *	that the key is pairwise rather then a shared key.
735  * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
736  *	CCMP key if it requires CCMP encryption of management frames (MFP) to
737  *	be done in software.
738  */
739 enum ieee80211_key_flags {
740 	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
741 	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
742 	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
743 	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
744 	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
745 };
746 
747 /**
748  * struct ieee80211_key_conf - key information
749  *
750  * This key information is given by mac80211 to the driver by
751  * the set_key() callback in &struct ieee80211_ops.
752  *
753  * @hw_key_idx: To be set by the driver, this is the key index the driver
754  *	wants to be given when a frame is transmitted and needs to be
755  *	encrypted in hardware.
756  * @alg: The key algorithm.
757  * @flags: key flags, see &enum ieee80211_key_flags.
758  * @keyidx: the key index (0-3)
759  * @keylen: key material length
760  * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
761  * 	data block:
762  * 	- Temporal Encryption Key (128 bits)
763  * 	- Temporal Authenticator Tx MIC Key (64 bits)
764  * 	- Temporal Authenticator Rx MIC Key (64 bits)
765  * @icv_len: The ICV length for this key type
766  * @iv_len: The IV length for this key type
767  */
768 struct ieee80211_key_conf {
769 	enum ieee80211_key_alg alg;
770 	u8 icv_len;
771 	u8 iv_len;
772 	u8 hw_key_idx;
773 	u8 flags;
774 	s8 keyidx;
775 	u8 keylen;
776 	u8 key[0];
777 };
778 
779 /**
780  * enum set_key_cmd - key command
781  *
782  * Used with the set_key() callback in &struct ieee80211_ops, this
783  * indicates whether a key is being removed or added.
784  *
785  * @SET_KEY: a key is set
786  * @DISABLE_KEY: a key must be disabled
787  */
788 enum set_key_cmd {
789 	SET_KEY, DISABLE_KEY,
790 };
791 
792 /**
793  * struct ieee80211_sta - station table entry
794  *
795  * A station table entry represents a station we are possibly
796  * communicating with. Since stations are RCU-managed in
797  * mac80211, any ieee80211_sta pointer you get access to must
798  * either be protected by rcu_read_lock() explicitly or implicitly,
799  * or you must take good care to not use such a pointer after a
800  * call to your sta_notify callback that removed it.
801  *
802  * @addr: MAC address
803  * @aid: AID we assigned to the station if we're an AP
804  * @supp_rates: Bitmap of supported rates (per band)
805  * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
806  * @drv_priv: data area for driver use, will always be aligned to
807  *	sizeof(void *), size is determined in hw information.
808  */
809 struct ieee80211_sta {
810 	u32 supp_rates[IEEE80211_NUM_BANDS];
811 	u8 addr[ETH_ALEN];
812 	u16 aid;
813 	struct ieee80211_sta_ht_cap ht_cap;
814 
815 	/* must be last */
816 	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
817 };
818 
819 /**
820  * enum sta_notify_cmd - sta notify command
821  *
822  * Used with the sta_notify() callback in &struct ieee80211_ops, this
823  * indicates addition and removal of a station to station table,
824  * or if a associated station made a power state transition.
825  *
826  * @STA_NOTIFY_ADD: a station was added to the station table
827  * @STA_NOTIFY_REMOVE: a station being removed from the station table
828  * @STA_NOTIFY_SLEEP: a station is now sleeping
829  * @STA_NOTIFY_AWAKE: a sleeping station woke up
830  */
831 enum sta_notify_cmd {
832 	STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
833 	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
834 };
835 
836 /**
837  * enum ieee80211_tkip_key_type - get tkip key
838  *
839  * Used by drivers which need to get a tkip key for skb. Some drivers need a
840  * phase 1 key, others need a phase 2 key. A single function allows the driver
841  * to get the key, this enum indicates what type of key is required.
842  *
843  * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
844  * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
845  */
846 enum ieee80211_tkip_key_type {
847 	IEEE80211_TKIP_P1_KEY,
848 	IEEE80211_TKIP_P2_KEY,
849 };
850 
851 /**
852  * enum ieee80211_hw_flags - hardware flags
853  *
854  * These flags are used to indicate hardware capabilities to
855  * the stack. Generally, flags here should have their meaning
856  * done in a way that the simplest hardware doesn't need setting
857  * any particular flags. There are some exceptions to this rule,
858  * however, so you are advised to review these flags carefully.
859  *
860  * @IEEE80211_HW_HAS_RATE_CONTROL:
861  *	The hardware or firmware includes rate control, and cannot be
862  *	controlled by the stack. As such, no rate control algorithm
863  *	should be instantiated, and the TX rate reported to userspace
864  *	will be taken from the TX status instead of the rate control
865  *	algorithm.
866  *	Note that this requires that the driver implement a number of
867  *	callbacks so it has the correct information, it needs to have
868  *	the @set_rts_threshold callback and must look at the BSS config
869  *	@use_cts_prot for G/N protection, @use_short_slot for slot
870  *	timing in 2.4 GHz and @use_short_preamble for preambles for
871  *	CCK frames.
872  *
873  * @IEEE80211_HW_RX_INCLUDES_FCS:
874  *	Indicates that received frames passed to the stack include
875  *	the FCS at the end.
876  *
877  * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
878  *	Some wireless LAN chipsets buffer broadcast/multicast frames
879  *	for power saving stations in the hardware/firmware and others
880  *	rely on the host system for such buffering. This option is used
881  *	to configure the IEEE 802.11 upper layer to buffer broadcast and
882  *	multicast frames when there are power saving stations so that
883  *	the driver can fetch them with ieee80211_get_buffered_bc().
884  *
885  * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
886  *	Hardware is not capable of short slot operation on the 2.4 GHz band.
887  *
888  * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
889  *	Hardware is not capable of receiving frames with short preamble on
890  *	the 2.4 GHz band.
891  *
892  * @IEEE80211_HW_SIGNAL_UNSPEC:
893  *	Hardware can provide signal values but we don't know its units. We
894  *	expect values between 0 and @max_signal.
895  *	If possible please provide dB or dBm instead.
896  *
897  * @IEEE80211_HW_SIGNAL_DBM:
898  *	Hardware gives signal values in dBm, decibel difference from
899  *	one milliwatt. This is the preferred method since it is standardized
900  *	between different devices. @max_signal does not need to be set.
901  *
902  * @IEEE80211_HW_NOISE_DBM:
903  *	Hardware can provide noise (radio interference) values in units dBm,
904  *      decibel difference from one milliwatt.
905  *
906  * @IEEE80211_HW_SPECTRUM_MGMT:
907  * 	Hardware supports spectrum management defined in 802.11h
908  * 	Measurement, Channel Switch, Quieting, TPC
909  *
910  * @IEEE80211_HW_AMPDU_AGGREGATION:
911  *	Hardware supports 11n A-MPDU aggregation.
912  *
913  * @IEEE80211_HW_SUPPORTS_PS:
914  *	Hardware has power save support (i.e. can go to sleep).
915  *
916  * @IEEE80211_HW_PS_NULLFUNC_STACK:
917  *	Hardware requires nullfunc frame handling in stack, implies
918  *	stack support for dynamic PS.
919  *
920  * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
921  *	Hardware has support for dynamic PS.
922  *
923  * @IEEE80211_HW_MFP_CAPABLE:
924  *	Hardware supports management frame protection (MFP, IEEE 802.11w).
925  *
926  * @IEEE80211_HW_BEACON_FILTER:
927  *	Hardware supports dropping of irrelevant beacon frames to
928  *	avoid waking up cpu.
929  */
930 enum ieee80211_hw_flags {
931 	IEEE80211_HW_HAS_RATE_CONTROL			= 1<<0,
932 	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
933 	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
934 	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
935 	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
936 	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
937 	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
938 	IEEE80211_HW_NOISE_DBM				= 1<<7,
939 	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
940 	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
941 	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
942 	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
943 	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
944 	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
945 	IEEE80211_HW_BEACON_FILTER			= 1<<14,
946 };
947 
948 /**
949  * struct ieee80211_hw - hardware information and state
950  *
951  * This structure contains the configuration and hardware
952  * information for an 802.11 PHY.
953  *
954  * @wiphy: This points to the &struct wiphy allocated for this
955  *	802.11 PHY. You must fill in the @perm_addr and @dev
956  *	members of this structure using SET_IEEE80211_DEV()
957  *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
958  *	bands (with channels, bitrates) are registered here.
959  *
960  * @conf: &struct ieee80211_conf, device configuration, don't use.
961  *
962  * @priv: pointer to private area that was allocated for driver use
963  *	along with this structure.
964  *
965  * @flags: hardware flags, see &enum ieee80211_hw_flags.
966  *
967  * @extra_tx_headroom: headroom to reserve in each transmit skb
968  *	for use by the driver (e.g. for transmit headers.)
969  *
970  * @channel_change_time: time (in microseconds) it takes to change channels.
971  *
972  * @max_signal: Maximum value for signal (rssi) in RX information, used
973  *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
974  *
975  * @max_listen_interval: max listen interval in units of beacon interval
976  *     that HW supports
977  *
978  * @queues: number of available hardware transmit queues for
979  *	data packets. WMM/QoS requires at least four, these
980  *	queues need to have configurable access parameters.
981  *
982  * @rate_control_algorithm: rate control algorithm for this hardware.
983  *	If unset (NULL), the default algorithm will be used. Must be
984  *	set before calling ieee80211_register_hw().
985  *
986  * @vif_data_size: size (in bytes) of the drv_priv data area
987  *	within &struct ieee80211_vif.
988  * @sta_data_size: size (in bytes) of the drv_priv data area
989  *	within &struct ieee80211_sta.
990  *
991  * @max_rates: maximum number of alternate rate retry stages
992  * @max_rate_tries: maximum number of tries for each stage
993  */
994 struct ieee80211_hw {
995 	struct ieee80211_conf conf;
996 	struct wiphy *wiphy;
997 	const char *rate_control_algorithm;
998 	void *priv;
999 	u32 flags;
1000 	unsigned int extra_tx_headroom;
1001 	int channel_change_time;
1002 	int vif_data_size;
1003 	int sta_data_size;
1004 	u16 queues;
1005 	u16 max_listen_interval;
1006 	s8 max_signal;
1007 	u8 max_rates;
1008 	u8 max_rate_tries;
1009 };
1010 
1011 /**
1012  * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
1013  *
1014  * @wiphy: the &struct wiphy which we want to query
1015  *
1016  * mac80211 drivers can use this to get to their respective
1017  * &struct ieee80211_hw. Drivers wishing to get to their own private
1018  * structure can then access it via hw->priv. Note that mac802111 drivers should
1019  * not use wiphy_priv() to try to get their private driver structure as this
1020  * is already used internally by mac80211.
1021  */
1022 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
1023 
1024 /**
1025  * SET_IEEE80211_DEV - set device for 802.11 hardware
1026  *
1027  * @hw: the &struct ieee80211_hw to set the device for
1028  * @dev: the &struct device of this 802.11 device
1029  */
1030 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
1031 {
1032 	set_wiphy_dev(hw->wiphy, dev);
1033 }
1034 
1035 /**
1036  * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1037  *
1038  * @hw: the &struct ieee80211_hw to set the MAC address for
1039  * @addr: the address to set
1040  */
1041 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1042 {
1043 	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1044 }
1045 
1046 static inline struct ieee80211_rate *
1047 ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1048 		      const struct ieee80211_tx_info *c)
1049 {
1050 	if (WARN_ON(c->control.rates[0].idx < 0))
1051 		return NULL;
1052 	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1053 }
1054 
1055 static inline struct ieee80211_rate *
1056 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1057 			   const struct ieee80211_tx_info *c)
1058 {
1059 	if (c->control.rts_cts_rate_idx < 0)
1060 		return NULL;
1061 	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1062 }
1063 
1064 static inline struct ieee80211_rate *
1065 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1066 			     const struct ieee80211_tx_info *c, int idx)
1067 {
1068 	if (c->control.rates[idx + 1].idx < 0)
1069 		return NULL;
1070 	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1071 }
1072 
1073 /**
1074  * DOC: Hardware crypto acceleration
1075  *
1076  * mac80211 is capable of taking advantage of many hardware
1077  * acceleration designs for encryption and decryption operations.
1078  *
1079  * The set_key() callback in the &struct ieee80211_ops for a given
1080  * device is called to enable hardware acceleration of encryption and
1081  * decryption. The callback takes a @sta parameter that will be NULL
1082  * for default keys or keys used for transmission only, or point to
1083  * the station information for the peer for individual keys.
1084  * Multiple transmission keys with the same key index may be used when
1085  * VLANs are configured for an access point.
1086  *
1087  * When transmitting, the TX control data will use the @hw_key_idx
1088  * selected by the driver by modifying the &struct ieee80211_key_conf
1089  * pointed to by the @key parameter to the set_key() function.
1090  *
1091  * The set_key() call for the %SET_KEY command should return 0 if
1092  * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1093  * added; if you return 0 then hw_key_idx must be assigned to the
1094  * hardware key index, you are free to use the full u8 range.
1095  *
1096  * When the cmd is %DISABLE_KEY then it must succeed.
1097  *
1098  * Note that it is permissible to not decrypt a frame even if a key
1099  * for it has been uploaded to hardware, the stack will not make any
1100  * decision based on whether a key has been uploaded or not but rather
1101  * based on the receive flags.
1102  *
1103  * The &struct ieee80211_key_conf structure pointed to by the @key
1104  * parameter is guaranteed to be valid until another call to set_key()
1105  * removes it, but it can only be used as a cookie to differentiate
1106  * keys.
1107  *
1108  * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1109  * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1110  * handler.
1111  * The update_tkip_key() call updates the driver with the new phase 1 key.
1112  * This happens everytime the iv16 wraps around (every 65536 packets). The
1113  * set_key() call will happen only once for each key (unless the AP did
1114  * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1115  * provided by update_tkip_key only. The trigger that makes mac80211 call this
1116  * handler is software decryption with wrap around of iv16.
1117  */
1118 
1119 /**
1120  * DOC: Powersave support
1121  *
1122  * mac80211 has support for various powersave implementations.
1123  *
1124  * First, it can support hardware that handles all powersaving by
1125  * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1126  * hardware flag. In that case, it will be told about the desired
1127  * powersave mode depending on the association status, and the driver
1128  * must take care of sending nullfunc frames when necessary, i.e. when
1129  * entering and leaving powersave mode. The driver is required to look at
1130  * the AID in beacons and signal to the AP that it woke up when it finds
1131  * traffic directed to it. This mode supports dynamic PS by simply
1132  * enabling/disabling PS.
1133  *
1134  * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1135  * flag to indicate that it can support dynamic PS mode itself (see below).
1136  *
1137  * Other hardware designs cannot send nullfunc frames by themselves and also
1138  * need software support for parsing the TIM bitmap. This is also supported
1139  * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1140  * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1141  * required to pass up beacons. The hardware is still required to handle
1142  * waking up for multicast traffic; if it cannot the driver must handle that
1143  * as best as it can, mac80211 is too slow.
1144  *
1145  * Dynamic powersave mode is an extension to normal powersave mode in which
1146  * the hardware stays awake for a user-specified period of time after sending
1147  * a frame so that reply frames need not be buffered and therefore delayed
1148  * to the next wakeup. This can either be supported by hardware, in which case
1149  * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1150  * value, or by the stack if all nullfunc handling is in the stack.
1151  */
1152 
1153 /**
1154  * DOC: Beacon filter support
1155  *
1156  * Some hardware have beacon filter support to reduce host cpu wakeups
1157  * which will reduce system power consumption. It usuallly works so that
1158  * the firmware creates a checksum of the beacon but omits all constantly
1159  * changing elements (TSF, TIM etc). Whenever the checksum changes the
1160  * beacon is forwarded to the host, otherwise it will be just dropped. That
1161  * way the host will only receive beacons where some relevant information
1162  * (for example ERP protection or WMM settings) have changed.
1163  *
1164  * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1165  * hardware capability. The driver needs to enable beacon filter support
1166  * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1167  * power save is enabled, the stack will not check for beacon loss and the
1168  * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1169  *
1170  * The time (or number of beacons missed) until the firmware notifies the
1171  * driver of a beacon loss event (which in turn causes the driver to call
1172  * ieee80211_beacon_loss()) should be configurable and will be controlled
1173  * by mac80211 and the roaming algorithm in the future.
1174  *
1175  * Since there may be constantly changing information elements that nothing
1176  * in the software stack cares about, we will, in the future, have mac80211
1177  * tell the driver which information elements are interesting in the sense
1178  * that we want to see changes in them. This will include
1179  *  - a list of information element IDs
1180  *  - a list of OUIs for the vendor information element
1181  *
1182  * Ideally, the hardware would filter out any beacons without changes in the
1183  * requested elements, but if it cannot support that it may, at the expense
1184  * of some efficiency, filter out only a subset. For example, if the device
1185  * doesn't support checking for OUIs it should pass up all changes in all
1186  * vendor information elements.
1187  *
1188  * Note that change, for the sake of simplification, also includes information
1189  * elements appearing or disappearing from the beacon.
1190  *
1191  * Some hardware supports an "ignore list" instead, just make sure nothing
1192  * that was requested is on the ignore list, and include commonly changing
1193  * information element IDs in the ignore list, for example 11 (BSS load) and
1194  * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1195  * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1196  * it could also include some currently unused IDs.
1197  *
1198  *
1199  * In addition to these capabilities, hardware should support notifying the
1200  * host of changes in the beacon RSSI. This is relevant to implement roaming
1201  * when no traffic is flowing (when traffic is flowing we see the RSSI of
1202  * the received data packets). This can consist in notifying the host when
1203  * the RSSI changes significantly or when it drops below or rises above
1204  * configurable thresholds. In the future these thresholds will also be
1205  * configured by mac80211 (which gets them from userspace) to implement
1206  * them as the roaming algorithm requires.
1207  *
1208  * If the hardware cannot implement this, the driver should ask it to
1209  * periodically pass beacon frames to the host so that software can do the
1210  * signal strength threshold checking.
1211  */
1212 
1213 /**
1214  * DOC: Frame filtering
1215  *
1216  * mac80211 requires to see many management frames for proper
1217  * operation, and users may want to see many more frames when
1218  * in monitor mode. However, for best CPU usage and power consumption,
1219  * having as few frames as possible percolate through the stack is
1220  * desirable. Hence, the hardware should filter as much as possible.
1221  *
1222  * To achieve this, mac80211 uses filter flags (see below) to tell
1223  * the driver's configure_filter() function which frames should be
1224  * passed to mac80211 and which should be filtered out.
1225  *
1226  * Before configure_filter() is invoked, the prepare_multicast()
1227  * callback is invoked with the parameters @mc_count and @mc_list
1228  * for the combined multicast address list of all virtual interfaces.
1229  * It's use is optional, and it returns a u64 that is passed to
1230  * configure_filter(). Additionally, configure_filter() has the
1231  * arguments @changed_flags telling which flags were changed and
1232  * @total_flags with the new flag states.
1233  *
1234  * If your device has no multicast address filters your driver will
1235  * need to check both the %FIF_ALLMULTI flag and the @mc_count
1236  * parameter to see whether multicast frames should be accepted
1237  * or dropped.
1238  *
1239  * All unsupported flags in @total_flags must be cleared.
1240  * Hardware does not support a flag if it is incapable of _passing_
1241  * the frame to the stack. Otherwise the driver must ignore
1242  * the flag, but not clear it.
1243  * You must _only_ clear the flag (announce no support for the
1244  * flag to mac80211) if you are not able to pass the packet type
1245  * to the stack (so the hardware always filters it).
1246  * So for example, you should clear @FIF_CONTROL, if your hardware
1247  * always filters control frames. If your hardware always passes
1248  * control frames to the kernel and is incapable of filtering them,
1249  * you do _not_ clear the @FIF_CONTROL flag.
1250  * This rule applies to all other FIF flags as well.
1251  */
1252 
1253 /**
1254  * enum ieee80211_filter_flags - hardware filter flags
1255  *
1256  * These flags determine what the filter in hardware should be
1257  * programmed to let through and what should not be passed to the
1258  * stack. It is always safe to pass more frames than requested,
1259  * but this has negative impact on power consumption.
1260  *
1261  * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1262  *	think of the BSS as your network segment and then this corresponds
1263  *	to the regular ethernet device promiscuous mode.
1264  *
1265  * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1266  *	by the user or if the hardware is not capable of filtering by
1267  *	multicast address.
1268  *
1269  * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1270  *	%RX_FLAG_FAILED_FCS_CRC for them)
1271  *
1272  * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1273  *	the %RX_FLAG_FAILED_PLCP_CRC for them
1274  *
1275  * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1276  *	to the hardware that it should not filter beacons or probe responses
1277  *	by BSSID. Filtering them can greatly reduce the amount of processing
1278  *	mac80211 needs to do and the amount of CPU wakeups, so you should
1279  *	honour this flag if possible.
1280  *
1281  * @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS
1282  *  is not set then only those addressed to this station.
1283  *
1284  * @FIF_OTHER_BSS: pass frames destined to other BSSes
1285  *
1286  * @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS  is not set then only
1287  *  those addressed to this station.
1288  */
1289 enum ieee80211_filter_flags {
1290 	FIF_PROMISC_IN_BSS	= 1<<0,
1291 	FIF_ALLMULTI		= 1<<1,
1292 	FIF_FCSFAIL		= 1<<2,
1293 	FIF_PLCPFAIL		= 1<<3,
1294 	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
1295 	FIF_CONTROL		= 1<<5,
1296 	FIF_OTHER_BSS		= 1<<6,
1297 	FIF_PSPOLL		= 1<<7,
1298 };
1299 
1300 /**
1301  * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1302  *
1303  * These flags are used with the ampdu_action() callback in
1304  * &struct ieee80211_ops to indicate which action is needed.
1305  *
1306  * Note that drivers MUST be able to deal with a TX aggregation
1307  * session being stopped even before they OK'ed starting it by
1308  * calling ieee80211_start_tx_ba_cb(_irqsafe), because the peer
1309  * might receive the addBA frame and send a delBA right away!
1310  *
1311  * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1312  * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1313  * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1314  * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1315  * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1316  */
1317 enum ieee80211_ampdu_mlme_action {
1318 	IEEE80211_AMPDU_RX_START,
1319 	IEEE80211_AMPDU_RX_STOP,
1320 	IEEE80211_AMPDU_TX_START,
1321 	IEEE80211_AMPDU_TX_STOP,
1322 	IEEE80211_AMPDU_TX_OPERATIONAL,
1323 };
1324 
1325 /**
1326  * struct ieee80211_ops - callbacks from mac80211 to the driver
1327  *
1328  * This structure contains various callbacks that the driver may
1329  * handle or, in some cases, must handle, for example to configure
1330  * the hardware to a new channel or to transmit a frame.
1331  *
1332  * @tx: Handler that 802.11 module calls for each transmitted frame.
1333  *	skb contains the buffer starting from the IEEE 802.11 header.
1334  *	The low-level driver should send the frame out based on
1335  *	configuration in the TX control data. This handler should,
1336  *	preferably, never fail and stop queues appropriately, more
1337  *	importantly, however, it must never fail for A-MPDU-queues.
1338  *	This function should return NETDEV_TX_OK except in very
1339  *	limited cases.
1340  *	Must be implemented and atomic.
1341  *
1342  * @start: Called before the first netdevice attached to the hardware
1343  *	is enabled. This should turn on the hardware and must turn on
1344  *	frame reception (for possibly enabled monitor interfaces.)
1345  *	Returns negative error codes, these may be seen in userspace,
1346  *	or zero.
1347  *	When the device is started it should not have a MAC address
1348  *	to avoid acknowledging frames before a non-monitor device
1349  *	is added.
1350  *	Must be implemented.
1351  *
1352  * @stop: Called after last netdevice attached to the hardware
1353  *	is disabled. This should turn off the hardware (at least
1354  *	it must turn off frame reception.)
1355  *	May be called right after add_interface if that rejects
1356  *	an interface. If you added any work onto the mac80211 workqueue
1357  *	you should ensure to cancel it on this callback.
1358  *	Must be implemented.
1359  *
1360  * @add_interface: Called when a netdevice attached to the hardware is
1361  *	enabled. Because it is not called for monitor mode devices, @start
1362  *	and @stop must be implemented.
1363  *	The driver should perform any initialization it needs before
1364  *	the device can be enabled. The initial configuration for the
1365  *	interface is given in the conf parameter.
1366  *	The callback may refuse to add an interface by returning a
1367  *	negative error code (which will be seen in userspace.)
1368  *	Must be implemented.
1369  *
1370  * @remove_interface: Notifies a driver that an interface is going down.
1371  *	The @stop callback is called after this if it is the last interface
1372  *	and no monitor interfaces are present.
1373  *	When all interfaces are removed, the MAC address in the hardware
1374  *	must be cleared so the device no longer acknowledges packets,
1375  *	the mac_addr member of the conf structure is, however, set to the
1376  *	MAC address of the device going away.
1377  *	Hence, this callback must be implemented.
1378  *
1379  * @config: Handler for configuration requests. IEEE 802.11 code calls this
1380  *	function to change hardware configuration, e.g., channel.
1381  *	This function should never fail but returns a negative error code
1382  *	if it does.
1383  *
1384  * @bss_info_changed: Handler for configuration requests related to BSS
1385  *	parameters that may vary during BSS's lifespan, and may affect low
1386  *	level driver (e.g. assoc/disassoc status, erp parameters).
1387  *	This function should not be used if no BSS has been set, unless
1388  *	for association indication. The @changed parameter indicates which
1389  *	of the bss parameters has changed when a call is made.
1390  *
1391  * @prepare_multicast: Prepare for multicast filter configuration.
1392  *	This callback is optional, and its return value is passed
1393  *	to configure_filter(). This callback must be atomic.
1394  *
1395  * @configure_filter: Configure the device's RX filter.
1396  *	See the section "Frame filtering" for more information.
1397  *	This callback must be implemented.
1398  *
1399  * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1400  * 	must be set or cleared for a given STA. Must be atomic.
1401  *
1402  * @set_key: See the section "Hardware crypto acceleration"
1403  *	This callback can sleep, and is only called between add_interface
1404  *	and remove_interface calls, i.e. while the given virtual interface
1405  *	is enabled.
1406  *	Returns a negative error code if the key can't be added.
1407  *
1408  * @update_tkip_key: See the section "Hardware crypto acceleration"
1409  * 	This callback will be called in the context of Rx. Called for drivers
1410  * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1411  *
1412  * @hw_scan: Ask the hardware to service the scan request, no need to start
1413  *	the scan state machine in stack. The scan must honour the channel
1414  *	configuration done by the regulatory agent in the wiphy's
1415  *	registered bands. The hardware (or the driver) needs to make sure
1416  *	that power save is disabled.
1417  *	The @req ie/ie_len members are rewritten by mac80211 to contain the
1418  *	entire IEs after the SSID, so that drivers need not look at these
1419  *	at all but just send them after the SSID -- mac80211 includes the
1420  *	(extended) supported rates and HT information (where applicable).
1421  *	When the scan finishes, ieee80211_scan_completed() must be called;
1422  *	note that it also must be called when the scan cannot finish due to
1423  *	any error unless this callback returned a negative error code.
1424  *
1425  * @sw_scan_start: Notifier function that is called just before a software scan
1426  *	is started. Can be NULL, if the driver doesn't need this notification.
1427  *
1428  * @sw_scan_complete: Notifier function that is called just after a software scan
1429  *	finished. Can be NULL, if the driver doesn't need this notification.
1430  *
1431  * @get_stats: Return low-level statistics.
1432  * 	Returns zero if statistics are available.
1433  *
1434  * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1435  *	callback should be provided to read the TKIP transmit IVs (both IV32
1436  *	and IV16) for the given key from hardware.
1437  *
1438  * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1439  *
1440  * @sta_notify: Notifies low level driver about addition, removal or power
1441  *	state transition of an associated station, AP,  IBSS/WDS/mesh peer etc.
1442  *	Must be atomic.
1443  *
1444  * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1445  *	bursting) for a hardware TX queue.
1446  *	Returns a negative error code on failure.
1447  *
1448  * @get_tx_stats: Get statistics of the current TX queue status. This is used
1449  *	to get number of currently queued packets (queue length), maximum queue
1450  *	size (limit), and total number of packets sent using each TX queue
1451  *	(count). The 'stats' pointer points to an array that has hw->queues
1452  *	items.
1453  *
1454  * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1455  *	this is only used for IBSS mode BSSID merging and debugging. Is not a
1456  *	required function.
1457  *
1458  * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1459  *      Currently, this is only used for IBSS mode debugging. Is not a
1460  *	required function.
1461  *
1462  * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1463  *	with other STAs in the IBSS. This is only used in IBSS mode. This
1464  *	function is optional if the firmware/hardware takes full care of
1465  *	TSF synchronization.
1466  *
1467  * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1468  *	This is needed only for IBSS mode and the result of this function is
1469  *	used to determine whether to reply to Probe Requests.
1470  *	Returns non-zero if this device sent the last beacon.
1471  *
1472  * @ampdu_action: Perform a certain A-MPDU action
1473  * 	The RA/TID combination determines the destination and TID we want
1474  * 	the ampdu action to be performed for. The action is defined through
1475  * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1476  * 	is the first frame we expect to perform the action on. Notice
1477  * 	that TX/RX_STOP can pass NULL for this parameter.
1478  *	Returns a negative error code on failure.
1479  *
1480  * @rfkill_poll: Poll rfkill hardware state. If you need this, you also
1481  *	need to set wiphy->rfkill_poll to %true before registration,
1482  *	and need to call wiphy_rfkill_set_hw_state() in the callback.
1483  *
1484  * @testmode_cmd: Implement a cfg80211 test mode command.
1485  */
1486 struct ieee80211_ops {
1487 	int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1488 	int (*start)(struct ieee80211_hw *hw);
1489 	void (*stop)(struct ieee80211_hw *hw);
1490 	int (*add_interface)(struct ieee80211_hw *hw,
1491 			     struct ieee80211_if_init_conf *conf);
1492 	void (*remove_interface)(struct ieee80211_hw *hw,
1493 				 struct ieee80211_if_init_conf *conf);
1494 	int (*config)(struct ieee80211_hw *hw, u32 changed);
1495 	void (*bss_info_changed)(struct ieee80211_hw *hw,
1496 				 struct ieee80211_vif *vif,
1497 				 struct ieee80211_bss_conf *info,
1498 				 u32 changed);
1499 	u64 (*prepare_multicast)(struct ieee80211_hw *hw,
1500 				 int mc_count, struct dev_addr_list *mc_list);
1501 	void (*configure_filter)(struct ieee80211_hw *hw,
1502 				 unsigned int changed_flags,
1503 				 unsigned int *total_flags,
1504 				 u64 multicast);
1505 	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1506 		       bool set);
1507 	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1508 		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1509 		       struct ieee80211_key_conf *key);
1510 	void (*update_tkip_key)(struct ieee80211_hw *hw,
1511 			struct ieee80211_key_conf *conf, const u8 *address,
1512 			u32 iv32, u16 *phase1key);
1513 	int (*hw_scan)(struct ieee80211_hw *hw,
1514 		       struct cfg80211_scan_request *req);
1515 	void (*sw_scan_start)(struct ieee80211_hw *hw);
1516 	void (*sw_scan_complete)(struct ieee80211_hw *hw);
1517 	int (*get_stats)(struct ieee80211_hw *hw,
1518 			 struct ieee80211_low_level_stats *stats);
1519 	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1520 			     u32 *iv32, u16 *iv16);
1521 	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1522 	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1523 			enum sta_notify_cmd, struct ieee80211_sta *sta);
1524 	int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1525 		       const struct ieee80211_tx_queue_params *params);
1526 	int (*get_tx_stats)(struct ieee80211_hw *hw,
1527 			    struct ieee80211_tx_queue_stats *stats);
1528 	u64 (*get_tsf)(struct ieee80211_hw *hw);
1529 	void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1530 	void (*reset_tsf)(struct ieee80211_hw *hw);
1531 	int (*tx_last_beacon)(struct ieee80211_hw *hw);
1532 	int (*ampdu_action)(struct ieee80211_hw *hw,
1533 			    struct ieee80211_vif *vif,
1534 			    enum ieee80211_ampdu_mlme_action action,
1535 			    struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1536 
1537 	void (*rfkill_poll)(struct ieee80211_hw *hw);
1538 #ifdef CONFIG_NL80211_TESTMODE
1539 	int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len);
1540 #endif
1541 };
1542 
1543 /**
1544  * ieee80211_alloc_hw -  Allocate a new hardware device
1545  *
1546  * This must be called once for each hardware device. The returned pointer
1547  * must be used to refer to this device when calling other functions.
1548  * mac80211 allocates a private data area for the driver pointed to by
1549  * @priv in &struct ieee80211_hw, the size of this area is given as
1550  * @priv_data_len.
1551  *
1552  * @priv_data_len: length of private data
1553  * @ops: callbacks for this device
1554  */
1555 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1556 					const struct ieee80211_ops *ops);
1557 
1558 /**
1559  * ieee80211_register_hw - Register hardware device
1560  *
1561  * You must call this function before any other functions in
1562  * mac80211. Note that before a hardware can be registered, you
1563  * need to fill the contained wiphy's information.
1564  *
1565  * @hw: the device to register as returned by ieee80211_alloc_hw()
1566  */
1567 int ieee80211_register_hw(struct ieee80211_hw *hw);
1568 
1569 #ifdef CONFIG_MAC80211_LEDS
1570 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1571 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1572 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1573 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1574 #endif
1575 /**
1576  * ieee80211_get_tx_led_name - get name of TX LED
1577  *
1578  * mac80211 creates a transmit LED trigger for each wireless hardware
1579  * that can be used to drive LEDs if your driver registers a LED device.
1580  * This function returns the name (or %NULL if not configured for LEDs)
1581  * of the trigger so you can automatically link the LED device.
1582  *
1583  * @hw: the hardware to get the LED trigger name for
1584  */
1585 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1586 {
1587 #ifdef CONFIG_MAC80211_LEDS
1588 	return __ieee80211_get_tx_led_name(hw);
1589 #else
1590 	return NULL;
1591 #endif
1592 }
1593 
1594 /**
1595  * ieee80211_get_rx_led_name - get name of RX LED
1596  *
1597  * mac80211 creates a receive LED trigger for each wireless hardware
1598  * that can be used to drive LEDs if your driver registers a LED device.
1599  * This function returns the name (or %NULL if not configured for LEDs)
1600  * of the trigger so you can automatically link the LED device.
1601  *
1602  * @hw: the hardware to get the LED trigger name for
1603  */
1604 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1605 {
1606 #ifdef CONFIG_MAC80211_LEDS
1607 	return __ieee80211_get_rx_led_name(hw);
1608 #else
1609 	return NULL;
1610 #endif
1611 }
1612 
1613 /**
1614  * ieee80211_get_assoc_led_name - get name of association LED
1615  *
1616  * mac80211 creates a association LED trigger for each wireless hardware
1617  * that can be used to drive LEDs if your driver registers a LED device.
1618  * This function returns the name (or %NULL if not configured for LEDs)
1619  * of the trigger so you can automatically link the LED device.
1620  *
1621  * @hw: the hardware to get the LED trigger name for
1622  */
1623 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1624 {
1625 #ifdef CONFIG_MAC80211_LEDS
1626 	return __ieee80211_get_assoc_led_name(hw);
1627 #else
1628 	return NULL;
1629 #endif
1630 }
1631 
1632 /**
1633  * ieee80211_get_radio_led_name - get name of radio LED
1634  *
1635  * mac80211 creates a radio change LED trigger for each wireless hardware
1636  * that can be used to drive LEDs if your driver registers a LED device.
1637  * This function returns the name (or %NULL if not configured for LEDs)
1638  * of the trigger so you can automatically link the LED device.
1639  *
1640  * @hw: the hardware to get the LED trigger name for
1641  */
1642 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1643 {
1644 #ifdef CONFIG_MAC80211_LEDS
1645 	return __ieee80211_get_radio_led_name(hw);
1646 #else
1647 	return NULL;
1648 #endif
1649 }
1650 
1651 /**
1652  * ieee80211_unregister_hw - Unregister a hardware device
1653  *
1654  * This function instructs mac80211 to free allocated resources
1655  * and unregister netdevices from the networking subsystem.
1656  *
1657  * @hw: the hardware to unregister
1658  */
1659 void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1660 
1661 /**
1662  * ieee80211_free_hw - free hardware descriptor
1663  *
1664  * This function frees everything that was allocated, including the
1665  * private data for the driver. You must call ieee80211_unregister_hw()
1666  * before calling this function.
1667  *
1668  * @hw: the hardware to free
1669  */
1670 void ieee80211_free_hw(struct ieee80211_hw *hw);
1671 
1672 /**
1673  * ieee80211_restart_hw - restart hardware completely
1674  *
1675  * Call this function when the hardware was restarted for some reason
1676  * (hardware error, ...) and the driver is unable to restore its state
1677  * by itself. mac80211 assumes that at this point the driver/hardware
1678  * is completely uninitialised and stopped, it starts the process by
1679  * calling the ->start() operation. The driver will need to reset all
1680  * internal state that it has prior to calling this function.
1681  *
1682  * @hw: the hardware to restart
1683  */
1684 void ieee80211_restart_hw(struct ieee80211_hw *hw);
1685 
1686 /**
1687  * ieee80211_rx - receive frame
1688  *
1689  * Use this function to hand received frames to mac80211. The receive
1690  * buffer in @skb must start with an IEEE 802.11 header.
1691  *
1692  * This function may not be called in IRQ context. Calls to this function
1693  * for a single hardware must be synchronized against each other. Calls to
1694  * this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be
1695  * mixed for a single hardware.
1696  *
1697  * In process context use instead ieee80211_rx_ni().
1698  *
1699  * @hw: the hardware this frame came in on
1700  * @skb: the buffer to receive, owned by mac80211 after this call
1701  */
1702 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb);
1703 
1704 /**
1705  * ieee80211_rx_irqsafe - receive frame
1706  *
1707  * Like ieee80211_rx() but can be called in IRQ context
1708  * (internally defers to a tasklet.)
1709  *
1710  * Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not
1711  * be mixed for a single hardware.
1712  *
1713  * @hw: the hardware this frame came in on
1714  * @skb: the buffer to receive, owned by mac80211 after this call
1715  */
1716 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);
1717 
1718 /**
1719  * ieee80211_rx_ni - receive frame (in process context)
1720  *
1721  * Like ieee80211_rx() but can be called in process context
1722  * (internally disables bottom halves).
1723  *
1724  * Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe() may
1725  * not be mixed for a single hardware.
1726  *
1727  * @hw: the hardware this frame came in on
1728  * @skb: the buffer to receive, owned by mac80211 after this call
1729  */
1730 static inline void ieee80211_rx_ni(struct ieee80211_hw *hw,
1731 				   struct sk_buff *skb)
1732 {
1733 	local_bh_disable();
1734 	ieee80211_rx(hw, skb);
1735 	local_bh_enable();
1736 }
1737 
1738 /*
1739  * The TX headroom reserved by mac80211 for its own tx_status functions.
1740  * This is enough for the radiotap header.
1741  */
1742 #define IEEE80211_TX_STATUS_HEADROOM	13
1743 
1744 /**
1745  * ieee80211_tx_status - transmit status callback
1746  *
1747  * Call this function for all transmitted frames after they have been
1748  * transmitted. It is permissible to not call this function for
1749  * multicast frames but this can affect statistics.
1750  *
1751  * This function may not be called in IRQ context. Calls to this function
1752  * for a single hardware must be synchronized against each other. Calls
1753  * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1754  * for a single hardware.
1755  *
1756  * @hw: the hardware the frame was transmitted by
1757  * @skb: the frame that was transmitted, owned by mac80211 after this call
1758  */
1759 void ieee80211_tx_status(struct ieee80211_hw *hw,
1760 			 struct sk_buff *skb);
1761 
1762 /**
1763  * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1764  *
1765  * Like ieee80211_tx_status() but can be called in IRQ context
1766  * (internally defers to a tasklet.)
1767  *
1768  * Calls to this function and ieee80211_tx_status() may not be mixed for a
1769  * single hardware.
1770  *
1771  * @hw: the hardware the frame was transmitted by
1772  * @skb: the frame that was transmitted, owned by mac80211 after this call
1773  */
1774 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1775 				 struct sk_buff *skb);
1776 
1777 /**
1778  * ieee80211_beacon_get_tim - beacon generation function
1779  * @hw: pointer obtained from ieee80211_alloc_hw().
1780  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1781  * @tim_offset: pointer to variable that will receive the TIM IE offset.
1782  *	Set to 0 if invalid (in non-AP modes).
1783  * @tim_length: pointer to variable that will receive the TIM IE length,
1784  *	(including the ID and length bytes!).
1785  *	Set to 0 if invalid (in non-AP modes).
1786  *
1787  * If the driver implements beaconing modes, it must use this function to
1788  * obtain the beacon frame/template.
1789  *
1790  * If the beacon frames are generated by the host system (i.e., not in
1791  * hardware/firmware), the driver uses this function to get each beacon
1792  * frame from mac80211 -- it is responsible for calling this function
1793  * before the beacon is needed (e.g. based on hardware interrupt).
1794  *
1795  * If the beacon frames are generated by the device, then the driver
1796  * must use the returned beacon as the template and change the TIM IE
1797  * according to the current DTIM parameters/TIM bitmap.
1798  *
1799  * The driver is responsible for freeing the returned skb.
1800  */
1801 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
1802 					 struct ieee80211_vif *vif,
1803 					 u16 *tim_offset, u16 *tim_length);
1804 
1805 /**
1806  * ieee80211_beacon_get - beacon generation function
1807  * @hw: pointer obtained from ieee80211_alloc_hw().
1808  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1809  *
1810  * See ieee80211_beacon_get_tim().
1811  */
1812 static inline struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1813 						   struct ieee80211_vif *vif)
1814 {
1815 	return ieee80211_beacon_get_tim(hw, vif, NULL, NULL);
1816 }
1817 
1818 /**
1819  * ieee80211_rts_get - RTS frame generation function
1820  * @hw: pointer obtained from ieee80211_alloc_hw().
1821  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1822  * @frame: pointer to the frame that is going to be protected by the RTS.
1823  * @frame_len: the frame length (in octets).
1824  * @frame_txctl: &struct ieee80211_tx_info of the frame.
1825  * @rts: The buffer where to store the RTS frame.
1826  *
1827  * If the RTS frames are generated by the host system (i.e., not in
1828  * hardware/firmware), the low-level driver uses this function to receive
1829  * the next RTS frame from the 802.11 code. The low-level is responsible
1830  * for calling this function before and RTS frame is needed.
1831  */
1832 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1833 		       const void *frame, size_t frame_len,
1834 		       const struct ieee80211_tx_info *frame_txctl,
1835 		       struct ieee80211_rts *rts);
1836 
1837 /**
1838  * ieee80211_rts_duration - Get the duration field for an RTS frame
1839  * @hw: pointer obtained from ieee80211_alloc_hw().
1840  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1841  * @frame_len: the length of the frame that is going to be protected by the RTS.
1842  * @frame_txctl: &struct ieee80211_tx_info of the frame.
1843  *
1844  * If the RTS is generated in firmware, but the host system must provide
1845  * the duration field, the low-level driver uses this function to receive
1846  * the duration field value in little-endian byteorder.
1847  */
1848 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1849 			      struct ieee80211_vif *vif, size_t frame_len,
1850 			      const struct ieee80211_tx_info *frame_txctl);
1851 
1852 /**
1853  * ieee80211_ctstoself_get - CTS-to-self frame generation function
1854  * @hw: pointer obtained from ieee80211_alloc_hw().
1855  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1856  * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1857  * @frame_len: the frame length (in octets).
1858  * @frame_txctl: &struct ieee80211_tx_info of the frame.
1859  * @cts: The buffer where to store the CTS-to-self frame.
1860  *
1861  * If the CTS-to-self frames are generated by the host system (i.e., not in
1862  * hardware/firmware), the low-level driver uses this function to receive
1863  * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1864  * for calling this function before and CTS-to-self frame is needed.
1865  */
1866 void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1867 			     struct ieee80211_vif *vif,
1868 			     const void *frame, size_t frame_len,
1869 			     const struct ieee80211_tx_info *frame_txctl,
1870 			     struct ieee80211_cts *cts);
1871 
1872 /**
1873  * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1874  * @hw: pointer obtained from ieee80211_alloc_hw().
1875  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1876  * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1877  * @frame_txctl: &struct ieee80211_tx_info of the frame.
1878  *
1879  * If the CTS-to-self is generated in firmware, but the host system must provide
1880  * the duration field, the low-level driver uses this function to receive
1881  * the duration field value in little-endian byteorder.
1882  */
1883 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1884 				    struct ieee80211_vif *vif,
1885 				    size_t frame_len,
1886 				    const struct ieee80211_tx_info *frame_txctl);
1887 
1888 /**
1889  * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1890  * @hw: pointer obtained from ieee80211_alloc_hw().
1891  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1892  * @frame_len: the length of the frame.
1893  * @rate: the rate at which the frame is going to be transmitted.
1894  *
1895  * Calculate the duration field of some generic frame, given its
1896  * length and transmission rate (in 100kbps).
1897  */
1898 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1899 					struct ieee80211_vif *vif,
1900 					size_t frame_len,
1901 					struct ieee80211_rate *rate);
1902 
1903 /**
1904  * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1905  * @hw: pointer as obtained from ieee80211_alloc_hw().
1906  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1907  *
1908  * Function for accessing buffered broadcast and multicast frames. If
1909  * hardware/firmware does not implement buffering of broadcast/multicast
1910  * frames when power saving is used, 802.11 code buffers them in the host
1911  * memory. The low-level driver uses this function to fetch next buffered
1912  * frame. In most cases, this is used when generating beacon frame. This
1913  * function returns a pointer to the next buffered skb or NULL if no more
1914  * buffered frames are available.
1915  *
1916  * Note: buffered frames are returned only after DTIM beacon frame was
1917  * generated with ieee80211_beacon_get() and the low-level driver must thus
1918  * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1919  * NULL if the previous generated beacon was not DTIM, so the low-level driver
1920  * does not need to check for DTIM beacons separately and should be able to
1921  * use common code for all beacons.
1922  */
1923 struct sk_buff *
1924 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1925 
1926 /**
1927  * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1928  *
1929  * This function computes a TKIP rc4 key for an skb. It computes
1930  * a phase 1 key if needed (iv16 wraps around). This function is to
1931  * be used by drivers which can do HW encryption but need to compute
1932  * to phase 1/2 key in SW.
1933  *
1934  * @keyconf: the parameter passed with the set key
1935  * @skb: the skb for which the key is needed
1936  * @type: TBD
1937  * @key: a buffer to which the key will be written
1938  */
1939 void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1940 				struct sk_buff *skb,
1941 				enum ieee80211_tkip_key_type type, u8 *key);
1942 /**
1943  * ieee80211_wake_queue - wake specific queue
1944  * @hw: pointer as obtained from ieee80211_alloc_hw().
1945  * @queue: queue number (counted from zero).
1946  *
1947  * Drivers should use this function instead of netif_wake_queue.
1948  */
1949 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1950 
1951 /**
1952  * ieee80211_stop_queue - stop specific queue
1953  * @hw: pointer as obtained from ieee80211_alloc_hw().
1954  * @queue: queue number (counted from zero).
1955  *
1956  * Drivers should use this function instead of netif_stop_queue.
1957  */
1958 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1959 
1960 /**
1961  * ieee80211_queue_stopped - test status of the queue
1962  * @hw: pointer as obtained from ieee80211_alloc_hw().
1963  * @queue: queue number (counted from zero).
1964  *
1965  * Drivers should use this function instead of netif_stop_queue.
1966  */
1967 
1968 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1969 
1970 /**
1971  * ieee80211_stop_queues - stop all queues
1972  * @hw: pointer as obtained from ieee80211_alloc_hw().
1973  *
1974  * Drivers should use this function instead of netif_stop_queue.
1975  */
1976 void ieee80211_stop_queues(struct ieee80211_hw *hw);
1977 
1978 /**
1979  * ieee80211_wake_queues - wake all queues
1980  * @hw: pointer as obtained from ieee80211_alloc_hw().
1981  *
1982  * Drivers should use this function instead of netif_wake_queue.
1983  */
1984 void ieee80211_wake_queues(struct ieee80211_hw *hw);
1985 
1986 /**
1987  * ieee80211_scan_completed - completed hardware scan
1988  *
1989  * When hardware scan offload is used (i.e. the hw_scan() callback is
1990  * assigned) this function needs to be called by the driver to notify
1991  * mac80211 that the scan finished.
1992  *
1993  * @hw: the hardware that finished the scan
1994  * @aborted: set to true if scan was aborted
1995  */
1996 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1997 
1998 /**
1999  * ieee80211_iterate_active_interfaces - iterate active interfaces
2000  *
2001  * This function iterates over the interfaces associated with a given
2002  * hardware that are currently active and calls the callback for them.
2003  * This function allows the iterator function to sleep, when the iterator
2004  * function is atomic @ieee80211_iterate_active_interfaces_atomic can
2005  * be used.
2006  *
2007  * @hw: the hardware struct of which the interfaces should be iterated over
2008  * @iterator: the iterator function to call
2009  * @data: first argument of the iterator function
2010  */
2011 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
2012 					 void (*iterator)(void *data, u8 *mac,
2013 						struct ieee80211_vif *vif),
2014 					 void *data);
2015 
2016 /**
2017  * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
2018  *
2019  * This function iterates over the interfaces associated with a given
2020  * hardware that are currently active and calls the callback for them.
2021  * This function requires the iterator callback function to be atomic,
2022  * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
2023  *
2024  * @hw: the hardware struct of which the interfaces should be iterated over
2025  * @iterator: the iterator function to call, cannot sleep
2026  * @data: first argument of the iterator function
2027  */
2028 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
2029 						void (*iterator)(void *data,
2030 						    u8 *mac,
2031 						    struct ieee80211_vif *vif),
2032 						void *data);
2033 
2034 /**
2035  * ieee80211_queue_work - add work onto the mac80211 workqueue
2036  *
2037  * Drivers and mac80211 use this to add work onto the mac80211 workqueue.
2038  * This helper ensures drivers are not queueing work when they should not be.
2039  *
2040  * @hw: the hardware struct for the interface we are adding work for
2041  * @work: the work we want to add onto the mac80211 workqueue
2042  */
2043 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work);
2044 
2045 /**
2046  * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue
2047  *
2048  * Drivers and mac80211 use this to queue delayed work onto the mac80211
2049  * workqueue.
2050  *
2051  * @hw: the hardware struct for the interface we are adding work for
2052  * @dwork: delayable work to queue onto the mac80211 workqueue
2053  * @delay: number of jiffies to wait before queueing
2054  */
2055 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
2056 				  struct delayed_work *dwork,
2057 				  unsigned long delay);
2058 
2059 /**
2060  * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
2061  * @sta: the station for which to start a BA session
2062  * @tid: the TID to BA on.
2063  *
2064  * Return: success if addBA request was sent, failure otherwise
2065  *
2066  * Although mac80211/low level driver/user space application can estimate
2067  * the need to start aggregation on a certain RA/TID, the session level
2068  * will be managed by the mac80211.
2069  */
2070 int ieee80211_start_tx_ba_session(struct ieee80211_sta *sta, u16 tid);
2071 
2072 /**
2073  * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
2074  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf
2075  * @ra: receiver address of the BA session recipient.
2076  * @tid: the TID to BA on.
2077  *
2078  * This function must be called by low level driver once it has
2079  * finished with preparations for the BA session.
2080  */
2081 void ieee80211_start_tx_ba_cb(struct ieee80211_vif *vif, u8 *ra, u16 tid);
2082 
2083 /**
2084  * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
2085  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf
2086  * @ra: receiver address of the BA session recipient.
2087  * @tid: the TID to BA on.
2088  *
2089  * This function must be called by low level driver once it has
2090  * finished with preparations for the BA session.
2091  * This version of the function is IRQ-safe.
2092  */
2093 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra,
2094 				      u16 tid);
2095 
2096 /**
2097  * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
2098  * @sta: the station whose BA session to stop
2099  * @tid: the TID to stop BA.
2100  * @initiator: if indicates initiator DELBA frame will be sent.
2101  *
2102  * Return: error if no sta with matching da found, success otherwise
2103  *
2104  * Although mac80211/low level driver/user space application can estimate
2105  * the need to stop aggregation on a certain RA/TID, the session level
2106  * will be managed by the mac80211.
2107  */
2108 int ieee80211_stop_tx_ba_session(struct ieee80211_sta *sta, u16 tid,
2109 				 enum ieee80211_back_parties initiator);
2110 
2111 /**
2112  * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
2113  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf
2114  * @ra: receiver address of the BA session recipient.
2115  * @tid: the desired TID to BA on.
2116  *
2117  * This function must be called by low level driver once it has
2118  * finished with preparations for the BA session tear down.
2119  */
2120 void ieee80211_stop_tx_ba_cb(struct ieee80211_vif *vif, u8 *ra, u8 tid);
2121 
2122 /**
2123  * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
2124  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf
2125  * @ra: receiver address of the BA session recipient.
2126  * @tid: the desired TID to BA on.
2127  *
2128  * This function must be called by low level driver once it has
2129  * finished with preparations for the BA session tear down.
2130  * This version of the function is IRQ-safe.
2131  */
2132 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra,
2133 				     u16 tid);
2134 
2135 /**
2136  * ieee80211_find_sta - find a station
2137  *
2138  * @vif: virtual interface to look for station on
2139  * @addr: station's address
2140  *
2141  * This function must be called under RCU lock and the
2142  * resulting pointer is only valid under RCU lock as well.
2143  */
2144 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
2145 					 const u8 *addr);
2146 
2147 /**
2148  * ieee80211_find_sta_by_hw - find a station on hardware
2149  *
2150  * @hw: pointer as obtained from ieee80211_alloc_hw()
2151  * @addr: station's address
2152  *
2153  * This function must be called under RCU lock and the
2154  * resulting pointer is only valid under RCU lock as well.
2155  *
2156  * NOTE: This function should not be used! When mac80211 is converted
2157  *	 internally to properly keep track of stations on multiple
2158  *	 virtual interfaces, it will not always know which station to
2159  *	 return here since a single address might be used by multiple
2160  *	 logical stations (e.g. consider a station connecting to another
2161  *	 BSSID on the same AP hardware without disconnecting first).
2162  *
2163  * DO NOT USE THIS FUNCTION.
2164  */
2165 struct ieee80211_sta *ieee80211_find_sta_by_hw(struct ieee80211_hw *hw,
2166 					       const u8 *addr);
2167 
2168 /**
2169  * ieee80211_sta_block_awake - block station from waking up
2170  * @hw: the hardware
2171  * @pubsta: the station
2172  * @block: whether to block or unblock
2173  *
2174  * Some devices require that all frames that are on the queues
2175  * for a specific station that went to sleep are flushed before
2176  * a poll response or frames after the station woke up can be
2177  * delivered to that it. Note that such frames must be rejected
2178  * by the driver as filtered, with the appropriate status flag.
2179  *
2180  * This function allows implementing this mode in a race-free
2181  * manner.
2182  *
2183  * To do this, a driver must keep track of the number of frames
2184  * still enqueued for a specific station. If this number is not
2185  * zero when the station goes to sleep, the driver must call
2186  * this function to force mac80211 to consider the station to
2187  * be asleep regardless of the station's actual state. Once the
2188  * number of outstanding frames reaches zero, the driver must
2189  * call this function again to unblock the station. That will
2190  * cause mac80211 to be able to send ps-poll responses, and if
2191  * the station queried in the meantime then frames will also
2192  * be sent out as a result of this. Additionally, the driver
2193  * will be notified that the station woke up some time after
2194  * it is unblocked, regardless of whether the station actually
2195  * woke up while blocked or not.
2196  */
2197 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
2198 			       struct ieee80211_sta *pubsta, bool block);
2199 
2200 /**
2201  * ieee80211_beacon_loss - inform hardware does not receive beacons
2202  *
2203  * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2204  *
2205  * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2206  * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2207  * hardware is not receiving beacons with this function.
2208  */
2209 void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2210 
2211 /* Rate control API */
2212 
2213 /**
2214  * enum rate_control_changed - flags to indicate which parameter changed
2215  *
2216  * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2217  *	changed, rate control algorithm can update its internal state if needed.
2218  */
2219 enum rate_control_changed {
2220 	IEEE80211_RC_HT_CHANGED = BIT(0)
2221 };
2222 
2223 /**
2224  * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2225  *
2226  * @hw: The hardware the algorithm is invoked for.
2227  * @sband: The band this frame is being transmitted on.
2228  * @bss_conf: the current BSS configuration
2229  * @reported_rate: The rate control algorithm can fill this in to indicate
2230  *	which rate should be reported to userspace as the current rate and
2231  *	used for rate calculations in the mesh network.
2232  * @rts: whether RTS will be used for this frame because it is longer than the
2233  *	RTS threshold
2234  * @short_preamble: whether mac80211 will request short-preamble transmission
2235  *	if the selected rate supports it
2236  * @max_rate_idx: user-requested maximum rate (not MCS for now)
2237  * @skb: the skb that will be transmitted, the control information in it needs
2238  *	to be filled in
2239  */
2240 struct ieee80211_tx_rate_control {
2241 	struct ieee80211_hw *hw;
2242 	struct ieee80211_supported_band *sband;
2243 	struct ieee80211_bss_conf *bss_conf;
2244 	struct sk_buff *skb;
2245 	struct ieee80211_tx_rate reported_rate;
2246 	bool rts, short_preamble;
2247 	u8 max_rate_idx;
2248 };
2249 
2250 struct rate_control_ops {
2251 	struct module *module;
2252 	const char *name;
2253 	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2254 	void (*free)(void *priv);
2255 
2256 	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2257 	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2258 			  struct ieee80211_sta *sta, void *priv_sta);
2259 	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2260 			    struct ieee80211_sta *sta,
2261 			    void *priv_sta, u32 changed);
2262 	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2263 			 void *priv_sta);
2264 
2265 	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2266 			  struct ieee80211_sta *sta, void *priv_sta,
2267 			  struct sk_buff *skb);
2268 	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2269 			 struct ieee80211_tx_rate_control *txrc);
2270 
2271 	void (*add_sta_debugfs)(void *priv, void *priv_sta,
2272 				struct dentry *dir);
2273 	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2274 };
2275 
2276 static inline int rate_supported(struct ieee80211_sta *sta,
2277 				 enum ieee80211_band band,
2278 				 int index)
2279 {
2280 	return (sta == NULL || sta->supp_rates[band] & BIT(index));
2281 }
2282 
2283 /**
2284  * rate_control_send_low - helper for drivers for management/no-ack frames
2285  *
2286  * Rate control algorithms that agree to use the lowest rate to
2287  * send management frames and NO_ACK data with the respective hw
2288  * retries should use this in the beginning of their mac80211 get_rate
2289  * callback. If true is returned the rate control can simply return.
2290  * If false is returned we guarantee that sta and sta and priv_sta is
2291  * not null.
2292  *
2293  * Rate control algorithms wishing to do more intelligent selection of
2294  * rate for multicast/broadcast frames may choose to not use this.
2295  *
2296  * @sta: &struct ieee80211_sta pointer to the target destination. Note
2297  * 	that this may be null.
2298  * @priv_sta: private rate control structure. This may be null.
2299  * @txrc: rate control information we sholud populate for mac80211.
2300  */
2301 bool rate_control_send_low(struct ieee80211_sta *sta,
2302 			   void *priv_sta,
2303 			   struct ieee80211_tx_rate_control *txrc);
2304 
2305 
2306 static inline s8
2307 rate_lowest_index(struct ieee80211_supported_band *sband,
2308 		  struct ieee80211_sta *sta)
2309 {
2310 	int i;
2311 
2312 	for (i = 0; i < sband->n_bitrates; i++)
2313 		if (rate_supported(sta, sband->band, i))
2314 			return i;
2315 
2316 	/* warn when we cannot find a rate. */
2317 	WARN_ON(1);
2318 
2319 	return 0;
2320 }
2321 
2322 static inline
2323 bool rate_usable_index_exists(struct ieee80211_supported_band *sband,
2324 			      struct ieee80211_sta *sta)
2325 {
2326 	unsigned int i;
2327 
2328 	for (i = 0; i < sband->n_bitrates; i++)
2329 		if (rate_supported(sta, sband->band, i))
2330 			return true;
2331 	return false;
2332 }
2333 
2334 int ieee80211_rate_control_register(struct rate_control_ops *ops);
2335 void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2336 
2337 static inline bool
2338 conf_is_ht20(struct ieee80211_conf *conf)
2339 {
2340 	return conf->channel_type == NL80211_CHAN_HT20;
2341 }
2342 
2343 static inline bool
2344 conf_is_ht40_minus(struct ieee80211_conf *conf)
2345 {
2346 	return conf->channel_type == NL80211_CHAN_HT40MINUS;
2347 }
2348 
2349 static inline bool
2350 conf_is_ht40_plus(struct ieee80211_conf *conf)
2351 {
2352 	return conf->channel_type == NL80211_CHAN_HT40PLUS;
2353 }
2354 
2355 static inline bool
2356 conf_is_ht40(struct ieee80211_conf *conf)
2357 {
2358 	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2359 }
2360 
2361 static inline bool
2362 conf_is_ht(struct ieee80211_conf *conf)
2363 {
2364 	return conf->channel_type != NL80211_CHAN_NO_HT;
2365 }
2366 
2367 #endif /* MAC80211_H */
2368