1 /* 2 * mac80211 <-> driver interface 3 * 4 * Copyright 2002-2005, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #ifndef MAC80211_H 14 #define MAC80211_H 15 16 #include <linux/kernel.h> 17 #include <linux/if_ether.h> 18 #include <linux/skbuff.h> 19 #include <linux/wireless.h> 20 #include <linux/device.h> 21 #include <linux/ieee80211.h> 22 #include <net/cfg80211.h> 23 #include <asm/unaligned.h> 24 25 /** 26 * DOC: Introduction 27 * 28 * mac80211 is the Linux stack for 802.11 hardware that implements 29 * only partial functionality in hard- or firmware. This document 30 * defines the interface between mac80211 and low-level hardware 31 * drivers. 32 */ 33 34 /** 35 * DOC: Calling mac80211 from interrupts 36 * 37 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be 38 * called in hardware interrupt context. The low-level driver must not call any 39 * other functions in hardware interrupt context. If there is a need for such 40 * call, the low-level driver should first ACK the interrupt and perform the 41 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even 42 * tasklet function. 43 * 44 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also 45 * use the non-IRQ-safe functions! 46 */ 47 48 /** 49 * DOC: Warning 50 * 51 * If you're reading this document and not the header file itself, it will 52 * be incomplete because not all documentation has been converted yet. 53 */ 54 55 /** 56 * DOC: Frame format 57 * 58 * As a general rule, when frames are passed between mac80211 and the driver, 59 * they start with the IEEE 802.11 header and include the same octets that are 60 * sent over the air except for the FCS which should be calculated by the 61 * hardware. 62 * 63 * There are, however, various exceptions to this rule for advanced features: 64 * 65 * The first exception is for hardware encryption and decryption offload 66 * where the IV/ICV may or may not be generated in hardware. 67 * 68 * Secondly, when the hardware handles fragmentation, the frame handed to 69 * the driver from mac80211 is the MSDU, not the MPDU. 70 * 71 * Finally, for received frames, the driver is able to indicate that it has 72 * filled a radiotap header and put that in front of the frame; if it does 73 * not do so then mac80211 may add this under certain circumstances. 74 */ 75 76 /** 77 * DOC: mac80211 workqueue 78 * 79 * mac80211 provides its own workqueue for drivers and internal mac80211 use. 80 * The workqueue is a single threaded workqueue and can only be accessed by 81 * helpers for sanity checking. Drivers must ensure all work added onto the 82 * mac80211 workqueue should be cancelled on the driver stop() callback. 83 * 84 * mac80211 will flushed the workqueue upon interface removal and during 85 * suspend. 86 * 87 * All work performed on the mac80211 workqueue must not acquire the RTNL lock. 88 * 89 */ 90 91 /** 92 * enum ieee80211_max_queues - maximum number of queues 93 * 94 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues. 95 */ 96 enum ieee80211_max_queues { 97 IEEE80211_MAX_QUEUES = 4, 98 }; 99 100 /** 101 * enum ieee80211_ac_numbers - AC numbers as used in mac80211 102 * @IEEE80211_AC_VO: voice 103 * @IEEE80211_AC_VI: video 104 * @IEEE80211_AC_BE: best effort 105 * @IEEE80211_AC_BK: background 106 */ 107 enum ieee80211_ac_numbers { 108 IEEE80211_AC_VO = 0, 109 IEEE80211_AC_VI = 1, 110 IEEE80211_AC_BE = 2, 111 IEEE80211_AC_BK = 3, 112 }; 113 114 /** 115 * struct ieee80211_tx_queue_params - transmit queue configuration 116 * 117 * The information provided in this structure is required for QoS 118 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29. 119 * 120 * @aifs: arbitration interframe space [0..255] 121 * @cw_min: minimum contention window [a value of the form 122 * 2^n-1 in the range 1..32767] 123 * @cw_max: maximum contention window [like @cw_min] 124 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled 125 * @uapsd: is U-APSD mode enabled for the queue 126 */ 127 struct ieee80211_tx_queue_params { 128 u16 txop; 129 u16 cw_min; 130 u16 cw_max; 131 u8 aifs; 132 bool uapsd; 133 }; 134 135 struct ieee80211_low_level_stats { 136 unsigned int dot11ACKFailureCount; 137 unsigned int dot11RTSFailureCount; 138 unsigned int dot11FCSErrorCount; 139 unsigned int dot11RTSSuccessCount; 140 }; 141 142 /** 143 * enum ieee80211_bss_change - BSS change notification flags 144 * 145 * These flags are used with the bss_info_changed() callback 146 * to indicate which BSS parameter changed. 147 * 148 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated), 149 * also implies a change in the AID. 150 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed 151 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed 152 * @BSS_CHANGED_ERP_SLOT: slot timing changed 153 * @BSS_CHANGED_HT: 802.11n parameters changed 154 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed 155 * @BSS_CHANGED_BEACON_INT: Beacon interval changed 156 * @BSS_CHANGED_BSSID: BSSID changed, for whatever 157 * reason (IBSS and managed mode) 158 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve 159 * new beacon (beaconing modes) 160 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be 161 * enabled/disabled (beaconing modes) 162 * @BSS_CHANGED_CQM: Connection quality monitor config changed 163 * @BSS_CHANGED_IBSS: IBSS join status changed 164 * @BSS_CHANGED_ARP_FILTER: Hardware ARP filter address list or state changed. 165 * @BSS_CHANGED_QOS: QoS for this association was enabled/disabled. Note 166 * that it is only ever disabled for station mode. 167 * @BSS_CHANGED_IDLE: Idle changed for this BSS/interface. 168 */ 169 enum ieee80211_bss_change { 170 BSS_CHANGED_ASSOC = 1<<0, 171 BSS_CHANGED_ERP_CTS_PROT = 1<<1, 172 BSS_CHANGED_ERP_PREAMBLE = 1<<2, 173 BSS_CHANGED_ERP_SLOT = 1<<3, 174 BSS_CHANGED_HT = 1<<4, 175 BSS_CHANGED_BASIC_RATES = 1<<5, 176 BSS_CHANGED_BEACON_INT = 1<<6, 177 BSS_CHANGED_BSSID = 1<<7, 178 BSS_CHANGED_BEACON = 1<<8, 179 BSS_CHANGED_BEACON_ENABLED = 1<<9, 180 BSS_CHANGED_CQM = 1<<10, 181 BSS_CHANGED_IBSS = 1<<11, 182 BSS_CHANGED_ARP_FILTER = 1<<12, 183 BSS_CHANGED_QOS = 1<<13, 184 BSS_CHANGED_IDLE = 1<<14, 185 186 /* when adding here, make sure to change ieee80211_reconfig */ 187 }; 188 189 /* 190 * The maximum number of IPv4 addresses listed for ARP filtering. If the number 191 * of addresses for an interface increase beyond this value, hardware ARP 192 * filtering will be disabled. 193 */ 194 #define IEEE80211_BSS_ARP_ADDR_LIST_LEN 4 195 196 /** 197 * enum ieee80211_rssi_event - RSSI threshold event 198 * An indicator for when RSSI goes below/above a certain threshold. 199 * @RSSI_EVENT_HIGH: AP's rssi crossed the high threshold set by the driver. 200 * @RSSI_EVENT_LOW: AP's rssi crossed the low threshold set by the driver. 201 */ 202 enum ieee80211_rssi_event { 203 RSSI_EVENT_HIGH, 204 RSSI_EVENT_LOW, 205 }; 206 207 /** 208 * struct ieee80211_bss_conf - holds the BSS's changing parameters 209 * 210 * This structure keeps information about a BSS (and an association 211 * to that BSS) that can change during the lifetime of the BSS. 212 * 213 * @assoc: association status 214 * @ibss_joined: indicates whether this station is part of an IBSS 215 * or not 216 * @aid: association ID number, valid only when @assoc is true 217 * @use_cts_prot: use CTS protection 218 * @use_short_preamble: use 802.11b short preamble; 219 * if the hardware cannot handle this it must set the 220 * IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag 221 * @use_short_slot: use short slot time (only relevant for ERP); 222 * if the hardware cannot handle this it must set the 223 * IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag 224 * @dtim_period: num of beacons before the next DTIM, for beaconing, 225 * valid in station mode only while @assoc is true and if also 226 * requested by %IEEE80211_HW_NEED_DTIM_PERIOD (cf. also hw conf 227 * @ps_dtim_period) 228 * @timestamp: beacon timestamp 229 * @beacon_int: beacon interval 230 * @assoc_capability: capabilities taken from assoc resp 231 * @basic_rates: bitmap of basic rates, each bit stands for an 232 * index into the rate table configured by the driver in 233 * the current band. 234 * @mcast_rate: per-band multicast rate index + 1 (0: disabled) 235 * @bssid: The BSSID for this BSS 236 * @enable_beacon: whether beaconing should be enabled or not 237 * @channel_type: Channel type for this BSS -- the hardware might be 238 * configured for HT40+ while this BSS only uses no-HT, for 239 * example. 240 * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info). 241 * This field is only valid when the channel type is one of the HT types. 242 * @cqm_rssi_thold: Connection quality monitor RSSI threshold, a zero value 243 * implies disabled 244 * @cqm_rssi_hyst: Connection quality monitor RSSI hysteresis 245 * @arp_addr_list: List of IPv4 addresses for hardware ARP filtering. The 246 * may filter ARP queries targeted for other addresses than listed here. 247 * The driver must allow ARP queries targeted for all address listed here 248 * to pass through. An empty list implies no ARP queries need to pass. 249 * @arp_addr_cnt: Number of addresses currently on the list. 250 * @arp_filter_enabled: Enable ARP filtering - if enabled, the hardware may 251 * filter ARP queries based on the @arp_addr_list, if disabled, the 252 * hardware must not perform any ARP filtering. Note, that the filter will 253 * be enabled also in promiscuous mode. 254 * @qos: This is a QoS-enabled BSS. 255 * @idle: This interface is idle. There's also a global idle flag in the 256 * hardware config which may be more appropriate depending on what 257 * your driver/device needs to do. 258 */ 259 struct ieee80211_bss_conf { 260 const u8 *bssid; 261 /* association related data */ 262 bool assoc, ibss_joined; 263 u16 aid; 264 /* erp related data */ 265 bool use_cts_prot; 266 bool use_short_preamble; 267 bool use_short_slot; 268 bool enable_beacon; 269 u8 dtim_period; 270 u16 beacon_int; 271 u16 assoc_capability; 272 u64 timestamp; 273 u32 basic_rates; 274 int mcast_rate[IEEE80211_NUM_BANDS]; 275 u16 ht_operation_mode; 276 s32 cqm_rssi_thold; 277 u32 cqm_rssi_hyst; 278 enum nl80211_channel_type channel_type; 279 __be32 arp_addr_list[IEEE80211_BSS_ARP_ADDR_LIST_LEN]; 280 u8 arp_addr_cnt; 281 bool arp_filter_enabled; 282 bool qos; 283 bool idle; 284 }; 285 286 /** 287 * enum mac80211_tx_control_flags - flags to describe transmission information/status 288 * 289 * These flags are used with the @flags member of &ieee80211_tx_info. 290 * 291 * @IEEE80211_TX_CTL_REQ_TX_STATUS: require TX status callback for this frame. 292 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence 293 * number to this frame, taking care of not overwriting the fragment 294 * number and increasing the sequence number only when the 295 * IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly 296 * assign sequence numbers to QoS-data frames but cannot do so correctly 297 * for non-QoS-data and management frames because beacons need them from 298 * that counter as well and mac80211 cannot guarantee proper sequencing. 299 * If this flag is set, the driver should instruct the hardware to 300 * assign a sequence number to the frame or assign one itself. Cf. IEEE 301 * 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for 302 * beacons and always be clear for frames without a sequence number field. 303 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack 304 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination 305 * station 306 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame 307 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon 308 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU 309 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211. 310 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted 311 * because the destination STA was in powersave mode. Note that to 312 * avoid race conditions, the filter must be set by the hardware or 313 * firmware upon receiving a frame that indicates that the station 314 * went to sleep (must be done on device to filter frames already on 315 * the queue) and may only be unset after mac80211 gives the OK for 316 * that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above), 317 * since only then is it guaranteed that no more frames are in the 318 * hardware queue. 319 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged 320 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status 321 * is for the whole aggregation. 322 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned, 323 * so consider using block ack request (BAR). 324 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be 325 * set by rate control algorithms to indicate probe rate, will 326 * be cleared for fragmented frames (except on the last fragment) 327 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211, 328 * used to indicate that a pending frame requires TX processing before 329 * it can be sent out. 330 * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211, 331 * used to indicate that a frame was already retried due to PS 332 * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211, 333 * used to indicate frame should not be encrypted 334 * @IEEE80211_TX_CTL_PSPOLL_RESPONSE: (internal?) 335 * This frame is a response to a PS-poll frame and should be sent 336 * although the station is in powersave mode. 337 * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the 338 * transmit function after the current frame, this can be used 339 * by drivers to kick the DMA queue only if unset or when the 340 * queue gets full. 341 * @IEEE80211_TX_INTFL_RETRANSMISSION: This frame is being retransmitted 342 * after TX status because the destination was asleep, it must not 343 * be modified again (no seqno assignment, crypto, etc.) 344 * @IEEE80211_TX_INTFL_HAS_RADIOTAP: This frame was injected and still 345 * has a radiotap header at skb->data. 346 * @IEEE80211_TX_INTFL_NL80211_FRAME_TX: Frame was requested through nl80211 347 * MLME command (internal to mac80211 to figure out whether to send TX 348 * status to user space) 349 * @IEEE80211_TX_CTL_LDPC: tells the driver to use LDPC for this frame 350 * @IEEE80211_TX_CTL_STBC: Enables Space-Time Block Coding (STBC) for this 351 * frame and selects the maximum number of streams that it can use. 352 * @IEEE80211_TX_CTL_TX_OFFCHAN: Marks this packet to be transmitted on 353 * the off-channel channel when a remain-on-channel offload is done 354 * in hardware -- normal packets still flow and are expected to be 355 * handled properly by the device. 356 * @IEEE80211_TX_INTFL_TKIP_MIC_FAILURE: Marks this packet to be used for TKIP 357 * testing. It will be sent out with incorrect Michael MIC key to allow 358 * TKIP countermeasures to be tested. 359 * 360 * Note: If you have to add new flags to the enumeration, then don't 361 * forget to update %IEEE80211_TX_TEMPORARY_FLAGS when necessary. 362 */ 363 enum mac80211_tx_control_flags { 364 IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0), 365 IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1), 366 IEEE80211_TX_CTL_NO_ACK = BIT(2), 367 IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3), 368 IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4), 369 IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5), 370 IEEE80211_TX_CTL_AMPDU = BIT(6), 371 IEEE80211_TX_CTL_INJECTED = BIT(7), 372 IEEE80211_TX_STAT_TX_FILTERED = BIT(8), 373 IEEE80211_TX_STAT_ACK = BIT(9), 374 IEEE80211_TX_STAT_AMPDU = BIT(10), 375 IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11), 376 IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12), 377 IEEE80211_TX_INTFL_NEED_TXPROCESSING = BIT(14), 378 IEEE80211_TX_INTFL_RETRIED = BIT(15), 379 IEEE80211_TX_INTFL_DONT_ENCRYPT = BIT(16), 380 IEEE80211_TX_CTL_PSPOLL_RESPONSE = BIT(17), 381 IEEE80211_TX_CTL_MORE_FRAMES = BIT(18), 382 IEEE80211_TX_INTFL_RETRANSMISSION = BIT(19), 383 IEEE80211_TX_INTFL_HAS_RADIOTAP = BIT(20), 384 IEEE80211_TX_INTFL_NL80211_FRAME_TX = BIT(21), 385 IEEE80211_TX_CTL_LDPC = BIT(22), 386 IEEE80211_TX_CTL_STBC = BIT(23) | BIT(24), 387 IEEE80211_TX_CTL_TX_OFFCHAN = BIT(25), 388 IEEE80211_TX_INTFL_TKIP_MIC_FAILURE = BIT(26), 389 }; 390 391 #define IEEE80211_TX_CTL_STBC_SHIFT 23 392 393 /* 394 * This definition is used as a mask to clear all temporary flags, which are 395 * set by the tx handlers for each transmission attempt by the mac80211 stack. 396 */ 397 #define IEEE80211_TX_TEMPORARY_FLAGS (IEEE80211_TX_CTL_NO_ACK | \ 398 IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT | \ 399 IEEE80211_TX_CTL_SEND_AFTER_DTIM | IEEE80211_TX_CTL_AMPDU | \ 400 IEEE80211_TX_STAT_TX_FILTERED | IEEE80211_TX_STAT_ACK | \ 401 IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_STAT_AMPDU_NO_BACK | \ 402 IEEE80211_TX_CTL_RATE_CTRL_PROBE | IEEE80211_TX_CTL_PSPOLL_RESPONSE | \ 403 IEEE80211_TX_CTL_MORE_FRAMES | IEEE80211_TX_CTL_LDPC | \ 404 IEEE80211_TX_CTL_STBC) 405 406 /** 407 * enum mac80211_rate_control_flags - per-rate flags set by the 408 * Rate Control algorithm. 409 * 410 * These flags are set by the Rate control algorithm for each rate during tx, 411 * in the @flags member of struct ieee80211_tx_rate. 412 * 413 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate. 414 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required. 415 * This is set if the current BSS requires ERP protection. 416 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble. 417 * @IEEE80211_TX_RC_MCS: HT rate. 418 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in 419 * Greenfield mode. 420 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz. 421 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the 422 * adjacent 20 MHz channels, if the current channel type is 423 * NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS. 424 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate. 425 */ 426 enum mac80211_rate_control_flags { 427 IEEE80211_TX_RC_USE_RTS_CTS = BIT(0), 428 IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1), 429 IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2), 430 431 /* rate index is an MCS rate number instead of an index */ 432 IEEE80211_TX_RC_MCS = BIT(3), 433 IEEE80211_TX_RC_GREEN_FIELD = BIT(4), 434 IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5), 435 IEEE80211_TX_RC_DUP_DATA = BIT(6), 436 IEEE80211_TX_RC_SHORT_GI = BIT(7), 437 }; 438 439 440 /* there are 40 bytes if you don't need the rateset to be kept */ 441 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40 442 443 /* if you do need the rateset, then you have less space */ 444 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24 445 446 /* maximum number of rate stages */ 447 #define IEEE80211_TX_MAX_RATES 5 448 449 /** 450 * struct ieee80211_tx_rate - rate selection/status 451 * 452 * @idx: rate index to attempt to send with 453 * @flags: rate control flags (&enum mac80211_rate_control_flags) 454 * @count: number of tries in this rate before going to the next rate 455 * 456 * A value of -1 for @idx indicates an invalid rate and, if used 457 * in an array of retry rates, that no more rates should be tried. 458 * 459 * When used for transmit status reporting, the driver should 460 * always report the rate along with the flags it used. 461 * 462 * &struct ieee80211_tx_info contains an array of these structs 463 * in the control information, and it will be filled by the rate 464 * control algorithm according to what should be sent. For example, 465 * if this array contains, in the format { <idx>, <count> } the 466 * information 467 * { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 } 468 * then this means that the frame should be transmitted 469 * up to twice at rate 3, up to twice at rate 2, and up to four 470 * times at rate 1 if it doesn't get acknowledged. Say it gets 471 * acknowledged by the peer after the fifth attempt, the status 472 * information should then contain 473 * { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ... 474 * since it was transmitted twice at rate 3, twice at rate 2 475 * and once at rate 1 after which we received an acknowledgement. 476 */ 477 struct ieee80211_tx_rate { 478 s8 idx; 479 u8 count; 480 u8 flags; 481 } __packed; 482 483 /** 484 * struct ieee80211_tx_info - skb transmit information 485 * 486 * This structure is placed in skb->cb for three uses: 487 * (1) mac80211 TX control - mac80211 tells the driver what to do 488 * (2) driver internal use (if applicable) 489 * (3) TX status information - driver tells mac80211 what happened 490 * 491 * The TX control's sta pointer is only valid during the ->tx call, 492 * it may be NULL. 493 * 494 * @flags: transmit info flags, defined above 495 * @band: the band to transmit on (use for checking for races) 496 * @antenna_sel_tx: antenna to use, 0 for automatic diversity 497 * @pad: padding, ignore 498 * @control: union for control data 499 * @status: union for status data 500 * @driver_data: array of driver_data pointers 501 * @ampdu_ack_len: number of acked aggregated frames. 502 * relevant only if IEEE80211_TX_STAT_AMPDU was set. 503 * @ampdu_len: number of aggregated frames. 504 * relevant only if IEEE80211_TX_STAT_AMPDU was set. 505 * @ack_signal: signal strength of the ACK frame 506 */ 507 struct ieee80211_tx_info { 508 /* common information */ 509 u32 flags; 510 u8 band; 511 512 u8 antenna_sel_tx; 513 514 /* 2 byte hole */ 515 u8 pad[2]; 516 517 union { 518 struct { 519 union { 520 /* rate control */ 521 struct { 522 struct ieee80211_tx_rate rates[ 523 IEEE80211_TX_MAX_RATES]; 524 s8 rts_cts_rate_idx; 525 }; 526 /* only needed before rate control */ 527 unsigned long jiffies; 528 }; 529 /* NB: vif can be NULL for injected frames */ 530 struct ieee80211_vif *vif; 531 struct ieee80211_key_conf *hw_key; 532 struct ieee80211_sta *sta; 533 } control; 534 struct { 535 struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES]; 536 u8 ampdu_ack_len; 537 int ack_signal; 538 u8 ampdu_len; 539 /* 15 bytes free */ 540 } status; 541 struct { 542 struct ieee80211_tx_rate driver_rates[ 543 IEEE80211_TX_MAX_RATES]; 544 void *rate_driver_data[ 545 IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)]; 546 }; 547 void *driver_data[ 548 IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)]; 549 }; 550 }; 551 552 /** 553 * struct ieee80211_sched_scan_ies - scheduled scan IEs 554 * 555 * This structure is used to pass the appropriate IEs to be used in scheduled 556 * scans for all bands. It contains both the IEs passed from the userspace 557 * and the ones generated by mac80211. 558 * 559 * @ie: array with the IEs for each supported band 560 * @len: array with the total length of the IEs for each band 561 */ 562 struct ieee80211_sched_scan_ies { 563 u8 *ie[IEEE80211_NUM_BANDS]; 564 size_t len[IEEE80211_NUM_BANDS]; 565 }; 566 567 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb) 568 { 569 return (struct ieee80211_tx_info *)skb->cb; 570 } 571 572 static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb) 573 { 574 return (struct ieee80211_rx_status *)skb->cb; 575 } 576 577 /** 578 * ieee80211_tx_info_clear_status - clear TX status 579 * 580 * @info: The &struct ieee80211_tx_info to be cleared. 581 * 582 * When the driver passes an skb back to mac80211, it must report 583 * a number of things in TX status. This function clears everything 584 * in the TX status but the rate control information (it does clear 585 * the count since you need to fill that in anyway). 586 * 587 * NOTE: You can only use this function if you do NOT use 588 * info->driver_data! Use info->rate_driver_data 589 * instead if you need only the less space that allows. 590 */ 591 static inline void 592 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info) 593 { 594 int i; 595 596 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 597 offsetof(struct ieee80211_tx_info, control.rates)); 598 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 599 offsetof(struct ieee80211_tx_info, driver_rates)); 600 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8); 601 /* clear the rate counts */ 602 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) 603 info->status.rates[i].count = 0; 604 605 BUILD_BUG_ON( 606 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23); 607 memset(&info->status.ampdu_ack_len, 0, 608 sizeof(struct ieee80211_tx_info) - 609 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len)); 610 } 611 612 613 /** 614 * enum mac80211_rx_flags - receive flags 615 * 616 * These flags are used with the @flag member of &struct ieee80211_rx_status. 617 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame. 618 * Use together with %RX_FLAG_MMIC_STRIPPED. 619 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware. 620 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame, 621 * verification has been done by the hardware. 622 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame. 623 * If this flag is set, the stack cannot do any replay detection 624 * hence the driver or hardware will have to do that. 625 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on 626 * the frame. 627 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on 628 * the frame. 629 * @RX_FLAG_MACTIME_MPDU: The timestamp passed in the RX status (@mactime 630 * field) is valid and contains the time the first symbol of the MPDU 631 * was received. This is useful in monitor mode and for proper IBSS 632 * merging. 633 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame 634 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index 635 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used 636 * @RX_FLAG_SHORT_GI: Short guard interval was used 637 */ 638 enum mac80211_rx_flags { 639 RX_FLAG_MMIC_ERROR = 1<<0, 640 RX_FLAG_DECRYPTED = 1<<1, 641 RX_FLAG_MMIC_STRIPPED = 1<<3, 642 RX_FLAG_IV_STRIPPED = 1<<4, 643 RX_FLAG_FAILED_FCS_CRC = 1<<5, 644 RX_FLAG_FAILED_PLCP_CRC = 1<<6, 645 RX_FLAG_MACTIME_MPDU = 1<<7, 646 RX_FLAG_SHORTPRE = 1<<8, 647 RX_FLAG_HT = 1<<9, 648 RX_FLAG_40MHZ = 1<<10, 649 RX_FLAG_SHORT_GI = 1<<11, 650 }; 651 652 /** 653 * struct ieee80211_rx_status - receive status 654 * 655 * The low-level driver should provide this information (the subset 656 * supported by hardware) to the 802.11 code with each received 657 * frame, in the skb's control buffer (cb). 658 * 659 * @mactime: value in microseconds of the 64-bit Time Synchronization Function 660 * (TSF) timer when the first data symbol (MPDU) arrived at the hardware. 661 * @band: the active band when this frame was received 662 * @freq: frequency the radio was tuned to when receiving this frame, in MHz 663 * @signal: signal strength when receiving this frame, either in dBm, in dB or 664 * unspecified depending on the hardware capabilities flags 665 * @IEEE80211_HW_SIGNAL_* 666 * @antenna: antenna used 667 * @rate_idx: index of data rate into band's supported rates or MCS index if 668 * HT rates are use (RX_FLAG_HT) 669 * @flag: %RX_FLAG_* 670 * @rx_flags: internal RX flags for mac80211 671 */ 672 struct ieee80211_rx_status { 673 u64 mactime; 674 enum ieee80211_band band; 675 int freq; 676 int signal; 677 int antenna; 678 int rate_idx; 679 int flag; 680 unsigned int rx_flags; 681 }; 682 683 /** 684 * enum ieee80211_conf_flags - configuration flags 685 * 686 * Flags to define PHY configuration options 687 * 688 * @IEEE80211_CONF_MONITOR: there's a monitor interface present -- use this 689 * to determine for example whether to calculate timestamps for packets 690 * or not, do not use instead of filter flags! 691 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only). 692 * This is the power save mode defined by IEEE 802.11-2007 section 11.2, 693 * meaning that the hardware still wakes up for beacons, is able to 694 * transmit frames and receive the possible acknowledgment frames. 695 * Not to be confused with hardware specific wakeup/sleep states, 696 * driver is responsible for that. See the section "Powersave support" 697 * for more. 698 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set 699 * the driver should be prepared to handle configuration requests but 700 * may turn the device off as much as possible. Typically, this flag will 701 * be set when an interface is set UP but not associated or scanning, but 702 * it can also be unset in that case when monitor interfaces are active. 703 * @IEEE80211_CONF_OFFCHANNEL: The device is currently not on its main 704 * operating channel. 705 */ 706 enum ieee80211_conf_flags { 707 IEEE80211_CONF_MONITOR = (1<<0), 708 IEEE80211_CONF_PS = (1<<1), 709 IEEE80211_CONF_IDLE = (1<<2), 710 IEEE80211_CONF_OFFCHANNEL = (1<<3), 711 }; 712 713 714 /** 715 * enum ieee80211_conf_changed - denotes which configuration changed 716 * 717 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed 718 * @IEEE80211_CONF_CHANGE_MONITOR: the monitor flag changed 719 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed 720 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed 721 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed 722 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed 723 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed 724 * @IEEE80211_CONF_CHANGE_SMPS: Spatial multiplexing powersave mode changed 725 */ 726 enum ieee80211_conf_changed { 727 IEEE80211_CONF_CHANGE_SMPS = BIT(1), 728 IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2), 729 IEEE80211_CONF_CHANGE_MONITOR = BIT(3), 730 IEEE80211_CONF_CHANGE_PS = BIT(4), 731 IEEE80211_CONF_CHANGE_POWER = BIT(5), 732 IEEE80211_CONF_CHANGE_CHANNEL = BIT(6), 733 IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(7), 734 IEEE80211_CONF_CHANGE_IDLE = BIT(8), 735 }; 736 737 /** 738 * enum ieee80211_smps_mode - spatial multiplexing power save mode 739 * 740 * @IEEE80211_SMPS_AUTOMATIC: automatic 741 * @IEEE80211_SMPS_OFF: off 742 * @IEEE80211_SMPS_STATIC: static 743 * @IEEE80211_SMPS_DYNAMIC: dynamic 744 * @IEEE80211_SMPS_NUM_MODES: internal, don't use 745 */ 746 enum ieee80211_smps_mode { 747 IEEE80211_SMPS_AUTOMATIC, 748 IEEE80211_SMPS_OFF, 749 IEEE80211_SMPS_STATIC, 750 IEEE80211_SMPS_DYNAMIC, 751 752 /* keep last */ 753 IEEE80211_SMPS_NUM_MODES, 754 }; 755 756 /** 757 * struct ieee80211_conf - configuration of the device 758 * 759 * This struct indicates how the driver shall configure the hardware. 760 * 761 * @flags: configuration flags defined above 762 * 763 * @listen_interval: listen interval in units of beacon interval 764 * @max_sleep_period: the maximum number of beacon intervals to sleep for 765 * before checking the beacon for a TIM bit (managed mode only); this 766 * value will be only achievable between DTIM frames, the hardware 767 * needs to check for the multicast traffic bit in DTIM beacons. 768 * This variable is valid only when the CONF_PS flag is set. 769 * @ps_dtim_period: The DTIM period of the AP we're connected to, for use 770 * in power saving. Power saving will not be enabled until a beacon 771 * has been received and the DTIM period is known. 772 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the 773 * powersave documentation below. This variable is valid only when 774 * the CONF_PS flag is set. 775 * 776 * @power_level: requested transmit power (in dBm) 777 * 778 * @channel: the channel to tune to 779 * @channel_type: the channel (HT) type 780 * 781 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame 782 * (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11, 783 * but actually means the number of transmissions not the number of retries 784 * @short_frame_max_tx_count: Maximum number of transmissions for a "short" 785 * frame, called "dot11ShortRetryLimit" in 802.11, but actually means the 786 * number of transmissions not the number of retries 787 * 788 * @smps_mode: spatial multiplexing powersave mode; note that 789 * %IEEE80211_SMPS_STATIC is used when the device is not 790 * configured for an HT channel 791 */ 792 struct ieee80211_conf { 793 u32 flags; 794 int power_level, dynamic_ps_timeout; 795 int max_sleep_period; 796 797 u16 listen_interval; 798 u8 ps_dtim_period; 799 800 u8 long_frame_max_tx_count, short_frame_max_tx_count; 801 802 struct ieee80211_channel *channel; 803 enum nl80211_channel_type channel_type; 804 enum ieee80211_smps_mode smps_mode; 805 }; 806 807 /** 808 * struct ieee80211_channel_switch - holds the channel switch data 809 * 810 * The information provided in this structure is required for channel switch 811 * operation. 812 * 813 * @timestamp: value in microseconds of the 64-bit Time Synchronization 814 * Function (TSF) timer when the frame containing the channel switch 815 * announcement was received. This is simply the rx.mactime parameter 816 * the driver passed into mac80211. 817 * @block_tx: Indicates whether transmission must be blocked before the 818 * scheduled channel switch, as indicated by the AP. 819 * @channel: the new channel to switch to 820 * @count: the number of TBTT's until the channel switch event 821 */ 822 struct ieee80211_channel_switch { 823 u64 timestamp; 824 bool block_tx; 825 struct ieee80211_channel *channel; 826 u8 count; 827 }; 828 829 /** 830 * struct ieee80211_vif - per-interface data 831 * 832 * Data in this structure is continually present for driver 833 * use during the life of a virtual interface. 834 * 835 * @type: type of this virtual interface 836 * @bss_conf: BSS configuration for this interface, either our own 837 * or the BSS we're associated to 838 * @addr: address of this interface 839 * @p2p: indicates whether this AP or STA interface is a p2p 840 * interface, i.e. a GO or p2p-sta respectively 841 * @drv_priv: data area for driver use, will always be aligned to 842 * sizeof(void *). 843 */ 844 struct ieee80211_vif { 845 enum nl80211_iftype type; 846 struct ieee80211_bss_conf bss_conf; 847 u8 addr[ETH_ALEN]; 848 bool p2p; 849 /* must be last */ 850 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *)))); 851 }; 852 853 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif) 854 { 855 #ifdef CONFIG_MAC80211_MESH 856 return vif->type == NL80211_IFTYPE_MESH_POINT; 857 #endif 858 return false; 859 } 860 861 /** 862 * enum ieee80211_key_flags - key flags 863 * 864 * These flags are used for communication about keys between the driver 865 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf. 866 * 867 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates 868 * that the STA this key will be used with could be using QoS. 869 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the 870 * driver to indicate that it requires IV generation for this 871 * particular key. 872 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by 873 * the driver for a TKIP key if it requires Michael MIC 874 * generation in software. 875 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates 876 * that the key is pairwise rather then a shared key. 877 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a 878 * CCMP key if it requires CCMP encryption of management frames (MFP) to 879 * be done in software. 880 */ 881 enum ieee80211_key_flags { 882 IEEE80211_KEY_FLAG_WMM_STA = 1<<0, 883 IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1, 884 IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2, 885 IEEE80211_KEY_FLAG_PAIRWISE = 1<<3, 886 IEEE80211_KEY_FLAG_SW_MGMT = 1<<4, 887 }; 888 889 /** 890 * struct ieee80211_key_conf - key information 891 * 892 * This key information is given by mac80211 to the driver by 893 * the set_key() callback in &struct ieee80211_ops. 894 * 895 * @hw_key_idx: To be set by the driver, this is the key index the driver 896 * wants to be given when a frame is transmitted and needs to be 897 * encrypted in hardware. 898 * @cipher: The key's cipher suite selector. 899 * @flags: key flags, see &enum ieee80211_key_flags. 900 * @keyidx: the key index (0-3) 901 * @keylen: key material length 902 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte) 903 * data block: 904 * - Temporal Encryption Key (128 bits) 905 * - Temporal Authenticator Tx MIC Key (64 bits) 906 * - Temporal Authenticator Rx MIC Key (64 bits) 907 * @icv_len: The ICV length for this key type 908 * @iv_len: The IV length for this key type 909 */ 910 struct ieee80211_key_conf { 911 u32 cipher; 912 u8 icv_len; 913 u8 iv_len; 914 u8 hw_key_idx; 915 u8 flags; 916 s8 keyidx; 917 u8 keylen; 918 u8 key[0]; 919 }; 920 921 /** 922 * enum set_key_cmd - key command 923 * 924 * Used with the set_key() callback in &struct ieee80211_ops, this 925 * indicates whether a key is being removed or added. 926 * 927 * @SET_KEY: a key is set 928 * @DISABLE_KEY: a key must be disabled 929 */ 930 enum set_key_cmd { 931 SET_KEY, DISABLE_KEY, 932 }; 933 934 /** 935 * struct ieee80211_sta - station table entry 936 * 937 * A station table entry represents a station we are possibly 938 * communicating with. Since stations are RCU-managed in 939 * mac80211, any ieee80211_sta pointer you get access to must 940 * either be protected by rcu_read_lock() explicitly or implicitly, 941 * or you must take good care to not use such a pointer after a 942 * call to your sta_remove callback that removed it. 943 * 944 * @addr: MAC address 945 * @aid: AID we assigned to the station if we're an AP 946 * @supp_rates: Bitmap of supported rates (per band) 947 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities 948 * @wme: indicates whether the STA supports WME. Only valid during AP-mode. 949 * @drv_priv: data area for driver use, will always be aligned to 950 * sizeof(void *), size is determined in hw information. 951 */ 952 struct ieee80211_sta { 953 u32 supp_rates[IEEE80211_NUM_BANDS]; 954 u8 addr[ETH_ALEN]; 955 u16 aid; 956 struct ieee80211_sta_ht_cap ht_cap; 957 bool wme; 958 959 /* must be last */ 960 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *)))); 961 }; 962 963 /** 964 * enum sta_notify_cmd - sta notify command 965 * 966 * Used with the sta_notify() callback in &struct ieee80211_ops, this 967 * indicates if an associated station made a power state transition. 968 * 969 * @STA_NOTIFY_SLEEP: a station is now sleeping 970 * @STA_NOTIFY_AWAKE: a sleeping station woke up 971 */ 972 enum sta_notify_cmd { 973 STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE, 974 }; 975 976 /** 977 * enum ieee80211_hw_flags - hardware flags 978 * 979 * These flags are used to indicate hardware capabilities to 980 * the stack. Generally, flags here should have their meaning 981 * done in a way that the simplest hardware doesn't need setting 982 * any particular flags. There are some exceptions to this rule, 983 * however, so you are advised to review these flags carefully. 984 * 985 * @IEEE80211_HW_HAS_RATE_CONTROL: 986 * The hardware or firmware includes rate control, and cannot be 987 * controlled by the stack. As such, no rate control algorithm 988 * should be instantiated, and the TX rate reported to userspace 989 * will be taken from the TX status instead of the rate control 990 * algorithm. 991 * Note that this requires that the driver implement a number of 992 * callbacks so it has the correct information, it needs to have 993 * the @set_rts_threshold callback and must look at the BSS config 994 * @use_cts_prot for G/N protection, @use_short_slot for slot 995 * timing in 2.4 GHz and @use_short_preamble for preambles for 996 * CCK frames. 997 * 998 * @IEEE80211_HW_RX_INCLUDES_FCS: 999 * Indicates that received frames passed to the stack include 1000 * the FCS at the end. 1001 * 1002 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING: 1003 * Some wireless LAN chipsets buffer broadcast/multicast frames 1004 * for power saving stations in the hardware/firmware and others 1005 * rely on the host system for such buffering. This option is used 1006 * to configure the IEEE 802.11 upper layer to buffer broadcast and 1007 * multicast frames when there are power saving stations so that 1008 * the driver can fetch them with ieee80211_get_buffered_bc(). 1009 * 1010 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE: 1011 * Hardware is not capable of short slot operation on the 2.4 GHz band. 1012 * 1013 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE: 1014 * Hardware is not capable of receiving frames with short preamble on 1015 * the 2.4 GHz band. 1016 * 1017 * @IEEE80211_HW_SIGNAL_UNSPEC: 1018 * Hardware can provide signal values but we don't know its units. We 1019 * expect values between 0 and @max_signal. 1020 * If possible please provide dB or dBm instead. 1021 * 1022 * @IEEE80211_HW_SIGNAL_DBM: 1023 * Hardware gives signal values in dBm, decibel difference from 1024 * one milliwatt. This is the preferred method since it is standardized 1025 * between different devices. @max_signal does not need to be set. 1026 * 1027 * @IEEE80211_HW_SPECTRUM_MGMT: 1028 * Hardware supports spectrum management defined in 802.11h 1029 * Measurement, Channel Switch, Quieting, TPC 1030 * 1031 * @IEEE80211_HW_AMPDU_AGGREGATION: 1032 * Hardware supports 11n A-MPDU aggregation. 1033 * 1034 * @IEEE80211_HW_SUPPORTS_PS: 1035 * Hardware has power save support (i.e. can go to sleep). 1036 * 1037 * @IEEE80211_HW_PS_NULLFUNC_STACK: 1038 * Hardware requires nullfunc frame handling in stack, implies 1039 * stack support for dynamic PS. 1040 * 1041 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS: 1042 * Hardware has support for dynamic PS. 1043 * 1044 * @IEEE80211_HW_MFP_CAPABLE: 1045 * Hardware supports management frame protection (MFP, IEEE 802.11w). 1046 * 1047 * @IEEE80211_HW_BEACON_FILTER: 1048 * Hardware supports dropping of irrelevant beacon frames to 1049 * avoid waking up cpu. 1050 * 1051 * @IEEE80211_HW_SUPPORTS_STATIC_SMPS: 1052 * Hardware supports static spatial multiplexing powersave, 1053 * ie. can turn off all but one chain even on HT connections 1054 * that should be using more chains. 1055 * 1056 * @IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS: 1057 * Hardware supports dynamic spatial multiplexing powersave, 1058 * ie. can turn off all but one chain and then wake the rest 1059 * up as required after, for example, rts/cts handshake. 1060 * 1061 * @IEEE80211_HW_SUPPORTS_UAPSD: 1062 * Hardware supports Unscheduled Automatic Power Save Delivery 1063 * (U-APSD) in managed mode. The mode is configured with 1064 * conf_tx() operation. 1065 * 1066 * @IEEE80211_HW_REPORTS_TX_ACK_STATUS: 1067 * Hardware can provide ack status reports of Tx frames to 1068 * the stack. 1069 * 1070 * @IEEE80211_HW_CONNECTION_MONITOR: 1071 * The hardware performs its own connection monitoring, including 1072 * periodic keep-alives to the AP and probing the AP on beacon loss. 1073 * When this flag is set, signaling beacon-loss will cause an immediate 1074 * change to disassociated state. 1075 * 1076 * @IEEE80211_HW_SUPPORTS_CQM_RSSI: 1077 * Hardware can do connection quality monitoring - i.e. it can monitor 1078 * connection quality related parameters, such as the RSSI level and 1079 * provide notifications if configured trigger levels are reached. 1080 * 1081 * @IEEE80211_HW_NEED_DTIM_PERIOD: 1082 * This device needs to know the DTIM period for the BSS before 1083 * associating. 1084 * 1085 * @IEEE80211_HW_SUPPORTS_PER_STA_GTK: The device's crypto engine supports 1086 * per-station GTKs as used by IBSS RSN or during fast transition. If 1087 * the device doesn't support per-station GTKs, but can be asked not 1088 * to decrypt group addressed frames, then IBSS RSN support is still 1089 * possible but software crypto will be used. Advertise the wiphy flag 1090 * only in that case. 1091 * 1092 * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device 1093 * autonomously manages the PS status of connected stations. When 1094 * this flag is set mac80211 will not trigger PS mode for connected 1095 * stations based on the PM bit of incoming frames. 1096 * Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure 1097 * the PS mode of connected stations. 1098 */ 1099 enum ieee80211_hw_flags { 1100 IEEE80211_HW_HAS_RATE_CONTROL = 1<<0, 1101 IEEE80211_HW_RX_INCLUDES_FCS = 1<<1, 1102 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2, 1103 IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3, 1104 IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4, 1105 IEEE80211_HW_SIGNAL_UNSPEC = 1<<5, 1106 IEEE80211_HW_SIGNAL_DBM = 1<<6, 1107 IEEE80211_HW_NEED_DTIM_PERIOD = 1<<7, 1108 IEEE80211_HW_SPECTRUM_MGMT = 1<<8, 1109 IEEE80211_HW_AMPDU_AGGREGATION = 1<<9, 1110 IEEE80211_HW_SUPPORTS_PS = 1<<10, 1111 IEEE80211_HW_PS_NULLFUNC_STACK = 1<<11, 1112 IEEE80211_HW_SUPPORTS_DYNAMIC_PS = 1<<12, 1113 IEEE80211_HW_MFP_CAPABLE = 1<<13, 1114 IEEE80211_HW_BEACON_FILTER = 1<<14, 1115 IEEE80211_HW_SUPPORTS_STATIC_SMPS = 1<<15, 1116 IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS = 1<<16, 1117 IEEE80211_HW_SUPPORTS_UAPSD = 1<<17, 1118 IEEE80211_HW_REPORTS_TX_ACK_STATUS = 1<<18, 1119 IEEE80211_HW_CONNECTION_MONITOR = 1<<19, 1120 IEEE80211_HW_SUPPORTS_CQM_RSSI = 1<<20, 1121 IEEE80211_HW_SUPPORTS_PER_STA_GTK = 1<<21, 1122 IEEE80211_HW_AP_LINK_PS = 1<<22, 1123 }; 1124 1125 /** 1126 * struct ieee80211_hw - hardware information and state 1127 * 1128 * This structure contains the configuration and hardware 1129 * information for an 802.11 PHY. 1130 * 1131 * @wiphy: This points to the &struct wiphy allocated for this 1132 * 802.11 PHY. You must fill in the @perm_addr and @dev 1133 * members of this structure using SET_IEEE80211_DEV() 1134 * and SET_IEEE80211_PERM_ADDR(). Additionally, all supported 1135 * bands (with channels, bitrates) are registered here. 1136 * 1137 * @conf: &struct ieee80211_conf, device configuration, don't use. 1138 * 1139 * @priv: pointer to private area that was allocated for driver use 1140 * along with this structure. 1141 * 1142 * @flags: hardware flags, see &enum ieee80211_hw_flags. 1143 * 1144 * @extra_tx_headroom: headroom to reserve in each transmit skb 1145 * for use by the driver (e.g. for transmit headers.) 1146 * 1147 * @channel_change_time: time (in microseconds) it takes to change channels. 1148 * 1149 * @max_signal: Maximum value for signal (rssi) in RX information, used 1150 * only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB 1151 * 1152 * @max_listen_interval: max listen interval in units of beacon interval 1153 * that HW supports 1154 * 1155 * @queues: number of available hardware transmit queues for 1156 * data packets. WMM/QoS requires at least four, these 1157 * queues need to have configurable access parameters. 1158 * 1159 * @rate_control_algorithm: rate control algorithm for this hardware. 1160 * If unset (NULL), the default algorithm will be used. Must be 1161 * set before calling ieee80211_register_hw(). 1162 * 1163 * @vif_data_size: size (in bytes) of the drv_priv data area 1164 * within &struct ieee80211_vif. 1165 * @sta_data_size: size (in bytes) of the drv_priv data area 1166 * within &struct ieee80211_sta. 1167 * 1168 * @max_rates: maximum number of alternate rate retry stages the hw 1169 * can handle. 1170 * @max_report_rates: maximum number of alternate rate retry stages 1171 * the hw can report back. 1172 * @max_rate_tries: maximum number of tries for each stage 1173 * 1174 * @napi_weight: weight used for NAPI polling. You must specify an 1175 * appropriate value here if a napi_poll operation is provided 1176 * by your driver. 1177 * 1178 * @max_rx_aggregation_subframes: maximum buffer size (number of 1179 * sub-frames) to be used for A-MPDU block ack receiver 1180 * aggregation. 1181 * This is only relevant if the device has restrictions on the 1182 * number of subframes, if it relies on mac80211 to do reordering 1183 * it shouldn't be set. 1184 * 1185 * @max_tx_aggregation_subframes: maximum number of subframes in an 1186 * aggregate an HT driver will transmit, used by the peer as a 1187 * hint to size its reorder buffer. 1188 */ 1189 struct ieee80211_hw { 1190 struct ieee80211_conf conf; 1191 struct wiphy *wiphy; 1192 const char *rate_control_algorithm; 1193 void *priv; 1194 u32 flags; 1195 unsigned int extra_tx_headroom; 1196 int channel_change_time; 1197 int vif_data_size; 1198 int sta_data_size; 1199 int napi_weight; 1200 u16 queues; 1201 u16 max_listen_interval; 1202 s8 max_signal; 1203 u8 max_rates; 1204 u8 max_report_rates; 1205 u8 max_rate_tries; 1206 u8 max_rx_aggregation_subframes; 1207 u8 max_tx_aggregation_subframes; 1208 }; 1209 1210 /** 1211 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy 1212 * 1213 * @wiphy: the &struct wiphy which we want to query 1214 * 1215 * mac80211 drivers can use this to get to their respective 1216 * &struct ieee80211_hw. Drivers wishing to get to their own private 1217 * structure can then access it via hw->priv. Note that mac802111 drivers should 1218 * not use wiphy_priv() to try to get their private driver structure as this 1219 * is already used internally by mac80211. 1220 */ 1221 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy); 1222 1223 /** 1224 * SET_IEEE80211_DEV - set device for 802.11 hardware 1225 * 1226 * @hw: the &struct ieee80211_hw to set the device for 1227 * @dev: the &struct device of this 802.11 device 1228 */ 1229 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev) 1230 { 1231 set_wiphy_dev(hw->wiphy, dev); 1232 } 1233 1234 /** 1235 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware 1236 * 1237 * @hw: the &struct ieee80211_hw to set the MAC address for 1238 * @addr: the address to set 1239 */ 1240 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr) 1241 { 1242 memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN); 1243 } 1244 1245 static inline struct ieee80211_rate * 1246 ieee80211_get_tx_rate(const struct ieee80211_hw *hw, 1247 const struct ieee80211_tx_info *c) 1248 { 1249 if (WARN_ON(c->control.rates[0].idx < 0)) 1250 return NULL; 1251 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx]; 1252 } 1253 1254 static inline struct ieee80211_rate * 1255 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw, 1256 const struct ieee80211_tx_info *c) 1257 { 1258 if (c->control.rts_cts_rate_idx < 0) 1259 return NULL; 1260 return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx]; 1261 } 1262 1263 static inline struct ieee80211_rate * 1264 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw, 1265 const struct ieee80211_tx_info *c, int idx) 1266 { 1267 if (c->control.rates[idx + 1].idx < 0) 1268 return NULL; 1269 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx]; 1270 } 1271 1272 /** 1273 * DOC: Hardware crypto acceleration 1274 * 1275 * mac80211 is capable of taking advantage of many hardware 1276 * acceleration designs for encryption and decryption operations. 1277 * 1278 * The set_key() callback in the &struct ieee80211_ops for a given 1279 * device is called to enable hardware acceleration of encryption and 1280 * decryption. The callback takes a @sta parameter that will be NULL 1281 * for default keys or keys used for transmission only, or point to 1282 * the station information for the peer for individual keys. 1283 * Multiple transmission keys with the same key index may be used when 1284 * VLANs are configured for an access point. 1285 * 1286 * When transmitting, the TX control data will use the @hw_key_idx 1287 * selected by the driver by modifying the &struct ieee80211_key_conf 1288 * pointed to by the @key parameter to the set_key() function. 1289 * 1290 * The set_key() call for the %SET_KEY command should return 0 if 1291 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be 1292 * added; if you return 0 then hw_key_idx must be assigned to the 1293 * hardware key index, you are free to use the full u8 range. 1294 * 1295 * When the cmd is %DISABLE_KEY then it must succeed. 1296 * 1297 * Note that it is permissible to not decrypt a frame even if a key 1298 * for it has been uploaded to hardware, the stack will not make any 1299 * decision based on whether a key has been uploaded or not but rather 1300 * based on the receive flags. 1301 * 1302 * The &struct ieee80211_key_conf structure pointed to by the @key 1303 * parameter is guaranteed to be valid until another call to set_key() 1304 * removes it, but it can only be used as a cookie to differentiate 1305 * keys. 1306 * 1307 * In TKIP some HW need to be provided a phase 1 key, for RX decryption 1308 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key 1309 * handler. 1310 * The update_tkip_key() call updates the driver with the new phase 1 key. 1311 * This happens every time the iv16 wraps around (every 65536 packets). The 1312 * set_key() call will happen only once for each key (unless the AP did 1313 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is 1314 * provided by update_tkip_key only. The trigger that makes mac80211 call this 1315 * handler is software decryption with wrap around of iv16. 1316 */ 1317 1318 /** 1319 * DOC: Powersave support 1320 * 1321 * mac80211 has support for various powersave implementations. 1322 * 1323 * First, it can support hardware that handles all powersaving by itself, 1324 * such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS hardware 1325 * flag. In that case, it will be told about the desired powersave mode 1326 * with the %IEEE80211_CONF_PS flag depending on the association status. 1327 * The hardware must take care of sending nullfunc frames when necessary, 1328 * i.e. when entering and leaving powersave mode. The hardware is required 1329 * to look at the AID in beacons and signal to the AP that it woke up when 1330 * it finds traffic directed to it. 1331 * 1332 * %IEEE80211_CONF_PS flag enabled means that the powersave mode defined in 1333 * IEEE 802.11-2007 section 11.2 is enabled. This is not to be confused 1334 * with hardware wakeup and sleep states. Driver is responsible for waking 1335 * up the hardware before issuing commands to the hardware and putting it 1336 * back to sleep at appropriate times. 1337 * 1338 * When PS is enabled, hardware needs to wakeup for beacons and receive the 1339 * buffered multicast/broadcast frames after the beacon. Also it must be 1340 * possible to send frames and receive the acknowledment frame. 1341 * 1342 * Other hardware designs cannot send nullfunc frames by themselves and also 1343 * need software support for parsing the TIM bitmap. This is also supported 1344 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and 1345 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still 1346 * required to pass up beacons. The hardware is still required to handle 1347 * waking up for multicast traffic; if it cannot the driver must handle that 1348 * as best as it can, mac80211 is too slow to do that. 1349 * 1350 * Dynamic powersave is an extension to normal powersave in which the 1351 * hardware stays awake for a user-specified period of time after sending a 1352 * frame so that reply frames need not be buffered and therefore delayed to 1353 * the next wakeup. It's compromise of getting good enough latency when 1354 * there's data traffic and still saving significantly power in idle 1355 * periods. 1356 * 1357 * Dynamic powersave is simply supported by mac80211 enabling and disabling 1358 * PS based on traffic. Driver needs to only set %IEEE80211_HW_SUPPORTS_PS 1359 * flag and mac80211 will handle everything automatically. Additionally, 1360 * hardware having support for the dynamic PS feature may set the 1361 * %IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support 1362 * dynamic PS mode itself. The driver needs to look at the 1363 * @dynamic_ps_timeout hardware configuration value and use it that value 1364 * whenever %IEEE80211_CONF_PS is set. In this case mac80211 will disable 1365 * dynamic PS feature in stack and will just keep %IEEE80211_CONF_PS 1366 * enabled whenever user has enabled powersave. 1367 * 1368 * Some hardware need to toggle a single shared antenna between WLAN and 1369 * Bluetooth to facilitate co-existence. These types of hardware set 1370 * limitations on the use of host controlled dynamic powersave whenever there 1371 * is simultaneous WLAN and Bluetooth traffic. For these types of hardware, the 1372 * driver may request temporarily going into full power save, in order to 1373 * enable toggling the antenna between BT and WLAN. If the driver requests 1374 * disabling dynamic powersave, the @dynamic_ps_timeout value will be 1375 * temporarily set to zero until the driver re-enables dynamic powersave. 1376 * 1377 * Driver informs U-APSD client support by enabling 1378 * %IEEE80211_HW_SUPPORTS_UAPSD flag. The mode is configured through the 1379 * uapsd paramater in conf_tx() operation. Hardware needs to send the QoS 1380 * Nullfunc frames and stay awake until the service period has ended. To 1381 * utilize U-APSD, dynamic powersave is disabled for voip AC and all frames 1382 * from that AC are transmitted with powersave enabled. 1383 * 1384 * Note: U-APSD client mode is not yet supported with 1385 * %IEEE80211_HW_PS_NULLFUNC_STACK. 1386 */ 1387 1388 /** 1389 * DOC: Beacon filter support 1390 * 1391 * Some hardware have beacon filter support to reduce host cpu wakeups 1392 * which will reduce system power consumption. It usuallly works so that 1393 * the firmware creates a checksum of the beacon but omits all constantly 1394 * changing elements (TSF, TIM etc). Whenever the checksum changes the 1395 * beacon is forwarded to the host, otherwise it will be just dropped. That 1396 * way the host will only receive beacons where some relevant information 1397 * (for example ERP protection or WMM settings) have changed. 1398 * 1399 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER 1400 * hardware capability. The driver needs to enable beacon filter support 1401 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When 1402 * power save is enabled, the stack will not check for beacon loss and the 1403 * driver needs to notify about loss of beacons with ieee80211_beacon_loss(). 1404 * 1405 * The time (or number of beacons missed) until the firmware notifies the 1406 * driver of a beacon loss event (which in turn causes the driver to call 1407 * ieee80211_beacon_loss()) should be configurable and will be controlled 1408 * by mac80211 and the roaming algorithm in the future. 1409 * 1410 * Since there may be constantly changing information elements that nothing 1411 * in the software stack cares about, we will, in the future, have mac80211 1412 * tell the driver which information elements are interesting in the sense 1413 * that we want to see changes in them. This will include 1414 * - a list of information element IDs 1415 * - a list of OUIs for the vendor information element 1416 * 1417 * Ideally, the hardware would filter out any beacons without changes in the 1418 * requested elements, but if it cannot support that it may, at the expense 1419 * of some efficiency, filter out only a subset. For example, if the device 1420 * doesn't support checking for OUIs it should pass up all changes in all 1421 * vendor information elements. 1422 * 1423 * Note that change, for the sake of simplification, also includes information 1424 * elements appearing or disappearing from the beacon. 1425 * 1426 * Some hardware supports an "ignore list" instead, just make sure nothing 1427 * that was requested is on the ignore list, and include commonly changing 1428 * information element IDs in the ignore list, for example 11 (BSS load) and 1429 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136, 1430 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility 1431 * it could also include some currently unused IDs. 1432 * 1433 * 1434 * In addition to these capabilities, hardware should support notifying the 1435 * host of changes in the beacon RSSI. This is relevant to implement roaming 1436 * when no traffic is flowing (when traffic is flowing we see the RSSI of 1437 * the received data packets). This can consist in notifying the host when 1438 * the RSSI changes significantly or when it drops below or rises above 1439 * configurable thresholds. In the future these thresholds will also be 1440 * configured by mac80211 (which gets them from userspace) to implement 1441 * them as the roaming algorithm requires. 1442 * 1443 * If the hardware cannot implement this, the driver should ask it to 1444 * periodically pass beacon frames to the host so that software can do the 1445 * signal strength threshold checking. 1446 */ 1447 1448 /** 1449 * DOC: Spatial multiplexing power save 1450 * 1451 * SMPS (Spatial multiplexing power save) is a mechanism to conserve 1452 * power in an 802.11n implementation. For details on the mechanism 1453 * and rationale, please refer to 802.11 (as amended by 802.11n-2009) 1454 * "11.2.3 SM power save". 1455 * 1456 * The mac80211 implementation is capable of sending action frames 1457 * to update the AP about the station's SMPS mode, and will instruct 1458 * the driver to enter the specific mode. It will also announce the 1459 * requested SMPS mode during the association handshake. Hardware 1460 * support for this feature is required, and can be indicated by 1461 * hardware flags. 1462 * 1463 * The default mode will be "automatic", which nl80211/cfg80211 1464 * defines to be dynamic SMPS in (regular) powersave, and SMPS 1465 * turned off otherwise. 1466 * 1467 * To support this feature, the driver must set the appropriate 1468 * hardware support flags, and handle the SMPS flag to the config() 1469 * operation. It will then with this mechanism be instructed to 1470 * enter the requested SMPS mode while associated to an HT AP. 1471 */ 1472 1473 /** 1474 * DOC: Frame filtering 1475 * 1476 * mac80211 requires to see many management frames for proper 1477 * operation, and users may want to see many more frames when 1478 * in monitor mode. However, for best CPU usage and power consumption, 1479 * having as few frames as possible percolate through the stack is 1480 * desirable. Hence, the hardware should filter as much as possible. 1481 * 1482 * To achieve this, mac80211 uses filter flags (see below) to tell 1483 * the driver's configure_filter() function which frames should be 1484 * passed to mac80211 and which should be filtered out. 1485 * 1486 * Before configure_filter() is invoked, the prepare_multicast() 1487 * callback is invoked with the parameters @mc_count and @mc_list 1488 * for the combined multicast address list of all virtual interfaces. 1489 * It's use is optional, and it returns a u64 that is passed to 1490 * configure_filter(). Additionally, configure_filter() has the 1491 * arguments @changed_flags telling which flags were changed and 1492 * @total_flags with the new flag states. 1493 * 1494 * If your device has no multicast address filters your driver will 1495 * need to check both the %FIF_ALLMULTI flag and the @mc_count 1496 * parameter to see whether multicast frames should be accepted 1497 * or dropped. 1498 * 1499 * All unsupported flags in @total_flags must be cleared. 1500 * Hardware does not support a flag if it is incapable of _passing_ 1501 * the frame to the stack. Otherwise the driver must ignore 1502 * the flag, but not clear it. 1503 * You must _only_ clear the flag (announce no support for the 1504 * flag to mac80211) if you are not able to pass the packet type 1505 * to the stack (so the hardware always filters it). 1506 * So for example, you should clear @FIF_CONTROL, if your hardware 1507 * always filters control frames. If your hardware always passes 1508 * control frames to the kernel and is incapable of filtering them, 1509 * you do _not_ clear the @FIF_CONTROL flag. 1510 * This rule applies to all other FIF flags as well. 1511 */ 1512 1513 /** 1514 * enum ieee80211_filter_flags - hardware filter flags 1515 * 1516 * These flags determine what the filter in hardware should be 1517 * programmed to let through and what should not be passed to the 1518 * stack. It is always safe to pass more frames than requested, 1519 * but this has negative impact on power consumption. 1520 * 1521 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS, 1522 * think of the BSS as your network segment and then this corresponds 1523 * to the regular ethernet device promiscuous mode. 1524 * 1525 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested 1526 * by the user or if the hardware is not capable of filtering by 1527 * multicast address. 1528 * 1529 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the 1530 * %RX_FLAG_FAILED_FCS_CRC for them) 1531 * 1532 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set 1533 * the %RX_FLAG_FAILED_PLCP_CRC for them 1534 * 1535 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate 1536 * to the hardware that it should not filter beacons or probe responses 1537 * by BSSID. Filtering them can greatly reduce the amount of processing 1538 * mac80211 needs to do and the amount of CPU wakeups, so you should 1539 * honour this flag if possible. 1540 * 1541 * @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS 1542 * is not set then only those addressed to this station. 1543 * 1544 * @FIF_OTHER_BSS: pass frames destined to other BSSes 1545 * 1546 * @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS is not set then only 1547 * those addressed to this station. 1548 * 1549 * @FIF_PROBE_REQ: pass probe request frames 1550 */ 1551 enum ieee80211_filter_flags { 1552 FIF_PROMISC_IN_BSS = 1<<0, 1553 FIF_ALLMULTI = 1<<1, 1554 FIF_FCSFAIL = 1<<2, 1555 FIF_PLCPFAIL = 1<<3, 1556 FIF_BCN_PRBRESP_PROMISC = 1<<4, 1557 FIF_CONTROL = 1<<5, 1558 FIF_OTHER_BSS = 1<<6, 1559 FIF_PSPOLL = 1<<7, 1560 FIF_PROBE_REQ = 1<<8, 1561 }; 1562 1563 /** 1564 * enum ieee80211_ampdu_mlme_action - A-MPDU actions 1565 * 1566 * These flags are used with the ampdu_action() callback in 1567 * &struct ieee80211_ops to indicate which action is needed. 1568 * 1569 * Note that drivers MUST be able to deal with a TX aggregation 1570 * session being stopped even before they OK'ed starting it by 1571 * calling ieee80211_start_tx_ba_cb_irqsafe, because the peer 1572 * might receive the addBA frame and send a delBA right away! 1573 * 1574 * @IEEE80211_AMPDU_RX_START: start Rx aggregation 1575 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation 1576 * @IEEE80211_AMPDU_TX_START: start Tx aggregation 1577 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation 1578 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational 1579 */ 1580 enum ieee80211_ampdu_mlme_action { 1581 IEEE80211_AMPDU_RX_START, 1582 IEEE80211_AMPDU_RX_STOP, 1583 IEEE80211_AMPDU_TX_START, 1584 IEEE80211_AMPDU_TX_STOP, 1585 IEEE80211_AMPDU_TX_OPERATIONAL, 1586 }; 1587 1588 /** 1589 * enum ieee80211_tx_sync_type - TX sync type 1590 * @IEEE80211_TX_SYNC_AUTH: sync TX for authentication 1591 * (and possibly also before direct probe) 1592 * @IEEE80211_TX_SYNC_ASSOC: sync TX for association 1593 * @IEEE80211_TX_SYNC_ACTION: sync TX for action frame 1594 * (not implemented yet) 1595 */ 1596 enum ieee80211_tx_sync_type { 1597 IEEE80211_TX_SYNC_AUTH, 1598 IEEE80211_TX_SYNC_ASSOC, 1599 IEEE80211_TX_SYNC_ACTION, 1600 }; 1601 1602 /** 1603 * struct ieee80211_ops - callbacks from mac80211 to the driver 1604 * 1605 * This structure contains various callbacks that the driver may 1606 * handle or, in some cases, must handle, for example to configure 1607 * the hardware to a new channel or to transmit a frame. 1608 * 1609 * @tx: Handler that 802.11 module calls for each transmitted frame. 1610 * skb contains the buffer starting from the IEEE 802.11 header. 1611 * The low-level driver should send the frame out based on 1612 * configuration in the TX control data. This handler should, 1613 * preferably, never fail and stop queues appropriately, more 1614 * importantly, however, it must never fail for A-MPDU-queues. 1615 * This function should return NETDEV_TX_OK except in very 1616 * limited cases. 1617 * Must be implemented and atomic. 1618 * 1619 * @start: Called before the first netdevice attached to the hardware 1620 * is enabled. This should turn on the hardware and must turn on 1621 * frame reception (for possibly enabled monitor interfaces.) 1622 * Returns negative error codes, these may be seen in userspace, 1623 * or zero. 1624 * When the device is started it should not have a MAC address 1625 * to avoid acknowledging frames before a non-monitor device 1626 * is added. 1627 * Must be implemented and can sleep. 1628 * 1629 * @stop: Called after last netdevice attached to the hardware 1630 * is disabled. This should turn off the hardware (at least 1631 * it must turn off frame reception.) 1632 * May be called right after add_interface if that rejects 1633 * an interface. If you added any work onto the mac80211 workqueue 1634 * you should ensure to cancel it on this callback. 1635 * Must be implemented and can sleep. 1636 * 1637 * @suspend: Suspend the device; mac80211 itself will quiesce before and 1638 * stop transmitting and doing any other configuration, and then 1639 * ask the device to suspend. This is only invoked when WoWLAN is 1640 * configured, otherwise the device is deconfigured completely and 1641 * reconfigured at resume time. 1642 * The driver may also impose special conditions under which it 1643 * wants to use the "normal" suspend (deconfigure), say if it only 1644 * supports WoWLAN when the device is associated. In this case, it 1645 * must return 1 from this function. 1646 * 1647 * @resume: If WoWLAN was configured, this indicates that mac80211 is 1648 * now resuming its operation, after this the device must be fully 1649 * functional again. If this returns an error, the only way out is 1650 * to also unregister the device. If it returns 1, then mac80211 1651 * will also go through the regular complete restart on resume. 1652 * 1653 * @add_interface: Called when a netdevice attached to the hardware is 1654 * enabled. Because it is not called for monitor mode devices, @start 1655 * and @stop must be implemented. 1656 * The driver should perform any initialization it needs before 1657 * the device can be enabled. The initial configuration for the 1658 * interface is given in the conf parameter. 1659 * The callback may refuse to add an interface by returning a 1660 * negative error code (which will be seen in userspace.) 1661 * Must be implemented and can sleep. 1662 * 1663 * @change_interface: Called when a netdevice changes type. This callback 1664 * is optional, but only if it is supported can interface types be 1665 * switched while the interface is UP. The callback may sleep. 1666 * Note that while an interface is being switched, it will not be 1667 * found by the interface iteration callbacks. 1668 * 1669 * @remove_interface: Notifies a driver that an interface is going down. 1670 * The @stop callback is called after this if it is the last interface 1671 * and no monitor interfaces are present. 1672 * When all interfaces are removed, the MAC address in the hardware 1673 * must be cleared so the device no longer acknowledges packets, 1674 * the mac_addr member of the conf structure is, however, set to the 1675 * MAC address of the device going away. 1676 * Hence, this callback must be implemented. It can sleep. 1677 * 1678 * @config: Handler for configuration requests. IEEE 802.11 code calls this 1679 * function to change hardware configuration, e.g., channel. 1680 * This function should never fail but returns a negative error code 1681 * if it does. The callback can sleep. 1682 * 1683 * @bss_info_changed: Handler for configuration requests related to BSS 1684 * parameters that may vary during BSS's lifespan, and may affect low 1685 * level driver (e.g. assoc/disassoc status, erp parameters). 1686 * This function should not be used if no BSS has been set, unless 1687 * for association indication. The @changed parameter indicates which 1688 * of the bss parameters has changed when a call is made. The callback 1689 * can sleep. 1690 * 1691 * @tx_sync: Called before a frame is sent to an AP/GO. In the GO case, the 1692 * driver should sync with the GO's powersaving so the device doesn't 1693 * transmit the frame while the GO is asleep. In the regular AP case 1694 * it may be used by drivers for devices implementing other restrictions 1695 * on talking to APs, e.g. due to regulatory enforcement or just HW 1696 * restrictions. 1697 * This function is called for every authentication, association and 1698 * action frame separately since applications might attempt to auth 1699 * with multiple APs before chosing one to associate to. If it returns 1700 * an error, the corresponding authentication, association or frame 1701 * transmission is aborted and reported as having failed. It is always 1702 * called after tuning to the correct channel. 1703 * The callback might be called multiple times before @finish_tx_sync 1704 * (but @finish_tx_sync will be called once for each) but in practice 1705 * this is unlikely to happen. It can also refuse in that case if the 1706 * driver cannot handle that situation. 1707 * This callback can sleep. 1708 * @finish_tx_sync: Called as a counterpart to @tx_sync, unless that returned 1709 * an error. This callback can sleep. 1710 * 1711 * @prepare_multicast: Prepare for multicast filter configuration. 1712 * This callback is optional, and its return value is passed 1713 * to configure_filter(). This callback must be atomic. 1714 * 1715 * @configure_filter: Configure the device's RX filter. 1716 * See the section "Frame filtering" for more information. 1717 * This callback must be implemented and can sleep. 1718 * 1719 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit 1720 * must be set or cleared for a given STA. Must be atomic. 1721 * 1722 * @set_key: See the section "Hardware crypto acceleration" 1723 * This callback is only called between add_interface and 1724 * remove_interface calls, i.e. while the given virtual interface 1725 * is enabled. 1726 * Returns a negative error code if the key can't be added. 1727 * The callback can sleep. 1728 * 1729 * @update_tkip_key: See the section "Hardware crypto acceleration" 1730 * This callback will be called in the context of Rx. Called for drivers 1731 * which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY. 1732 * The callback must be atomic. 1733 * 1734 * @set_rekey_data: If the device supports GTK rekeying, for example while the 1735 * host is suspended, it can assign this callback to retrieve the data 1736 * necessary to do GTK rekeying, this is the KEK, KCK and replay counter. 1737 * After rekeying was done it should (for example during resume) notify 1738 * userspace of the new replay counter using ieee80211_gtk_rekey_notify(). 1739 * 1740 * @hw_scan: Ask the hardware to service the scan request, no need to start 1741 * the scan state machine in stack. The scan must honour the channel 1742 * configuration done by the regulatory agent in the wiphy's 1743 * registered bands. The hardware (or the driver) needs to make sure 1744 * that power save is disabled. 1745 * The @req ie/ie_len members are rewritten by mac80211 to contain the 1746 * entire IEs after the SSID, so that drivers need not look at these 1747 * at all but just send them after the SSID -- mac80211 includes the 1748 * (extended) supported rates and HT information (where applicable). 1749 * When the scan finishes, ieee80211_scan_completed() must be called; 1750 * note that it also must be called when the scan cannot finish due to 1751 * any error unless this callback returned a negative error code. 1752 * The callback can sleep. 1753 * 1754 * @cancel_hw_scan: Ask the low-level tp cancel the active hw scan. 1755 * The driver should ask the hardware to cancel the scan (if possible), 1756 * but the scan will be completed only after the driver will call 1757 * ieee80211_scan_completed(). 1758 * This callback is needed for wowlan, to prevent enqueueing a new 1759 * scan_work after the low-level driver was already suspended. 1760 * The callback can sleep. 1761 * 1762 * @sched_scan_start: Ask the hardware to start scanning repeatedly at 1763 * specific intervals. The driver must call the 1764 * ieee80211_sched_scan_results() function whenever it finds results. 1765 * This process will continue until sched_scan_stop is called. 1766 * 1767 * @sched_scan_stop: Tell the hardware to stop an ongoing scheduled scan. 1768 * 1769 * @sw_scan_start: Notifier function that is called just before a software scan 1770 * is started. Can be NULL, if the driver doesn't need this notification. 1771 * The callback can sleep. 1772 * 1773 * @sw_scan_complete: Notifier function that is called just after a 1774 * software scan finished. Can be NULL, if the driver doesn't need 1775 * this notification. 1776 * The callback can sleep. 1777 * 1778 * @get_stats: Return low-level statistics. 1779 * Returns zero if statistics are available. 1780 * The callback can sleep. 1781 * 1782 * @get_tkip_seq: If your device implements TKIP encryption in hardware this 1783 * callback should be provided to read the TKIP transmit IVs (both IV32 1784 * and IV16) for the given key from hardware. 1785 * The callback must be atomic. 1786 * 1787 * @set_frag_threshold: Configuration of fragmentation threshold. Assign this 1788 * if the device does fragmentation by itself; if this callback is 1789 * implemented then the stack will not do fragmentation. 1790 * The callback can sleep. 1791 * 1792 * @set_rts_threshold: Configuration of RTS threshold (if device needs it) 1793 * The callback can sleep. 1794 * 1795 * @sta_add: Notifies low level driver about addition of an associated station, 1796 * AP, IBSS/WDS/mesh peer etc. This callback can sleep. 1797 * 1798 * @sta_remove: Notifies low level driver about removal of an associated 1799 * station, AP, IBSS/WDS/mesh peer etc. This callback can sleep. 1800 * 1801 * @sta_notify: Notifies low level driver about power state transition of an 1802 * associated station, AP, IBSS/WDS/mesh peer etc. For a VIF operating 1803 * in AP mode, this callback will not be called when the flag 1804 * %IEEE80211_HW_AP_LINK_PS is set. Must be atomic. 1805 * 1806 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), 1807 * bursting) for a hardware TX queue. 1808 * Returns a negative error code on failure. 1809 * The callback can sleep. 1810 * 1811 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently, 1812 * this is only used for IBSS mode BSSID merging and debugging. Is not a 1813 * required function. 1814 * The callback can sleep. 1815 * 1816 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware. 1817 * Currently, this is only used for IBSS mode debugging. Is not a 1818 * required function. 1819 * The callback can sleep. 1820 * 1821 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize 1822 * with other STAs in the IBSS. This is only used in IBSS mode. This 1823 * function is optional if the firmware/hardware takes full care of 1824 * TSF synchronization. 1825 * The callback can sleep. 1826 * 1827 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us. 1828 * This is needed only for IBSS mode and the result of this function is 1829 * used to determine whether to reply to Probe Requests. 1830 * Returns non-zero if this device sent the last beacon. 1831 * The callback can sleep. 1832 * 1833 * @ampdu_action: Perform a certain A-MPDU action 1834 * The RA/TID combination determines the destination and TID we want 1835 * the ampdu action to be performed for. The action is defined through 1836 * ieee80211_ampdu_mlme_action. Starting sequence number (@ssn) 1837 * is the first frame we expect to perform the action on. Notice 1838 * that TX/RX_STOP can pass NULL for this parameter. 1839 * The @buf_size parameter is only valid when the action is set to 1840 * %IEEE80211_AMPDU_TX_OPERATIONAL and indicates the peer's reorder 1841 * buffer size (number of subframes) for this session -- the driver 1842 * may neither send aggregates containing more subframes than this 1843 * nor send aggregates in a way that lost frames would exceed the 1844 * buffer size. If just limiting the aggregate size, this would be 1845 * possible with a buf_size of 8: 1846 * - TX: 1.....7 1847 * - RX: 2....7 (lost frame #1) 1848 * - TX: 8..1... 1849 * which is invalid since #1 was now re-transmitted well past the 1850 * buffer size of 8. Correct ways to retransmit #1 would be: 1851 * - TX: 1 or 18 or 81 1852 * Even "189" would be wrong since 1 could be lost again. 1853 * 1854 * Returns a negative error code on failure. 1855 * The callback can sleep. 1856 * 1857 * @get_survey: Return per-channel survey information 1858 * 1859 * @rfkill_poll: Poll rfkill hardware state. If you need this, you also 1860 * need to set wiphy->rfkill_poll to %true before registration, 1861 * and need to call wiphy_rfkill_set_hw_state() in the callback. 1862 * The callback can sleep. 1863 * 1864 * @set_coverage_class: Set slot time for given coverage class as specified 1865 * in IEEE 802.11-2007 section 17.3.8.6 and modify ACK timeout 1866 * accordingly. This callback is not required and may sleep. 1867 * 1868 * @testmode_cmd: Implement a cfg80211 test mode command. 1869 * The callback can sleep. 1870 * @testmode_dump: Implement a cfg80211 test mode dump. The callback can sleep. 1871 * 1872 * @flush: Flush all pending frames from the hardware queue, making sure 1873 * that the hardware queues are empty. If the parameter @drop is set 1874 * to %true, pending frames may be dropped. The callback can sleep. 1875 * 1876 * @channel_switch: Drivers that need (or want) to offload the channel 1877 * switch operation for CSAs received from the AP may implement this 1878 * callback. They must then call ieee80211_chswitch_done() to indicate 1879 * completion of the channel switch. 1880 * 1881 * @napi_poll: Poll Rx queue for incoming data frames. 1882 * 1883 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device. 1884 * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may 1885 * reject TX/RX mask combinations they cannot support by returning -EINVAL 1886 * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX). 1887 * 1888 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant). 1889 * 1890 * @remain_on_channel: Starts an off-channel period on the given channel, must 1891 * call back to ieee80211_ready_on_channel() when on that channel. Note 1892 * that normal channel traffic is not stopped as this is intended for hw 1893 * offload. Frames to transmit on the off-channel channel are transmitted 1894 * normally except for the %IEEE80211_TX_CTL_TX_OFFCHAN flag. When the 1895 * duration (which will always be non-zero) expires, the driver must call 1896 * ieee80211_remain_on_channel_expired(). This callback may sleep. 1897 * @cancel_remain_on_channel: Requests that an ongoing off-channel period is 1898 * aborted before it expires. This callback may sleep. 1899 * @offchannel_tx: Transmit frame on another channel, wait for a response 1900 * and return. Reliable TX status must be reported for the frame. If the 1901 * return value is 1, then the @remain_on_channel will be used with a 1902 * regular transmission (if supported.) 1903 * @offchannel_tx_cancel_wait: cancel wait associated with offchannel TX 1904 * 1905 * @set_ringparam: Set tx and rx ring sizes. 1906 * 1907 * @get_ringparam: Get tx and rx ring current and maximum sizes. 1908 * 1909 * @tx_frames_pending: Check if there is any pending frame in the hardware 1910 * queues before entering power save. 1911 * 1912 * @set_bitrate_mask: Set a mask of rates to be used for rate control selection 1913 * when transmitting a frame. Currently only legacy rates are handled. 1914 * The callback can sleep. 1915 * @rssi_callback: Notify driver when the average RSSI goes above/below 1916 * thresholds that were registered previously. The callback can sleep. 1917 */ 1918 struct ieee80211_ops { 1919 void (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb); 1920 int (*start)(struct ieee80211_hw *hw); 1921 void (*stop)(struct ieee80211_hw *hw); 1922 #ifdef CONFIG_PM 1923 int (*suspend)(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan); 1924 int (*resume)(struct ieee80211_hw *hw); 1925 #endif 1926 int (*add_interface)(struct ieee80211_hw *hw, 1927 struct ieee80211_vif *vif); 1928 int (*change_interface)(struct ieee80211_hw *hw, 1929 struct ieee80211_vif *vif, 1930 enum nl80211_iftype new_type, bool p2p); 1931 void (*remove_interface)(struct ieee80211_hw *hw, 1932 struct ieee80211_vif *vif); 1933 int (*config)(struct ieee80211_hw *hw, u32 changed); 1934 void (*bss_info_changed)(struct ieee80211_hw *hw, 1935 struct ieee80211_vif *vif, 1936 struct ieee80211_bss_conf *info, 1937 u32 changed); 1938 1939 int (*tx_sync)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1940 const u8 *bssid, enum ieee80211_tx_sync_type type); 1941 void (*finish_tx_sync)(struct ieee80211_hw *hw, 1942 struct ieee80211_vif *vif, 1943 const u8 *bssid, 1944 enum ieee80211_tx_sync_type type); 1945 1946 u64 (*prepare_multicast)(struct ieee80211_hw *hw, 1947 struct netdev_hw_addr_list *mc_list); 1948 void (*configure_filter)(struct ieee80211_hw *hw, 1949 unsigned int changed_flags, 1950 unsigned int *total_flags, 1951 u64 multicast); 1952 int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 1953 bool set); 1954 int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1955 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 1956 struct ieee80211_key_conf *key); 1957 void (*update_tkip_key)(struct ieee80211_hw *hw, 1958 struct ieee80211_vif *vif, 1959 struct ieee80211_key_conf *conf, 1960 struct ieee80211_sta *sta, 1961 u32 iv32, u16 *phase1key); 1962 void (*set_rekey_data)(struct ieee80211_hw *hw, 1963 struct ieee80211_vif *vif, 1964 struct cfg80211_gtk_rekey_data *data); 1965 int (*hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1966 struct cfg80211_scan_request *req); 1967 void (*cancel_hw_scan)(struct ieee80211_hw *hw, 1968 struct ieee80211_vif *vif); 1969 int (*sched_scan_start)(struct ieee80211_hw *hw, 1970 struct ieee80211_vif *vif, 1971 struct cfg80211_sched_scan_request *req, 1972 struct ieee80211_sched_scan_ies *ies); 1973 void (*sched_scan_stop)(struct ieee80211_hw *hw, 1974 struct ieee80211_vif *vif); 1975 void (*sw_scan_start)(struct ieee80211_hw *hw); 1976 void (*sw_scan_complete)(struct ieee80211_hw *hw); 1977 int (*get_stats)(struct ieee80211_hw *hw, 1978 struct ieee80211_low_level_stats *stats); 1979 void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx, 1980 u32 *iv32, u16 *iv16); 1981 int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value); 1982 int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value); 1983 int (*sta_add)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1984 struct ieee80211_sta *sta); 1985 int (*sta_remove)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1986 struct ieee80211_sta *sta); 1987 void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1988 enum sta_notify_cmd, struct ieee80211_sta *sta); 1989 int (*conf_tx)(struct ieee80211_hw *hw, u16 queue, 1990 const struct ieee80211_tx_queue_params *params); 1991 u64 (*get_tsf)(struct ieee80211_hw *hw); 1992 void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf); 1993 void (*reset_tsf)(struct ieee80211_hw *hw); 1994 int (*tx_last_beacon)(struct ieee80211_hw *hw); 1995 int (*ampdu_action)(struct ieee80211_hw *hw, 1996 struct ieee80211_vif *vif, 1997 enum ieee80211_ampdu_mlme_action action, 1998 struct ieee80211_sta *sta, u16 tid, u16 *ssn, 1999 u8 buf_size); 2000 int (*get_survey)(struct ieee80211_hw *hw, int idx, 2001 struct survey_info *survey); 2002 void (*rfkill_poll)(struct ieee80211_hw *hw); 2003 void (*set_coverage_class)(struct ieee80211_hw *hw, u8 coverage_class); 2004 #ifdef CONFIG_NL80211_TESTMODE 2005 int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len); 2006 int (*testmode_dump)(struct ieee80211_hw *hw, struct sk_buff *skb, 2007 struct netlink_callback *cb, 2008 void *data, int len); 2009 #endif 2010 void (*flush)(struct ieee80211_hw *hw, bool drop); 2011 void (*channel_switch)(struct ieee80211_hw *hw, 2012 struct ieee80211_channel_switch *ch_switch); 2013 int (*napi_poll)(struct ieee80211_hw *hw, int budget); 2014 int (*set_antenna)(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); 2015 int (*get_antenna)(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); 2016 2017 int (*remain_on_channel)(struct ieee80211_hw *hw, 2018 struct ieee80211_channel *chan, 2019 enum nl80211_channel_type channel_type, 2020 int duration); 2021 int (*cancel_remain_on_channel)(struct ieee80211_hw *hw); 2022 int (*offchannel_tx)(struct ieee80211_hw *hw, struct sk_buff *skb, 2023 struct ieee80211_channel *chan, 2024 enum nl80211_channel_type channel_type, 2025 unsigned int wait); 2026 int (*offchannel_tx_cancel_wait)(struct ieee80211_hw *hw); 2027 int (*set_ringparam)(struct ieee80211_hw *hw, u32 tx, u32 rx); 2028 void (*get_ringparam)(struct ieee80211_hw *hw, 2029 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); 2030 bool (*tx_frames_pending)(struct ieee80211_hw *hw); 2031 int (*set_bitrate_mask)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2032 const struct cfg80211_bitrate_mask *mask); 2033 void (*rssi_callback)(struct ieee80211_hw *hw, 2034 enum ieee80211_rssi_event rssi_event); 2035 }; 2036 2037 /** 2038 * ieee80211_alloc_hw - Allocate a new hardware device 2039 * 2040 * This must be called once for each hardware device. The returned pointer 2041 * must be used to refer to this device when calling other functions. 2042 * mac80211 allocates a private data area for the driver pointed to by 2043 * @priv in &struct ieee80211_hw, the size of this area is given as 2044 * @priv_data_len. 2045 * 2046 * @priv_data_len: length of private data 2047 * @ops: callbacks for this device 2048 */ 2049 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, 2050 const struct ieee80211_ops *ops); 2051 2052 /** 2053 * ieee80211_register_hw - Register hardware device 2054 * 2055 * You must call this function before any other functions in 2056 * mac80211. Note that before a hardware can be registered, you 2057 * need to fill the contained wiphy's information. 2058 * 2059 * @hw: the device to register as returned by ieee80211_alloc_hw() 2060 */ 2061 int ieee80211_register_hw(struct ieee80211_hw *hw); 2062 2063 /** 2064 * struct ieee80211_tpt_blink - throughput blink description 2065 * @throughput: throughput in Kbit/sec 2066 * @blink_time: blink time in milliseconds 2067 * (full cycle, ie. one off + one on period) 2068 */ 2069 struct ieee80211_tpt_blink { 2070 int throughput; 2071 int blink_time; 2072 }; 2073 2074 /** 2075 * enum ieee80211_tpt_led_trigger_flags - throughput trigger flags 2076 * @IEEE80211_TPT_LEDTRIG_FL_RADIO: enable blinking with radio 2077 * @IEEE80211_TPT_LEDTRIG_FL_WORK: enable blinking when working 2078 * @IEEE80211_TPT_LEDTRIG_FL_CONNECTED: enable blinking when at least one 2079 * interface is connected in some way, including being an AP 2080 */ 2081 enum ieee80211_tpt_led_trigger_flags { 2082 IEEE80211_TPT_LEDTRIG_FL_RADIO = BIT(0), 2083 IEEE80211_TPT_LEDTRIG_FL_WORK = BIT(1), 2084 IEEE80211_TPT_LEDTRIG_FL_CONNECTED = BIT(2), 2085 }; 2086 2087 #ifdef CONFIG_MAC80211_LEDS 2088 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw); 2089 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw); 2090 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw); 2091 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw); 2092 extern char *__ieee80211_create_tpt_led_trigger( 2093 struct ieee80211_hw *hw, unsigned int flags, 2094 const struct ieee80211_tpt_blink *blink_table, 2095 unsigned int blink_table_len); 2096 #endif 2097 /** 2098 * ieee80211_get_tx_led_name - get name of TX LED 2099 * 2100 * mac80211 creates a transmit LED trigger for each wireless hardware 2101 * that can be used to drive LEDs if your driver registers a LED device. 2102 * This function returns the name (or %NULL if not configured for LEDs) 2103 * of the trigger so you can automatically link the LED device. 2104 * 2105 * @hw: the hardware to get the LED trigger name for 2106 */ 2107 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw) 2108 { 2109 #ifdef CONFIG_MAC80211_LEDS 2110 return __ieee80211_get_tx_led_name(hw); 2111 #else 2112 return NULL; 2113 #endif 2114 } 2115 2116 /** 2117 * ieee80211_get_rx_led_name - get name of RX LED 2118 * 2119 * mac80211 creates a receive LED trigger for each wireless hardware 2120 * that can be used to drive LEDs if your driver registers a LED device. 2121 * This function returns the name (or %NULL if not configured for LEDs) 2122 * of the trigger so you can automatically link the LED device. 2123 * 2124 * @hw: the hardware to get the LED trigger name for 2125 */ 2126 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw) 2127 { 2128 #ifdef CONFIG_MAC80211_LEDS 2129 return __ieee80211_get_rx_led_name(hw); 2130 #else 2131 return NULL; 2132 #endif 2133 } 2134 2135 /** 2136 * ieee80211_get_assoc_led_name - get name of association LED 2137 * 2138 * mac80211 creates a association LED trigger for each wireless hardware 2139 * that can be used to drive LEDs if your driver registers a LED device. 2140 * This function returns the name (or %NULL if not configured for LEDs) 2141 * of the trigger so you can automatically link the LED device. 2142 * 2143 * @hw: the hardware to get the LED trigger name for 2144 */ 2145 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw) 2146 { 2147 #ifdef CONFIG_MAC80211_LEDS 2148 return __ieee80211_get_assoc_led_name(hw); 2149 #else 2150 return NULL; 2151 #endif 2152 } 2153 2154 /** 2155 * ieee80211_get_radio_led_name - get name of radio LED 2156 * 2157 * mac80211 creates a radio change LED trigger for each wireless hardware 2158 * that can be used to drive LEDs if your driver registers a LED device. 2159 * This function returns the name (or %NULL if not configured for LEDs) 2160 * of the trigger so you can automatically link the LED device. 2161 * 2162 * @hw: the hardware to get the LED trigger name for 2163 */ 2164 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw) 2165 { 2166 #ifdef CONFIG_MAC80211_LEDS 2167 return __ieee80211_get_radio_led_name(hw); 2168 #else 2169 return NULL; 2170 #endif 2171 } 2172 2173 /** 2174 * ieee80211_create_tpt_led_trigger - create throughput LED trigger 2175 * @hw: the hardware to create the trigger for 2176 * @flags: trigger flags, see &enum ieee80211_tpt_led_trigger_flags 2177 * @blink_table: the blink table -- needs to be ordered by throughput 2178 * @blink_table_len: size of the blink table 2179 * 2180 * This function returns %NULL (in case of error, or if no LED 2181 * triggers are configured) or the name of the new trigger. 2182 * This function must be called before ieee80211_register_hw(). 2183 */ 2184 static inline char * 2185 ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, unsigned int flags, 2186 const struct ieee80211_tpt_blink *blink_table, 2187 unsigned int blink_table_len) 2188 { 2189 #ifdef CONFIG_MAC80211_LEDS 2190 return __ieee80211_create_tpt_led_trigger(hw, flags, blink_table, 2191 blink_table_len); 2192 #else 2193 return NULL; 2194 #endif 2195 } 2196 2197 /** 2198 * ieee80211_unregister_hw - Unregister a hardware device 2199 * 2200 * This function instructs mac80211 to free allocated resources 2201 * and unregister netdevices from the networking subsystem. 2202 * 2203 * @hw: the hardware to unregister 2204 */ 2205 void ieee80211_unregister_hw(struct ieee80211_hw *hw); 2206 2207 /** 2208 * ieee80211_free_hw - free hardware descriptor 2209 * 2210 * This function frees everything that was allocated, including the 2211 * private data for the driver. You must call ieee80211_unregister_hw() 2212 * before calling this function. 2213 * 2214 * @hw: the hardware to free 2215 */ 2216 void ieee80211_free_hw(struct ieee80211_hw *hw); 2217 2218 /** 2219 * ieee80211_restart_hw - restart hardware completely 2220 * 2221 * Call this function when the hardware was restarted for some reason 2222 * (hardware error, ...) and the driver is unable to restore its state 2223 * by itself. mac80211 assumes that at this point the driver/hardware 2224 * is completely uninitialised and stopped, it starts the process by 2225 * calling the ->start() operation. The driver will need to reset all 2226 * internal state that it has prior to calling this function. 2227 * 2228 * @hw: the hardware to restart 2229 */ 2230 void ieee80211_restart_hw(struct ieee80211_hw *hw); 2231 2232 /** ieee80211_napi_schedule - schedule NAPI poll 2233 * 2234 * Use this function to schedule NAPI polling on a device. 2235 * 2236 * @hw: the hardware to start polling 2237 */ 2238 void ieee80211_napi_schedule(struct ieee80211_hw *hw); 2239 2240 /** ieee80211_napi_complete - complete NAPI polling 2241 * 2242 * Use this function to finish NAPI polling on a device. 2243 * 2244 * @hw: the hardware to stop polling 2245 */ 2246 void ieee80211_napi_complete(struct ieee80211_hw *hw); 2247 2248 /** 2249 * ieee80211_rx - receive frame 2250 * 2251 * Use this function to hand received frames to mac80211. The receive 2252 * buffer in @skb must start with an IEEE 802.11 header. In case of a 2253 * paged @skb is used, the driver is recommended to put the ieee80211 2254 * header of the frame on the linear part of the @skb to avoid memory 2255 * allocation and/or memcpy by the stack. 2256 * 2257 * This function may not be called in IRQ context. Calls to this function 2258 * for a single hardware must be synchronized against each other. Calls to 2259 * this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be 2260 * mixed for a single hardware. 2261 * 2262 * In process context use instead ieee80211_rx_ni(). 2263 * 2264 * @hw: the hardware this frame came in on 2265 * @skb: the buffer to receive, owned by mac80211 after this call 2266 */ 2267 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb); 2268 2269 /** 2270 * ieee80211_rx_irqsafe - receive frame 2271 * 2272 * Like ieee80211_rx() but can be called in IRQ context 2273 * (internally defers to a tasklet.) 2274 * 2275 * Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not 2276 * be mixed for a single hardware. 2277 * 2278 * @hw: the hardware this frame came in on 2279 * @skb: the buffer to receive, owned by mac80211 after this call 2280 */ 2281 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb); 2282 2283 /** 2284 * ieee80211_rx_ni - receive frame (in process context) 2285 * 2286 * Like ieee80211_rx() but can be called in process context 2287 * (internally disables bottom halves). 2288 * 2289 * Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe() may 2290 * not be mixed for a single hardware. 2291 * 2292 * @hw: the hardware this frame came in on 2293 * @skb: the buffer to receive, owned by mac80211 after this call 2294 */ 2295 static inline void ieee80211_rx_ni(struct ieee80211_hw *hw, 2296 struct sk_buff *skb) 2297 { 2298 local_bh_disable(); 2299 ieee80211_rx(hw, skb); 2300 local_bh_enable(); 2301 } 2302 2303 /** 2304 * ieee80211_sta_ps_transition - PS transition for connected sta 2305 * 2306 * When operating in AP mode with the %IEEE80211_HW_AP_LINK_PS 2307 * flag set, use this function to inform mac80211 about a connected station 2308 * entering/leaving PS mode. 2309 * 2310 * This function may not be called in IRQ context or with softirqs enabled. 2311 * 2312 * Calls to this function for a single hardware must be synchronized against 2313 * each other. 2314 * 2315 * The function returns -EINVAL when the requested PS mode is already set. 2316 * 2317 * @sta: currently connected sta 2318 * @start: start or stop PS 2319 */ 2320 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start); 2321 2322 /** 2323 * ieee80211_sta_ps_transition_ni - PS transition for connected sta 2324 * (in process context) 2325 * 2326 * Like ieee80211_sta_ps_transition() but can be called in process context 2327 * (internally disables bottom halves). Concurrent call restriction still 2328 * applies. 2329 * 2330 * @sta: currently connected sta 2331 * @start: start or stop PS 2332 */ 2333 static inline int ieee80211_sta_ps_transition_ni(struct ieee80211_sta *sta, 2334 bool start) 2335 { 2336 int ret; 2337 2338 local_bh_disable(); 2339 ret = ieee80211_sta_ps_transition(sta, start); 2340 local_bh_enable(); 2341 2342 return ret; 2343 } 2344 2345 /* 2346 * The TX headroom reserved by mac80211 for its own tx_status functions. 2347 * This is enough for the radiotap header. 2348 */ 2349 #define IEEE80211_TX_STATUS_HEADROOM 13 2350 2351 /** 2352 * ieee80211_sta_set_tim - set the TIM bit for a sleeping station 2353 * @sta: &struct ieee80211_sta pointer for the sleeping station 2354 * 2355 * If a driver buffers frames for a powersave station instead of passing 2356 * them back to mac80211 for retransmission, the station needs to be told 2357 * to wake up using the TIM bitmap in the beacon. 2358 * 2359 * This function sets the station's TIM bit - it will be cleared when the 2360 * station wakes up. 2361 */ 2362 void ieee80211_sta_set_tim(struct ieee80211_sta *sta); 2363 2364 /** 2365 * ieee80211_tx_status - transmit status callback 2366 * 2367 * Call this function for all transmitted frames after they have been 2368 * transmitted. It is permissible to not call this function for 2369 * multicast frames but this can affect statistics. 2370 * 2371 * This function may not be called in IRQ context. Calls to this function 2372 * for a single hardware must be synchronized against each other. Calls 2373 * to this function, ieee80211_tx_status_ni() and ieee80211_tx_status_irqsafe() 2374 * may not be mixed for a single hardware. 2375 * 2376 * @hw: the hardware the frame was transmitted by 2377 * @skb: the frame that was transmitted, owned by mac80211 after this call 2378 */ 2379 void ieee80211_tx_status(struct ieee80211_hw *hw, 2380 struct sk_buff *skb); 2381 2382 /** 2383 * ieee80211_tx_status_ni - transmit status callback (in process context) 2384 * 2385 * Like ieee80211_tx_status() but can be called in process context. 2386 * 2387 * Calls to this function, ieee80211_tx_status() and 2388 * ieee80211_tx_status_irqsafe() may not be mixed 2389 * for a single hardware. 2390 * 2391 * @hw: the hardware the frame was transmitted by 2392 * @skb: the frame that was transmitted, owned by mac80211 after this call 2393 */ 2394 static inline void ieee80211_tx_status_ni(struct ieee80211_hw *hw, 2395 struct sk_buff *skb) 2396 { 2397 local_bh_disable(); 2398 ieee80211_tx_status(hw, skb); 2399 local_bh_enable(); 2400 } 2401 2402 /** 2403 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback 2404 * 2405 * Like ieee80211_tx_status() but can be called in IRQ context 2406 * (internally defers to a tasklet.) 2407 * 2408 * Calls to this function, ieee80211_tx_status() and 2409 * ieee80211_tx_status_ni() may not be mixed for a single hardware. 2410 * 2411 * @hw: the hardware the frame was transmitted by 2412 * @skb: the frame that was transmitted, owned by mac80211 after this call 2413 */ 2414 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, 2415 struct sk_buff *skb); 2416 2417 /** 2418 * ieee80211_report_low_ack - report non-responding station 2419 * 2420 * When operating in AP-mode, call this function to report a non-responding 2421 * connected STA. 2422 * 2423 * @sta: the non-responding connected sta 2424 * @num_packets: number of packets sent to @sta without a response 2425 */ 2426 void ieee80211_report_low_ack(struct ieee80211_sta *sta, u32 num_packets); 2427 2428 /** 2429 * ieee80211_beacon_get_tim - beacon generation function 2430 * @hw: pointer obtained from ieee80211_alloc_hw(). 2431 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2432 * @tim_offset: pointer to variable that will receive the TIM IE offset. 2433 * Set to 0 if invalid (in non-AP modes). 2434 * @tim_length: pointer to variable that will receive the TIM IE length, 2435 * (including the ID and length bytes!). 2436 * Set to 0 if invalid (in non-AP modes). 2437 * 2438 * If the driver implements beaconing modes, it must use this function to 2439 * obtain the beacon frame/template. 2440 * 2441 * If the beacon frames are generated by the host system (i.e., not in 2442 * hardware/firmware), the driver uses this function to get each beacon 2443 * frame from mac80211 -- it is responsible for calling this function 2444 * before the beacon is needed (e.g. based on hardware interrupt). 2445 * 2446 * If the beacon frames are generated by the device, then the driver 2447 * must use the returned beacon as the template and change the TIM IE 2448 * according to the current DTIM parameters/TIM bitmap. 2449 * 2450 * The driver is responsible for freeing the returned skb. 2451 */ 2452 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, 2453 struct ieee80211_vif *vif, 2454 u16 *tim_offset, u16 *tim_length); 2455 2456 /** 2457 * ieee80211_beacon_get - beacon generation function 2458 * @hw: pointer obtained from ieee80211_alloc_hw(). 2459 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2460 * 2461 * See ieee80211_beacon_get_tim(). 2462 */ 2463 static inline struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, 2464 struct ieee80211_vif *vif) 2465 { 2466 return ieee80211_beacon_get_tim(hw, vif, NULL, NULL); 2467 } 2468 2469 /** 2470 * ieee80211_pspoll_get - retrieve a PS Poll template 2471 * @hw: pointer obtained from ieee80211_alloc_hw(). 2472 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2473 * 2474 * Creates a PS Poll a template which can, for example, uploaded to 2475 * hardware. The template must be updated after association so that correct 2476 * AID, BSSID and MAC address is used. 2477 * 2478 * Note: Caller (or hardware) is responsible for setting the 2479 * &IEEE80211_FCTL_PM bit. 2480 */ 2481 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, 2482 struct ieee80211_vif *vif); 2483 2484 /** 2485 * ieee80211_nullfunc_get - retrieve a nullfunc template 2486 * @hw: pointer obtained from ieee80211_alloc_hw(). 2487 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2488 * 2489 * Creates a Nullfunc template which can, for example, uploaded to 2490 * hardware. The template must be updated after association so that correct 2491 * BSSID and address is used. 2492 * 2493 * Note: Caller (or hardware) is responsible for setting the 2494 * &IEEE80211_FCTL_PM bit as well as Duration and Sequence Control fields. 2495 */ 2496 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, 2497 struct ieee80211_vif *vif); 2498 2499 /** 2500 * ieee80211_probereq_get - retrieve a Probe Request template 2501 * @hw: pointer obtained from ieee80211_alloc_hw(). 2502 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2503 * @ssid: SSID buffer 2504 * @ssid_len: length of SSID 2505 * @ie: buffer containing all IEs except SSID for the template 2506 * @ie_len: length of the IE buffer 2507 * 2508 * Creates a Probe Request template which can, for example, be uploaded to 2509 * hardware. 2510 */ 2511 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, 2512 struct ieee80211_vif *vif, 2513 const u8 *ssid, size_t ssid_len, 2514 const u8 *ie, size_t ie_len); 2515 2516 /** 2517 * ieee80211_rts_get - RTS frame generation function 2518 * @hw: pointer obtained from ieee80211_alloc_hw(). 2519 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2520 * @frame: pointer to the frame that is going to be protected by the RTS. 2521 * @frame_len: the frame length (in octets). 2522 * @frame_txctl: &struct ieee80211_tx_info of the frame. 2523 * @rts: The buffer where to store the RTS frame. 2524 * 2525 * If the RTS frames are generated by the host system (i.e., not in 2526 * hardware/firmware), the low-level driver uses this function to receive 2527 * the next RTS frame from the 802.11 code. The low-level is responsible 2528 * for calling this function before and RTS frame is needed. 2529 */ 2530 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2531 const void *frame, size_t frame_len, 2532 const struct ieee80211_tx_info *frame_txctl, 2533 struct ieee80211_rts *rts); 2534 2535 /** 2536 * ieee80211_rts_duration - Get the duration field for an RTS frame 2537 * @hw: pointer obtained from ieee80211_alloc_hw(). 2538 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2539 * @frame_len: the length of the frame that is going to be protected by the RTS. 2540 * @frame_txctl: &struct ieee80211_tx_info of the frame. 2541 * 2542 * If the RTS is generated in firmware, but the host system must provide 2543 * the duration field, the low-level driver uses this function to receive 2544 * the duration field value in little-endian byteorder. 2545 */ 2546 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 2547 struct ieee80211_vif *vif, size_t frame_len, 2548 const struct ieee80211_tx_info *frame_txctl); 2549 2550 /** 2551 * ieee80211_ctstoself_get - CTS-to-self frame generation function 2552 * @hw: pointer obtained from ieee80211_alloc_hw(). 2553 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2554 * @frame: pointer to the frame that is going to be protected by the CTS-to-self. 2555 * @frame_len: the frame length (in octets). 2556 * @frame_txctl: &struct ieee80211_tx_info of the frame. 2557 * @cts: The buffer where to store the CTS-to-self frame. 2558 * 2559 * If the CTS-to-self frames are generated by the host system (i.e., not in 2560 * hardware/firmware), the low-level driver uses this function to receive 2561 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible 2562 * for calling this function before and CTS-to-self frame is needed. 2563 */ 2564 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, 2565 struct ieee80211_vif *vif, 2566 const void *frame, size_t frame_len, 2567 const struct ieee80211_tx_info *frame_txctl, 2568 struct ieee80211_cts *cts); 2569 2570 /** 2571 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame 2572 * @hw: pointer obtained from ieee80211_alloc_hw(). 2573 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2574 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self. 2575 * @frame_txctl: &struct ieee80211_tx_info of the frame. 2576 * 2577 * If the CTS-to-self is generated in firmware, but the host system must provide 2578 * the duration field, the low-level driver uses this function to receive 2579 * the duration field value in little-endian byteorder. 2580 */ 2581 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 2582 struct ieee80211_vif *vif, 2583 size_t frame_len, 2584 const struct ieee80211_tx_info *frame_txctl); 2585 2586 /** 2587 * ieee80211_generic_frame_duration - Calculate the duration field for a frame 2588 * @hw: pointer obtained from ieee80211_alloc_hw(). 2589 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2590 * @frame_len: the length of the frame. 2591 * @rate: the rate at which the frame is going to be transmitted. 2592 * 2593 * Calculate the duration field of some generic frame, given its 2594 * length and transmission rate (in 100kbps). 2595 */ 2596 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 2597 struct ieee80211_vif *vif, 2598 size_t frame_len, 2599 struct ieee80211_rate *rate); 2600 2601 /** 2602 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames 2603 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2604 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 2605 * 2606 * Function for accessing buffered broadcast and multicast frames. If 2607 * hardware/firmware does not implement buffering of broadcast/multicast 2608 * frames when power saving is used, 802.11 code buffers them in the host 2609 * memory. The low-level driver uses this function to fetch next buffered 2610 * frame. In most cases, this is used when generating beacon frame. This 2611 * function returns a pointer to the next buffered skb or NULL if no more 2612 * buffered frames are available. 2613 * 2614 * Note: buffered frames are returned only after DTIM beacon frame was 2615 * generated with ieee80211_beacon_get() and the low-level driver must thus 2616 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns 2617 * NULL if the previous generated beacon was not DTIM, so the low-level driver 2618 * does not need to check for DTIM beacons separately and should be able to 2619 * use common code for all beacons. 2620 */ 2621 struct sk_buff * 2622 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 2623 2624 /** 2625 * ieee80211_get_tkip_p1k_iv - get a TKIP phase 1 key for IV32 2626 * 2627 * This function returns the TKIP phase 1 key for the given IV32. 2628 * 2629 * @keyconf: the parameter passed with the set key 2630 * @iv32: IV32 to get the P1K for 2631 * @p1k: a buffer to which the key will be written, as 5 u16 values 2632 */ 2633 void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf *keyconf, 2634 u32 iv32, u16 *p1k); 2635 2636 /** 2637 * ieee80211_get_tkip_p1k - get a TKIP phase 1 key 2638 * 2639 * This function returns the TKIP phase 1 key for the IV32 taken 2640 * from the given packet. 2641 * 2642 * @keyconf: the parameter passed with the set key 2643 * @skb: the packet to take the IV32 value from that will be encrypted 2644 * with this P1K 2645 * @p1k: a buffer to which the key will be written, as 5 u16 values 2646 */ 2647 static inline void ieee80211_get_tkip_p1k(struct ieee80211_key_conf *keyconf, 2648 struct sk_buff *skb, u16 *p1k) 2649 { 2650 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2651 const u8 *data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 2652 u32 iv32 = get_unaligned_le32(&data[4]); 2653 2654 ieee80211_get_tkip_p1k_iv(keyconf, iv32, p1k); 2655 } 2656 2657 /** 2658 * ieee80211_get_tkip_rx_p1k - get a TKIP phase 1 key for RX 2659 * 2660 * This function returns the TKIP phase 1 key for the given IV32 2661 * and transmitter address. 2662 * 2663 * @keyconf: the parameter passed with the set key 2664 * @ta: TA that will be used with the key 2665 * @iv32: IV32 to get the P1K for 2666 * @p1k: a buffer to which the key will be written, as 5 u16 values 2667 */ 2668 void ieee80211_get_tkip_rx_p1k(struct ieee80211_key_conf *keyconf, 2669 const u8 *ta, u32 iv32, u16 *p1k); 2670 2671 /** 2672 * ieee80211_get_tkip_p2k - get a TKIP phase 2 key 2673 * 2674 * This function computes the TKIP RC4 key for the IV values 2675 * in the packet. 2676 * 2677 * @keyconf: the parameter passed with the set key 2678 * @skb: the packet to take the IV32/IV16 values from that will be 2679 * encrypted with this key 2680 * @p2k: a buffer to which the key will be written, 16 bytes 2681 */ 2682 void ieee80211_get_tkip_p2k(struct ieee80211_key_conf *keyconf, 2683 struct sk_buff *skb, u8 *p2k); 2684 2685 /** 2686 * struct ieee80211_key_seq - key sequence counter 2687 * 2688 * @tkip: TKIP data, containing IV32 and IV16 in host byte order 2689 * @ccmp: PN data, most significant byte first (big endian, 2690 * reverse order than in packet) 2691 * @aes_cmac: PN data, most significant byte first (big endian, 2692 * reverse order than in packet) 2693 */ 2694 struct ieee80211_key_seq { 2695 union { 2696 struct { 2697 u32 iv32; 2698 u16 iv16; 2699 } tkip; 2700 struct { 2701 u8 pn[6]; 2702 } ccmp; 2703 struct { 2704 u8 pn[6]; 2705 } aes_cmac; 2706 }; 2707 }; 2708 2709 /** 2710 * ieee80211_get_key_tx_seq - get key TX sequence counter 2711 * 2712 * @keyconf: the parameter passed with the set key 2713 * @seq: buffer to receive the sequence data 2714 * 2715 * This function allows a driver to retrieve the current TX IV/PN 2716 * for the given key. It must not be called if IV generation is 2717 * offloaded to the device. 2718 * 2719 * Note that this function may only be called when no TX processing 2720 * can be done concurrently, for example when queues are stopped 2721 * and the stop has been synchronized. 2722 */ 2723 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf, 2724 struct ieee80211_key_seq *seq); 2725 2726 /** 2727 * ieee80211_get_key_rx_seq - get key RX sequence counter 2728 * 2729 * @keyconf: the parameter passed with the set key 2730 * @tid: The TID, or -1 for the management frame value (CCMP only); 2731 * the value on TID 0 is also used for non-QoS frames. For 2732 * CMAC, only TID 0 is valid. 2733 * @seq: buffer to receive the sequence data 2734 * 2735 * This function allows a driver to retrieve the current RX IV/PNs 2736 * for the given key. It must not be called if IV checking is done 2737 * by the device and not by mac80211. 2738 * 2739 * Note that this function may only be called when no RX processing 2740 * can be done concurrently. 2741 */ 2742 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf, 2743 int tid, struct ieee80211_key_seq *seq); 2744 2745 /** 2746 * ieee80211_gtk_rekey_notify - notify userspace supplicant of rekeying 2747 * @vif: virtual interface the rekeying was done on 2748 * @bssid: The BSSID of the AP, for checking association 2749 * @replay_ctr: the new replay counter after GTK rekeying 2750 * @gfp: allocation flags 2751 */ 2752 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid, 2753 const u8 *replay_ctr, gfp_t gfp); 2754 2755 /** 2756 * ieee80211_wake_queue - wake specific queue 2757 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2758 * @queue: queue number (counted from zero). 2759 * 2760 * Drivers should use this function instead of netif_wake_queue. 2761 */ 2762 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue); 2763 2764 /** 2765 * ieee80211_stop_queue - stop specific queue 2766 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2767 * @queue: queue number (counted from zero). 2768 * 2769 * Drivers should use this function instead of netif_stop_queue. 2770 */ 2771 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue); 2772 2773 /** 2774 * ieee80211_queue_stopped - test status of the queue 2775 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2776 * @queue: queue number (counted from zero). 2777 * 2778 * Drivers should use this function instead of netif_stop_queue. 2779 */ 2780 2781 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue); 2782 2783 /** 2784 * ieee80211_stop_queues - stop all queues 2785 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2786 * 2787 * Drivers should use this function instead of netif_stop_queue. 2788 */ 2789 void ieee80211_stop_queues(struct ieee80211_hw *hw); 2790 2791 /** 2792 * ieee80211_wake_queues - wake all queues 2793 * @hw: pointer as obtained from ieee80211_alloc_hw(). 2794 * 2795 * Drivers should use this function instead of netif_wake_queue. 2796 */ 2797 void ieee80211_wake_queues(struct ieee80211_hw *hw); 2798 2799 /** 2800 * ieee80211_scan_completed - completed hardware scan 2801 * 2802 * When hardware scan offload is used (i.e. the hw_scan() callback is 2803 * assigned) this function needs to be called by the driver to notify 2804 * mac80211 that the scan finished. This function can be called from 2805 * any context, including hardirq context. 2806 * 2807 * @hw: the hardware that finished the scan 2808 * @aborted: set to true if scan was aborted 2809 */ 2810 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted); 2811 2812 /** 2813 * ieee80211_sched_scan_results - got results from scheduled scan 2814 * 2815 * When a scheduled scan is running, this function needs to be called by the 2816 * driver whenever there are new scan results available. 2817 * 2818 * @hw: the hardware that is performing scheduled scans 2819 */ 2820 void ieee80211_sched_scan_results(struct ieee80211_hw *hw); 2821 2822 /** 2823 * ieee80211_sched_scan_stopped - inform that the scheduled scan has stopped 2824 * 2825 * When a scheduled scan is running, this function can be called by 2826 * the driver if it needs to stop the scan to perform another task. 2827 * Usual scenarios are drivers that cannot continue the scheduled scan 2828 * while associating, for instance. 2829 * 2830 * @hw: the hardware that is performing scheduled scans 2831 */ 2832 void ieee80211_sched_scan_stopped(struct ieee80211_hw *hw); 2833 2834 /** 2835 * ieee80211_iterate_active_interfaces - iterate active interfaces 2836 * 2837 * This function iterates over the interfaces associated with a given 2838 * hardware that are currently active and calls the callback for them. 2839 * This function allows the iterator function to sleep, when the iterator 2840 * function is atomic @ieee80211_iterate_active_interfaces_atomic can 2841 * be used. 2842 * Does not iterate over a new interface during add_interface() 2843 * 2844 * @hw: the hardware struct of which the interfaces should be iterated over 2845 * @iterator: the iterator function to call 2846 * @data: first argument of the iterator function 2847 */ 2848 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw, 2849 void (*iterator)(void *data, u8 *mac, 2850 struct ieee80211_vif *vif), 2851 void *data); 2852 2853 /** 2854 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces 2855 * 2856 * This function iterates over the interfaces associated with a given 2857 * hardware that are currently active and calls the callback for them. 2858 * This function requires the iterator callback function to be atomic, 2859 * if that is not desired, use @ieee80211_iterate_active_interfaces instead. 2860 * Does not iterate over a new interface during add_interface() 2861 * 2862 * @hw: the hardware struct of which the interfaces should be iterated over 2863 * @iterator: the iterator function to call, cannot sleep 2864 * @data: first argument of the iterator function 2865 */ 2866 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw, 2867 void (*iterator)(void *data, 2868 u8 *mac, 2869 struct ieee80211_vif *vif), 2870 void *data); 2871 2872 /** 2873 * ieee80211_queue_work - add work onto the mac80211 workqueue 2874 * 2875 * Drivers and mac80211 use this to add work onto the mac80211 workqueue. 2876 * This helper ensures drivers are not queueing work when they should not be. 2877 * 2878 * @hw: the hardware struct for the interface we are adding work for 2879 * @work: the work we want to add onto the mac80211 workqueue 2880 */ 2881 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work); 2882 2883 /** 2884 * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue 2885 * 2886 * Drivers and mac80211 use this to queue delayed work onto the mac80211 2887 * workqueue. 2888 * 2889 * @hw: the hardware struct for the interface we are adding work for 2890 * @dwork: delayable work to queue onto the mac80211 workqueue 2891 * @delay: number of jiffies to wait before queueing 2892 */ 2893 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 2894 struct delayed_work *dwork, 2895 unsigned long delay); 2896 2897 /** 2898 * ieee80211_start_tx_ba_session - Start a tx Block Ack session. 2899 * @sta: the station for which to start a BA session 2900 * @tid: the TID to BA on. 2901 * @timeout: session timeout value (in TUs) 2902 * 2903 * Return: success if addBA request was sent, failure otherwise 2904 * 2905 * Although mac80211/low level driver/user space application can estimate 2906 * the need to start aggregation on a certain RA/TID, the session level 2907 * will be managed by the mac80211. 2908 */ 2909 int ieee80211_start_tx_ba_session(struct ieee80211_sta *sta, u16 tid, 2910 u16 timeout); 2911 2912 /** 2913 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate. 2914 * @vif: &struct ieee80211_vif pointer from the add_interface callback 2915 * @ra: receiver address of the BA session recipient. 2916 * @tid: the TID to BA on. 2917 * 2918 * This function must be called by low level driver once it has 2919 * finished with preparations for the BA session. It can be called 2920 * from any context. 2921 */ 2922 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, 2923 u16 tid); 2924 2925 /** 2926 * ieee80211_stop_tx_ba_session - Stop a Block Ack session. 2927 * @sta: the station whose BA session to stop 2928 * @tid: the TID to stop BA. 2929 * 2930 * Return: negative error if the TID is invalid, or no aggregation active 2931 * 2932 * Although mac80211/low level driver/user space application can estimate 2933 * the need to stop aggregation on a certain RA/TID, the session level 2934 * will be managed by the mac80211. 2935 */ 2936 int ieee80211_stop_tx_ba_session(struct ieee80211_sta *sta, u16 tid); 2937 2938 /** 2939 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate. 2940 * @vif: &struct ieee80211_vif pointer from the add_interface callback 2941 * @ra: receiver address of the BA session recipient. 2942 * @tid: the desired TID to BA on. 2943 * 2944 * This function must be called by low level driver once it has 2945 * finished with preparations for the BA session tear down. It 2946 * can be called from any context. 2947 */ 2948 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, 2949 u16 tid); 2950 2951 /** 2952 * ieee80211_find_sta - find a station 2953 * 2954 * @vif: virtual interface to look for station on 2955 * @addr: station's address 2956 * 2957 * This function must be called under RCU lock and the 2958 * resulting pointer is only valid under RCU lock as well. 2959 */ 2960 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 2961 const u8 *addr); 2962 2963 /** 2964 * ieee80211_find_sta_by_ifaddr - find a station on hardware 2965 * 2966 * @hw: pointer as obtained from ieee80211_alloc_hw() 2967 * @addr: remote station's address 2968 * @localaddr: local address (vif->sdata->vif.addr). Use NULL for 'any'. 2969 * 2970 * This function must be called under RCU lock and the 2971 * resulting pointer is only valid under RCU lock as well. 2972 * 2973 * NOTE: You may pass NULL for localaddr, but then you will just get 2974 * the first STA that matches the remote address 'addr'. 2975 * We can have multiple STA associated with multiple 2976 * logical stations (e.g. consider a station connecting to another 2977 * BSSID on the same AP hardware without disconnecting first). 2978 * In this case, the result of this method with localaddr NULL 2979 * is not reliable. 2980 * 2981 * DO NOT USE THIS FUNCTION with localaddr NULL if at all possible. 2982 */ 2983 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 2984 const u8 *addr, 2985 const u8 *localaddr); 2986 2987 /** 2988 * ieee80211_sta_block_awake - block station from waking up 2989 * @hw: the hardware 2990 * @pubsta: the station 2991 * @block: whether to block or unblock 2992 * 2993 * Some devices require that all frames that are on the queues 2994 * for a specific station that went to sleep are flushed before 2995 * a poll response or frames after the station woke up can be 2996 * delivered to that it. Note that such frames must be rejected 2997 * by the driver as filtered, with the appropriate status flag. 2998 * 2999 * This function allows implementing this mode in a race-free 3000 * manner. 3001 * 3002 * To do this, a driver must keep track of the number of frames 3003 * still enqueued for a specific station. If this number is not 3004 * zero when the station goes to sleep, the driver must call 3005 * this function to force mac80211 to consider the station to 3006 * be asleep regardless of the station's actual state. Once the 3007 * number of outstanding frames reaches zero, the driver must 3008 * call this function again to unblock the station. That will 3009 * cause mac80211 to be able to send ps-poll responses, and if 3010 * the station queried in the meantime then frames will also 3011 * be sent out as a result of this. Additionally, the driver 3012 * will be notified that the station woke up some time after 3013 * it is unblocked, regardless of whether the station actually 3014 * woke up while blocked or not. 3015 */ 3016 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 3017 struct ieee80211_sta *pubsta, bool block); 3018 3019 /** 3020 * ieee80211_iter_keys - iterate keys programmed into the device 3021 * @hw: pointer obtained from ieee80211_alloc_hw() 3022 * @vif: virtual interface to iterate, may be %NULL for all 3023 * @iter: iterator function that will be called for each key 3024 * @iter_data: custom data to pass to the iterator function 3025 * 3026 * This function can be used to iterate all the keys known to 3027 * mac80211, even those that weren't previously programmed into 3028 * the device. This is intended for use in WoWLAN if the device 3029 * needs reprogramming of the keys during suspend. Note that due 3030 * to locking reasons, it is also only safe to call this at few 3031 * spots since it must hold the RTNL and be able to sleep. 3032 * 3033 * The order in which the keys are iterated matches the order 3034 * in which they were originally installed and handed to the 3035 * set_key callback. 3036 */ 3037 void ieee80211_iter_keys(struct ieee80211_hw *hw, 3038 struct ieee80211_vif *vif, 3039 void (*iter)(struct ieee80211_hw *hw, 3040 struct ieee80211_vif *vif, 3041 struct ieee80211_sta *sta, 3042 struct ieee80211_key_conf *key, 3043 void *data), 3044 void *iter_data); 3045 3046 /** 3047 * ieee80211_ap_probereq_get - retrieve a Probe Request template 3048 * @hw: pointer obtained from ieee80211_alloc_hw(). 3049 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3050 * 3051 * Creates a Probe Request template which can, for example, be uploaded to 3052 * hardware. The template is filled with bssid, ssid and supported rate 3053 * information. This function must only be called from within the 3054 * .bss_info_changed callback function and only in managed mode. The function 3055 * is only useful when the interface is associated, otherwise it will return 3056 * NULL. 3057 */ 3058 struct sk_buff *ieee80211_ap_probereq_get(struct ieee80211_hw *hw, 3059 struct ieee80211_vif *vif); 3060 3061 /** 3062 * ieee80211_beacon_loss - inform hardware does not receive beacons 3063 * 3064 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3065 * 3066 * When beacon filtering is enabled with %IEEE80211_HW_BEACON_FILTER and 3067 * %IEEE80211_CONF_PS is set, the driver needs to inform whenever the 3068 * hardware is not receiving beacons with this function. 3069 */ 3070 void ieee80211_beacon_loss(struct ieee80211_vif *vif); 3071 3072 /** 3073 * ieee80211_connection_loss - inform hardware has lost connection to the AP 3074 * 3075 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3076 * 3077 * When beacon filtering is enabled with %IEEE80211_HW_BEACON_FILTER, and 3078 * %IEEE80211_CONF_PS and %IEEE80211_HW_CONNECTION_MONITOR are set, the driver 3079 * needs to inform if the connection to the AP has been lost. 3080 * 3081 * This function will cause immediate change to disassociated state, 3082 * without connection recovery attempts. 3083 */ 3084 void ieee80211_connection_loss(struct ieee80211_vif *vif); 3085 3086 /** 3087 * ieee80211_resume_disconnect - disconnect from AP after resume 3088 * 3089 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3090 * 3091 * Instructs mac80211 to disconnect from the AP after resume. 3092 * Drivers can use this after WoWLAN if they know that the 3093 * connection cannot be kept up, for example because keys were 3094 * used while the device was asleep but the replay counters or 3095 * similar cannot be retrieved from the device during resume. 3096 * 3097 * Note that due to implementation issues, if the driver uses 3098 * the reconfiguration functionality during resume the interface 3099 * will still be added as associated first during resume and then 3100 * disconnect normally later. 3101 * 3102 * This function can only be called from the resume callback and 3103 * the driver must not be holding any of its own locks while it 3104 * calls this function, or at least not any locks it needs in the 3105 * key configuration paths (if it supports HW crypto). 3106 */ 3107 void ieee80211_resume_disconnect(struct ieee80211_vif *vif); 3108 3109 /** 3110 * ieee80211_disable_dyn_ps - force mac80211 to temporarily disable dynamic psm 3111 * 3112 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3113 * 3114 * Some hardware require full power save to manage simultaneous BT traffic 3115 * on the WLAN frequency. Full PSM is required periodically, whenever there are 3116 * burst of BT traffic. The hardware gets information of BT traffic via 3117 * hardware co-existence lines, and consequentially requests mac80211 to 3118 * (temporarily) enter full psm. 3119 * This function will only temporarily disable dynamic PS, not enable PSM if 3120 * it was not already enabled. 3121 * The driver must make sure to re-enable dynamic PS using 3122 * ieee80211_enable_dyn_ps() if the driver has disabled it. 3123 * 3124 */ 3125 void ieee80211_disable_dyn_ps(struct ieee80211_vif *vif); 3126 3127 /** 3128 * ieee80211_enable_dyn_ps - restore dynamic psm after being disabled 3129 * 3130 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3131 * 3132 * This function restores dynamic PS after being temporarily disabled via 3133 * ieee80211_disable_dyn_ps(). Each ieee80211_disable_dyn_ps() call must 3134 * be coupled with an eventual call to this function. 3135 * 3136 */ 3137 void ieee80211_enable_dyn_ps(struct ieee80211_vif *vif); 3138 3139 /** 3140 * ieee80211_cqm_rssi_notify - inform a configured connection quality monitoring 3141 * rssi threshold triggered 3142 * 3143 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3144 * @rssi_event: the RSSI trigger event type 3145 * @gfp: context flags 3146 * 3147 * When the %IEEE80211_HW_SUPPORTS_CQM_RSSI is set, and a connection quality 3148 * monitoring is configured with an rssi threshold, the driver will inform 3149 * whenever the rssi level reaches the threshold. 3150 */ 3151 void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif, 3152 enum nl80211_cqm_rssi_threshold_event rssi_event, 3153 gfp_t gfp); 3154 3155 /** 3156 * ieee80211_get_operstate - get the operstate of the vif 3157 * 3158 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3159 * 3160 * The driver might need to know the operstate of the net_device 3161 * (specifically, whether the link is IF_OPER_UP after resume) 3162 */ 3163 unsigned char ieee80211_get_operstate(struct ieee80211_vif *vif); 3164 3165 /** 3166 * ieee80211_chswitch_done - Complete channel switch process 3167 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3168 * @success: make the channel switch successful or not 3169 * 3170 * Complete the channel switch post-process: set the new operational channel 3171 * and wake up the suspended queues. 3172 */ 3173 void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success); 3174 3175 /** 3176 * ieee80211_request_smps - request SM PS transition 3177 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3178 * @smps_mode: new SM PS mode 3179 * 3180 * This allows the driver to request an SM PS transition in managed 3181 * mode. This is useful when the driver has more information than 3182 * the stack about possible interference, for example by bluetooth. 3183 */ 3184 void ieee80211_request_smps(struct ieee80211_vif *vif, 3185 enum ieee80211_smps_mode smps_mode); 3186 3187 /** 3188 * ieee80211_key_removed - disable hw acceleration for key 3189 * @key_conf: The key hw acceleration should be disabled for 3190 * 3191 * This allows drivers to indicate that the given key has been 3192 * removed from hardware acceleration, due to a new key that 3193 * was added. Don't use this if the key can continue to be used 3194 * for TX, if the key restriction is on RX only it is permitted 3195 * to keep the key for TX only and not call this function. 3196 * 3197 * Due to locking constraints, it may only be called during 3198 * @set_key. This function must be allowed to sleep, and the 3199 * key it tries to disable may still be used until it returns. 3200 */ 3201 void ieee80211_key_removed(struct ieee80211_key_conf *key_conf); 3202 3203 /** 3204 * ieee80211_ready_on_channel - notification of remain-on-channel start 3205 * @hw: pointer as obtained from ieee80211_alloc_hw() 3206 */ 3207 void ieee80211_ready_on_channel(struct ieee80211_hw *hw); 3208 3209 /** 3210 * ieee80211_remain_on_channel_expired - remain_on_channel duration expired 3211 * @hw: pointer as obtained from ieee80211_alloc_hw() 3212 */ 3213 void ieee80211_remain_on_channel_expired(struct ieee80211_hw *hw); 3214 3215 /** 3216 * ieee80211_stop_rx_ba_session - callback to stop existing BA sessions 3217 * 3218 * in order not to harm the system performance and user experience, the device 3219 * may request not to allow any rx ba session and tear down existing rx ba 3220 * sessions based on system constraints such as periodic BT activity that needs 3221 * to limit wlan activity (eg.sco or a2dp)." 3222 * in such cases, the intention is to limit the duration of the rx ppdu and 3223 * therefore prevent the peer device to use a-mpdu aggregation. 3224 * 3225 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3226 * @ba_rx_bitmap: Bit map of open rx ba per tid 3227 * @addr: & to bssid mac address 3228 */ 3229 void ieee80211_stop_rx_ba_session(struct ieee80211_vif *vif, u16 ba_rx_bitmap, 3230 const u8 *addr); 3231 3232 /* Rate control API */ 3233 3234 /** 3235 * enum rate_control_changed - flags to indicate which parameter changed 3236 * 3237 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have 3238 * changed, rate control algorithm can update its internal state if needed. 3239 */ 3240 enum rate_control_changed { 3241 IEEE80211_RC_HT_CHANGED = BIT(0) 3242 }; 3243 3244 /** 3245 * struct ieee80211_tx_rate_control - rate control information for/from RC algo 3246 * 3247 * @hw: The hardware the algorithm is invoked for. 3248 * @sband: The band this frame is being transmitted on. 3249 * @bss_conf: the current BSS configuration 3250 * @reported_rate: The rate control algorithm can fill this in to indicate 3251 * which rate should be reported to userspace as the current rate and 3252 * used for rate calculations in the mesh network. 3253 * @rts: whether RTS will be used for this frame because it is longer than the 3254 * RTS threshold 3255 * @short_preamble: whether mac80211 will request short-preamble transmission 3256 * if the selected rate supports it 3257 * @max_rate_idx: user-requested maximum rate (not MCS for now) 3258 * (deprecated; this will be removed once drivers get updated to use 3259 * rate_idx_mask) 3260 * @rate_idx_mask: user-requested rate mask (not MCS for now) 3261 * @skb: the skb that will be transmitted, the control information in it needs 3262 * to be filled in 3263 * @bss: whether this frame is sent out in AP or IBSS mode 3264 */ 3265 struct ieee80211_tx_rate_control { 3266 struct ieee80211_hw *hw; 3267 struct ieee80211_supported_band *sband; 3268 struct ieee80211_bss_conf *bss_conf; 3269 struct sk_buff *skb; 3270 struct ieee80211_tx_rate reported_rate; 3271 bool rts, short_preamble; 3272 u8 max_rate_idx; 3273 u32 rate_idx_mask; 3274 bool bss; 3275 }; 3276 3277 struct rate_control_ops { 3278 struct module *module; 3279 const char *name; 3280 void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir); 3281 void (*free)(void *priv); 3282 3283 void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp); 3284 void (*rate_init)(void *priv, struct ieee80211_supported_band *sband, 3285 struct ieee80211_sta *sta, void *priv_sta); 3286 void (*rate_update)(void *priv, struct ieee80211_supported_band *sband, 3287 struct ieee80211_sta *sta, 3288 void *priv_sta, u32 changed, 3289 enum nl80211_channel_type oper_chan_type); 3290 void (*free_sta)(void *priv, struct ieee80211_sta *sta, 3291 void *priv_sta); 3292 3293 void (*tx_status)(void *priv, struct ieee80211_supported_band *sband, 3294 struct ieee80211_sta *sta, void *priv_sta, 3295 struct sk_buff *skb); 3296 void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta, 3297 struct ieee80211_tx_rate_control *txrc); 3298 3299 void (*add_sta_debugfs)(void *priv, void *priv_sta, 3300 struct dentry *dir); 3301 void (*remove_sta_debugfs)(void *priv, void *priv_sta); 3302 }; 3303 3304 static inline int rate_supported(struct ieee80211_sta *sta, 3305 enum ieee80211_band band, 3306 int index) 3307 { 3308 return (sta == NULL || sta->supp_rates[band] & BIT(index)); 3309 } 3310 3311 /** 3312 * rate_control_send_low - helper for drivers for management/no-ack frames 3313 * 3314 * Rate control algorithms that agree to use the lowest rate to 3315 * send management frames and NO_ACK data with the respective hw 3316 * retries should use this in the beginning of their mac80211 get_rate 3317 * callback. If true is returned the rate control can simply return. 3318 * If false is returned we guarantee that sta and sta and priv_sta is 3319 * not null. 3320 * 3321 * Rate control algorithms wishing to do more intelligent selection of 3322 * rate for multicast/broadcast frames may choose to not use this. 3323 * 3324 * @sta: &struct ieee80211_sta pointer to the target destination. Note 3325 * that this may be null. 3326 * @priv_sta: private rate control structure. This may be null. 3327 * @txrc: rate control information we sholud populate for mac80211. 3328 */ 3329 bool rate_control_send_low(struct ieee80211_sta *sta, 3330 void *priv_sta, 3331 struct ieee80211_tx_rate_control *txrc); 3332 3333 3334 static inline s8 3335 rate_lowest_index(struct ieee80211_supported_band *sband, 3336 struct ieee80211_sta *sta) 3337 { 3338 int i; 3339 3340 for (i = 0; i < sband->n_bitrates; i++) 3341 if (rate_supported(sta, sband->band, i)) 3342 return i; 3343 3344 /* warn when we cannot find a rate. */ 3345 WARN_ON(1); 3346 3347 return 0; 3348 } 3349 3350 static inline 3351 bool rate_usable_index_exists(struct ieee80211_supported_band *sband, 3352 struct ieee80211_sta *sta) 3353 { 3354 unsigned int i; 3355 3356 for (i = 0; i < sband->n_bitrates; i++) 3357 if (rate_supported(sta, sband->band, i)) 3358 return true; 3359 return false; 3360 } 3361 3362 int ieee80211_rate_control_register(struct rate_control_ops *ops); 3363 void ieee80211_rate_control_unregister(struct rate_control_ops *ops); 3364 3365 static inline bool 3366 conf_is_ht20(struct ieee80211_conf *conf) 3367 { 3368 return conf->channel_type == NL80211_CHAN_HT20; 3369 } 3370 3371 static inline bool 3372 conf_is_ht40_minus(struct ieee80211_conf *conf) 3373 { 3374 return conf->channel_type == NL80211_CHAN_HT40MINUS; 3375 } 3376 3377 static inline bool 3378 conf_is_ht40_plus(struct ieee80211_conf *conf) 3379 { 3380 return conf->channel_type == NL80211_CHAN_HT40PLUS; 3381 } 3382 3383 static inline bool 3384 conf_is_ht40(struct ieee80211_conf *conf) 3385 { 3386 return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf); 3387 } 3388 3389 static inline bool 3390 conf_is_ht(struct ieee80211_conf *conf) 3391 { 3392 return conf->channel_type != NL80211_CHAN_NO_HT; 3393 } 3394 3395 static inline enum nl80211_iftype 3396 ieee80211_iftype_p2p(enum nl80211_iftype type, bool p2p) 3397 { 3398 if (p2p) { 3399 switch (type) { 3400 case NL80211_IFTYPE_STATION: 3401 return NL80211_IFTYPE_P2P_CLIENT; 3402 case NL80211_IFTYPE_AP: 3403 return NL80211_IFTYPE_P2P_GO; 3404 default: 3405 break; 3406 } 3407 } 3408 return type; 3409 } 3410 3411 static inline enum nl80211_iftype 3412 ieee80211_vif_type_p2p(struct ieee80211_vif *vif) 3413 { 3414 return ieee80211_iftype_p2p(vif->type, vif->p2p); 3415 } 3416 3417 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 3418 int rssi_min_thold, 3419 int rssi_max_thold); 3420 3421 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif); 3422 #endif /* MAC80211_H */ 3423