1 /* 2 * mac80211 <-> driver interface 3 * 4 * Copyright 2002-2005, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #ifndef MAC80211_H 14 #define MAC80211_H 15 16 #include <linux/kernel.h> 17 #include <linux/if_ether.h> 18 #include <linux/skbuff.h> 19 #include <linux/wireless.h> 20 #include <linux/device.h> 21 #include <linux/ieee80211.h> 22 #include <net/wireless.h> 23 #include <net/cfg80211.h> 24 25 /** 26 * DOC: Introduction 27 * 28 * mac80211 is the Linux stack for 802.11 hardware that implements 29 * only partial functionality in hard- or firmware. This document 30 * defines the interface between mac80211 and low-level hardware 31 * drivers. 32 */ 33 34 /** 35 * DOC: Calling mac80211 from interrupts 36 * 37 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be 38 * called in hardware interrupt context. The low-level driver must not call any 39 * other functions in hardware interrupt context. If there is a need for such 40 * call, the low-level driver should first ACK the interrupt and perform the 41 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even 42 * tasklet function. 43 * 44 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also 45 * use the non-IRQ-safe functions! 46 */ 47 48 /** 49 * DOC: Warning 50 * 51 * If you're reading this document and not the header file itself, it will 52 * be incomplete because not all documentation has been converted yet. 53 */ 54 55 /** 56 * DOC: Frame format 57 * 58 * As a general rule, when frames are passed between mac80211 and the driver, 59 * they start with the IEEE 802.11 header and include the same octets that are 60 * sent over the air except for the FCS which should be calculated by the 61 * hardware. 62 * 63 * There are, however, various exceptions to this rule for advanced features: 64 * 65 * The first exception is for hardware encryption and decryption offload 66 * where the IV/ICV may or may not be generated in hardware. 67 * 68 * Secondly, when the hardware handles fragmentation, the frame handed to 69 * the driver from mac80211 is the MSDU, not the MPDU. 70 * 71 * Finally, for received frames, the driver is able to indicate that it has 72 * filled a radiotap header and put that in front of the frame; if it does 73 * not do so then mac80211 may add this under certain circumstances. 74 */ 75 76 /** 77 * struct ieee80211_ht_bss_info - describing BSS's HT characteristics 78 * 79 * This structure describes most essential parameters needed 80 * to describe 802.11n HT characteristics in a BSS. 81 * 82 * @primary_channel: channel number of primery channel 83 * @bss_cap: 802.11n's general BSS capabilities (e.g. channel width) 84 * @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection) 85 */ 86 struct ieee80211_ht_bss_info { 87 u8 primary_channel; 88 u8 bss_cap; /* use IEEE80211_HT_IE_CHA_ */ 89 u8 bss_op_mode; /* use IEEE80211_HT_IE_ */ 90 }; 91 92 /** 93 * enum ieee80211_max_queues - maximum number of queues 94 * 95 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues. 96 */ 97 enum ieee80211_max_queues { 98 IEEE80211_MAX_QUEUES = 4, 99 }; 100 101 /** 102 * struct ieee80211_tx_queue_params - transmit queue configuration 103 * 104 * The information provided in this structure is required for QoS 105 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29. 106 * 107 * @aifs: arbitration interframe space [0..255] 108 * @cw_min: minimum contention window [a value of the form 109 * 2^n-1 in the range 1..32767] 110 * @cw_max: maximum contention window [like @cw_min] 111 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled 112 */ 113 struct ieee80211_tx_queue_params { 114 u16 txop; 115 u16 cw_min; 116 u16 cw_max; 117 u8 aifs; 118 }; 119 120 /** 121 * struct ieee80211_tx_queue_stats - transmit queue statistics 122 * 123 * @len: number of packets in queue 124 * @limit: queue length limit 125 * @count: number of frames sent 126 */ 127 struct ieee80211_tx_queue_stats { 128 unsigned int len; 129 unsigned int limit; 130 unsigned int count; 131 }; 132 133 struct ieee80211_low_level_stats { 134 unsigned int dot11ACKFailureCount; 135 unsigned int dot11RTSFailureCount; 136 unsigned int dot11FCSErrorCount; 137 unsigned int dot11RTSSuccessCount; 138 }; 139 140 /** 141 * enum ieee80211_bss_change - BSS change notification flags 142 * 143 * These flags are used with the bss_info_changed() callback 144 * to indicate which BSS parameter changed. 145 * 146 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated), 147 * also implies a change in the AID. 148 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed 149 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed 150 * @BSS_CHANGED_ERP_SLOT: slot timing changed 151 * @BSS_CHANGED_HT: 802.11n parameters changed 152 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed 153 */ 154 enum ieee80211_bss_change { 155 BSS_CHANGED_ASSOC = 1<<0, 156 BSS_CHANGED_ERP_CTS_PROT = 1<<1, 157 BSS_CHANGED_ERP_PREAMBLE = 1<<2, 158 BSS_CHANGED_ERP_SLOT = 1<<3, 159 BSS_CHANGED_HT = 1<<4, 160 BSS_CHANGED_BASIC_RATES = 1<<5, 161 }; 162 163 /** 164 * struct ieee80211_bss_ht_conf - BSS's changing HT configuration 165 * @operation_mode: HT operation mode (like in &struct ieee80211_ht_info) 166 */ 167 struct ieee80211_bss_ht_conf { 168 u16 operation_mode; 169 }; 170 171 /** 172 * struct ieee80211_bss_conf - holds the BSS's changing parameters 173 * 174 * This structure keeps information about a BSS (and an association 175 * to that BSS) that can change during the lifetime of the BSS. 176 * 177 * @assoc: association status 178 * @aid: association ID number, valid only when @assoc is true 179 * @use_cts_prot: use CTS protection 180 * @use_short_preamble: use 802.11b short preamble; 181 * if the hardware cannot handle this it must set the 182 * IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag 183 * @use_short_slot: use short slot time (only relevant for ERP); 184 * if the hardware cannot handle this it must set the 185 * IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag 186 * @dtim_period: num of beacons before the next DTIM, for PSM 187 * @timestamp: beacon timestamp 188 * @beacon_int: beacon interval 189 * @assoc_capability: capabilities taken from assoc resp 190 * @ht: BSS's HT configuration 191 * @basic_rates: bitmap of basic rates, each bit stands for an 192 * index into the rate table configured by the driver in 193 * the current band. 194 */ 195 struct ieee80211_bss_conf { 196 /* association related data */ 197 bool assoc; 198 u16 aid; 199 /* erp related data */ 200 bool use_cts_prot; 201 bool use_short_preamble; 202 bool use_short_slot; 203 u8 dtim_period; 204 u16 beacon_int; 205 u16 assoc_capability; 206 u64 timestamp; 207 u32 basic_rates; 208 struct ieee80211_bss_ht_conf ht; 209 }; 210 211 /** 212 * enum mac80211_tx_control_flags - flags to describe transmission information/status 213 * 214 * These flags are used with the @flags member of &ieee80211_tx_info. 215 * 216 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame. 217 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence 218 * number to this frame, taking care of not overwriting the fragment 219 * number and increasing the sequence number only when the 220 * IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly 221 * assign sequence numbers to QoS-data frames but cannot do so correctly 222 * for non-QoS-data and management frames because beacons need them from 223 * that counter as well and mac80211 cannot guarantee proper sequencing. 224 * If this flag is set, the driver should instruct the hardware to 225 * assign a sequence number to the frame or assign one itself. Cf. IEEE 226 * 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for 227 * beacons and always be clear for frames without a sequence number field. 228 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack 229 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination 230 * station 231 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame 232 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon 233 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU 234 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211. 235 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted 236 * because the destination STA was in powersave mode. 237 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged 238 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status 239 * is for the whole aggregation. 240 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned, 241 * so consider using block ack request (BAR). 242 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be 243 * set by rate control algorithms to indicate probe rate, will 244 * be cleared for fragmented frames (except on the last fragment) 245 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or 246 * set this flag in the driver; indicates that the rate control 247 * algorithm was used and should be notified of TX status 248 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211, 249 * used to indicate that a pending frame requires TX processing before 250 * it can be sent out. 251 */ 252 enum mac80211_tx_control_flags { 253 IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0), 254 IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1), 255 IEEE80211_TX_CTL_NO_ACK = BIT(2), 256 IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3), 257 IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4), 258 IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5), 259 IEEE80211_TX_CTL_AMPDU = BIT(6), 260 IEEE80211_TX_CTL_INJECTED = BIT(7), 261 IEEE80211_TX_STAT_TX_FILTERED = BIT(8), 262 IEEE80211_TX_STAT_ACK = BIT(9), 263 IEEE80211_TX_STAT_AMPDU = BIT(10), 264 IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11), 265 IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12), 266 IEEE80211_TX_INTFL_RCALGO = BIT(13), 267 IEEE80211_TX_INTFL_NEED_TXPROCESSING = BIT(14), 268 }; 269 270 /** 271 * enum mac80211_rate_control_flags - per-rate flags set by the 272 * Rate Control algorithm. 273 * 274 * These flags are set by the Rate control algorithm for each rate during tx, 275 * in the @flags member of struct ieee80211_tx_rate. 276 * 277 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate. 278 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required. 279 * This is set if the current BSS requires ERP protection. 280 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble. 281 * @IEEE80211_TX_RC_MCS: HT rate. 282 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in 283 * Greenfield mode. 284 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz. 285 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the 286 * adjacent 20 MHz channels, if the current channel type is 287 * NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS. 288 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate. 289 */ 290 enum mac80211_rate_control_flags { 291 IEEE80211_TX_RC_USE_RTS_CTS = BIT(0), 292 IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1), 293 IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2), 294 295 /* rate index is an MCS rate number instead of an index */ 296 IEEE80211_TX_RC_MCS = BIT(3), 297 IEEE80211_TX_RC_GREEN_FIELD = BIT(4), 298 IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5), 299 IEEE80211_TX_RC_DUP_DATA = BIT(6), 300 IEEE80211_TX_RC_SHORT_GI = BIT(7), 301 }; 302 303 304 /* there are 40 bytes if you don't need the rateset to be kept */ 305 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40 306 307 /* if you do need the rateset, then you have less space */ 308 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24 309 310 /* maximum number of rate stages */ 311 #define IEEE80211_TX_MAX_RATES 5 312 313 /** 314 * struct ieee80211_tx_rate - rate selection/status 315 * 316 * @idx: rate index to attempt to send with 317 * @flags: rate control flags (&enum mac80211_rate_control_flags) 318 * @count: number of tries in this rate before going to the next rate 319 * 320 * A value of -1 for @idx indicates an invalid rate and, if used 321 * in an array of retry rates, that no more rates should be tried. 322 * 323 * When used for transmit status reporting, the driver should 324 * always report the rate along with the flags it used. 325 */ 326 struct ieee80211_tx_rate { 327 s8 idx; 328 u8 count; 329 u8 flags; 330 } __attribute__((packed)); 331 332 /** 333 * struct ieee80211_tx_info - skb transmit information 334 * 335 * This structure is placed in skb->cb for three uses: 336 * (1) mac80211 TX control - mac80211 tells the driver what to do 337 * (2) driver internal use (if applicable) 338 * (3) TX status information - driver tells mac80211 what happened 339 * 340 * The TX control's sta pointer is only valid during the ->tx call, 341 * it may be NULL. 342 * 343 * @flags: transmit info flags, defined above 344 * @band: the band to transmit on (use for checking for races) 345 * @antenna_sel_tx: antenna to use, 0 for automatic diversity 346 * @pad: padding, ignore 347 * @control: union for control data 348 * @status: union for status data 349 * @driver_data: array of driver_data pointers 350 * @ampdu_ack_len: number of aggregated frames. 351 * relevant only if IEEE80211_TX_STATUS_AMPDU was set. 352 * @ampdu_ack_map: block ack bit map for the aggregation. 353 * relevant only if IEEE80211_TX_STATUS_AMPDU was set. 354 * @ack_signal: signal strength of the ACK frame 355 */ 356 struct ieee80211_tx_info { 357 /* common information */ 358 u32 flags; 359 u8 band; 360 361 u8 antenna_sel_tx; 362 363 /* 2 byte hole */ 364 u8 pad[2]; 365 366 union { 367 struct { 368 union { 369 /* rate control */ 370 struct { 371 struct ieee80211_tx_rate rates[ 372 IEEE80211_TX_MAX_RATES]; 373 s8 rts_cts_rate_idx; 374 }; 375 /* only needed before rate control */ 376 unsigned long jiffies; 377 }; 378 /* NB: vif can be NULL for injected frames */ 379 struct ieee80211_vif *vif; 380 struct ieee80211_key_conf *hw_key; 381 struct ieee80211_sta *sta; 382 } control; 383 struct { 384 struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES]; 385 u8 ampdu_ack_len; 386 u64 ampdu_ack_map; 387 int ack_signal; 388 /* 8 bytes free */ 389 } status; 390 struct { 391 struct ieee80211_tx_rate driver_rates[ 392 IEEE80211_TX_MAX_RATES]; 393 void *rate_driver_data[ 394 IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)]; 395 }; 396 void *driver_data[ 397 IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)]; 398 }; 399 }; 400 401 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb) 402 { 403 return (struct ieee80211_tx_info *)skb->cb; 404 } 405 406 /** 407 * ieee80211_tx_info_clear_status - clear TX status 408 * 409 * @info: The &struct ieee80211_tx_info to be cleared. 410 * 411 * When the driver passes an skb back to mac80211, it must report 412 * a number of things in TX status. This function clears everything 413 * in the TX status but the rate control information (it does clear 414 * the count since you need to fill that in anyway). 415 * 416 * NOTE: You can only use this function if you do NOT use 417 * info->driver_data! Use info->rate_driver_data 418 * instead if you need only the less space that allows. 419 */ 420 static inline void 421 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info) 422 { 423 int i; 424 425 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 426 offsetof(struct ieee80211_tx_info, control.rates)); 427 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 428 offsetof(struct ieee80211_tx_info, driver_rates)); 429 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8); 430 /* clear the rate counts */ 431 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) 432 info->status.rates[i].count = 0; 433 434 BUILD_BUG_ON( 435 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23); 436 memset(&info->status.ampdu_ack_len, 0, 437 sizeof(struct ieee80211_tx_info) - 438 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len)); 439 } 440 441 442 /** 443 * enum mac80211_rx_flags - receive flags 444 * 445 * These flags are used with the @flag member of &struct ieee80211_rx_status. 446 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame. 447 * Use together with %RX_FLAG_MMIC_STRIPPED. 448 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware. 449 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header. 450 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame, 451 * verification has been done by the hardware. 452 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame. 453 * If this flag is set, the stack cannot do any replay detection 454 * hence the driver or hardware will have to do that. 455 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on 456 * the frame. 457 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on 458 * the frame. 459 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field) 460 * is valid. This is useful in monitor mode and necessary for beacon frames 461 * to enable IBSS merging. 462 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame 463 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index 464 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used 465 * @RX_FLAG_SHORT_GI: Short guard interval was used 466 */ 467 enum mac80211_rx_flags { 468 RX_FLAG_MMIC_ERROR = 1<<0, 469 RX_FLAG_DECRYPTED = 1<<1, 470 RX_FLAG_RADIOTAP = 1<<2, 471 RX_FLAG_MMIC_STRIPPED = 1<<3, 472 RX_FLAG_IV_STRIPPED = 1<<4, 473 RX_FLAG_FAILED_FCS_CRC = 1<<5, 474 RX_FLAG_FAILED_PLCP_CRC = 1<<6, 475 RX_FLAG_TSFT = 1<<7, 476 RX_FLAG_SHORTPRE = 1<<8, 477 RX_FLAG_HT = 1<<9, 478 RX_FLAG_40MHZ = 1<<10, 479 RX_FLAG_SHORT_GI = 1<<11, 480 }; 481 482 /** 483 * struct ieee80211_rx_status - receive status 484 * 485 * The low-level driver should provide this information (the subset 486 * supported by hardware) to the 802.11 code with each received 487 * frame. 488 * 489 * @mactime: value in microseconds of the 64-bit Time Synchronization Function 490 * (TSF) timer when the first data symbol (MPDU) arrived at the hardware. 491 * @band: the active band when this frame was received 492 * @freq: frequency the radio was tuned to when receiving this frame, in MHz 493 * @signal: signal strength when receiving this frame, either in dBm, in dB or 494 * unspecified depending on the hardware capabilities flags 495 * @IEEE80211_HW_SIGNAL_* 496 * @noise: noise when receiving this frame, in dBm. 497 * @qual: overall signal quality indication, in percent (0-100). 498 * @antenna: antenna used 499 * @rate_idx: index of data rate into band's supported rates or MCS index if 500 * HT rates are use (RX_FLAG_HT) 501 * @flag: %RX_FLAG_* 502 */ 503 struct ieee80211_rx_status { 504 u64 mactime; 505 enum ieee80211_band band; 506 int freq; 507 int signal; 508 int noise; 509 int qual; 510 int antenna; 511 int rate_idx; 512 int flag; 513 }; 514 515 /** 516 * enum ieee80211_conf_flags - configuration flags 517 * 518 * Flags to define PHY configuration options 519 * 520 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported) 521 * @IEEE80211_CONF_PS: Enable 802.11 power save mode 522 */ 523 enum ieee80211_conf_flags { 524 IEEE80211_CONF_RADIOTAP = (1<<0), 525 IEEE80211_CONF_PS = (1<<1), 526 }; 527 528 529 /** 530 * enum ieee80211_conf_changed - denotes which configuration changed 531 * 532 * @IEEE80211_CONF_CHANGE_RADIO_ENABLED: the value of radio_enabled changed 533 * @IEEE80211_CONF_CHANGE_BEACON_INTERVAL: the beacon interval changed 534 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed 535 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed 536 * @IEEE80211_CONF_CHANGE_PS: the PS flag changed 537 * @IEEE80211_CONF_CHANGE_DYNPS_TIMEOUT: the dynamic PS timeout changed 538 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed 539 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed 540 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed 541 */ 542 enum ieee80211_conf_changed { 543 IEEE80211_CONF_CHANGE_RADIO_ENABLED = BIT(0), 544 IEEE80211_CONF_CHANGE_BEACON_INTERVAL = BIT(1), 545 IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2), 546 IEEE80211_CONF_CHANGE_RADIOTAP = BIT(3), 547 IEEE80211_CONF_CHANGE_PS = BIT(4), 548 IEEE80211_CONF_CHANGE_DYNPS_TIMEOUT = BIT(5), 549 IEEE80211_CONF_CHANGE_POWER = BIT(6), 550 IEEE80211_CONF_CHANGE_CHANNEL = BIT(7), 551 IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(8), 552 }; 553 554 /** 555 * struct ieee80211_conf - configuration of the device 556 * 557 * This struct indicates how the driver shall configure the hardware. 558 * 559 * @radio_enabled: when zero, driver is required to switch off the radio. 560 * @beacon_int: beacon interval (TODO make interface config) 561 * @listen_interval: listen interval in units of beacon interval 562 * @flags: configuration flags defined above 563 * @power_level: requested transmit power (in dBm) 564 * @dynamic_ps_timeout: dynamic powersave timeout (in ms) 565 * @channel: the channel to tune to 566 * @channel_type: the channel (HT) type 567 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame 568 * (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11, 569 * but actually means the number of transmissions not the number of retries 570 * @short_frame_max_tx_count: Maximum number of transmissions for a "short" 571 * frame, called "dot11ShortRetryLimit" in 802.11, but actually means the 572 * number of transmissions not the number of retries 573 */ 574 struct ieee80211_conf { 575 int beacon_int; 576 u32 flags; 577 int power_level, dynamic_ps_timeout; 578 579 u16 listen_interval; 580 bool radio_enabled; 581 582 u8 long_frame_max_tx_count, short_frame_max_tx_count; 583 584 struct ieee80211_channel *channel; 585 enum nl80211_channel_type channel_type; 586 }; 587 588 /** 589 * struct ieee80211_vif - per-interface data 590 * 591 * Data in this structure is continually present for driver 592 * use during the life of a virtual interface. 593 * 594 * @type: type of this virtual interface 595 * @bss_conf: BSS configuration for this interface, either our own 596 * or the BSS we're associated to 597 * @drv_priv: data area for driver use, will always be aligned to 598 * sizeof(void *). 599 */ 600 struct ieee80211_vif { 601 enum nl80211_iftype type; 602 struct ieee80211_bss_conf bss_conf; 603 /* must be last */ 604 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *)))); 605 }; 606 607 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif) 608 { 609 #ifdef CONFIG_MAC80211_MESH 610 return vif->type == NL80211_IFTYPE_MESH_POINT; 611 #endif 612 return false; 613 } 614 615 /** 616 * struct ieee80211_if_init_conf - initial configuration of an interface 617 * 618 * @vif: pointer to a driver-use per-interface structure. The pointer 619 * itself is also used for various functions including 620 * ieee80211_beacon_get() and ieee80211_get_buffered_bc(). 621 * @type: one of &enum nl80211_iftype constants. Determines the type of 622 * added/removed interface. 623 * @mac_addr: pointer to MAC address of the interface. This pointer is valid 624 * until the interface is removed (i.e. it cannot be used after 625 * remove_interface() callback was called for this interface). 626 * 627 * This structure is used in add_interface() and remove_interface() 628 * callbacks of &struct ieee80211_hw. 629 * 630 * When you allow multiple interfaces to be added to your PHY, take care 631 * that the hardware can actually handle multiple MAC addresses. However, 632 * also take care that when there's no interface left with mac_addr != %NULL 633 * you remove the MAC address from the device to avoid acknowledging packets 634 * in pure monitor mode. 635 */ 636 struct ieee80211_if_init_conf { 637 enum nl80211_iftype type; 638 struct ieee80211_vif *vif; 639 void *mac_addr; 640 }; 641 642 /** 643 * enum ieee80211_if_conf_change - interface config change flags 644 * 645 * @IEEE80211_IFCC_BSSID: The BSSID changed. 646 * @IEEE80211_IFCC_BEACON: The beacon for this interface changed 647 * (currently AP and MESH only), use ieee80211_beacon_get(). 648 * @IEEE80211_IFCC_BEACON_ENABLED: The enable_beacon value changed. 649 */ 650 enum ieee80211_if_conf_change { 651 IEEE80211_IFCC_BSSID = BIT(0), 652 IEEE80211_IFCC_BEACON = BIT(1), 653 IEEE80211_IFCC_BEACON_ENABLED = BIT(2), 654 }; 655 656 /** 657 * struct ieee80211_if_conf - configuration of an interface 658 * 659 * @changed: parameters that have changed, see &enum ieee80211_if_conf_change. 660 * @bssid: BSSID of the network we are associated to/creating. 661 * @enable_beacon: Indicates whether beacons can be sent. 662 * This is valid only for AP/IBSS/MESH modes. 663 * 664 * This structure is passed to the config_interface() callback of 665 * &struct ieee80211_hw. 666 */ 667 struct ieee80211_if_conf { 668 u32 changed; 669 const u8 *bssid; 670 bool enable_beacon; 671 }; 672 673 /** 674 * enum ieee80211_key_alg - key algorithm 675 * @ALG_WEP: WEP40 or WEP104 676 * @ALG_TKIP: TKIP 677 * @ALG_CCMP: CCMP (AES) 678 * @ALG_AES_CMAC: AES-128-CMAC 679 */ 680 enum ieee80211_key_alg { 681 ALG_WEP, 682 ALG_TKIP, 683 ALG_CCMP, 684 ALG_AES_CMAC, 685 }; 686 687 /** 688 * enum ieee80211_key_len - key length 689 * @LEN_WEP40: WEP 5-byte long key 690 * @LEN_WEP104: WEP 13-byte long key 691 */ 692 enum ieee80211_key_len { 693 LEN_WEP40 = 5, 694 LEN_WEP104 = 13, 695 }; 696 697 /** 698 * enum ieee80211_key_flags - key flags 699 * 700 * These flags are used for communication about keys between the driver 701 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf. 702 * 703 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates 704 * that the STA this key will be used with could be using QoS. 705 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the 706 * driver to indicate that it requires IV generation for this 707 * particular key. 708 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by 709 * the driver for a TKIP key if it requires Michael MIC 710 * generation in software. 711 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates 712 * that the key is pairwise rather then a shared key. 713 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a 714 * CCMP key if it requires CCMP encryption of management frames (MFP) to 715 * be done in software. 716 */ 717 enum ieee80211_key_flags { 718 IEEE80211_KEY_FLAG_WMM_STA = 1<<0, 719 IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1, 720 IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2, 721 IEEE80211_KEY_FLAG_PAIRWISE = 1<<3, 722 IEEE80211_KEY_FLAG_SW_MGMT = 1<<4, 723 }; 724 725 /** 726 * struct ieee80211_key_conf - key information 727 * 728 * This key information is given by mac80211 to the driver by 729 * the set_key() callback in &struct ieee80211_ops. 730 * 731 * @hw_key_idx: To be set by the driver, this is the key index the driver 732 * wants to be given when a frame is transmitted and needs to be 733 * encrypted in hardware. 734 * @alg: The key algorithm. 735 * @flags: key flags, see &enum ieee80211_key_flags. 736 * @keyidx: the key index (0-3) 737 * @keylen: key material length 738 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte) 739 * data block: 740 * - Temporal Encryption Key (128 bits) 741 * - Temporal Authenticator Tx MIC Key (64 bits) 742 * - Temporal Authenticator Rx MIC Key (64 bits) 743 * @icv_len: The ICV length for this key type 744 * @iv_len: The IV length for this key type 745 */ 746 struct ieee80211_key_conf { 747 enum ieee80211_key_alg alg; 748 u8 icv_len; 749 u8 iv_len; 750 u8 hw_key_idx; 751 u8 flags; 752 s8 keyidx; 753 u8 keylen; 754 u8 key[0]; 755 }; 756 757 /** 758 * enum set_key_cmd - key command 759 * 760 * Used with the set_key() callback in &struct ieee80211_ops, this 761 * indicates whether a key is being removed or added. 762 * 763 * @SET_KEY: a key is set 764 * @DISABLE_KEY: a key must be disabled 765 */ 766 enum set_key_cmd { 767 SET_KEY, DISABLE_KEY, 768 }; 769 770 /** 771 * struct ieee80211_sta - station table entry 772 * 773 * A station table entry represents a station we are possibly 774 * communicating with. Since stations are RCU-managed in 775 * mac80211, any ieee80211_sta pointer you get access to must 776 * either be protected by rcu_read_lock() explicitly or implicitly, 777 * or you must take good care to not use such a pointer after a 778 * call to your sta_notify callback that removed it. 779 * 780 * @addr: MAC address 781 * @aid: AID we assigned to the station if we're an AP 782 * @supp_rates: Bitmap of supported rates (per band) 783 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities 784 * @drv_priv: data area for driver use, will always be aligned to 785 * sizeof(void *), size is determined in hw information. 786 */ 787 struct ieee80211_sta { 788 u32 supp_rates[IEEE80211_NUM_BANDS]; 789 u8 addr[ETH_ALEN]; 790 u16 aid; 791 struct ieee80211_sta_ht_cap ht_cap; 792 793 /* must be last */ 794 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *)))); 795 }; 796 797 /** 798 * enum sta_notify_cmd - sta notify command 799 * 800 * Used with the sta_notify() callback in &struct ieee80211_ops, this 801 * indicates addition and removal of a station to station table, 802 * or if a associated station made a power state transition. 803 * 804 * @STA_NOTIFY_ADD: a station was added to the station table 805 * @STA_NOTIFY_REMOVE: a station being removed from the station table 806 * @STA_NOTIFY_SLEEP: a station is now sleeping 807 * @STA_NOTIFY_AWAKE: a sleeping station woke up 808 */ 809 enum sta_notify_cmd { 810 STA_NOTIFY_ADD, STA_NOTIFY_REMOVE, 811 STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE, 812 }; 813 814 /** 815 * enum ieee80211_tkip_key_type - get tkip key 816 * 817 * Used by drivers which need to get a tkip key for skb. Some drivers need a 818 * phase 1 key, others need a phase 2 key. A single function allows the driver 819 * to get the key, this enum indicates what type of key is required. 820 * 821 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key 822 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key 823 */ 824 enum ieee80211_tkip_key_type { 825 IEEE80211_TKIP_P1_KEY, 826 IEEE80211_TKIP_P2_KEY, 827 }; 828 829 /** 830 * enum ieee80211_hw_flags - hardware flags 831 * 832 * These flags are used to indicate hardware capabilities to 833 * the stack. Generally, flags here should have their meaning 834 * done in a way that the simplest hardware doesn't need setting 835 * any particular flags. There are some exceptions to this rule, 836 * however, so you are advised to review these flags carefully. 837 * 838 * @IEEE80211_HW_RX_INCLUDES_FCS: 839 * Indicates that received frames passed to the stack include 840 * the FCS at the end. 841 * 842 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING: 843 * Some wireless LAN chipsets buffer broadcast/multicast frames 844 * for power saving stations in the hardware/firmware and others 845 * rely on the host system for such buffering. This option is used 846 * to configure the IEEE 802.11 upper layer to buffer broadcast and 847 * multicast frames when there are power saving stations so that 848 * the driver can fetch them with ieee80211_get_buffered_bc(). 849 * 850 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE: 851 * Hardware is not capable of short slot operation on the 2.4 GHz band. 852 * 853 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE: 854 * Hardware is not capable of receiving frames with short preamble on 855 * the 2.4 GHz band. 856 * 857 * @IEEE80211_HW_SIGNAL_UNSPEC: 858 * Hardware can provide signal values but we don't know its units. We 859 * expect values between 0 and @max_signal. 860 * If possible please provide dB or dBm instead. 861 * 862 * @IEEE80211_HW_SIGNAL_DBM: 863 * Hardware gives signal values in dBm, decibel difference from 864 * one milliwatt. This is the preferred method since it is standardized 865 * between different devices. @max_signal does not need to be set. 866 * 867 * @IEEE80211_HW_NOISE_DBM: 868 * Hardware can provide noise (radio interference) values in units dBm, 869 * decibel difference from one milliwatt. 870 * 871 * @IEEE80211_HW_SPECTRUM_MGMT: 872 * Hardware supports spectrum management defined in 802.11h 873 * Measurement, Channel Switch, Quieting, TPC 874 * 875 * @IEEE80211_HW_AMPDU_AGGREGATION: 876 * Hardware supports 11n A-MPDU aggregation. 877 * 878 * @IEEE80211_HW_SUPPORTS_PS: 879 * Hardware has power save support (i.e. can go to sleep). 880 * 881 * @IEEE80211_HW_PS_NULLFUNC_STACK: 882 * Hardware requires nullfunc frame handling in stack, implies 883 * stack support for dynamic PS. 884 * 885 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS: 886 * Hardware has support for dynamic PS. 887 * 888 * @IEEE80211_HW_MFP_CAPABLE: 889 * Hardware supports management frame protection (MFP, IEEE 802.11w). 890 * 891 * @IEEE80211_HW_BEACON_FILTER: 892 * Hardware supports dropping of irrelevant beacon frames to 893 * avoid waking up cpu. 894 */ 895 enum ieee80211_hw_flags { 896 IEEE80211_HW_RX_INCLUDES_FCS = 1<<1, 897 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2, 898 IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3, 899 IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4, 900 IEEE80211_HW_SIGNAL_UNSPEC = 1<<5, 901 IEEE80211_HW_SIGNAL_DBM = 1<<6, 902 IEEE80211_HW_NOISE_DBM = 1<<7, 903 IEEE80211_HW_SPECTRUM_MGMT = 1<<8, 904 IEEE80211_HW_AMPDU_AGGREGATION = 1<<9, 905 IEEE80211_HW_SUPPORTS_PS = 1<<10, 906 IEEE80211_HW_PS_NULLFUNC_STACK = 1<<11, 907 IEEE80211_HW_SUPPORTS_DYNAMIC_PS = 1<<12, 908 IEEE80211_HW_MFP_CAPABLE = 1<<13, 909 IEEE80211_HW_BEACON_FILTER = 1<<14, 910 }; 911 912 /** 913 * struct ieee80211_hw - hardware information and state 914 * 915 * This structure contains the configuration and hardware 916 * information for an 802.11 PHY. 917 * 918 * @wiphy: This points to the &struct wiphy allocated for this 919 * 802.11 PHY. You must fill in the @perm_addr and @dev 920 * members of this structure using SET_IEEE80211_DEV() 921 * and SET_IEEE80211_PERM_ADDR(). Additionally, all supported 922 * bands (with channels, bitrates) are registered here. 923 * 924 * @conf: &struct ieee80211_conf, device configuration, don't use. 925 * 926 * @workqueue: single threaded workqueue available for driver use, 927 * allocated by mac80211 on registration and flushed when an 928 * interface is removed. 929 * NOTICE: All work performed on this workqueue must not 930 * acquire the RTNL lock. 931 * 932 * @priv: pointer to private area that was allocated for driver use 933 * along with this structure. 934 * 935 * @flags: hardware flags, see &enum ieee80211_hw_flags. 936 * 937 * @extra_tx_headroom: headroom to reserve in each transmit skb 938 * for use by the driver (e.g. for transmit headers.) 939 * 940 * @channel_change_time: time (in microseconds) it takes to change channels. 941 * 942 * @max_signal: Maximum value for signal (rssi) in RX information, used 943 * only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB 944 * 945 * @max_listen_interval: max listen interval in units of beacon interval 946 * that HW supports 947 * 948 * @queues: number of available hardware transmit queues for 949 * data packets. WMM/QoS requires at least four, these 950 * queues need to have configurable access parameters. 951 * 952 * @rate_control_algorithm: rate control algorithm for this hardware. 953 * If unset (NULL), the default algorithm will be used. Must be 954 * set before calling ieee80211_register_hw(). 955 * 956 * @vif_data_size: size (in bytes) of the drv_priv data area 957 * within &struct ieee80211_vif. 958 * @sta_data_size: size (in bytes) of the drv_priv data area 959 * within &struct ieee80211_sta. 960 * 961 * @max_rates: maximum number of alternate rate retry stages 962 * @max_rate_tries: maximum number of tries for each stage 963 */ 964 struct ieee80211_hw { 965 struct ieee80211_conf conf; 966 struct wiphy *wiphy; 967 struct workqueue_struct *workqueue; 968 const char *rate_control_algorithm; 969 void *priv; 970 u32 flags; 971 unsigned int extra_tx_headroom; 972 int channel_change_time; 973 int vif_data_size; 974 int sta_data_size; 975 u16 queues; 976 u16 max_listen_interval; 977 s8 max_signal; 978 u8 max_rates; 979 u8 max_rate_tries; 980 }; 981 982 /** 983 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy 984 * 985 * @wiphy: the &struct wiphy which we want to query 986 * 987 * mac80211 drivers can use this to get to their respective 988 * &struct ieee80211_hw. Drivers wishing to get to their own private 989 * structure can then access it via hw->priv. Note that mac802111 drivers should 990 * not use wiphy_priv() to try to get their private driver structure as this 991 * is already used internally by mac80211. 992 */ 993 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy); 994 995 /** 996 * SET_IEEE80211_DEV - set device for 802.11 hardware 997 * 998 * @hw: the &struct ieee80211_hw to set the device for 999 * @dev: the &struct device of this 802.11 device 1000 */ 1001 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev) 1002 { 1003 set_wiphy_dev(hw->wiphy, dev); 1004 } 1005 1006 /** 1007 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware 1008 * 1009 * @hw: the &struct ieee80211_hw to set the MAC address for 1010 * @addr: the address to set 1011 */ 1012 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr) 1013 { 1014 memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN); 1015 } 1016 1017 static inline struct ieee80211_rate * 1018 ieee80211_get_tx_rate(const struct ieee80211_hw *hw, 1019 const struct ieee80211_tx_info *c) 1020 { 1021 if (WARN_ON(c->control.rates[0].idx < 0)) 1022 return NULL; 1023 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx]; 1024 } 1025 1026 static inline struct ieee80211_rate * 1027 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw, 1028 const struct ieee80211_tx_info *c) 1029 { 1030 if (c->control.rts_cts_rate_idx < 0) 1031 return NULL; 1032 return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx]; 1033 } 1034 1035 static inline struct ieee80211_rate * 1036 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw, 1037 const struct ieee80211_tx_info *c, int idx) 1038 { 1039 if (c->control.rates[idx + 1].idx < 0) 1040 return NULL; 1041 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx]; 1042 } 1043 1044 /** 1045 * DOC: Hardware crypto acceleration 1046 * 1047 * mac80211 is capable of taking advantage of many hardware 1048 * acceleration designs for encryption and decryption operations. 1049 * 1050 * The set_key() callback in the &struct ieee80211_ops for a given 1051 * device is called to enable hardware acceleration of encryption and 1052 * decryption. The callback takes a @sta parameter that will be NULL 1053 * for default keys or keys used for transmission only, or point to 1054 * the station information for the peer for individual keys. 1055 * Multiple transmission keys with the same key index may be used when 1056 * VLANs are configured for an access point. 1057 * 1058 * When transmitting, the TX control data will use the @hw_key_idx 1059 * selected by the driver by modifying the &struct ieee80211_key_conf 1060 * pointed to by the @key parameter to the set_key() function. 1061 * 1062 * The set_key() call for the %SET_KEY command should return 0 if 1063 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be 1064 * added; if you return 0 then hw_key_idx must be assigned to the 1065 * hardware key index, you are free to use the full u8 range. 1066 * 1067 * When the cmd is %DISABLE_KEY then it must succeed. 1068 * 1069 * Note that it is permissible to not decrypt a frame even if a key 1070 * for it has been uploaded to hardware, the stack will not make any 1071 * decision based on whether a key has been uploaded or not but rather 1072 * based on the receive flags. 1073 * 1074 * The &struct ieee80211_key_conf structure pointed to by the @key 1075 * parameter is guaranteed to be valid until another call to set_key() 1076 * removes it, but it can only be used as a cookie to differentiate 1077 * keys. 1078 * 1079 * In TKIP some HW need to be provided a phase 1 key, for RX decryption 1080 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key 1081 * handler. 1082 * The update_tkip_key() call updates the driver with the new phase 1 key. 1083 * This happens everytime the iv16 wraps around (every 65536 packets). The 1084 * set_key() call will happen only once for each key (unless the AP did 1085 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is 1086 * provided by update_tkip_key only. The trigger that makes mac80211 call this 1087 * handler is software decryption with wrap around of iv16. 1088 */ 1089 1090 /** 1091 * DOC: Powersave support 1092 * 1093 * mac80211 has support for various powersave implementations. 1094 * 1095 * First, it can support hardware that handles all powersaving by 1096 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS 1097 * hardware flag. In that case, it will be told about the desired 1098 * powersave mode depending on the association status, and the driver 1099 * must take care of sending nullfunc frames when necessary, i.e. when 1100 * entering and leaving powersave mode. The driver is required to look at 1101 * the AID in beacons and signal to the AP that it woke up when it finds 1102 * traffic directed to it. This mode supports dynamic PS by simply 1103 * enabling/disabling PS. 1104 * 1105 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS 1106 * flag to indicate that it can support dynamic PS mode itself (see below). 1107 * 1108 * Other hardware designs cannot send nullfunc frames by themselves and also 1109 * need software support for parsing the TIM bitmap. This is also supported 1110 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and 1111 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still 1112 * required to pass up beacons. Additionally, in this case, mac80211 will 1113 * wake up the hardware when multicast traffic is announced in the beacon. 1114 * 1115 * FIXME: I don't think we can be fast enough in software when we want to 1116 * receive multicast traffic? 1117 * 1118 * Dynamic powersave mode is an extension to normal powersave mode in which 1119 * the hardware stays awake for a user-specified period of time after sending 1120 * a frame so that reply frames need not be buffered and therefore delayed 1121 * to the next wakeup. This can either be supported by hardware, in which case 1122 * the driver needs to look at the @dynamic_ps_timeout hardware configuration 1123 * value, or by the stack if all nullfunc handling is in the stack. 1124 */ 1125 1126 /** 1127 * DOC: Beacon filter support 1128 * 1129 * Some hardware have beacon filter support to reduce host cpu wakeups 1130 * which will reduce system power consumption. It usuallly works so that 1131 * the firmware creates a checksum of the beacon but omits all constantly 1132 * changing elements (TSF, TIM etc). Whenever the checksum changes the 1133 * beacon is forwarded to the host, otherwise it will be just dropped. That 1134 * way the host will only receive beacons where some relevant information 1135 * (for example ERP protection or WMM settings) have changed. 1136 * 1137 * Beacon filter support is informed with %IEEE80211_HW_BEACON_FILTER flag. 1138 * The driver needs to enable beacon filter support whenever power save is 1139 * enabled, that is %IEEE80211_CONF_PS is set. When power save is enabled, 1140 * the stack will not check for beacon miss at all and the driver needs to 1141 * notify about complete loss of beacons with ieee80211_beacon_loss(). 1142 */ 1143 1144 /** 1145 * DOC: Frame filtering 1146 * 1147 * mac80211 requires to see many management frames for proper 1148 * operation, and users may want to see many more frames when 1149 * in monitor mode. However, for best CPU usage and power consumption, 1150 * having as few frames as possible percolate through the stack is 1151 * desirable. Hence, the hardware should filter as much as possible. 1152 * 1153 * To achieve this, mac80211 uses filter flags (see below) to tell 1154 * the driver's configure_filter() function which frames should be 1155 * passed to mac80211 and which should be filtered out. 1156 * 1157 * The configure_filter() callback is invoked with the parameters 1158 * @mc_count and @mc_list for the combined multicast address list 1159 * of all virtual interfaces, @changed_flags telling which flags 1160 * were changed and @total_flags with the new flag states. 1161 * 1162 * If your device has no multicast address filters your driver will 1163 * need to check both the %FIF_ALLMULTI flag and the @mc_count 1164 * parameter to see whether multicast frames should be accepted 1165 * or dropped. 1166 * 1167 * All unsupported flags in @total_flags must be cleared. 1168 * Hardware does not support a flag if it is incapable of _passing_ 1169 * the frame to the stack. Otherwise the driver must ignore 1170 * the flag, but not clear it. 1171 * You must _only_ clear the flag (announce no support for the 1172 * flag to mac80211) if you are not able to pass the packet type 1173 * to the stack (so the hardware always filters it). 1174 * So for example, you should clear @FIF_CONTROL, if your hardware 1175 * always filters control frames. If your hardware always passes 1176 * control frames to the kernel and is incapable of filtering them, 1177 * you do _not_ clear the @FIF_CONTROL flag. 1178 * This rule applies to all other FIF flags as well. 1179 */ 1180 1181 /** 1182 * enum ieee80211_filter_flags - hardware filter flags 1183 * 1184 * These flags determine what the filter in hardware should be 1185 * programmed to let through and what should not be passed to the 1186 * stack. It is always safe to pass more frames than requested, 1187 * but this has negative impact on power consumption. 1188 * 1189 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS, 1190 * think of the BSS as your network segment and then this corresponds 1191 * to the regular ethernet device promiscuous mode. 1192 * 1193 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested 1194 * by the user or if the hardware is not capable of filtering by 1195 * multicast address. 1196 * 1197 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the 1198 * %RX_FLAG_FAILED_FCS_CRC for them) 1199 * 1200 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set 1201 * the %RX_FLAG_FAILED_PLCP_CRC for them 1202 * 1203 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate 1204 * to the hardware that it should not filter beacons or probe responses 1205 * by BSSID. Filtering them can greatly reduce the amount of processing 1206 * mac80211 needs to do and the amount of CPU wakeups, so you should 1207 * honour this flag if possible. 1208 * 1209 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then 1210 * only those addressed to this station 1211 * 1212 * @FIF_OTHER_BSS: pass frames destined to other BSSes 1213 */ 1214 enum ieee80211_filter_flags { 1215 FIF_PROMISC_IN_BSS = 1<<0, 1216 FIF_ALLMULTI = 1<<1, 1217 FIF_FCSFAIL = 1<<2, 1218 FIF_PLCPFAIL = 1<<3, 1219 FIF_BCN_PRBRESP_PROMISC = 1<<4, 1220 FIF_CONTROL = 1<<5, 1221 FIF_OTHER_BSS = 1<<6, 1222 }; 1223 1224 /** 1225 * enum ieee80211_ampdu_mlme_action - A-MPDU actions 1226 * 1227 * These flags are used with the ampdu_action() callback in 1228 * &struct ieee80211_ops to indicate which action is needed. 1229 * @IEEE80211_AMPDU_RX_START: start Rx aggregation 1230 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation 1231 * @IEEE80211_AMPDU_TX_START: start Tx aggregation 1232 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation 1233 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational 1234 */ 1235 enum ieee80211_ampdu_mlme_action { 1236 IEEE80211_AMPDU_RX_START, 1237 IEEE80211_AMPDU_RX_STOP, 1238 IEEE80211_AMPDU_TX_START, 1239 IEEE80211_AMPDU_TX_STOP, 1240 IEEE80211_AMPDU_TX_OPERATIONAL, 1241 }; 1242 1243 /** 1244 * struct ieee80211_ops - callbacks from mac80211 to the driver 1245 * 1246 * This structure contains various callbacks that the driver may 1247 * handle or, in some cases, must handle, for example to configure 1248 * the hardware to a new channel or to transmit a frame. 1249 * 1250 * @tx: Handler that 802.11 module calls for each transmitted frame. 1251 * skb contains the buffer starting from the IEEE 802.11 header. 1252 * The low-level driver should send the frame out based on 1253 * configuration in the TX control data. This handler should, 1254 * preferably, never fail and stop queues appropriately, more 1255 * importantly, however, it must never fail for A-MPDU-queues. 1256 * This function should return NETDEV_TX_OK except in very 1257 * limited cases. 1258 * Must be implemented and atomic. 1259 * 1260 * @start: Called before the first netdevice attached to the hardware 1261 * is enabled. This should turn on the hardware and must turn on 1262 * frame reception (for possibly enabled monitor interfaces.) 1263 * Returns negative error codes, these may be seen in userspace, 1264 * or zero. 1265 * When the device is started it should not have a MAC address 1266 * to avoid acknowledging frames before a non-monitor device 1267 * is added. 1268 * Must be implemented. 1269 * 1270 * @stop: Called after last netdevice attached to the hardware 1271 * is disabled. This should turn off the hardware (at least 1272 * it must turn off frame reception.) 1273 * May be called right after add_interface if that rejects 1274 * an interface. 1275 * Must be implemented. 1276 * 1277 * @add_interface: Called when a netdevice attached to the hardware is 1278 * enabled. Because it is not called for monitor mode devices, @start 1279 * and @stop must be implemented. 1280 * The driver should perform any initialization it needs before 1281 * the device can be enabled. The initial configuration for the 1282 * interface is given in the conf parameter. 1283 * The callback may refuse to add an interface by returning a 1284 * negative error code (which will be seen in userspace.) 1285 * Must be implemented. 1286 * 1287 * @remove_interface: Notifies a driver that an interface is going down. 1288 * The @stop callback is called after this if it is the last interface 1289 * and no monitor interfaces are present. 1290 * When all interfaces are removed, the MAC address in the hardware 1291 * must be cleared so the device no longer acknowledges packets, 1292 * the mac_addr member of the conf structure is, however, set to the 1293 * MAC address of the device going away. 1294 * Hence, this callback must be implemented. 1295 * 1296 * @config: Handler for configuration requests. IEEE 802.11 code calls this 1297 * function to change hardware configuration, e.g., channel. 1298 * This function should never fail but returns a negative error code 1299 * if it does. 1300 * 1301 * @config_interface: Handler for configuration requests related to interfaces 1302 * (e.g. BSSID changes.) 1303 * Returns a negative error code which will be seen in userspace. 1304 * 1305 * @bss_info_changed: Handler for configuration requests related to BSS 1306 * parameters that may vary during BSS's lifespan, and may affect low 1307 * level driver (e.g. assoc/disassoc status, erp parameters). 1308 * This function should not be used if no BSS has been set, unless 1309 * for association indication. The @changed parameter indicates which 1310 * of the bss parameters has changed when a call is made. 1311 * 1312 * @configure_filter: Configure the device's RX filter. 1313 * See the section "Frame filtering" for more information. 1314 * This callback must be implemented and atomic. 1315 * 1316 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit 1317 * must be set or cleared for a given STA. Must be atomic. 1318 * 1319 * @set_key: See the section "Hardware crypto acceleration" 1320 * This callback can sleep, and is only called between add_interface 1321 * and remove_interface calls, i.e. while the given virtual interface 1322 * is enabled. 1323 * Returns a negative error code if the key can't be added. 1324 * 1325 * @update_tkip_key: See the section "Hardware crypto acceleration" 1326 * This callback will be called in the context of Rx. Called for drivers 1327 * which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY. 1328 * 1329 * @hw_scan: Ask the hardware to service the scan request, no need to start 1330 * the scan state machine in stack. The scan must honour the channel 1331 * configuration done by the regulatory agent in the wiphy's 1332 * registered bands. The hardware (or the driver) needs to make sure 1333 * that power save is disabled. When the scan finishes, 1334 * ieee80211_scan_completed() must be called; note that it also must 1335 * be called when the scan cannot finish because the hardware is 1336 * turned off! Anything else is a bug! Returns a negative error code 1337 * which will be seen in userspace. 1338 * 1339 * @sw_scan_start: Notifier function that is called just before a software scan 1340 * is started. Can be NULL, if the driver doesn't need this notification. 1341 * 1342 * @sw_scan_complete: Notifier function that is called just after a software scan 1343 * finished. Can be NULL, if the driver doesn't need this notification. 1344 * 1345 * @get_stats: Return low-level statistics. 1346 * Returns zero if statistics are available. 1347 * 1348 * @get_tkip_seq: If your device implements TKIP encryption in hardware this 1349 * callback should be provided to read the TKIP transmit IVs (both IV32 1350 * and IV16) for the given key from hardware. 1351 * 1352 * @set_rts_threshold: Configuration of RTS threshold (if device needs it) 1353 * 1354 * @sta_notify: Notifies low level driver about addition, removal or power 1355 * state transition of an associated station, AP, IBSS/WDS/mesh peer etc. 1356 * Must be atomic. 1357 * 1358 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), 1359 * bursting) for a hardware TX queue. 1360 * Returns a negative error code on failure. 1361 * 1362 * @get_tx_stats: Get statistics of the current TX queue status. This is used 1363 * to get number of currently queued packets (queue length), maximum queue 1364 * size (limit), and total number of packets sent using each TX queue 1365 * (count). The 'stats' pointer points to an array that has hw->queues 1366 * items. 1367 * 1368 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently, 1369 * this is only used for IBSS mode BSSID merging and debugging. Is not a 1370 * required function. 1371 * 1372 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware. 1373 * Currently, this is only used for IBSS mode debugging. Is not a 1374 * required function. 1375 * 1376 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize 1377 * with other STAs in the IBSS. This is only used in IBSS mode. This 1378 * function is optional if the firmware/hardware takes full care of 1379 * TSF synchronization. 1380 * 1381 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us. 1382 * This is needed only for IBSS mode and the result of this function is 1383 * used to determine whether to reply to Probe Requests. 1384 * Returns non-zero if this device sent the last beacon. 1385 * 1386 * @ampdu_action: Perform a certain A-MPDU action 1387 * The RA/TID combination determines the destination and TID we want 1388 * the ampdu action to be performed for. The action is defined through 1389 * ieee80211_ampdu_mlme_action. Starting sequence number (@ssn) 1390 * is the first frame we expect to perform the action on. Notice 1391 * that TX/RX_STOP can pass NULL for this parameter. 1392 * Returns a negative error code on failure. 1393 */ 1394 struct ieee80211_ops { 1395 int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb); 1396 int (*start)(struct ieee80211_hw *hw); 1397 void (*stop)(struct ieee80211_hw *hw); 1398 int (*add_interface)(struct ieee80211_hw *hw, 1399 struct ieee80211_if_init_conf *conf); 1400 void (*remove_interface)(struct ieee80211_hw *hw, 1401 struct ieee80211_if_init_conf *conf); 1402 int (*config)(struct ieee80211_hw *hw, u32 changed); 1403 int (*config_interface)(struct ieee80211_hw *hw, 1404 struct ieee80211_vif *vif, 1405 struct ieee80211_if_conf *conf); 1406 void (*bss_info_changed)(struct ieee80211_hw *hw, 1407 struct ieee80211_vif *vif, 1408 struct ieee80211_bss_conf *info, 1409 u32 changed); 1410 void (*configure_filter)(struct ieee80211_hw *hw, 1411 unsigned int changed_flags, 1412 unsigned int *total_flags, 1413 int mc_count, struct dev_addr_list *mc_list); 1414 int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 1415 bool set); 1416 int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1417 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 1418 struct ieee80211_key_conf *key); 1419 void (*update_tkip_key)(struct ieee80211_hw *hw, 1420 struct ieee80211_key_conf *conf, const u8 *address, 1421 u32 iv32, u16 *phase1key); 1422 int (*hw_scan)(struct ieee80211_hw *hw, 1423 struct cfg80211_scan_request *req); 1424 void (*sw_scan_start)(struct ieee80211_hw *hw); 1425 void (*sw_scan_complete)(struct ieee80211_hw *hw); 1426 int (*get_stats)(struct ieee80211_hw *hw, 1427 struct ieee80211_low_level_stats *stats); 1428 void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx, 1429 u32 *iv32, u16 *iv16); 1430 int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value); 1431 void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1432 enum sta_notify_cmd, struct ieee80211_sta *sta); 1433 int (*conf_tx)(struct ieee80211_hw *hw, u16 queue, 1434 const struct ieee80211_tx_queue_params *params); 1435 int (*get_tx_stats)(struct ieee80211_hw *hw, 1436 struct ieee80211_tx_queue_stats *stats); 1437 u64 (*get_tsf)(struct ieee80211_hw *hw); 1438 void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf); 1439 void (*reset_tsf)(struct ieee80211_hw *hw); 1440 int (*tx_last_beacon)(struct ieee80211_hw *hw); 1441 int (*ampdu_action)(struct ieee80211_hw *hw, 1442 enum ieee80211_ampdu_mlme_action action, 1443 struct ieee80211_sta *sta, u16 tid, u16 *ssn); 1444 }; 1445 1446 /** 1447 * ieee80211_alloc_hw - Allocate a new hardware device 1448 * 1449 * This must be called once for each hardware device. The returned pointer 1450 * must be used to refer to this device when calling other functions. 1451 * mac80211 allocates a private data area for the driver pointed to by 1452 * @priv in &struct ieee80211_hw, the size of this area is given as 1453 * @priv_data_len. 1454 * 1455 * @priv_data_len: length of private data 1456 * @ops: callbacks for this device 1457 */ 1458 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, 1459 const struct ieee80211_ops *ops); 1460 1461 /** 1462 * ieee80211_register_hw - Register hardware device 1463 * 1464 * You must call this function before any other functions in 1465 * mac80211. Note that before a hardware can be registered, you 1466 * need to fill the contained wiphy's information. 1467 * 1468 * @hw: the device to register as returned by ieee80211_alloc_hw() 1469 */ 1470 int ieee80211_register_hw(struct ieee80211_hw *hw); 1471 1472 #ifdef CONFIG_MAC80211_LEDS 1473 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw); 1474 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw); 1475 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw); 1476 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw); 1477 #endif 1478 /** 1479 * ieee80211_get_tx_led_name - get name of TX LED 1480 * 1481 * mac80211 creates a transmit LED trigger for each wireless hardware 1482 * that can be used to drive LEDs if your driver registers a LED device. 1483 * This function returns the name (or %NULL if not configured for LEDs) 1484 * of the trigger so you can automatically link the LED device. 1485 * 1486 * @hw: the hardware to get the LED trigger name for 1487 */ 1488 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw) 1489 { 1490 #ifdef CONFIG_MAC80211_LEDS 1491 return __ieee80211_get_tx_led_name(hw); 1492 #else 1493 return NULL; 1494 #endif 1495 } 1496 1497 /** 1498 * ieee80211_get_rx_led_name - get name of RX LED 1499 * 1500 * mac80211 creates a receive LED trigger for each wireless hardware 1501 * that can be used to drive LEDs if your driver registers a LED device. 1502 * This function returns the name (or %NULL if not configured for LEDs) 1503 * of the trigger so you can automatically link the LED device. 1504 * 1505 * @hw: the hardware to get the LED trigger name for 1506 */ 1507 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw) 1508 { 1509 #ifdef CONFIG_MAC80211_LEDS 1510 return __ieee80211_get_rx_led_name(hw); 1511 #else 1512 return NULL; 1513 #endif 1514 } 1515 1516 /** 1517 * ieee80211_get_assoc_led_name - get name of association LED 1518 * 1519 * mac80211 creates a association LED trigger for each wireless hardware 1520 * that can be used to drive LEDs if your driver registers a LED device. 1521 * This function returns the name (or %NULL if not configured for LEDs) 1522 * of the trigger so you can automatically link the LED device. 1523 * 1524 * @hw: the hardware to get the LED trigger name for 1525 */ 1526 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw) 1527 { 1528 #ifdef CONFIG_MAC80211_LEDS 1529 return __ieee80211_get_assoc_led_name(hw); 1530 #else 1531 return NULL; 1532 #endif 1533 } 1534 1535 /** 1536 * ieee80211_get_radio_led_name - get name of radio LED 1537 * 1538 * mac80211 creates a radio change LED trigger for each wireless hardware 1539 * that can be used to drive LEDs if your driver registers a LED device. 1540 * This function returns the name (or %NULL if not configured for LEDs) 1541 * of the trigger so you can automatically link the LED device. 1542 * 1543 * @hw: the hardware to get the LED trigger name for 1544 */ 1545 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw) 1546 { 1547 #ifdef CONFIG_MAC80211_LEDS 1548 return __ieee80211_get_radio_led_name(hw); 1549 #else 1550 return NULL; 1551 #endif 1552 } 1553 1554 /** 1555 * ieee80211_unregister_hw - Unregister a hardware device 1556 * 1557 * This function instructs mac80211 to free allocated resources 1558 * and unregister netdevices from the networking subsystem. 1559 * 1560 * @hw: the hardware to unregister 1561 */ 1562 void ieee80211_unregister_hw(struct ieee80211_hw *hw); 1563 1564 /** 1565 * ieee80211_free_hw - free hardware descriptor 1566 * 1567 * This function frees everything that was allocated, including the 1568 * private data for the driver. You must call ieee80211_unregister_hw() 1569 * before calling this function. 1570 * 1571 * @hw: the hardware to free 1572 */ 1573 void ieee80211_free_hw(struct ieee80211_hw *hw); 1574 1575 /* trick to avoid symbol clashes with the ieee80211 subsystem */ 1576 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, 1577 struct ieee80211_rx_status *status); 1578 1579 /** 1580 * ieee80211_rx - receive frame 1581 * 1582 * Use this function to hand received frames to mac80211. The receive 1583 * buffer in @skb must start with an IEEE 802.11 header or a radiotap 1584 * header if %RX_FLAG_RADIOTAP is set in the @status flags. 1585 * 1586 * This function may not be called in IRQ context. Calls to this function 1587 * for a single hardware must be synchronized against each other. Calls 1588 * to this function and ieee80211_rx_irqsafe() may not be mixed for a 1589 * single hardware. 1590 * 1591 * @hw: the hardware this frame came in on 1592 * @skb: the buffer to receive, owned by mac80211 after this call 1593 * @status: status of this frame; the status pointer need not be valid 1594 * after this function returns 1595 */ 1596 static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, 1597 struct ieee80211_rx_status *status) 1598 { 1599 __ieee80211_rx(hw, skb, status); 1600 } 1601 1602 /** 1603 * ieee80211_rx_irqsafe - receive frame 1604 * 1605 * Like ieee80211_rx() but can be called in IRQ context 1606 * (internally defers to a tasklet.) 1607 * 1608 * Calls to this function and ieee80211_rx() may not be mixed for a 1609 * single hardware. 1610 * 1611 * @hw: the hardware this frame came in on 1612 * @skb: the buffer to receive, owned by mac80211 after this call 1613 * @status: status of this frame; the status pointer need not be valid 1614 * after this function returns and is not freed by mac80211, 1615 * it is recommended that it points to a stack area 1616 */ 1617 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, 1618 struct sk_buff *skb, 1619 struct ieee80211_rx_status *status); 1620 1621 /** 1622 * ieee80211_tx_status - transmit status callback 1623 * 1624 * Call this function for all transmitted frames after they have been 1625 * transmitted. It is permissible to not call this function for 1626 * multicast frames but this can affect statistics. 1627 * 1628 * This function may not be called in IRQ context. Calls to this function 1629 * for a single hardware must be synchronized against each other. Calls 1630 * to this function and ieee80211_tx_status_irqsafe() may not be mixed 1631 * for a single hardware. 1632 * 1633 * @hw: the hardware the frame was transmitted by 1634 * @skb: the frame that was transmitted, owned by mac80211 after this call 1635 */ 1636 void ieee80211_tx_status(struct ieee80211_hw *hw, 1637 struct sk_buff *skb); 1638 1639 /** 1640 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback 1641 * 1642 * Like ieee80211_tx_status() but can be called in IRQ context 1643 * (internally defers to a tasklet.) 1644 * 1645 * Calls to this function and ieee80211_tx_status() may not be mixed for a 1646 * single hardware. 1647 * 1648 * @hw: the hardware the frame was transmitted by 1649 * @skb: the frame that was transmitted, owned by mac80211 after this call 1650 */ 1651 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, 1652 struct sk_buff *skb); 1653 1654 /** 1655 * ieee80211_beacon_get - beacon generation function 1656 * @hw: pointer obtained from ieee80211_alloc_hw(). 1657 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1658 * 1659 * If the beacon frames are generated by the host system (i.e., not in 1660 * hardware/firmware), the low-level driver uses this function to receive 1661 * the next beacon frame from the 802.11 code. The low-level is responsible 1662 * for calling this function before beacon data is needed (e.g., based on 1663 * hardware interrupt). Returned skb is used only once and low-level driver 1664 * is responsible for freeing it. 1665 */ 1666 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, 1667 struct ieee80211_vif *vif); 1668 1669 /** 1670 * ieee80211_rts_get - RTS frame generation function 1671 * @hw: pointer obtained from ieee80211_alloc_hw(). 1672 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1673 * @frame: pointer to the frame that is going to be protected by the RTS. 1674 * @frame_len: the frame length (in octets). 1675 * @frame_txctl: &struct ieee80211_tx_info of the frame. 1676 * @rts: The buffer where to store the RTS frame. 1677 * 1678 * If the RTS frames are generated by the host system (i.e., not in 1679 * hardware/firmware), the low-level driver uses this function to receive 1680 * the next RTS frame from the 802.11 code. The low-level is responsible 1681 * for calling this function before and RTS frame is needed. 1682 */ 1683 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1684 const void *frame, size_t frame_len, 1685 const struct ieee80211_tx_info *frame_txctl, 1686 struct ieee80211_rts *rts); 1687 1688 /** 1689 * ieee80211_rts_duration - Get the duration field for an RTS frame 1690 * @hw: pointer obtained from ieee80211_alloc_hw(). 1691 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1692 * @frame_len: the length of the frame that is going to be protected by the RTS. 1693 * @frame_txctl: &struct ieee80211_tx_info of the frame. 1694 * 1695 * If the RTS is generated in firmware, but the host system must provide 1696 * the duration field, the low-level driver uses this function to receive 1697 * the duration field value in little-endian byteorder. 1698 */ 1699 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 1700 struct ieee80211_vif *vif, size_t frame_len, 1701 const struct ieee80211_tx_info *frame_txctl); 1702 1703 /** 1704 * ieee80211_ctstoself_get - CTS-to-self frame generation function 1705 * @hw: pointer obtained from ieee80211_alloc_hw(). 1706 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1707 * @frame: pointer to the frame that is going to be protected by the CTS-to-self. 1708 * @frame_len: the frame length (in octets). 1709 * @frame_txctl: &struct ieee80211_tx_info of the frame. 1710 * @cts: The buffer where to store the CTS-to-self frame. 1711 * 1712 * If the CTS-to-self frames are generated by the host system (i.e., not in 1713 * hardware/firmware), the low-level driver uses this function to receive 1714 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible 1715 * for calling this function before and CTS-to-self frame is needed. 1716 */ 1717 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, 1718 struct ieee80211_vif *vif, 1719 const void *frame, size_t frame_len, 1720 const struct ieee80211_tx_info *frame_txctl, 1721 struct ieee80211_cts *cts); 1722 1723 /** 1724 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame 1725 * @hw: pointer obtained from ieee80211_alloc_hw(). 1726 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1727 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self. 1728 * @frame_txctl: &struct ieee80211_tx_info of the frame. 1729 * 1730 * If the CTS-to-self is generated in firmware, but the host system must provide 1731 * the duration field, the low-level driver uses this function to receive 1732 * the duration field value in little-endian byteorder. 1733 */ 1734 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 1735 struct ieee80211_vif *vif, 1736 size_t frame_len, 1737 const struct ieee80211_tx_info *frame_txctl); 1738 1739 /** 1740 * ieee80211_generic_frame_duration - Calculate the duration field for a frame 1741 * @hw: pointer obtained from ieee80211_alloc_hw(). 1742 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1743 * @frame_len: the length of the frame. 1744 * @rate: the rate at which the frame is going to be transmitted. 1745 * 1746 * Calculate the duration field of some generic frame, given its 1747 * length and transmission rate (in 100kbps). 1748 */ 1749 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 1750 struct ieee80211_vif *vif, 1751 size_t frame_len, 1752 struct ieee80211_rate *rate); 1753 1754 /** 1755 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames 1756 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1757 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1758 * 1759 * Function for accessing buffered broadcast and multicast frames. If 1760 * hardware/firmware does not implement buffering of broadcast/multicast 1761 * frames when power saving is used, 802.11 code buffers them in the host 1762 * memory. The low-level driver uses this function to fetch next buffered 1763 * frame. In most cases, this is used when generating beacon frame. This 1764 * function returns a pointer to the next buffered skb or NULL if no more 1765 * buffered frames are available. 1766 * 1767 * Note: buffered frames are returned only after DTIM beacon frame was 1768 * generated with ieee80211_beacon_get() and the low-level driver must thus 1769 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns 1770 * NULL if the previous generated beacon was not DTIM, so the low-level driver 1771 * does not need to check for DTIM beacons separately and should be able to 1772 * use common code for all beacons. 1773 */ 1774 struct sk_buff * 1775 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 1776 1777 /** 1778 * ieee80211_get_hdrlen_from_skb - get header length from data 1779 * 1780 * Given an skb with a raw 802.11 header at the data pointer this function 1781 * returns the 802.11 header length in bytes (not including encryption 1782 * headers). If the data in the sk_buff is too short to contain a valid 802.11 1783 * header the function returns 0. 1784 * 1785 * @skb: the frame 1786 */ 1787 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb); 1788 1789 /** 1790 * ieee80211_hdrlen - get header length in bytes from frame control 1791 * @fc: frame control field in little-endian format 1792 */ 1793 unsigned int ieee80211_hdrlen(__le16 fc); 1794 1795 /** 1796 * ieee80211_get_tkip_key - get a TKIP rc4 for skb 1797 * 1798 * This function computes a TKIP rc4 key for an skb. It computes 1799 * a phase 1 key if needed (iv16 wraps around). This function is to 1800 * be used by drivers which can do HW encryption but need to compute 1801 * to phase 1/2 key in SW. 1802 * 1803 * @keyconf: the parameter passed with the set key 1804 * @skb: the skb for which the key is needed 1805 * @type: TBD 1806 * @key: a buffer to which the key will be written 1807 */ 1808 void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf, 1809 struct sk_buff *skb, 1810 enum ieee80211_tkip_key_type type, u8 *key); 1811 /** 1812 * ieee80211_wake_queue - wake specific queue 1813 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1814 * @queue: queue number (counted from zero). 1815 * 1816 * Drivers should use this function instead of netif_wake_queue. 1817 */ 1818 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue); 1819 1820 /** 1821 * ieee80211_stop_queue - stop specific queue 1822 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1823 * @queue: queue number (counted from zero). 1824 * 1825 * Drivers should use this function instead of netif_stop_queue. 1826 */ 1827 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue); 1828 1829 /** 1830 * ieee80211_queue_stopped - test status of the queue 1831 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1832 * @queue: queue number (counted from zero). 1833 * 1834 * Drivers should use this function instead of netif_stop_queue. 1835 */ 1836 1837 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue); 1838 1839 /** 1840 * ieee80211_stop_queues - stop all queues 1841 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1842 * 1843 * Drivers should use this function instead of netif_stop_queue. 1844 */ 1845 void ieee80211_stop_queues(struct ieee80211_hw *hw); 1846 1847 /** 1848 * ieee80211_wake_queues - wake all queues 1849 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1850 * 1851 * Drivers should use this function instead of netif_wake_queue. 1852 */ 1853 void ieee80211_wake_queues(struct ieee80211_hw *hw); 1854 1855 /** 1856 * ieee80211_scan_completed - completed hardware scan 1857 * 1858 * When hardware scan offload is used (i.e. the hw_scan() callback is 1859 * assigned) this function needs to be called by the driver to notify 1860 * mac80211 that the scan finished. 1861 * 1862 * @hw: the hardware that finished the scan 1863 * @aborted: set to true if scan was aborted 1864 */ 1865 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted); 1866 1867 /** 1868 * ieee80211_iterate_active_interfaces - iterate active interfaces 1869 * 1870 * This function iterates over the interfaces associated with a given 1871 * hardware that are currently active and calls the callback for them. 1872 * This function allows the iterator function to sleep, when the iterator 1873 * function is atomic @ieee80211_iterate_active_interfaces_atomic can 1874 * be used. 1875 * 1876 * @hw: the hardware struct of which the interfaces should be iterated over 1877 * @iterator: the iterator function to call 1878 * @data: first argument of the iterator function 1879 */ 1880 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw, 1881 void (*iterator)(void *data, u8 *mac, 1882 struct ieee80211_vif *vif), 1883 void *data); 1884 1885 /** 1886 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces 1887 * 1888 * This function iterates over the interfaces associated with a given 1889 * hardware that are currently active and calls the callback for them. 1890 * This function requires the iterator callback function to be atomic, 1891 * if that is not desired, use @ieee80211_iterate_active_interfaces instead. 1892 * 1893 * @hw: the hardware struct of which the interfaces should be iterated over 1894 * @iterator: the iterator function to call, cannot sleep 1895 * @data: first argument of the iterator function 1896 */ 1897 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw, 1898 void (*iterator)(void *data, 1899 u8 *mac, 1900 struct ieee80211_vif *vif), 1901 void *data); 1902 1903 /** 1904 * ieee80211_start_tx_ba_session - Start a tx Block Ack session. 1905 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1906 * @ra: receiver address of the BA session recipient 1907 * @tid: the TID to BA on. 1908 * 1909 * Return: success if addBA request was sent, failure otherwise 1910 * 1911 * Although mac80211/low level driver/user space application can estimate 1912 * the need to start aggregation on a certain RA/TID, the session level 1913 * will be managed by the mac80211. 1914 */ 1915 int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid); 1916 1917 /** 1918 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate. 1919 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1920 * @ra: receiver address of the BA session recipient. 1921 * @tid: the TID to BA on. 1922 * 1923 * This function must be called by low level driver once it has 1924 * finished with preparations for the BA session. 1925 */ 1926 void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid); 1927 1928 /** 1929 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate. 1930 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1931 * @ra: receiver address of the BA session recipient. 1932 * @tid: the TID to BA on. 1933 * 1934 * This function must be called by low level driver once it has 1935 * finished with preparations for the BA session. 1936 * This version of the function is IRQ-safe. 1937 */ 1938 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra, 1939 u16 tid); 1940 1941 /** 1942 * ieee80211_stop_tx_ba_session - Stop a Block Ack session. 1943 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1944 * @ra: receiver address of the BA session recipient 1945 * @tid: the TID to stop BA. 1946 * @initiator: if indicates initiator DELBA frame will be sent. 1947 * 1948 * Return: error if no sta with matching da found, success otherwise 1949 * 1950 * Although mac80211/low level driver/user space application can estimate 1951 * the need to stop aggregation on a certain RA/TID, the session level 1952 * will be managed by the mac80211. 1953 */ 1954 int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw, 1955 u8 *ra, u16 tid, 1956 enum ieee80211_back_parties initiator); 1957 1958 /** 1959 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate. 1960 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1961 * @ra: receiver address of the BA session recipient. 1962 * @tid: the desired TID to BA on. 1963 * 1964 * This function must be called by low level driver once it has 1965 * finished with preparations for the BA session tear down. 1966 */ 1967 void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid); 1968 1969 /** 1970 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate. 1971 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1972 * @ra: receiver address of the BA session recipient. 1973 * @tid: the desired TID to BA on. 1974 * 1975 * This function must be called by low level driver once it has 1976 * finished with preparations for the BA session tear down. 1977 * This version of the function is IRQ-safe. 1978 */ 1979 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra, 1980 u16 tid); 1981 1982 /** 1983 * ieee80211_find_sta - find a station 1984 * 1985 * @hw: pointer as obtained from ieee80211_alloc_hw() 1986 * @addr: station's address 1987 * 1988 * This function must be called under RCU lock and the 1989 * resulting pointer is only valid under RCU lock as well. 1990 */ 1991 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw, 1992 const u8 *addr); 1993 1994 /** 1995 * ieee80211_beacon_loss - inform hardware does not receive beacons 1996 * 1997 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1998 * 1999 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and 2000 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the 2001 * hardware is not receiving beacons with this function. 2002 */ 2003 void ieee80211_beacon_loss(struct ieee80211_vif *vif); 2004 2005 /* Rate control API */ 2006 2007 /** 2008 * enum rate_control_changed - flags to indicate which parameter changed 2009 * 2010 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have 2011 * changed, rate control algorithm can update its internal state if needed. 2012 */ 2013 enum rate_control_changed { 2014 IEEE80211_RC_HT_CHANGED = BIT(0) 2015 }; 2016 2017 /** 2018 * struct ieee80211_tx_rate_control - rate control information for/from RC algo 2019 * 2020 * @hw: The hardware the algorithm is invoked for. 2021 * @sband: The band this frame is being transmitted on. 2022 * @bss_conf: the current BSS configuration 2023 * @reported_rate: The rate control algorithm can fill this in to indicate 2024 * which rate should be reported to userspace as the current rate and 2025 * used for rate calculations in the mesh network. 2026 * @rts: whether RTS will be used for this frame because it is longer than the 2027 * RTS threshold 2028 * @short_preamble: whether mac80211 will request short-preamble transmission 2029 * if the selected rate supports it 2030 * @max_rate_idx: user-requested maximum rate (not MCS for now) 2031 * @skb: the skb that will be transmitted, the control information in it needs 2032 * to be filled in 2033 */ 2034 struct ieee80211_tx_rate_control { 2035 struct ieee80211_hw *hw; 2036 struct ieee80211_supported_band *sband; 2037 struct ieee80211_bss_conf *bss_conf; 2038 struct sk_buff *skb; 2039 struct ieee80211_tx_rate reported_rate; 2040 bool rts, short_preamble; 2041 u8 max_rate_idx; 2042 }; 2043 2044 struct rate_control_ops { 2045 struct module *module; 2046 const char *name; 2047 void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir); 2048 void (*free)(void *priv); 2049 2050 void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp); 2051 void (*rate_init)(void *priv, struct ieee80211_supported_band *sband, 2052 struct ieee80211_sta *sta, void *priv_sta); 2053 void (*rate_update)(void *priv, struct ieee80211_supported_band *sband, 2054 struct ieee80211_sta *sta, 2055 void *priv_sta, u32 changed); 2056 void (*free_sta)(void *priv, struct ieee80211_sta *sta, 2057 void *priv_sta); 2058 2059 void (*tx_status)(void *priv, struct ieee80211_supported_band *sband, 2060 struct ieee80211_sta *sta, void *priv_sta, 2061 struct sk_buff *skb); 2062 void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta, 2063 struct ieee80211_tx_rate_control *txrc); 2064 2065 void (*add_sta_debugfs)(void *priv, void *priv_sta, 2066 struct dentry *dir); 2067 void (*remove_sta_debugfs)(void *priv, void *priv_sta); 2068 }; 2069 2070 static inline int rate_supported(struct ieee80211_sta *sta, 2071 enum ieee80211_band band, 2072 int index) 2073 { 2074 return (sta == NULL || sta->supp_rates[band] & BIT(index)); 2075 } 2076 2077 static inline s8 2078 rate_lowest_index(struct ieee80211_supported_band *sband, 2079 struct ieee80211_sta *sta) 2080 { 2081 int i; 2082 2083 for (i = 0; i < sband->n_bitrates; i++) 2084 if (rate_supported(sta, sband->band, i)) 2085 return i; 2086 2087 /* warn when we cannot find a rate. */ 2088 WARN_ON(1); 2089 2090 return 0; 2091 } 2092 2093 2094 int ieee80211_rate_control_register(struct rate_control_ops *ops); 2095 void ieee80211_rate_control_unregister(struct rate_control_ops *ops); 2096 2097 static inline bool 2098 conf_is_ht20(struct ieee80211_conf *conf) 2099 { 2100 return conf->channel_type == NL80211_CHAN_HT20; 2101 } 2102 2103 static inline bool 2104 conf_is_ht40_minus(struct ieee80211_conf *conf) 2105 { 2106 return conf->channel_type == NL80211_CHAN_HT40MINUS; 2107 } 2108 2109 static inline bool 2110 conf_is_ht40_plus(struct ieee80211_conf *conf) 2111 { 2112 return conf->channel_type == NL80211_CHAN_HT40PLUS; 2113 } 2114 2115 static inline bool 2116 conf_is_ht40(struct ieee80211_conf *conf) 2117 { 2118 return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf); 2119 } 2120 2121 static inline bool 2122 conf_is_ht(struct ieee80211_conf *conf) 2123 { 2124 return conf->channel_type != NL80211_CHAN_NO_HT; 2125 } 2126 2127 #endif /* MAC80211_H */ 2128