1 /* 2 * mac80211 <-> driver interface 3 * 4 * Copyright 2002-2005, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #ifndef MAC80211_H 14 #define MAC80211_H 15 16 #include <linux/kernel.h> 17 #include <linux/if_ether.h> 18 #include <linux/skbuff.h> 19 #include <linux/wireless.h> 20 #include <linux/device.h> 21 #include <linux/ieee80211.h> 22 #include <net/wireless.h> 23 #include <net/cfg80211.h> 24 25 /** 26 * DOC: Introduction 27 * 28 * mac80211 is the Linux stack for 802.11 hardware that implements 29 * only partial functionality in hard- or firmware. This document 30 * defines the interface between mac80211 and low-level hardware 31 * drivers. 32 */ 33 34 /** 35 * DOC: Calling mac80211 from interrupts 36 * 37 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be 38 * called in hardware interrupt context. The low-level driver must not call any 39 * other functions in hardware interrupt context. If there is a need for such 40 * call, the low-level driver should first ACK the interrupt and perform the 41 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even 42 * tasklet function. 43 * 44 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also 45 * use the non-IRQ-safe functions! 46 */ 47 48 /** 49 * DOC: Warning 50 * 51 * If you're reading this document and not the header file itself, it will 52 * be incomplete because not all documentation has been converted yet. 53 */ 54 55 /** 56 * DOC: Frame format 57 * 58 * As a general rule, when frames are passed between mac80211 and the driver, 59 * they start with the IEEE 802.11 header and include the same octets that are 60 * sent over the air except for the FCS which should be calculated by the 61 * hardware. 62 * 63 * There are, however, various exceptions to this rule for advanced features: 64 * 65 * The first exception is for hardware encryption and decryption offload 66 * where the IV/ICV may or may not be generated in hardware. 67 * 68 * Secondly, when the hardware handles fragmentation, the frame handed to 69 * the driver from mac80211 is the MSDU, not the MPDU. 70 * 71 * Finally, for received frames, the driver is able to indicate that it has 72 * filled a radiotap header and put that in front of the frame; if it does 73 * not do so then mac80211 may add this under certain circumstances. 74 */ 75 76 /** 77 * enum ieee80211_notification_type - Low level driver notification 78 * @IEEE80211_NOTIFY_RE_ASSOC: start the re-association sequence 79 */ 80 enum ieee80211_notification_types { 81 IEEE80211_NOTIFY_RE_ASSOC, 82 }; 83 84 /** 85 * struct ieee80211_ht_bss_info - describing BSS's HT characteristics 86 * 87 * This structure describes most essential parameters needed 88 * to describe 802.11n HT characteristics in a BSS. 89 * 90 * @primary_channel: channel number of primery channel 91 * @bss_cap: 802.11n's general BSS capabilities (e.g. channel width) 92 * @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection) 93 */ 94 struct ieee80211_ht_bss_info { 95 u8 primary_channel; 96 u8 bss_cap; /* use IEEE80211_HT_IE_CHA_ */ 97 u8 bss_op_mode; /* use IEEE80211_HT_IE_ */ 98 }; 99 100 /** 101 * enum ieee80211_max_queues - maximum number of queues 102 * 103 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues. 104 * @IEEE80211_MAX_AMPDU_QUEUES: Maximum number of queues usable 105 * for A-MPDU operation. 106 */ 107 enum ieee80211_max_queues { 108 IEEE80211_MAX_QUEUES = 16, 109 IEEE80211_MAX_AMPDU_QUEUES = 16, 110 }; 111 112 /** 113 * struct ieee80211_tx_queue_params - transmit queue configuration 114 * 115 * The information provided in this structure is required for QoS 116 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29. 117 * 118 * @aifs: arbitration interface space [0..255] 119 * @cw_min: minimum contention window [a value of the form 120 * 2^n-1 in the range 1..32767] 121 * @cw_max: maximum contention window [like @cw_min] 122 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled 123 */ 124 struct ieee80211_tx_queue_params { 125 u16 txop; 126 u16 cw_min; 127 u16 cw_max; 128 u8 aifs; 129 }; 130 131 /** 132 * struct ieee80211_tx_queue_stats - transmit queue statistics 133 * 134 * @len: number of packets in queue 135 * @limit: queue length limit 136 * @count: number of frames sent 137 */ 138 struct ieee80211_tx_queue_stats { 139 unsigned int len; 140 unsigned int limit; 141 unsigned int count; 142 }; 143 144 struct ieee80211_low_level_stats { 145 unsigned int dot11ACKFailureCount; 146 unsigned int dot11RTSFailureCount; 147 unsigned int dot11FCSErrorCount; 148 unsigned int dot11RTSSuccessCount; 149 }; 150 151 /** 152 * enum ieee80211_bss_change - BSS change notification flags 153 * 154 * These flags are used with the bss_info_changed() callback 155 * to indicate which BSS parameter changed. 156 * 157 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated), 158 * also implies a change in the AID. 159 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed 160 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed 161 * @BSS_CHANGED_ERP_SLOT: slot timing changed 162 * @BSS_CHANGED_HT: 802.11n parameters changed 163 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed 164 */ 165 enum ieee80211_bss_change { 166 BSS_CHANGED_ASSOC = 1<<0, 167 BSS_CHANGED_ERP_CTS_PROT = 1<<1, 168 BSS_CHANGED_ERP_PREAMBLE = 1<<2, 169 BSS_CHANGED_ERP_SLOT = 1<<3, 170 BSS_CHANGED_HT = 1<<4, 171 BSS_CHANGED_BASIC_RATES = 1<<5, 172 }; 173 174 /** 175 * struct ieee80211_bss_conf - holds the BSS's changing parameters 176 * 177 * This structure keeps information about a BSS (and an association 178 * to that BSS) that can change during the lifetime of the BSS. 179 * 180 * @assoc: association status 181 * @aid: association ID number, valid only when @assoc is true 182 * @use_cts_prot: use CTS protection 183 * @use_short_preamble: use 802.11b short preamble 184 * @use_short_slot: use short slot time (only relevant for ERP) 185 * @dtim_period: num of beacons before the next DTIM, for PSM 186 * @timestamp: beacon timestamp 187 * @beacon_int: beacon interval 188 * @assoc_capability: capabilities taken from assoc resp 189 * @assoc_ht: association in HT mode 190 * @ht_conf: ht capabilities 191 * @ht_bss_conf: ht extended capabilities 192 * @basic_rates: bitmap of basic rates, each bit stands for an 193 * index into the rate table configured by the driver in 194 * the current band. 195 */ 196 struct ieee80211_bss_conf { 197 /* association related data */ 198 bool assoc; 199 u16 aid; 200 /* erp related data */ 201 bool use_cts_prot; 202 bool use_short_preamble; 203 bool use_short_slot; 204 u8 dtim_period; 205 u16 beacon_int; 206 u16 assoc_capability; 207 u64 timestamp; 208 u64 basic_rates; 209 /* ht related data */ 210 bool assoc_ht; 211 struct ieee80211_ht_info *ht_conf; 212 struct ieee80211_ht_bss_info *ht_bss_conf; 213 }; 214 215 /** 216 * enum mac80211_tx_control_flags - flags to describe transmission information/status 217 * 218 * These flags are used with the @flags member of &ieee80211_tx_info. 219 * 220 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame. 221 * @IEEE80211_TX_CTL_USE_RTS_CTS: use RTS-CTS before sending frame 222 * @IEEE80211_TX_CTL_USE_CTS_PROTECT: use CTS protection for the frame (e.g., 223 * for combined 802.11g / 802.11b networks) 224 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack 225 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: TBD 226 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination 227 * station 228 * @IEEE80211_TX_CTL_REQUEUE: TBD 229 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame 230 * @IEEE80211_TX_CTL_SHORT_PREAMBLE: TBD 231 * @IEEE80211_TX_CTL_LONG_RETRY_LIMIT: this frame should be send using the 232 * through set_retry_limit configured long retry value 233 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon 234 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU 235 * @IEEE80211_TX_CTL_OFDM_HT: this frame can be sent in HT OFDM rates. number 236 * of streams when this flag is on can be extracted from antenna_sel_tx, 237 * so if 1 antenna is marked use SISO, 2 antennas marked use MIMO, n 238 * antennas marked use MIMO_n. 239 * @IEEE80211_TX_CTL_GREEN_FIELD: use green field protection for this frame 240 * @IEEE80211_TX_CTL_40_MHZ_WIDTH: send this frame using 40 Mhz channel width 241 * @IEEE80211_TX_CTL_DUP_DATA: duplicate data frame on both 20 Mhz channels 242 * @IEEE80211_TX_CTL_SHORT_GI: send this frame using short guard interval 243 * @IEEE80211_TX_CTL_INJECTED: TBD 244 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted 245 * because the destination STA was in powersave mode. 246 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged 247 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status 248 * is for the whole aggregation. 249 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned, 250 * so consider using block ack request (BAR). 251 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence 252 * number to this frame, taking care of not overwriting the fragment 253 * number and increasing the sequence number only when the 254 * IEEE80211_TX_CTL_FIRST_FRAGMENT flags is set. mac80211 will properly 255 * assign sequence numbers to QoS-data frames but cannot do so correctly 256 * for non-QoS-data and management frames because beacons need them from 257 * that counter as well and mac80211 cannot guarantee proper sequencing. 258 * If this flag is set, the driver should instruct the hardware to 259 * assign a sequence number to the frame or assign one itself. Cf. IEEE 260 * 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for 261 * beacons always be clear for frames without a sequence number field. 262 */ 263 enum mac80211_tx_control_flags { 264 IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0), 265 IEEE80211_TX_CTL_USE_RTS_CTS = BIT(2), 266 IEEE80211_TX_CTL_USE_CTS_PROTECT = BIT(3), 267 IEEE80211_TX_CTL_NO_ACK = BIT(4), 268 IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(5), 269 IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(6), 270 IEEE80211_TX_CTL_REQUEUE = BIT(7), 271 IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(8), 272 IEEE80211_TX_CTL_SHORT_PREAMBLE = BIT(9), 273 IEEE80211_TX_CTL_LONG_RETRY_LIMIT = BIT(10), 274 IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(12), 275 IEEE80211_TX_CTL_AMPDU = BIT(13), 276 IEEE80211_TX_CTL_OFDM_HT = BIT(14), 277 IEEE80211_TX_CTL_GREEN_FIELD = BIT(15), 278 IEEE80211_TX_CTL_40_MHZ_WIDTH = BIT(16), 279 IEEE80211_TX_CTL_DUP_DATA = BIT(17), 280 IEEE80211_TX_CTL_SHORT_GI = BIT(18), 281 IEEE80211_TX_CTL_INJECTED = BIT(19), 282 IEEE80211_TX_STAT_TX_FILTERED = BIT(20), 283 IEEE80211_TX_STAT_ACK = BIT(21), 284 IEEE80211_TX_STAT_AMPDU = BIT(22), 285 IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(23), 286 IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(24), 287 }; 288 289 290 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE \ 291 (sizeof(((struct sk_buff *)0)->cb) - 8) 292 #define IEEE80211_TX_INFO_DRIVER_DATA_PTRS \ 293 (IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)) 294 295 /* maximum number of alternate rate retry stages */ 296 #define IEEE80211_TX_MAX_ALTRATE 3 297 298 /** 299 * struct ieee80211_tx_altrate - alternate rate selection/status 300 * 301 * @rate_idx: rate index to attempt to send with 302 * @limit: number of retries before fallback 303 */ 304 struct ieee80211_tx_altrate { 305 s8 rate_idx; 306 u8 limit; 307 }; 308 309 /** 310 * struct ieee80211_tx_info - skb transmit information 311 * 312 * This structure is placed in skb->cb for three uses: 313 * (1) mac80211 TX control - mac80211 tells the driver what to do 314 * (2) driver internal use (if applicable) 315 * (3) TX status information - driver tells mac80211 what happened 316 * 317 * The TX control's sta pointer is only valid during the ->tx call, 318 * it may be NULL. 319 * 320 * @flags: transmit info flags, defined above 321 * @band: TBD 322 * @tx_rate_idx: TBD 323 * @antenna_sel_tx: TBD 324 * @control: union for control data 325 * @status: union for status data 326 * @driver_data: array of driver_data pointers 327 * @retry_count: number of retries 328 * @excessive_retries: set to 1 if the frame was retried many times 329 * but not acknowledged 330 * @ampdu_ack_len: number of aggregated frames. 331 * relevant only if IEEE80211_TX_STATUS_AMPDU was set. 332 * @ampdu_ack_map: block ack bit map for the aggregation. 333 * relevant only if IEEE80211_TX_STATUS_AMPDU was set. 334 * @ack_signal: signal strength of the ACK frame 335 */ 336 struct ieee80211_tx_info { 337 /* common information */ 338 u32 flags; 339 u8 band; 340 s8 tx_rate_idx; 341 u8 antenna_sel_tx; 342 343 /* 1 byte hole */ 344 345 union { 346 struct { 347 /* NB: vif can be NULL for injected frames */ 348 struct ieee80211_vif *vif; 349 struct ieee80211_key_conf *hw_key; 350 struct ieee80211_sta *sta; 351 unsigned long jiffies; 352 s8 rts_cts_rate_idx; 353 u8 retry_limit; 354 struct ieee80211_tx_altrate retries[IEEE80211_TX_MAX_ALTRATE]; 355 } control; 356 struct { 357 u64 ampdu_ack_map; 358 int ack_signal; 359 struct ieee80211_tx_altrate retries[IEEE80211_TX_MAX_ALTRATE + 1]; 360 u8 retry_count; 361 bool excessive_retries; 362 u8 ampdu_ack_len; 363 } status; 364 void *driver_data[IEEE80211_TX_INFO_DRIVER_DATA_PTRS]; 365 }; 366 }; 367 368 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb) 369 { 370 return (struct ieee80211_tx_info *)skb->cb; 371 } 372 373 374 /** 375 * enum mac80211_rx_flags - receive flags 376 * 377 * These flags are used with the @flag member of &struct ieee80211_rx_status. 378 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame. 379 * Use together with %RX_FLAG_MMIC_STRIPPED. 380 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware. 381 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header. 382 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame, 383 * verification has been done by the hardware. 384 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame. 385 * If this flag is set, the stack cannot do any replay detection 386 * hence the driver or hardware will have to do that. 387 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on 388 * the frame. 389 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on 390 * the frame. 391 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field) 392 * is valid. This is useful in monitor mode and necessary for beacon frames 393 * to enable IBSS merging. 394 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame 395 */ 396 enum mac80211_rx_flags { 397 RX_FLAG_MMIC_ERROR = 1<<0, 398 RX_FLAG_DECRYPTED = 1<<1, 399 RX_FLAG_RADIOTAP = 1<<2, 400 RX_FLAG_MMIC_STRIPPED = 1<<3, 401 RX_FLAG_IV_STRIPPED = 1<<4, 402 RX_FLAG_FAILED_FCS_CRC = 1<<5, 403 RX_FLAG_FAILED_PLCP_CRC = 1<<6, 404 RX_FLAG_TSFT = 1<<7, 405 RX_FLAG_SHORTPRE = 1<<8 406 }; 407 408 /** 409 * struct ieee80211_rx_status - receive status 410 * 411 * The low-level driver should provide this information (the subset 412 * supported by hardware) to the 802.11 code with each received 413 * frame. 414 * 415 * @mactime: value in microseconds of the 64-bit Time Synchronization Function 416 * (TSF) timer when the first data symbol (MPDU) arrived at the hardware. 417 * @band: the active band when this frame was received 418 * @freq: frequency the radio was tuned to when receiving this frame, in MHz 419 * @signal: signal strength when receiving this frame, either in dBm, in dB or 420 * unspecified depending on the hardware capabilities flags 421 * @IEEE80211_HW_SIGNAL_* 422 * @noise: noise when receiving this frame, in dBm. 423 * @qual: overall signal quality indication, in percent (0-100). 424 * @antenna: antenna used 425 * @rate_idx: index of data rate into band's supported rates 426 * @flag: %RX_FLAG_* 427 */ 428 struct ieee80211_rx_status { 429 u64 mactime; 430 enum ieee80211_band band; 431 int freq; 432 int signal; 433 int noise; 434 int qual; 435 int antenna; 436 int rate_idx; 437 int flag; 438 }; 439 440 /** 441 * enum ieee80211_conf_flags - configuration flags 442 * 443 * Flags to define PHY configuration options 444 * 445 * @IEEE80211_CONF_SHORT_SLOT_TIME: use 802.11g short slot time 446 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported) 447 * @IEEE80211_CONF_SUPPORT_HT_MODE: use 802.11n HT capabilities (if supported) 448 * @IEEE80211_CONF_PS: Enable 802.11 power save mode 449 */ 450 enum ieee80211_conf_flags { 451 /* 452 * TODO: IEEE80211_CONF_SHORT_SLOT_TIME will be removed once drivers 453 * have been converted to use bss_info_changed() for slot time 454 * configuration 455 */ 456 IEEE80211_CONF_SHORT_SLOT_TIME = (1<<0), 457 IEEE80211_CONF_RADIOTAP = (1<<1), 458 IEEE80211_CONF_SUPPORT_HT_MODE = (1<<2), 459 IEEE80211_CONF_PS = (1<<3), 460 }; 461 462 /** 463 * struct ieee80211_conf - configuration of the device 464 * 465 * This struct indicates how the driver shall configure the hardware. 466 * 467 * @radio_enabled: when zero, driver is required to switch off the radio. 468 * TODO make a flag 469 * @beacon_int: beacon interval (TODO make interface config) 470 * @listen_interval: listen interval in units of beacon interval 471 * @flags: configuration flags defined above 472 * @power_level: requested transmit power (in dBm) 473 * @max_antenna_gain: maximum antenna gain (in dBi) 474 * @antenna_sel_tx: transmit antenna selection, 0: default/diversity, 475 * 1/2: antenna 0/1 476 * @antenna_sel_rx: receive antenna selection, like @antenna_sel_tx 477 * @ht_conf: describes current self configuration of 802.11n HT capabilies 478 * @ht_bss_conf: describes current BSS configuration of 802.11n HT parameters 479 * @channel: the channel to tune to 480 */ 481 struct ieee80211_conf { 482 int radio_enabled; 483 484 int beacon_int; 485 u16 listen_interval; 486 u32 flags; 487 int power_level; 488 int max_antenna_gain; 489 u8 antenna_sel_tx; 490 u8 antenna_sel_rx; 491 492 struct ieee80211_channel *channel; 493 494 struct ieee80211_ht_info ht_conf; 495 struct ieee80211_ht_bss_info ht_bss_conf; 496 }; 497 498 /** 499 * struct ieee80211_vif - per-interface data 500 * 501 * Data in this structure is continually present for driver 502 * use during the life of a virtual interface. 503 * 504 * @type: type of this virtual interface 505 * @drv_priv: data area for driver use, will always be aligned to 506 * sizeof(void *). 507 */ 508 struct ieee80211_vif { 509 enum nl80211_iftype type; 510 /* must be last */ 511 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *)))); 512 }; 513 514 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif) 515 { 516 #ifdef CONFIG_MAC80211_MESH 517 return vif->type == NL80211_IFTYPE_MESH_POINT; 518 #endif 519 return false; 520 } 521 522 /** 523 * struct ieee80211_if_init_conf - initial configuration of an interface 524 * 525 * @vif: pointer to a driver-use per-interface structure. The pointer 526 * itself is also used for various functions including 527 * ieee80211_beacon_get() and ieee80211_get_buffered_bc(). 528 * @type: one of &enum nl80211_iftype constants. Determines the type of 529 * added/removed interface. 530 * @mac_addr: pointer to MAC address of the interface. This pointer is valid 531 * until the interface is removed (i.e. it cannot be used after 532 * remove_interface() callback was called for this interface). 533 * 534 * This structure is used in add_interface() and remove_interface() 535 * callbacks of &struct ieee80211_hw. 536 * 537 * When you allow multiple interfaces to be added to your PHY, take care 538 * that the hardware can actually handle multiple MAC addresses. However, 539 * also take care that when there's no interface left with mac_addr != %NULL 540 * you remove the MAC address from the device to avoid acknowledging packets 541 * in pure monitor mode. 542 */ 543 struct ieee80211_if_init_conf { 544 enum nl80211_iftype type; 545 struct ieee80211_vif *vif; 546 void *mac_addr; 547 }; 548 549 /** 550 * enum ieee80211_if_conf_change - interface config change flags 551 * 552 * @IEEE80211_IFCC_BSSID: The BSSID changed. 553 * @IEEE80211_IFCC_SSID: The SSID changed. 554 * @IEEE80211_IFCC_BEACON: The beacon for this interface changed 555 * (currently AP and MESH only), use ieee80211_beacon_get(). 556 */ 557 enum ieee80211_if_conf_change { 558 IEEE80211_IFCC_BSSID = BIT(0), 559 IEEE80211_IFCC_SSID = BIT(1), 560 IEEE80211_IFCC_BEACON = BIT(2), 561 }; 562 563 /** 564 * struct ieee80211_if_conf - configuration of an interface 565 * 566 * @changed: parameters that have changed, see &enum ieee80211_if_conf_change. 567 * @bssid: BSSID of the network we are associated to/creating. 568 * @ssid: used (together with @ssid_len) by drivers for hardware that 569 * generate beacons independently. The pointer is valid only during the 570 * config_interface() call, so copy the value somewhere if you need 571 * it. 572 * @ssid_len: length of the @ssid field. 573 * 574 * This structure is passed to the config_interface() callback of 575 * &struct ieee80211_hw. 576 */ 577 struct ieee80211_if_conf { 578 u32 changed; 579 u8 *bssid; 580 u8 *ssid; 581 size_t ssid_len; 582 }; 583 584 /** 585 * enum ieee80211_key_alg - key algorithm 586 * @ALG_WEP: WEP40 or WEP104 587 * @ALG_TKIP: TKIP 588 * @ALG_CCMP: CCMP (AES) 589 */ 590 enum ieee80211_key_alg { 591 ALG_WEP, 592 ALG_TKIP, 593 ALG_CCMP, 594 }; 595 596 /** 597 * enum ieee80211_key_len - key length 598 * @LEN_WEP40: WEP 5-byte long key 599 * @LEN_WEP104: WEP 13-byte long key 600 */ 601 enum ieee80211_key_len { 602 LEN_WEP40 = 5, 603 LEN_WEP104 = 13, 604 }; 605 606 /** 607 * enum ieee80211_key_flags - key flags 608 * 609 * These flags are used for communication about keys between the driver 610 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf. 611 * 612 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates 613 * that the STA this key will be used with could be using QoS. 614 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the 615 * driver to indicate that it requires IV generation for this 616 * particular key. 617 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by 618 * the driver for a TKIP key if it requires Michael MIC 619 * generation in software. 620 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates 621 * that the key is pairwise rather then a shared key. 622 */ 623 enum ieee80211_key_flags { 624 IEEE80211_KEY_FLAG_WMM_STA = 1<<0, 625 IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1, 626 IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2, 627 IEEE80211_KEY_FLAG_PAIRWISE = 1<<3, 628 }; 629 630 /** 631 * struct ieee80211_key_conf - key information 632 * 633 * This key information is given by mac80211 to the driver by 634 * the set_key() callback in &struct ieee80211_ops. 635 * 636 * @hw_key_idx: To be set by the driver, this is the key index the driver 637 * wants to be given when a frame is transmitted and needs to be 638 * encrypted in hardware. 639 * @alg: The key algorithm. 640 * @flags: key flags, see &enum ieee80211_key_flags. 641 * @keyidx: the key index (0-3) 642 * @keylen: key material length 643 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte) 644 * data block: 645 * - Temporal Encryption Key (128 bits) 646 * - Temporal Authenticator Tx MIC Key (64 bits) 647 * - Temporal Authenticator Rx MIC Key (64 bits) 648 * @icv_len: FIXME 649 * @iv_len: FIXME 650 */ 651 struct ieee80211_key_conf { 652 enum ieee80211_key_alg alg; 653 u8 icv_len; 654 u8 iv_len; 655 u8 hw_key_idx; 656 u8 flags; 657 s8 keyidx; 658 u8 keylen; 659 u8 key[0]; 660 }; 661 662 /** 663 * enum set_key_cmd - key command 664 * 665 * Used with the set_key() callback in &struct ieee80211_ops, this 666 * indicates whether a key is being removed or added. 667 * 668 * @SET_KEY: a key is set 669 * @DISABLE_KEY: a key must be disabled 670 */ 671 enum set_key_cmd { 672 SET_KEY, DISABLE_KEY, 673 }; 674 675 /** 676 * struct ieee80211_sta - station table entry 677 * 678 * A station table entry represents a station we are possibly 679 * communicating with. Since stations are RCU-managed in 680 * mac80211, any ieee80211_sta pointer you get access to must 681 * either be protected by rcu_read_lock() explicitly or implicitly, 682 * or you must take good care to not use such a pointer after a 683 * call to your sta_notify callback that removed it. 684 * 685 * @addr: MAC address 686 * @aid: AID we assigned to the station if we're an AP 687 * @supp_rates: Bitmap of supported rates (per band) 688 * @ht_info: HT capabilities of this STA 689 * @drv_priv: data area for driver use, will always be aligned to 690 * sizeof(void *), size is determined in hw information. 691 */ 692 struct ieee80211_sta { 693 u64 supp_rates[IEEE80211_NUM_BANDS]; 694 u8 addr[ETH_ALEN]; 695 u16 aid; 696 struct ieee80211_ht_info ht_info; 697 698 /* must be last */ 699 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *)))); 700 }; 701 702 /** 703 * enum sta_notify_cmd - sta notify command 704 * 705 * Used with the sta_notify() callback in &struct ieee80211_ops, this 706 * indicates addition and removal of a station to station table. 707 * 708 * @STA_NOTIFY_ADD: a station was added to the station table 709 * @STA_NOTIFY_REMOVE: a station being removed from the station table 710 */ 711 enum sta_notify_cmd { 712 STA_NOTIFY_ADD, STA_NOTIFY_REMOVE 713 }; 714 715 /** 716 * enum ieee80211_tkip_key_type - get tkip key 717 * 718 * Used by drivers which need to get a tkip key for skb. Some drivers need a 719 * phase 1 key, others need a phase 2 key. A single function allows the driver 720 * to get the key, this enum indicates what type of key is required. 721 * 722 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key 723 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key 724 */ 725 enum ieee80211_tkip_key_type { 726 IEEE80211_TKIP_P1_KEY, 727 IEEE80211_TKIP_P2_KEY, 728 }; 729 730 /** 731 * enum ieee80211_hw_flags - hardware flags 732 * 733 * These flags are used to indicate hardware capabilities to 734 * the stack. Generally, flags here should have their meaning 735 * done in a way that the simplest hardware doesn't need setting 736 * any particular flags. There are some exceptions to this rule, 737 * however, so you are advised to review these flags carefully. 738 * 739 * @IEEE80211_HW_RX_INCLUDES_FCS: 740 * Indicates that received frames passed to the stack include 741 * the FCS at the end. 742 * 743 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING: 744 * Some wireless LAN chipsets buffer broadcast/multicast frames 745 * for power saving stations in the hardware/firmware and others 746 * rely on the host system for such buffering. This option is used 747 * to configure the IEEE 802.11 upper layer to buffer broadcast and 748 * multicast frames when there are power saving stations so that 749 * the driver can fetch them with ieee80211_get_buffered_bc(). 750 * 751 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE: 752 * Hardware is not capable of short slot operation on the 2.4 GHz band. 753 * 754 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE: 755 * Hardware is not capable of receiving frames with short preamble on 756 * the 2.4 GHz band. 757 * 758 * @IEEE80211_HW_SIGNAL_UNSPEC: 759 * Hardware can provide signal values but we don't know its units. We 760 * expect values between 0 and @max_signal. 761 * If possible please provide dB or dBm instead. 762 * 763 * @IEEE80211_HW_SIGNAL_DB: 764 * Hardware gives signal values in dB, decibel difference from an 765 * arbitrary, fixed reference. We expect values between 0 and @max_signal. 766 * If possible please provide dBm instead. 767 * 768 * @IEEE80211_HW_SIGNAL_DBM: 769 * Hardware gives signal values in dBm, decibel difference from 770 * one milliwatt. This is the preferred method since it is standardized 771 * between different devices. @max_signal does not need to be set. 772 * 773 * @IEEE80211_HW_NOISE_DBM: 774 * Hardware can provide noise (radio interference) values in units dBm, 775 * decibel difference from one milliwatt. 776 * 777 * @IEEE80211_HW_SPECTRUM_MGMT: 778 * Hardware supports spectrum management defined in 802.11h 779 * Measurement, Channel Switch, Quieting, TPC 780 */ 781 enum ieee80211_hw_flags { 782 IEEE80211_HW_RX_INCLUDES_FCS = 1<<1, 783 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2, 784 IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3, 785 IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4, 786 IEEE80211_HW_SIGNAL_UNSPEC = 1<<5, 787 IEEE80211_HW_SIGNAL_DB = 1<<6, 788 IEEE80211_HW_SIGNAL_DBM = 1<<7, 789 IEEE80211_HW_NOISE_DBM = 1<<8, 790 IEEE80211_HW_SPECTRUM_MGMT = 1<<9, 791 }; 792 793 /** 794 * struct ieee80211_hw - hardware information and state 795 * 796 * This structure contains the configuration and hardware 797 * information for an 802.11 PHY. 798 * 799 * @wiphy: This points to the &struct wiphy allocated for this 800 * 802.11 PHY. You must fill in the @perm_addr and @dev 801 * members of this structure using SET_IEEE80211_DEV() 802 * and SET_IEEE80211_PERM_ADDR(). Additionally, all supported 803 * bands (with channels, bitrates) are registered here. 804 * 805 * @conf: &struct ieee80211_conf, device configuration, don't use. 806 * 807 * @workqueue: single threaded workqueue available for driver use, 808 * allocated by mac80211 on registration and flushed when an 809 * interface is removed. 810 * NOTICE: All work performed on this workqueue should NEVER 811 * acquire the RTNL lock (i.e. Don't use the function 812 * ieee80211_iterate_active_interfaces()) 813 * 814 * @priv: pointer to private area that was allocated for driver use 815 * along with this structure. 816 * 817 * @flags: hardware flags, see &enum ieee80211_hw_flags. 818 * 819 * @extra_tx_headroom: headroom to reserve in each transmit skb 820 * for use by the driver (e.g. for transmit headers.) 821 * 822 * @channel_change_time: time (in microseconds) it takes to change channels. 823 * 824 * @max_signal: Maximum value for signal (rssi) in RX information, used 825 * only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB 826 * 827 * @max_listen_interval: max listen interval in units of beacon interval 828 * that HW supports 829 * 830 * @queues: number of available hardware transmit queues for 831 * data packets. WMM/QoS requires at least four, these 832 * queues need to have configurable access parameters. 833 * 834 * @ampdu_queues: number of available hardware transmit queues 835 * for A-MPDU packets, these have no access parameters 836 * because they're used only for A-MPDU frames. Note that 837 * mac80211 will not currently use any of the regular queues 838 * for aggregation. 839 * 840 * @rate_control_algorithm: rate control algorithm for this hardware. 841 * If unset (NULL), the default algorithm will be used. Must be 842 * set before calling ieee80211_register_hw(). 843 * 844 * @vif_data_size: size (in bytes) of the drv_priv data area 845 * within &struct ieee80211_vif. 846 * @sta_data_size: size (in bytes) of the drv_priv data area 847 * within &struct ieee80211_sta. 848 * 849 * @max_altrates: maximum number of alternate rate retry stages 850 * @max_altrate_tries: maximum number of tries for each stage 851 */ 852 struct ieee80211_hw { 853 struct ieee80211_conf conf; 854 struct wiphy *wiphy; 855 struct workqueue_struct *workqueue; 856 const char *rate_control_algorithm; 857 void *priv; 858 u32 flags; 859 unsigned int extra_tx_headroom; 860 int channel_change_time; 861 int vif_data_size; 862 int sta_data_size; 863 u16 queues; 864 u16 ampdu_queues; 865 u16 max_listen_interval; 866 s8 max_signal; 867 u8 max_altrates; 868 u8 max_altrate_tries; 869 }; 870 871 struct ieee80211_hw *wiphy_to_hw(struct wiphy *wiphy); 872 873 /** 874 * SET_IEEE80211_DEV - set device for 802.11 hardware 875 * 876 * @hw: the &struct ieee80211_hw to set the device for 877 * @dev: the &struct device of this 802.11 device 878 */ 879 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev) 880 { 881 set_wiphy_dev(hw->wiphy, dev); 882 } 883 884 /** 885 * SET_IEEE80211_PERM_ADDR - set the permanenet MAC address for 802.11 hardware 886 * 887 * @hw: the &struct ieee80211_hw to set the MAC address for 888 * @addr: the address to set 889 */ 890 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr) 891 { 892 memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN); 893 } 894 895 static inline int ieee80211_num_regular_queues(struct ieee80211_hw *hw) 896 { 897 return hw->queues; 898 } 899 900 static inline int ieee80211_num_queues(struct ieee80211_hw *hw) 901 { 902 return hw->queues + hw->ampdu_queues; 903 } 904 905 static inline struct ieee80211_rate * 906 ieee80211_get_tx_rate(const struct ieee80211_hw *hw, 907 const struct ieee80211_tx_info *c) 908 { 909 if (WARN_ON(c->tx_rate_idx < 0)) 910 return NULL; 911 return &hw->wiphy->bands[c->band]->bitrates[c->tx_rate_idx]; 912 } 913 914 static inline struct ieee80211_rate * 915 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw, 916 const struct ieee80211_tx_info *c) 917 { 918 if (c->control.rts_cts_rate_idx < 0) 919 return NULL; 920 return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx]; 921 } 922 923 static inline struct ieee80211_rate * 924 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw, 925 const struct ieee80211_tx_info *c, int idx) 926 { 927 if (c->control.retries[idx].rate_idx < 0) 928 return NULL; 929 return &hw->wiphy->bands[c->band]->bitrates[c->control.retries[idx].rate_idx]; 930 } 931 932 /** 933 * DOC: Hardware crypto acceleration 934 * 935 * mac80211 is capable of taking advantage of many hardware 936 * acceleration designs for encryption and decryption operations. 937 * 938 * The set_key() callback in the &struct ieee80211_ops for a given 939 * device is called to enable hardware acceleration of encryption and 940 * decryption. The callback takes an @address parameter that will be 941 * the broadcast address for default keys, the other station's hardware 942 * address for individual keys or the zero address for keys that will 943 * be used only for transmission. 944 * Multiple transmission keys with the same key index may be used when 945 * VLANs are configured for an access point. 946 * 947 * The @local_address parameter will always be set to our own address, 948 * this is only relevant if you support multiple local addresses. 949 * 950 * When transmitting, the TX control data will use the @hw_key_idx 951 * selected by the driver by modifying the &struct ieee80211_key_conf 952 * pointed to by the @key parameter to the set_key() function. 953 * 954 * The set_key() call for the %SET_KEY command should return 0 if 955 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be 956 * added; if you return 0 then hw_key_idx must be assigned to the 957 * hardware key index, you are free to use the full u8 range. 958 * 959 * When the cmd is %DISABLE_KEY then it must succeed. 960 * 961 * Note that it is permissible to not decrypt a frame even if a key 962 * for it has been uploaded to hardware, the stack will not make any 963 * decision based on whether a key has been uploaded or not but rather 964 * based on the receive flags. 965 * 966 * The &struct ieee80211_key_conf structure pointed to by the @key 967 * parameter is guaranteed to be valid until another call to set_key() 968 * removes it, but it can only be used as a cookie to differentiate 969 * keys. 970 * 971 * In TKIP some HW need to be provided a phase 1 key, for RX decryption 972 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key 973 * handler. 974 * The update_tkip_key() call updates the driver with the new phase 1 key. 975 * This happens everytime the iv16 wraps around (every 65536 packets). The 976 * set_key() call will happen only once for each key (unless the AP did 977 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is 978 * provided by udpate_tkip_key only. The trigger that makes mac80211 call this 979 * handler is software decryption with wrap around of iv16. 980 */ 981 982 /** 983 * DOC: Frame filtering 984 * 985 * mac80211 requires to see many management frames for proper 986 * operation, and users may want to see many more frames when 987 * in monitor mode. However, for best CPU usage and power consumption, 988 * having as few frames as possible percolate through the stack is 989 * desirable. Hence, the hardware should filter as much as possible. 990 * 991 * To achieve this, mac80211 uses filter flags (see below) to tell 992 * the driver's configure_filter() function which frames should be 993 * passed to mac80211 and which should be filtered out. 994 * 995 * The configure_filter() callback is invoked with the parameters 996 * @mc_count and @mc_list for the combined multicast address list 997 * of all virtual interfaces, @changed_flags telling which flags 998 * were changed and @total_flags with the new flag states. 999 * 1000 * If your device has no multicast address filters your driver will 1001 * need to check both the %FIF_ALLMULTI flag and the @mc_count 1002 * parameter to see whether multicast frames should be accepted 1003 * or dropped. 1004 * 1005 * All unsupported flags in @total_flags must be cleared. 1006 * Hardware does not support a flag if it is incapable of _passing_ 1007 * the frame to the stack. Otherwise the driver must ignore 1008 * the flag, but not clear it. 1009 * You must _only_ clear the flag (announce no support for the 1010 * flag to mac80211) if you are not able to pass the packet type 1011 * to the stack (so the hardware always filters it). 1012 * So for example, you should clear @FIF_CONTROL, if your hardware 1013 * always filters control frames. If your hardware always passes 1014 * control frames to the kernel and is incapable of filtering them, 1015 * you do _not_ clear the @FIF_CONTROL flag. 1016 * This rule applies to all other FIF flags as well. 1017 */ 1018 1019 /** 1020 * enum ieee80211_filter_flags - hardware filter flags 1021 * 1022 * These flags determine what the filter in hardware should be 1023 * programmed to let through and what should not be passed to the 1024 * stack. It is always safe to pass more frames than requested, 1025 * but this has negative impact on power consumption. 1026 * 1027 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS, 1028 * think of the BSS as your network segment and then this corresponds 1029 * to the regular ethernet device promiscuous mode. 1030 * 1031 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested 1032 * by the user or if the hardware is not capable of filtering by 1033 * multicast address. 1034 * 1035 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the 1036 * %RX_FLAG_FAILED_FCS_CRC for them) 1037 * 1038 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set 1039 * the %RX_FLAG_FAILED_PLCP_CRC for them 1040 * 1041 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate 1042 * to the hardware that it should not filter beacons or probe responses 1043 * by BSSID. Filtering them can greatly reduce the amount of processing 1044 * mac80211 needs to do and the amount of CPU wakeups, so you should 1045 * honour this flag if possible. 1046 * 1047 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then 1048 * only those addressed to this station 1049 * 1050 * @FIF_OTHER_BSS: pass frames destined to other BSSes 1051 */ 1052 enum ieee80211_filter_flags { 1053 FIF_PROMISC_IN_BSS = 1<<0, 1054 FIF_ALLMULTI = 1<<1, 1055 FIF_FCSFAIL = 1<<2, 1056 FIF_PLCPFAIL = 1<<3, 1057 FIF_BCN_PRBRESP_PROMISC = 1<<4, 1058 FIF_CONTROL = 1<<5, 1059 FIF_OTHER_BSS = 1<<6, 1060 }; 1061 1062 /** 1063 * enum ieee80211_ampdu_mlme_action - A-MPDU actions 1064 * 1065 * These flags are used with the ampdu_action() callback in 1066 * &struct ieee80211_ops to indicate which action is needed. 1067 * @IEEE80211_AMPDU_RX_START: start Rx aggregation 1068 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation 1069 * @IEEE80211_AMPDU_TX_START: start Tx aggregation 1070 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation 1071 */ 1072 enum ieee80211_ampdu_mlme_action { 1073 IEEE80211_AMPDU_RX_START, 1074 IEEE80211_AMPDU_RX_STOP, 1075 IEEE80211_AMPDU_TX_START, 1076 IEEE80211_AMPDU_TX_STOP, 1077 }; 1078 1079 /** 1080 * struct ieee80211_ops - callbacks from mac80211 to the driver 1081 * 1082 * This structure contains various callbacks that the driver may 1083 * handle or, in some cases, must handle, for example to configure 1084 * the hardware to a new channel or to transmit a frame. 1085 * 1086 * @tx: Handler that 802.11 module calls for each transmitted frame. 1087 * skb contains the buffer starting from the IEEE 802.11 header. 1088 * The low-level driver should send the frame out based on 1089 * configuration in the TX control data. This handler should, 1090 * preferably, never fail and stop queues appropriately, more 1091 * importantly, however, it must never fail for A-MPDU-queues. 1092 * Must be implemented and atomic. 1093 * 1094 * @start: Called before the first netdevice attached to the hardware 1095 * is enabled. This should turn on the hardware and must turn on 1096 * frame reception (for possibly enabled monitor interfaces.) 1097 * Returns negative error codes, these may be seen in userspace, 1098 * or zero. 1099 * When the device is started it should not have a MAC address 1100 * to avoid acknowledging frames before a non-monitor device 1101 * is added. 1102 * Must be implemented. 1103 * 1104 * @stop: Called after last netdevice attached to the hardware 1105 * is disabled. This should turn off the hardware (at least 1106 * it must turn off frame reception.) 1107 * May be called right after add_interface if that rejects 1108 * an interface. 1109 * Must be implemented. 1110 * 1111 * @add_interface: Called when a netdevice attached to the hardware is 1112 * enabled. Because it is not called for monitor mode devices, @open 1113 * and @stop must be implemented. 1114 * The driver should perform any initialization it needs before 1115 * the device can be enabled. The initial configuration for the 1116 * interface is given in the conf parameter. 1117 * The callback may refuse to add an interface by returning a 1118 * negative error code (which will be seen in userspace.) 1119 * Must be implemented. 1120 * 1121 * @remove_interface: Notifies a driver that an interface is going down. 1122 * The @stop callback is called after this if it is the last interface 1123 * and no monitor interfaces are present. 1124 * When all interfaces are removed, the MAC address in the hardware 1125 * must be cleared so the device no longer acknowledges packets, 1126 * the mac_addr member of the conf structure is, however, set to the 1127 * MAC address of the device going away. 1128 * Hence, this callback must be implemented. 1129 * 1130 * @config: Handler for configuration requests. IEEE 802.11 code calls this 1131 * function to change hardware configuration, e.g., channel. 1132 * 1133 * @config_interface: Handler for configuration requests related to interfaces 1134 * (e.g. BSSID changes.) 1135 * 1136 * @bss_info_changed: Handler for configuration requests related to BSS 1137 * parameters that may vary during BSS's lifespan, and may affect low 1138 * level driver (e.g. assoc/disassoc status, erp parameters). 1139 * This function should not be used if no BSS has been set, unless 1140 * for association indication. The @changed parameter indicates which 1141 * of the bss parameters has changed when a call is made. 1142 * 1143 * @configure_filter: Configure the device's RX filter. 1144 * See the section "Frame filtering" for more information. 1145 * This callback must be implemented and atomic. 1146 * 1147 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit 1148 * must be set or cleared for a given STA. Must be atomic. 1149 * 1150 * @set_key: See the section "Hardware crypto acceleration" 1151 * This callback can sleep, and is only called between add_interface 1152 * and remove_interface calls, i.e. while the interface with the 1153 * given local_address is enabled. 1154 * 1155 * @update_tkip_key: See the section "Hardware crypto acceleration" 1156 * This callback will be called in the context of Rx. Called for drivers 1157 * which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY. 1158 * 1159 * @hw_scan: Ask the hardware to service the scan request, no need to start 1160 * the scan state machine in stack. The scan must honour the channel 1161 * configuration done by the regulatory agent in the wiphy's registered 1162 * bands. When the scan finishes, ieee80211_scan_completed() must be 1163 * called; note that it also must be called when the scan cannot finish 1164 * because the hardware is turned off! Anything else is a bug! 1165 * 1166 * @get_stats: return low-level statistics 1167 * 1168 * @get_tkip_seq: If your device implements TKIP encryption in hardware this 1169 * callback should be provided to read the TKIP transmit IVs (both IV32 1170 * and IV16) for the given key from hardware. 1171 * 1172 * @set_rts_threshold: Configuration of RTS threshold (if device needs it) 1173 * 1174 * @set_frag_threshold: Configuration of fragmentation threshold. Assign this if 1175 * the device does fragmentation by itself; if this method is assigned then 1176 * the stack will not do fragmentation. 1177 * 1178 * @set_retry_limit: Configuration of retry limits (if device needs it) 1179 * 1180 * @sta_notify: Notifies low level driver about addition or removal 1181 * of assocaited station or AP. 1182 * 1183 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), 1184 * bursting) for a hardware TX queue. 1185 * 1186 * @get_tx_stats: Get statistics of the current TX queue status. This is used 1187 * to get number of currently queued packets (queue length), maximum queue 1188 * size (limit), and total number of packets sent using each TX queue 1189 * (count). The 'stats' pointer points to an array that has hw->queues + 1190 * hw->ampdu_queues items. 1191 * 1192 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently, 1193 * this is only used for IBSS mode debugging and, as such, is not a 1194 * required function. Must be atomic. 1195 * 1196 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize 1197 * with other STAs in the IBSS. This is only used in IBSS mode. This 1198 * function is optional if the firmware/hardware takes full care of 1199 * TSF synchronization. 1200 * 1201 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us. 1202 * This is needed only for IBSS mode and the result of this function is 1203 * used to determine whether to reply to Probe Requests. 1204 * 1205 * @conf_ht: Configures low level driver with 802.11n HT data. Must be atomic. 1206 * 1207 * @ampdu_action: Perform a certain A-MPDU action 1208 * The RA/TID combination determines the destination and TID we want 1209 * the ampdu action to be performed for. The action is defined through 1210 * ieee80211_ampdu_mlme_action. Starting sequence number (@ssn) 1211 * is the first frame we expect to perform the action on. notice 1212 * that TX/RX_STOP can pass NULL for this parameter. 1213 */ 1214 struct ieee80211_ops { 1215 int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb); 1216 int (*start)(struct ieee80211_hw *hw); 1217 void (*stop)(struct ieee80211_hw *hw); 1218 int (*add_interface)(struct ieee80211_hw *hw, 1219 struct ieee80211_if_init_conf *conf); 1220 void (*remove_interface)(struct ieee80211_hw *hw, 1221 struct ieee80211_if_init_conf *conf); 1222 int (*config)(struct ieee80211_hw *hw, struct ieee80211_conf *conf); 1223 int (*config_interface)(struct ieee80211_hw *hw, 1224 struct ieee80211_vif *vif, 1225 struct ieee80211_if_conf *conf); 1226 void (*bss_info_changed)(struct ieee80211_hw *hw, 1227 struct ieee80211_vif *vif, 1228 struct ieee80211_bss_conf *info, 1229 u32 changed); 1230 void (*configure_filter)(struct ieee80211_hw *hw, 1231 unsigned int changed_flags, 1232 unsigned int *total_flags, 1233 int mc_count, struct dev_addr_list *mc_list); 1234 int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 1235 bool set); 1236 int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1237 const u8 *local_address, const u8 *address, 1238 struct ieee80211_key_conf *key); 1239 void (*update_tkip_key)(struct ieee80211_hw *hw, 1240 struct ieee80211_key_conf *conf, const u8 *address, 1241 u32 iv32, u16 *phase1key); 1242 int (*hw_scan)(struct ieee80211_hw *hw, u8 *ssid, size_t len); 1243 int (*get_stats)(struct ieee80211_hw *hw, 1244 struct ieee80211_low_level_stats *stats); 1245 void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx, 1246 u32 *iv32, u16 *iv16); 1247 int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value); 1248 int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value); 1249 int (*set_retry_limit)(struct ieee80211_hw *hw, 1250 u32 short_retry, u32 long_retr); 1251 void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1252 enum sta_notify_cmd, struct ieee80211_sta *sta); 1253 int (*conf_tx)(struct ieee80211_hw *hw, u16 queue, 1254 const struct ieee80211_tx_queue_params *params); 1255 int (*get_tx_stats)(struct ieee80211_hw *hw, 1256 struct ieee80211_tx_queue_stats *stats); 1257 u64 (*get_tsf)(struct ieee80211_hw *hw); 1258 void (*reset_tsf)(struct ieee80211_hw *hw); 1259 int (*tx_last_beacon)(struct ieee80211_hw *hw); 1260 int (*ampdu_action)(struct ieee80211_hw *hw, 1261 enum ieee80211_ampdu_mlme_action action, 1262 struct ieee80211_sta *sta, u16 tid, u16 *ssn); 1263 }; 1264 1265 /** 1266 * ieee80211_alloc_hw - Allocate a new hardware device 1267 * 1268 * This must be called once for each hardware device. The returned pointer 1269 * must be used to refer to this device when calling other functions. 1270 * mac80211 allocates a private data area for the driver pointed to by 1271 * @priv in &struct ieee80211_hw, the size of this area is given as 1272 * @priv_data_len. 1273 * 1274 * @priv_data_len: length of private data 1275 * @ops: callbacks for this device 1276 */ 1277 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, 1278 const struct ieee80211_ops *ops); 1279 1280 /** 1281 * ieee80211_register_hw - Register hardware device 1282 * 1283 * You must call this function before any other functions in 1284 * mac80211. Note that before a hardware can be registered, you 1285 * need to fill the contained wiphy's information. 1286 * 1287 * @hw: the device to register as returned by ieee80211_alloc_hw() 1288 */ 1289 int ieee80211_register_hw(struct ieee80211_hw *hw); 1290 1291 #ifdef CONFIG_MAC80211_LEDS 1292 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw); 1293 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw); 1294 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw); 1295 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw); 1296 #endif 1297 /** 1298 * ieee80211_get_tx_led_name - get name of TX LED 1299 * 1300 * mac80211 creates a transmit LED trigger for each wireless hardware 1301 * that can be used to drive LEDs if your driver registers a LED device. 1302 * This function returns the name (or %NULL if not configured for LEDs) 1303 * of the trigger so you can automatically link the LED device. 1304 * 1305 * @hw: the hardware to get the LED trigger name for 1306 */ 1307 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw) 1308 { 1309 #ifdef CONFIG_MAC80211_LEDS 1310 return __ieee80211_get_tx_led_name(hw); 1311 #else 1312 return NULL; 1313 #endif 1314 } 1315 1316 /** 1317 * ieee80211_get_rx_led_name - get name of RX LED 1318 * 1319 * mac80211 creates a receive LED trigger for each wireless hardware 1320 * that can be used to drive LEDs if your driver registers a LED device. 1321 * This function returns the name (or %NULL if not configured for LEDs) 1322 * of the trigger so you can automatically link the LED device. 1323 * 1324 * @hw: the hardware to get the LED trigger name for 1325 */ 1326 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw) 1327 { 1328 #ifdef CONFIG_MAC80211_LEDS 1329 return __ieee80211_get_rx_led_name(hw); 1330 #else 1331 return NULL; 1332 #endif 1333 } 1334 1335 /** 1336 * ieee80211_get_assoc_led_name - get name of association LED 1337 * 1338 * mac80211 creates a association LED trigger for each wireless hardware 1339 * that can be used to drive LEDs if your driver registers a LED device. 1340 * This function returns the name (or %NULL if not configured for LEDs) 1341 * of the trigger so you can automatically link the LED device. 1342 * 1343 * @hw: the hardware to get the LED trigger name for 1344 */ 1345 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw) 1346 { 1347 #ifdef CONFIG_MAC80211_LEDS 1348 return __ieee80211_get_assoc_led_name(hw); 1349 #else 1350 return NULL; 1351 #endif 1352 } 1353 1354 /** 1355 * ieee80211_get_radio_led_name - get name of radio LED 1356 * 1357 * mac80211 creates a radio change LED trigger for each wireless hardware 1358 * that can be used to drive LEDs if your driver registers a LED device. 1359 * This function returns the name (or %NULL if not configured for LEDs) 1360 * of the trigger so you can automatically link the LED device. 1361 * 1362 * @hw: the hardware to get the LED trigger name for 1363 */ 1364 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw) 1365 { 1366 #ifdef CONFIG_MAC80211_LEDS 1367 return __ieee80211_get_radio_led_name(hw); 1368 #else 1369 return NULL; 1370 #endif 1371 } 1372 1373 /** 1374 * ieee80211_unregister_hw - Unregister a hardware device 1375 * 1376 * This function instructs mac80211 to free allocated resources 1377 * and unregister netdevices from the networking subsystem. 1378 * 1379 * @hw: the hardware to unregister 1380 */ 1381 void ieee80211_unregister_hw(struct ieee80211_hw *hw); 1382 1383 /** 1384 * ieee80211_free_hw - free hardware descriptor 1385 * 1386 * This function frees everything that was allocated, including the 1387 * private data for the driver. You must call ieee80211_unregister_hw() 1388 * before calling this function. 1389 * 1390 * @hw: the hardware to free 1391 */ 1392 void ieee80211_free_hw(struct ieee80211_hw *hw); 1393 1394 /* trick to avoid symbol clashes with the ieee80211 subsystem */ 1395 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, 1396 struct ieee80211_rx_status *status); 1397 1398 /** 1399 * ieee80211_rx - receive frame 1400 * 1401 * Use this function to hand received frames to mac80211. The receive 1402 * buffer in @skb must start with an IEEE 802.11 header or a radiotap 1403 * header if %RX_FLAG_RADIOTAP is set in the @status flags. 1404 * 1405 * This function may not be called in IRQ context. Calls to this function 1406 * for a single hardware must be synchronized against each other. Calls 1407 * to this function and ieee80211_rx_irqsafe() may not be mixed for a 1408 * single hardware. 1409 * 1410 * @hw: the hardware this frame came in on 1411 * @skb: the buffer to receive, owned by mac80211 after this call 1412 * @status: status of this frame; the status pointer need not be valid 1413 * after this function returns 1414 */ 1415 static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, 1416 struct ieee80211_rx_status *status) 1417 { 1418 __ieee80211_rx(hw, skb, status); 1419 } 1420 1421 /** 1422 * ieee80211_rx_irqsafe - receive frame 1423 * 1424 * Like ieee80211_rx() but can be called in IRQ context 1425 * (internally defers to a tasklet.) 1426 * 1427 * Calls to this function and ieee80211_rx() may not be mixed for a 1428 * single hardware. 1429 * 1430 * @hw: the hardware this frame came in on 1431 * @skb: the buffer to receive, owned by mac80211 after this call 1432 * @status: status of this frame; the status pointer need not be valid 1433 * after this function returns and is not freed by mac80211, 1434 * it is recommended that it points to a stack area 1435 */ 1436 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, 1437 struct sk_buff *skb, 1438 struct ieee80211_rx_status *status); 1439 1440 /** 1441 * ieee80211_tx_status - transmit status callback 1442 * 1443 * Call this function for all transmitted frames after they have been 1444 * transmitted. It is permissible to not call this function for 1445 * multicast frames but this can affect statistics. 1446 * 1447 * This function may not be called in IRQ context. Calls to this function 1448 * for a single hardware must be synchronized against each other. Calls 1449 * to this function and ieee80211_tx_status_irqsafe() may not be mixed 1450 * for a single hardware. 1451 * 1452 * @hw: the hardware the frame was transmitted by 1453 * @skb: the frame that was transmitted, owned by mac80211 after this call 1454 */ 1455 void ieee80211_tx_status(struct ieee80211_hw *hw, 1456 struct sk_buff *skb); 1457 1458 /** 1459 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback 1460 * 1461 * Like ieee80211_tx_status() but can be called in IRQ context 1462 * (internally defers to a tasklet.) 1463 * 1464 * Calls to this function and ieee80211_tx_status() may not be mixed for a 1465 * single hardware. 1466 * 1467 * @hw: the hardware the frame was transmitted by 1468 * @skb: the frame that was transmitted, owned by mac80211 after this call 1469 */ 1470 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, 1471 struct sk_buff *skb); 1472 1473 /** 1474 * ieee80211_beacon_get - beacon generation function 1475 * @hw: pointer obtained from ieee80211_alloc_hw(). 1476 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1477 * 1478 * If the beacon frames are generated by the host system (i.e., not in 1479 * hardware/firmware), the low-level driver uses this function to receive 1480 * the next beacon frame from the 802.11 code. The low-level is responsible 1481 * for calling this function before beacon data is needed (e.g., based on 1482 * hardware interrupt). Returned skb is used only once and low-level driver 1483 * is responsible of freeing it. 1484 */ 1485 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, 1486 struct ieee80211_vif *vif); 1487 1488 /** 1489 * ieee80211_rts_get - RTS frame generation function 1490 * @hw: pointer obtained from ieee80211_alloc_hw(). 1491 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1492 * @frame: pointer to the frame that is going to be protected by the RTS. 1493 * @frame_len: the frame length (in octets). 1494 * @frame_txctl: &struct ieee80211_tx_info of the frame. 1495 * @rts: The buffer where to store the RTS frame. 1496 * 1497 * If the RTS frames are generated by the host system (i.e., not in 1498 * hardware/firmware), the low-level driver uses this function to receive 1499 * the next RTS frame from the 802.11 code. The low-level is responsible 1500 * for calling this function before and RTS frame is needed. 1501 */ 1502 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1503 const void *frame, size_t frame_len, 1504 const struct ieee80211_tx_info *frame_txctl, 1505 struct ieee80211_rts *rts); 1506 1507 /** 1508 * ieee80211_rts_duration - Get the duration field for an RTS frame 1509 * @hw: pointer obtained from ieee80211_alloc_hw(). 1510 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1511 * @frame_len: the length of the frame that is going to be protected by the RTS. 1512 * @frame_txctl: &struct ieee80211_tx_info of the frame. 1513 * 1514 * If the RTS is generated in firmware, but the host system must provide 1515 * the duration field, the low-level driver uses this function to receive 1516 * the duration field value in little-endian byteorder. 1517 */ 1518 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 1519 struct ieee80211_vif *vif, size_t frame_len, 1520 const struct ieee80211_tx_info *frame_txctl); 1521 1522 /** 1523 * ieee80211_ctstoself_get - CTS-to-self frame generation function 1524 * @hw: pointer obtained from ieee80211_alloc_hw(). 1525 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1526 * @frame: pointer to the frame that is going to be protected by the CTS-to-self. 1527 * @frame_len: the frame length (in octets). 1528 * @frame_txctl: &struct ieee80211_tx_info of the frame. 1529 * @cts: The buffer where to store the CTS-to-self frame. 1530 * 1531 * If the CTS-to-self frames are generated by the host system (i.e., not in 1532 * hardware/firmware), the low-level driver uses this function to receive 1533 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible 1534 * for calling this function before and CTS-to-self frame is needed. 1535 */ 1536 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, 1537 struct ieee80211_vif *vif, 1538 const void *frame, size_t frame_len, 1539 const struct ieee80211_tx_info *frame_txctl, 1540 struct ieee80211_cts *cts); 1541 1542 /** 1543 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame 1544 * @hw: pointer obtained from ieee80211_alloc_hw(). 1545 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1546 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self. 1547 * @frame_txctl: &struct ieee80211_tx_info of the frame. 1548 * 1549 * If the CTS-to-self is generated in firmware, but the host system must provide 1550 * the duration field, the low-level driver uses this function to receive 1551 * the duration field value in little-endian byteorder. 1552 */ 1553 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 1554 struct ieee80211_vif *vif, 1555 size_t frame_len, 1556 const struct ieee80211_tx_info *frame_txctl); 1557 1558 /** 1559 * ieee80211_generic_frame_duration - Calculate the duration field for a frame 1560 * @hw: pointer obtained from ieee80211_alloc_hw(). 1561 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1562 * @frame_len: the length of the frame. 1563 * @rate: the rate at which the frame is going to be transmitted. 1564 * 1565 * Calculate the duration field of some generic frame, given its 1566 * length and transmission rate (in 100kbps). 1567 */ 1568 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 1569 struct ieee80211_vif *vif, 1570 size_t frame_len, 1571 struct ieee80211_rate *rate); 1572 1573 /** 1574 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames 1575 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1576 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1577 * 1578 * Function for accessing buffered broadcast and multicast frames. If 1579 * hardware/firmware does not implement buffering of broadcast/multicast 1580 * frames when power saving is used, 802.11 code buffers them in the host 1581 * memory. The low-level driver uses this function to fetch next buffered 1582 * frame. In most cases, this is used when generating beacon frame. This 1583 * function returns a pointer to the next buffered skb or NULL if no more 1584 * buffered frames are available. 1585 * 1586 * Note: buffered frames are returned only after DTIM beacon frame was 1587 * generated with ieee80211_beacon_get() and the low-level driver must thus 1588 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns 1589 * NULL if the previous generated beacon was not DTIM, so the low-level driver 1590 * does not need to check for DTIM beacons separately and should be able to 1591 * use common code for all beacons. 1592 */ 1593 struct sk_buff * 1594 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 1595 1596 /** 1597 * ieee80211_get_hdrlen_from_skb - get header length from data 1598 * 1599 * Given an skb with a raw 802.11 header at the data pointer this function 1600 * returns the 802.11 header length in bytes (not including encryption 1601 * headers). If the data in the sk_buff is too short to contain a valid 802.11 1602 * header the function returns 0. 1603 * 1604 * @skb: the frame 1605 */ 1606 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb); 1607 1608 /** 1609 * ieee80211_hdrlen - get header length in bytes from frame control 1610 * @fc: frame control field in little-endian format 1611 */ 1612 unsigned int ieee80211_hdrlen(__le16 fc); 1613 1614 /** 1615 * ieee80211_get_tkip_key - get a TKIP rc4 for skb 1616 * 1617 * This function computes a TKIP rc4 key for an skb. It computes 1618 * a phase 1 key if needed (iv16 wraps around). This function is to 1619 * be used by drivers which can do HW encryption but need to compute 1620 * to phase 1/2 key in SW. 1621 * 1622 * @keyconf: the parameter passed with the set key 1623 * @skb: the skb for which the key is needed 1624 * @type: TBD 1625 * @key: a buffer to which the key will be written 1626 */ 1627 void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf, 1628 struct sk_buff *skb, 1629 enum ieee80211_tkip_key_type type, u8 *key); 1630 /** 1631 * ieee80211_wake_queue - wake specific queue 1632 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1633 * @queue: queue number (counted from zero). 1634 * 1635 * Drivers should use this function instead of netif_wake_queue. 1636 */ 1637 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue); 1638 1639 /** 1640 * ieee80211_stop_queue - stop specific queue 1641 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1642 * @queue: queue number (counted from zero). 1643 * 1644 * Drivers should use this function instead of netif_stop_queue. 1645 */ 1646 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue); 1647 1648 /** 1649 * ieee80211_queue_stopped - test status of the queue 1650 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1651 * @queue: queue number (counted from zero). 1652 * 1653 * Drivers should use this function instead of netif_stop_queue. 1654 */ 1655 1656 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue); 1657 1658 /** 1659 * ieee80211_stop_queues - stop all queues 1660 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1661 * 1662 * Drivers should use this function instead of netif_stop_queue. 1663 */ 1664 void ieee80211_stop_queues(struct ieee80211_hw *hw); 1665 1666 /** 1667 * ieee80211_wake_queues - wake all queues 1668 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1669 * 1670 * Drivers should use this function instead of netif_wake_queue. 1671 */ 1672 void ieee80211_wake_queues(struct ieee80211_hw *hw); 1673 1674 /** 1675 * ieee80211_scan_completed - completed hardware scan 1676 * 1677 * When hardware scan offload is used (i.e. the hw_scan() callback is 1678 * assigned) this function needs to be called by the driver to notify 1679 * mac80211 that the scan finished. 1680 * 1681 * @hw: the hardware that finished the scan 1682 */ 1683 void ieee80211_scan_completed(struct ieee80211_hw *hw); 1684 1685 /** 1686 * ieee80211_iterate_active_interfaces - iterate active interfaces 1687 * 1688 * This function iterates over the interfaces associated with a given 1689 * hardware that are currently active and calls the callback for them. 1690 * This function allows the iterator function to sleep, when the iterator 1691 * function is atomic @ieee80211_iterate_active_interfaces_atomic can 1692 * be used. 1693 * 1694 * @hw: the hardware struct of which the interfaces should be iterated over 1695 * @iterator: the iterator function to call 1696 * @data: first argument of the iterator function 1697 */ 1698 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw, 1699 void (*iterator)(void *data, u8 *mac, 1700 struct ieee80211_vif *vif), 1701 void *data); 1702 1703 /** 1704 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces 1705 * 1706 * This function iterates over the interfaces associated with a given 1707 * hardware that are currently active and calls the callback for them. 1708 * This function requires the iterator callback function to be atomic, 1709 * if that is not desired, use @ieee80211_iterate_active_interfaces instead. 1710 * 1711 * @hw: the hardware struct of which the interfaces should be iterated over 1712 * @iterator: the iterator function to call, cannot sleep 1713 * @data: first argument of the iterator function 1714 */ 1715 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw, 1716 void (*iterator)(void *data, 1717 u8 *mac, 1718 struct ieee80211_vif *vif), 1719 void *data); 1720 1721 /** 1722 * ieee80211_start_tx_ba_session - Start a tx Block Ack session. 1723 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1724 * @ra: receiver address of the BA session recipient 1725 * @tid: the TID to BA on. 1726 * 1727 * Return: success if addBA request was sent, failure otherwise 1728 * 1729 * Although mac80211/low level driver/user space application can estimate 1730 * the need to start aggregation on a certain RA/TID, the session level 1731 * will be managed by the mac80211. 1732 */ 1733 int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid); 1734 1735 /** 1736 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate. 1737 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1738 * @ra: receiver address of the BA session recipient. 1739 * @tid: the TID to BA on. 1740 * 1741 * This function must be called by low level driver once it has 1742 * finished with preparations for the BA session. 1743 */ 1744 void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid); 1745 1746 /** 1747 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate. 1748 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1749 * @ra: receiver address of the BA session recipient. 1750 * @tid: the TID to BA on. 1751 * 1752 * This function must be called by low level driver once it has 1753 * finished with preparations for the BA session. 1754 * This version of the function is IRQ-safe. 1755 */ 1756 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra, 1757 u16 tid); 1758 1759 /** 1760 * ieee80211_stop_tx_ba_session - Stop a Block Ack session. 1761 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1762 * @ra: receiver address of the BA session recipient 1763 * @tid: the TID to stop BA. 1764 * @initiator: if indicates initiator DELBA frame will be sent. 1765 * 1766 * Return: error if no sta with matching da found, success otherwise 1767 * 1768 * Although mac80211/low level driver/user space application can estimate 1769 * the need to stop aggregation on a certain RA/TID, the session level 1770 * will be managed by the mac80211. 1771 */ 1772 int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw, 1773 u8 *ra, u16 tid, 1774 enum ieee80211_back_parties initiator); 1775 1776 /** 1777 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate. 1778 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1779 * @ra: receiver address of the BA session recipient. 1780 * @tid: the desired TID to BA on. 1781 * 1782 * This function must be called by low level driver once it has 1783 * finished with preparations for the BA session tear down. 1784 */ 1785 void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid); 1786 1787 /** 1788 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate. 1789 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1790 * @ra: receiver address of the BA session recipient. 1791 * @tid: the desired TID to BA on. 1792 * 1793 * This function must be called by low level driver once it has 1794 * finished with preparations for the BA session tear down. 1795 * This version of the function is IRQ-safe. 1796 */ 1797 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra, 1798 u16 tid); 1799 1800 /** 1801 * ieee80211_notify_mac - low level driver notification 1802 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1803 * @notif_type: enum ieee80211_notification_types 1804 * 1805 * This function must be called by low level driver to inform mac80211 of 1806 * low level driver status change or force mac80211 to re-assoc for low 1807 * level driver internal error that require re-assoc. 1808 */ 1809 void ieee80211_notify_mac(struct ieee80211_hw *hw, 1810 enum ieee80211_notification_types notif_type); 1811 1812 /** 1813 * ieee80211_find_sta - find a station 1814 * 1815 * @hw: pointer as obtained from ieee80211_alloc_hw() 1816 * @addr: station's address 1817 * 1818 * This function must be called under RCU lock and the 1819 * resulting pointer is only valid under RCU lock as well. 1820 */ 1821 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw, 1822 const u8 *addr); 1823 1824 1825 /* Rate control API */ 1826 /** 1827 * struct rate_selection - rate information for/from rate control algorithms 1828 * 1829 * @rate_idx: selected transmission rate index 1830 * @nonerp_idx: Non-ERP rate to use instead if ERP cannot be used 1831 * @probe_idx: rate for probing (or -1) 1832 * @max_rate_idx: maximum rate index that can be used, this is 1833 * input to the algorithm and will be enforced 1834 */ 1835 struct rate_selection { 1836 s8 rate_idx, nonerp_idx, probe_idx, max_rate_idx; 1837 }; 1838 1839 struct rate_control_ops { 1840 struct module *module; 1841 const char *name; 1842 void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir); 1843 void (*clear)(void *priv); 1844 void (*free)(void *priv); 1845 1846 void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp); 1847 void (*rate_init)(void *priv, struct ieee80211_supported_band *sband, 1848 struct ieee80211_sta *sta, void *priv_sta); 1849 void (*free_sta)(void *priv, struct ieee80211_sta *sta, 1850 void *priv_sta); 1851 1852 void (*tx_status)(void *priv, struct ieee80211_supported_band *sband, 1853 struct ieee80211_sta *sta, void *priv_sta, 1854 struct sk_buff *skb); 1855 void (*get_rate)(void *priv, struct ieee80211_supported_band *sband, 1856 struct ieee80211_sta *sta, void *priv_sta, 1857 struct sk_buff *skb, 1858 struct rate_selection *sel); 1859 1860 void (*add_sta_debugfs)(void *priv, void *priv_sta, 1861 struct dentry *dir); 1862 void (*remove_sta_debugfs)(void *priv, void *priv_sta); 1863 }; 1864 1865 static inline int rate_supported(struct ieee80211_sta *sta, 1866 enum ieee80211_band band, 1867 int index) 1868 { 1869 return (sta == NULL || sta->supp_rates[band] & BIT(index)); 1870 } 1871 1872 static inline s8 1873 rate_lowest_index(struct ieee80211_supported_band *sband, 1874 struct ieee80211_sta *sta) 1875 { 1876 int i; 1877 1878 for (i = 0; i < sband->n_bitrates; i++) 1879 if (rate_supported(sta, sband->band, i)) 1880 return i; 1881 1882 /* warn when we cannot find a rate. */ 1883 WARN_ON(1); 1884 1885 return 0; 1886 } 1887 1888 1889 int ieee80211_rate_control_register(struct rate_control_ops *ops); 1890 void ieee80211_rate_control_unregister(struct rate_control_ops *ops); 1891 1892 #endif /* MAC80211_H */ 1893