1 /* 2 * mac80211 <-> driver interface 3 * 4 * Copyright 2002-2005, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #ifndef MAC80211_H 14 #define MAC80211_H 15 16 #include <linux/kernel.h> 17 #include <linux/if_ether.h> 18 #include <linux/skbuff.h> 19 #include <linux/wireless.h> 20 #include <linux/device.h> 21 #include <linux/ieee80211.h> 22 #include <net/wireless.h> 23 #include <net/cfg80211.h> 24 25 /** 26 * DOC: Introduction 27 * 28 * mac80211 is the Linux stack for 802.11 hardware that implements 29 * only partial functionality in hard- or firmware. This document 30 * defines the interface between mac80211 and low-level hardware 31 * drivers. 32 */ 33 34 /** 35 * DOC: Calling mac80211 from interrupts 36 * 37 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be 38 * called in hardware interrupt context. The low-level driver must not call any 39 * other functions in hardware interrupt context. If there is a need for such 40 * call, the low-level driver should first ACK the interrupt and perform the 41 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue function. 42 */ 43 44 /** 45 * DOC: Warning 46 * 47 * If you're reading this document and not the header file itself, it will 48 * be incomplete because not all documentation has been converted yet. 49 */ 50 51 /** 52 * DOC: Frame format 53 * 54 * As a general rule, when frames are passed between mac80211 and the driver, 55 * they start with the IEEE 802.11 header and include the same octets that are 56 * sent over the air except for the FCS which should be calculated by the 57 * hardware. 58 * 59 * There are, however, various exceptions to this rule for advanced features: 60 * 61 * The first exception is for hardware encryption and decryption offload 62 * where the IV/ICV may or may not be generated in hardware. 63 * 64 * Secondly, when the hardware handles fragmentation, the frame handed to 65 * the driver from mac80211 is the MSDU, not the MPDU. 66 * 67 * Finally, for received frames, the driver is able to indicate that it has 68 * filled a radiotap header and put that in front of the frame; if it does 69 * not do so then mac80211 may add this under certain circumstances. 70 */ 71 72 #define IEEE80211_CHAN_W_SCAN 0x00000001 73 #define IEEE80211_CHAN_W_ACTIVE_SCAN 0x00000002 74 #define IEEE80211_CHAN_W_IBSS 0x00000004 75 76 /* Channel information structure. Low-level driver is expected to fill in chan, 77 * freq, and val fields. Other fields will be filled in by 80211.o based on 78 * hostapd information and low-level driver does not need to use them. The 79 * limits for each channel will be provided in 'struct ieee80211_conf' when 80 * configuring the low-level driver with hw->config callback. If a device has 81 * a default regulatory domain, IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED 82 * can be set to let the driver configure all fields */ 83 struct ieee80211_channel { 84 short chan; /* channel number (IEEE 802.11) */ 85 short freq; /* frequency in MHz */ 86 int val; /* hw specific value for the channel */ 87 int flag; /* flag for hostapd use (IEEE80211_CHAN_*) */ 88 unsigned char power_level; 89 unsigned char antenna_max; 90 }; 91 92 #define IEEE80211_RATE_ERP 0x00000001 93 #define IEEE80211_RATE_BASIC 0x00000002 94 #define IEEE80211_RATE_PREAMBLE2 0x00000004 95 #define IEEE80211_RATE_SUPPORTED 0x00000010 96 #define IEEE80211_RATE_OFDM 0x00000020 97 #define IEEE80211_RATE_CCK 0x00000040 98 #define IEEE80211_RATE_MANDATORY 0x00000100 99 100 #define IEEE80211_RATE_CCK_2 (IEEE80211_RATE_CCK | IEEE80211_RATE_PREAMBLE2) 101 #define IEEE80211_RATE_MODULATION(f) \ 102 (f & (IEEE80211_RATE_CCK | IEEE80211_RATE_OFDM)) 103 104 /* Low-level driver should set PREAMBLE2, OFDM and CCK flags. 105 * BASIC, SUPPORTED, ERP, and MANDATORY flags are set in 80211.o based on the 106 * configuration. */ 107 struct ieee80211_rate { 108 int rate; /* rate in 100 kbps */ 109 int val; /* hw specific value for the rate */ 110 int flags; /* IEEE80211_RATE_ flags */ 111 int val2; /* hw specific value for the rate when using short preamble 112 * (only when IEEE80211_RATE_PREAMBLE2 flag is set, i.e., for 113 * 2, 5.5, and 11 Mbps) */ 114 signed char min_rssi_ack; 115 unsigned char min_rssi_ack_delta; 116 117 /* following fields are set by 80211.o and need not be filled by the 118 * low-level driver */ 119 int rate_inv; /* inverse of the rate (LCM(all rates) / rate) for 120 * optimizing channel utilization estimates */ 121 }; 122 123 /** 124 * enum ieee80211_phymode - PHY modes 125 * 126 * @MODE_IEEE80211A: 5GHz as defined by 802.11a/802.11h 127 * @MODE_IEEE80211B: 2.4 GHz as defined by 802.11b 128 * @MODE_IEEE80211G: 2.4 GHz as defined by 802.11g (with OFDM), 129 * backwards compatible with 11b mode 130 * @NUM_IEEE80211_MODES: internal 131 */ 132 enum ieee80211_phymode { 133 MODE_IEEE80211A, 134 MODE_IEEE80211B, 135 MODE_IEEE80211G, 136 137 /* keep last */ 138 NUM_IEEE80211_MODES 139 }; 140 141 /** 142 * struct ieee80211_ht_info - describing STA's HT capabilities 143 * 144 * This structure describes most essential parameters needed 145 * to describe 802.11n HT capabilities for an STA. 146 * 147 * @ht_supported: is HT supported by STA, 0: no, 1: yes 148 * @cap: HT capabilities map as described in 802.11n spec 149 * @ampdu_factor: Maximum A-MPDU length factor 150 * @ampdu_density: Minimum A-MPDU spacing 151 * @supp_mcs_set: Supported MCS set as described in 802.11n spec 152 */ 153 struct ieee80211_ht_info { 154 u8 ht_supported; 155 u16 cap; /* use IEEE80211_HT_CAP_ */ 156 u8 ampdu_factor; 157 u8 ampdu_density; 158 u8 supp_mcs_set[16]; 159 }; 160 161 /** 162 * struct ieee80211_ht_bss_info - describing BSS's HT characteristics 163 * 164 * This structure describes most essential parameters needed 165 * to describe 802.11n HT characteristics in a BSS 166 * 167 * @primary_channel: channel number of primery channel 168 * @bss_cap: 802.11n's general BSS capabilities (e.g. channel width) 169 * @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection) 170 */ 171 struct ieee80211_ht_bss_info { 172 u8 primary_channel; 173 u8 bss_cap; /* use IEEE80211_HT_IE_CHA_ */ 174 u8 bss_op_mode; /* use IEEE80211_HT_IE_ */ 175 }; 176 177 /** 178 * struct ieee80211_hw_mode - PHY mode definition 179 * 180 * This structure describes the capabilities supported by the device 181 * in a single PHY mode. 182 * 183 * @list: internal 184 * @channels: pointer to array of supported channels 185 * @rates: pointer to array of supported bitrates 186 * @mode: the PHY mode for this definition 187 * @num_channels: number of supported channels 188 * @num_rates: number of supported bitrates 189 * @ht_info: PHY's 802.11n HT abilities for this mode 190 */ 191 struct ieee80211_hw_mode { 192 struct list_head list; 193 struct ieee80211_channel *channels; 194 struct ieee80211_rate *rates; 195 enum ieee80211_phymode mode; 196 int num_channels; 197 int num_rates; 198 struct ieee80211_ht_info ht_info; 199 }; 200 201 /** 202 * struct ieee80211_tx_queue_params - transmit queue configuration 203 * 204 * The information provided in this structure is required for QoS 205 * transmit queue configuration. 206 * 207 * @aifs: arbitration interface space [0..255, -1: use default] 208 * @cw_min: minimum contention window [will be a value of the form 209 * 2^n-1 in the range 1..1023; 0: use default] 210 * @cw_max: maximum contention window [like @cw_min] 211 * @burst_time: maximum burst time in units of 0.1ms, 0 meaning disabled 212 */ 213 struct ieee80211_tx_queue_params { 214 int aifs; 215 int cw_min; 216 int cw_max; 217 int burst_time; 218 }; 219 220 /** 221 * struct ieee80211_tx_queue_stats_data - transmit queue statistics 222 * 223 * @len: number of packets in queue 224 * @limit: queue length limit 225 * @count: number of frames sent 226 */ 227 struct ieee80211_tx_queue_stats_data { 228 unsigned int len; 229 unsigned int limit; 230 unsigned int count; 231 }; 232 233 /** 234 * enum ieee80211_tx_queue - transmit queue number 235 * 236 * These constants are used with some callbacks that take a 237 * queue number to set parameters for a queue. 238 * 239 * @IEEE80211_TX_QUEUE_DATA0: data queue 0 240 * @IEEE80211_TX_QUEUE_DATA1: data queue 1 241 * @IEEE80211_TX_QUEUE_DATA2: data queue 2 242 * @IEEE80211_TX_QUEUE_DATA3: data queue 3 243 * @IEEE80211_TX_QUEUE_DATA4: data queue 4 244 * @IEEE80211_TX_QUEUE_SVP: ?? 245 * @NUM_TX_DATA_QUEUES: number of data queues 246 * @IEEE80211_TX_QUEUE_AFTER_BEACON: transmit queue for frames to be 247 * sent after a beacon 248 * @IEEE80211_TX_QUEUE_BEACON: transmit queue for beacon frames 249 */ 250 enum ieee80211_tx_queue { 251 IEEE80211_TX_QUEUE_DATA0, 252 IEEE80211_TX_QUEUE_DATA1, 253 IEEE80211_TX_QUEUE_DATA2, 254 IEEE80211_TX_QUEUE_DATA3, 255 IEEE80211_TX_QUEUE_DATA4, 256 IEEE80211_TX_QUEUE_SVP, 257 258 NUM_TX_DATA_QUEUES, 259 260 /* due to stupidity in the sub-ioctl userspace interface, the items in 261 * this struct need to have fixed values. As soon as it is removed, we can 262 * fix these entries. */ 263 IEEE80211_TX_QUEUE_AFTER_BEACON = 6, 264 IEEE80211_TX_QUEUE_BEACON = 7 265 }; 266 267 struct ieee80211_tx_queue_stats { 268 struct ieee80211_tx_queue_stats_data data[NUM_TX_DATA_QUEUES]; 269 }; 270 271 struct ieee80211_low_level_stats { 272 unsigned int dot11ACKFailureCount; 273 unsigned int dot11RTSFailureCount; 274 unsigned int dot11FCSErrorCount; 275 unsigned int dot11RTSSuccessCount; 276 }; 277 278 /** 279 * enum ieee80211_bss_change - BSS change notification flags 280 * 281 * These flags are used with the bss_info_changed() callback 282 * to indicate which BSS parameter changed. 283 * 284 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated), 285 * also implies a change in the AID. 286 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed 287 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed 288 */ 289 enum ieee80211_bss_change { 290 BSS_CHANGED_ASSOC = 1<<0, 291 BSS_CHANGED_ERP_CTS_PROT = 1<<1, 292 BSS_CHANGED_ERP_PREAMBLE = 1<<2, 293 }; 294 295 /** 296 * struct ieee80211_bss_conf - holds the BSS's changing parameters 297 * 298 * This structure keeps information about a BSS (and an association 299 * to that BSS) that can change during the lifetime of the BSS. 300 * 301 * @assoc: association status 302 * @aid: association ID number, valid only when @assoc is true 303 * @use_cts_prot: use CTS protection 304 * @use_short_preamble: use 802.11b short preamble 305 */ 306 struct ieee80211_bss_conf { 307 /* association related data */ 308 bool assoc; 309 u16 aid; 310 /* erp related data */ 311 bool use_cts_prot; 312 bool use_short_preamble; 313 }; 314 315 /* Transmit control fields. This data structure is passed to low-level driver 316 * with each TX frame. The low-level driver is responsible for configuring 317 * the hardware to use given values (depending on what is supported). */ 318 319 struct ieee80211_tx_control { 320 struct ieee80211_vif *vif; 321 int tx_rate; /* Transmit rate, given as the hw specific value for the 322 * rate (from struct ieee80211_rate) */ 323 int rts_cts_rate; /* Transmit rate for RTS/CTS frame, given as the hw 324 * specific value for the rate (from 325 * struct ieee80211_rate) */ 326 327 #define IEEE80211_TXCTL_REQ_TX_STATUS (1<<0)/* request TX status callback for 328 * this frame */ 329 #define IEEE80211_TXCTL_DO_NOT_ENCRYPT (1<<1) /* send this frame without 330 * encryption; e.g., for EAPOL 331 * frames */ 332 #define IEEE80211_TXCTL_USE_RTS_CTS (1<<2) /* use RTS-CTS before sending 333 * frame */ 334 #define IEEE80211_TXCTL_USE_CTS_PROTECT (1<<3) /* use CTS protection for the 335 * frame (e.g., for combined 336 * 802.11g / 802.11b networks) */ 337 #define IEEE80211_TXCTL_NO_ACK (1<<4) /* tell the low level not to 338 * wait for an ack */ 339 #define IEEE80211_TXCTL_RATE_CTRL_PROBE (1<<5) 340 #define IEEE80211_TXCTL_CLEAR_DST_MASK (1<<6) 341 #define IEEE80211_TXCTL_REQUEUE (1<<7) 342 #define IEEE80211_TXCTL_FIRST_FRAGMENT (1<<8) /* this is a first fragment of 343 * the frame */ 344 #define IEEE80211_TXCTL_LONG_RETRY_LIMIT (1<<10) /* this frame should be send 345 * using the through 346 * set_retry_limit configured 347 * long retry value */ 348 #define IEEE80211_TXCTL_EAPOL_FRAME (1<<11) /* internal to mac80211 */ 349 #define IEEE80211_TXCTL_SEND_AFTER_DTIM (1<<12) /* send this frame after DTIM 350 * beacon */ 351 u32 flags; /* tx control flags defined 352 * above */ 353 u8 key_idx; /* keyidx from hw->set_key(), undefined if 354 * IEEE80211_TXCTL_DO_NOT_ENCRYPT is set */ 355 u8 retry_limit; /* 1 = only first attempt, 2 = one retry, .. 356 * This could be used when set_retry_limit 357 * is not implemented by the driver */ 358 u8 power_level; /* per-packet transmit power level, in dBm */ 359 u8 antenna_sel_tx; /* 0 = default/diversity, 1 = Ant0, 2 = Ant1 */ 360 u8 icv_len; /* length of the ICV/MIC field in octets */ 361 u8 iv_len; /* length of the IV field in octets */ 362 u8 queue; /* hardware queue to use for this frame; 363 * 0 = highest, hw->queues-1 = lowest */ 364 struct ieee80211_rate *rate; /* internal 80211.o rate */ 365 struct ieee80211_rate *rts_rate; /* internal 80211.o rate 366 * for RTS/CTS */ 367 int alt_retry_rate; /* retry rate for the last retries, given as the 368 * hw specific value for the rate (from 369 * struct ieee80211_rate). To be used to limit 370 * packet dropping when probing higher rates, if hw 371 * supports multiple retry rates. -1 = not used */ 372 int type; /* internal */ 373 }; 374 375 376 /** 377 * enum mac80211_rx_flags - receive flags 378 * 379 * These flags are used with the @flag member of &struct ieee80211_rx_status. 380 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame. 381 * Use together with %RX_FLAG_MMIC_STRIPPED. 382 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware. 383 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header. 384 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame, 385 * verification has been done by the hardware. 386 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame. 387 * If this flag is set, the stack cannot do any replay detection 388 * hence the driver or hardware will have to do that. 389 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on 390 * the frame. 391 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on 392 * the frame. 393 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field) 394 * is valid. 395 */ 396 enum mac80211_rx_flags { 397 RX_FLAG_MMIC_ERROR = 1<<0, 398 RX_FLAG_DECRYPTED = 1<<1, 399 RX_FLAG_RADIOTAP = 1<<2, 400 RX_FLAG_MMIC_STRIPPED = 1<<3, 401 RX_FLAG_IV_STRIPPED = 1<<4, 402 RX_FLAG_FAILED_FCS_CRC = 1<<5, 403 RX_FLAG_FAILED_PLCP_CRC = 1<<6, 404 RX_FLAG_TSFT = 1<<7, 405 }; 406 407 /** 408 * struct ieee80211_rx_status - receive status 409 * 410 * The low-level driver should provide this information (the subset 411 * supported by hardware) to the 802.11 code with each received 412 * frame. 413 * @mactime: MAC timestamp as defined by 802.11 414 * @freq: frequency the radio was tuned to when receiving this frame, in MHz 415 * @channel: channel the radio was tuned to 416 * @phymode: active PHY mode 417 * @ssi: signal strength when receiving this frame 418 * @signal: used as 'qual' in statistics reporting 419 * @noise: PHY noise when receiving this frame 420 * @antenna: antenna used 421 * @rate: data rate 422 * @flag: %RX_FLAG_* 423 */ 424 struct ieee80211_rx_status { 425 u64 mactime; 426 int freq; 427 int channel; 428 enum ieee80211_phymode phymode; 429 int ssi; 430 int signal; 431 int noise; 432 int antenna; 433 int rate; 434 int flag; 435 }; 436 437 /** 438 * enum ieee80211_tx_status_flags - transmit status flags 439 * 440 * Status flags to indicate various transmit conditions. 441 * 442 * @IEEE80211_TX_STATUS_TX_FILTERED: The frame was not transmitted 443 * because the destination STA was in powersave mode. 444 * 445 * @IEEE80211_TX_STATUS_ACK: Frame was acknowledged 446 */ 447 enum ieee80211_tx_status_flags { 448 IEEE80211_TX_STATUS_TX_FILTERED = 1<<0, 449 IEEE80211_TX_STATUS_ACK = 1<<1, 450 }; 451 452 /** 453 * struct ieee80211_tx_status - transmit status 454 * 455 * As much information as possible should be provided for each transmitted 456 * frame with ieee80211_tx_status(). 457 * 458 * @control: a copy of the &struct ieee80211_tx_control passed to the driver 459 * in the tx() callback. 460 * 461 * @flags: transmit status flags, defined above 462 * 463 * @ack_signal: signal strength of the ACK frame 464 * 465 * @excessive_retries: set to 1 if the frame was retried many times 466 * but not acknowledged 467 * 468 * @retry_count: number of retries 469 * 470 * @queue_length: ?? REMOVE 471 * @queue_number: ?? REMOVE 472 */ 473 struct ieee80211_tx_status { 474 struct ieee80211_tx_control control; 475 u8 flags; 476 bool excessive_retries; 477 u8 retry_count; 478 int ack_signal; 479 int queue_length; 480 int queue_number; 481 }; 482 483 /** 484 * enum ieee80211_conf_flags - configuration flags 485 * 486 * Flags to define PHY configuration options 487 * 488 * @IEEE80211_CONF_SHORT_SLOT_TIME: use 802.11g short slot time 489 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported) 490 * @IEEE80211_CONF_SUPPORT_HT_MODE: use 802.11n HT capabilities (if supported) 491 */ 492 enum ieee80211_conf_flags { 493 IEEE80211_CONF_SHORT_SLOT_TIME = (1<<0), 494 IEEE80211_CONF_RADIOTAP = (1<<1), 495 IEEE80211_CONF_SUPPORT_HT_MODE = (1<<2), 496 }; 497 498 /** 499 * struct ieee80211_conf - configuration of the device 500 * 501 * This struct indicates how the driver shall configure the hardware. 502 * 503 * @radio_enabled: when zero, driver is required to switch off the radio. 504 * TODO make a flag 505 * @channel: IEEE 802.11 channel number 506 * @freq: frequency in MHz 507 * @channel_val: hardware specific channel value for the channel 508 * @phymode: PHY mode to activate (REMOVE) 509 * @chan: channel to switch to, pointer to the channel information 510 * @mode: pointer to mode definition 511 * @regulatory_domain: ?? 512 * @beacon_int: beacon interval (TODO make interface config) 513 * @flags: configuration flags defined above 514 * @power_level: transmit power limit for current regulatory domain in dBm 515 * @antenna_max: maximum antenna gain 516 * @antenna_sel_tx: transmit antenna selection, 0: default/diversity, 517 * 1/2: antenna 0/1 518 * @antenna_sel_rx: receive antenna selection, like @antenna_sel_tx 519 * @ht_conf: describes current self configuration of 802.11n HT capabilies 520 * @ht_bss_conf: describes current BSS configuration of 802.11n HT parameters 521 */ 522 struct ieee80211_conf { 523 int channel; /* IEEE 802.11 channel number */ 524 int freq; /* MHz */ 525 int channel_val; /* hw specific value for the channel */ 526 527 enum ieee80211_phymode phymode; 528 struct ieee80211_channel *chan; 529 struct ieee80211_hw_mode *mode; 530 unsigned int regulatory_domain; 531 int radio_enabled; 532 533 int beacon_int; 534 u32 flags; 535 u8 power_level; 536 u8 antenna_max; 537 u8 antenna_sel_tx; 538 u8 antenna_sel_rx; 539 540 struct ieee80211_ht_info ht_conf; 541 struct ieee80211_ht_bss_info ht_bss_conf; 542 }; 543 544 /** 545 * enum ieee80211_if_types - types of 802.11 network interfaces 546 * 547 * @IEEE80211_IF_TYPE_INVALID: invalid interface type, not used 548 * by mac80211 itself 549 * @IEEE80211_IF_TYPE_AP: interface in AP mode. 550 * @IEEE80211_IF_TYPE_MGMT: special interface for communication with hostap 551 * daemon. Drivers should never see this type. 552 * @IEEE80211_IF_TYPE_STA: interface in STA (client) mode. 553 * @IEEE80211_IF_TYPE_IBSS: interface in IBSS (ad-hoc) mode. 554 * @IEEE80211_IF_TYPE_MNTR: interface in monitor (rfmon) mode. 555 * @IEEE80211_IF_TYPE_WDS: interface in WDS mode. 556 * @IEEE80211_IF_TYPE_VLAN: VLAN interface bound to an AP, drivers 557 * will never see this type. 558 */ 559 enum ieee80211_if_types { 560 IEEE80211_IF_TYPE_INVALID, 561 IEEE80211_IF_TYPE_AP, 562 IEEE80211_IF_TYPE_STA, 563 IEEE80211_IF_TYPE_IBSS, 564 IEEE80211_IF_TYPE_MNTR, 565 IEEE80211_IF_TYPE_WDS, 566 IEEE80211_IF_TYPE_VLAN, 567 }; 568 569 /** 570 * struct ieee80211_vif - per-interface data 571 * 572 * Data in this structure is continually present for driver 573 * use during the life of a virtual interface. 574 * 575 * @type: type of this virtual interface 576 * @drv_priv: data area for driver use, will always be aligned to 577 * sizeof(void *). 578 */ 579 struct ieee80211_vif { 580 enum ieee80211_if_types type; 581 /* must be last */ 582 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *)))); 583 }; 584 585 /** 586 * struct ieee80211_if_init_conf - initial configuration of an interface 587 * 588 * @vif: pointer to a driver-use per-interface structure. The pointer 589 * itself is also used for various functions including 590 * ieee80211_beacon_get() and ieee80211_get_buffered_bc(). 591 * @type: one of &enum ieee80211_if_types constants. Determines the type of 592 * added/removed interface. 593 * @mac_addr: pointer to MAC address of the interface. This pointer is valid 594 * until the interface is removed (i.e. it cannot be used after 595 * remove_interface() callback was called for this interface). 596 * 597 * This structure is used in add_interface() and remove_interface() 598 * callbacks of &struct ieee80211_hw. 599 * 600 * When you allow multiple interfaces to be added to your PHY, take care 601 * that the hardware can actually handle multiple MAC addresses. However, 602 * also take care that when there's no interface left with mac_addr != %NULL 603 * you remove the MAC address from the device to avoid acknowledging packets 604 * in pure monitor mode. 605 */ 606 struct ieee80211_if_init_conf { 607 enum ieee80211_if_types type; 608 struct ieee80211_vif *vif; 609 void *mac_addr; 610 }; 611 612 /** 613 * struct ieee80211_if_conf - configuration of an interface 614 * 615 * @type: type of the interface. This is always the same as was specified in 616 * &struct ieee80211_if_init_conf. The type of an interface never changes 617 * during the life of the interface; this field is present only for 618 * convenience. 619 * @bssid: BSSID of the network we are associated to/creating. 620 * @ssid: used (together with @ssid_len) by drivers for hardware that 621 * generate beacons independently. The pointer is valid only during the 622 * config_interface() call, so copy the value somewhere if you need 623 * it. 624 * @ssid_len: length of the @ssid field. 625 * @beacon: beacon template. Valid only if @host_gen_beacon_template in 626 * &struct ieee80211_hw is set. The driver is responsible of freeing 627 * the sk_buff. 628 * @beacon_control: tx_control for the beacon template, this field is only 629 * valid when the @beacon field was set. 630 * 631 * This structure is passed to the config_interface() callback of 632 * &struct ieee80211_hw. 633 */ 634 struct ieee80211_if_conf { 635 int type; 636 u8 *bssid; 637 u8 *ssid; 638 size_t ssid_len; 639 struct sk_buff *beacon; 640 struct ieee80211_tx_control *beacon_control; 641 }; 642 643 /** 644 * enum ieee80211_key_alg - key algorithm 645 * @ALG_WEP: WEP40 or WEP104 646 * @ALG_TKIP: TKIP 647 * @ALG_CCMP: CCMP (AES) 648 */ 649 enum ieee80211_key_alg { 650 ALG_WEP, 651 ALG_TKIP, 652 ALG_CCMP, 653 }; 654 655 656 /** 657 * enum ieee80211_key_flags - key flags 658 * 659 * These flags are used for communication about keys between the driver 660 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf. 661 * 662 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates 663 * that the STA this key will be used with could be using QoS. 664 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the 665 * driver to indicate that it requires IV generation for this 666 * particular key. 667 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by 668 * the driver for a TKIP key if it requires Michael MIC 669 * generation in software. 670 */ 671 enum ieee80211_key_flags { 672 IEEE80211_KEY_FLAG_WMM_STA = 1<<0, 673 IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1, 674 IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2, 675 }; 676 677 /** 678 * struct ieee80211_key_conf - key information 679 * 680 * This key information is given by mac80211 to the driver by 681 * the set_key() callback in &struct ieee80211_ops. 682 * 683 * @hw_key_idx: To be set by the driver, this is the key index the driver 684 * wants to be given when a frame is transmitted and needs to be 685 * encrypted in hardware. 686 * @alg: The key algorithm. 687 * @flags: key flags, see &enum ieee80211_key_flags. 688 * @keyidx: the key index (0-3) 689 * @keylen: key material length 690 * @key: key material 691 */ 692 struct ieee80211_key_conf { 693 enum ieee80211_key_alg alg; 694 u8 hw_key_idx; 695 u8 flags; 696 s8 keyidx; 697 u8 keylen; 698 u8 key[0]; 699 }; 700 701 /** 702 * enum set_key_cmd - key command 703 * 704 * Used with the set_key() callback in &struct ieee80211_ops, this 705 * indicates whether a key is being removed or added. 706 * 707 * @SET_KEY: a key is set 708 * @DISABLE_KEY: a key must be disabled 709 */ 710 enum set_key_cmd { 711 SET_KEY, DISABLE_KEY, 712 }; 713 714 /** 715 * enum sta_notify_cmd - sta notify command 716 * 717 * Used with the sta_notify() callback in &struct ieee80211_ops, this 718 * indicates addition and removal of a station to station table 719 * 720 * @STA_NOTIFY_ADD: a station was added to the station table 721 * @STA_NOTIFY_REMOVE: a station being removed from the station table 722 */ 723 enum sta_notify_cmd { 724 STA_NOTIFY_ADD, STA_NOTIFY_REMOVE 725 }; 726 727 /** 728 * enum ieee80211_hw_flags - hardware flags 729 * 730 * These flags are used to indicate hardware capabilities to 731 * the stack. Generally, flags here should have their meaning 732 * done in a way that the simplest hardware doesn't need setting 733 * any particular flags. There are some exceptions to this rule, 734 * however, so you are advised to review these flags carefully. 735 * 736 * @IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE: 737 * The device only needs to be supplied with a beacon template. 738 * If you need the host to generate each beacon then don't use 739 * this flag and call ieee80211_beacon_get() when you need the 740 * next beacon frame. Note that if you set this flag, you must 741 * implement the set_tim() callback for powersave mode to work 742 * properly. 743 * This flag is only relevant for access-point mode. 744 * 745 * @IEEE80211_HW_RX_INCLUDES_FCS: 746 * Indicates that received frames passed to the stack include 747 * the FCS at the end. 748 * 749 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING: 750 * Some wireless LAN chipsets buffer broadcast/multicast frames 751 * for power saving stations in the hardware/firmware and others 752 * rely on the host system for such buffering. This option is used 753 * to configure the IEEE 802.11 upper layer to buffer broadcast and 754 * multicast frames when there are power saving stations so that 755 * the driver can fetch them with ieee80211_get_buffered_bc(). Note 756 * that not setting this flag works properly only when the 757 * %IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE is also not set because 758 * otherwise the stack will not know when the DTIM beacon was sent. 759 * 760 * @IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED: 761 * Channels are already configured to the default regulatory domain 762 * specified in the device's EEPROM 763 */ 764 enum ieee80211_hw_flags { 765 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE = 1<<0, 766 IEEE80211_HW_RX_INCLUDES_FCS = 1<<1, 767 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2, 768 IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED = 1<<3, 769 }; 770 771 /** 772 * struct ieee80211_hw - hardware information and state 773 * 774 * This structure contains the configuration and hardware 775 * information for an 802.11 PHY. 776 * 777 * @wiphy: This points to the &struct wiphy allocated for this 778 * 802.11 PHY. You must fill in the @perm_addr and @dev 779 * members of this structure using SET_IEEE80211_DEV() 780 * and SET_IEEE80211_PERM_ADDR(). 781 * 782 * @conf: &struct ieee80211_conf, device configuration, don't use. 783 * 784 * @workqueue: single threaded workqueue available for driver use, 785 * allocated by mac80211 on registration and flushed on 786 * unregistration. 787 * 788 * @priv: pointer to private area that was allocated for driver use 789 * along with this structure. 790 * 791 * @flags: hardware flags, see &enum ieee80211_hw_flags. 792 * 793 * @extra_tx_headroom: headroom to reserve in each transmit skb 794 * for use by the driver (e.g. for transmit headers.) 795 * 796 * @channel_change_time: time (in microseconds) it takes to change channels. 797 * 798 * @max_rssi: Maximum value for ssi in RX information, use 799 * negative numbers for dBm and 0 to indicate no support. 800 * 801 * @max_signal: like @max_rssi, but for the signal value. 802 * 803 * @max_noise: like @max_rssi, but for the noise value. 804 * 805 * @queues: number of available hardware transmit queues for 806 * data packets. WMM/QoS requires at least four. 807 * 808 * @rate_control_algorithm: rate control algorithm for this hardware. 809 * If unset (NULL), the default algorithm will be used. Must be 810 * set before calling ieee80211_register_hw(). 811 * 812 * @vif_data_size: size (in bytes) of the drv_priv data area 813 * within &struct ieee80211_vif. 814 */ 815 struct ieee80211_hw { 816 struct ieee80211_conf conf; 817 struct wiphy *wiphy; 818 struct workqueue_struct *workqueue; 819 const char *rate_control_algorithm; 820 void *priv; 821 u32 flags; 822 unsigned int extra_tx_headroom; 823 int channel_change_time; 824 int vif_data_size; 825 u8 queues; 826 s8 max_rssi; 827 s8 max_signal; 828 s8 max_noise; 829 }; 830 831 /** 832 * SET_IEEE80211_DEV - set device for 802.11 hardware 833 * 834 * @hw: the &struct ieee80211_hw to set the device for 835 * @dev: the &struct device of this 802.11 device 836 */ 837 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev) 838 { 839 set_wiphy_dev(hw->wiphy, dev); 840 } 841 842 /** 843 * SET_IEEE80211_PERM_ADDR - set the permanenet MAC address for 802.11 hardware 844 * 845 * @hw: the &struct ieee80211_hw to set the MAC address for 846 * @addr: the address to set 847 */ 848 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr) 849 { 850 memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN); 851 } 852 853 /** 854 * DOC: Hardware crypto acceleration 855 * 856 * mac80211 is capable of taking advantage of many hardware 857 * acceleration designs for encryption and decryption operations. 858 * 859 * The set_key() callback in the &struct ieee80211_ops for a given 860 * device is called to enable hardware acceleration of encryption and 861 * decryption. The callback takes an @address parameter that will be 862 * the broadcast address for default keys, the other station's hardware 863 * address for individual keys or the zero address for keys that will 864 * be used only for transmission. 865 * Multiple transmission keys with the same key index may be used when 866 * VLANs are configured for an access point. 867 * 868 * The @local_address parameter will always be set to our own address, 869 * this is only relevant if you support multiple local addresses. 870 * 871 * When transmitting, the TX control data will use the @hw_key_idx 872 * selected by the driver by modifying the &struct ieee80211_key_conf 873 * pointed to by the @key parameter to the set_key() function. 874 * 875 * The set_key() call for the %SET_KEY command should return 0 if 876 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be 877 * added; if you return 0 then hw_key_idx must be assigned to the 878 * hardware key index, you are free to use the full u8 range. 879 * 880 * When the cmd is %DISABLE_KEY then it must succeed. 881 * 882 * Note that it is permissible to not decrypt a frame even if a key 883 * for it has been uploaded to hardware, the stack will not make any 884 * decision based on whether a key has been uploaded or not but rather 885 * based on the receive flags. 886 * 887 * The &struct ieee80211_key_conf structure pointed to by the @key 888 * parameter is guaranteed to be valid until another call to set_key() 889 * removes it, but it can only be used as a cookie to differentiate 890 * keys. 891 */ 892 893 /** 894 * DOC: Frame filtering 895 * 896 * mac80211 requires to see many management frames for proper 897 * operation, and users may want to see many more frames when 898 * in monitor mode. However, for best CPU usage and power consumption, 899 * having as few frames as possible percolate through the stack is 900 * desirable. Hence, the hardware should filter as much as possible. 901 * 902 * To achieve this, mac80211 uses filter flags (see below) to tell 903 * the driver's configure_filter() function which frames should be 904 * passed to mac80211 and which should be filtered out. 905 * 906 * The configure_filter() callback is invoked with the parameters 907 * @mc_count and @mc_list for the combined multicast address list 908 * of all virtual interfaces, @changed_flags telling which flags 909 * were changed and @total_flags with the new flag states. 910 * 911 * If your device has no multicast address filters your driver will 912 * need to check both the %FIF_ALLMULTI flag and the @mc_count 913 * parameter to see whether multicast frames should be accepted 914 * or dropped. 915 * 916 * All unsupported flags in @total_flags must be cleared, i.e. you 917 * should clear all bits except those you honoured. 918 */ 919 920 /** 921 * enum ieee80211_filter_flags - hardware filter flags 922 * 923 * These flags determine what the filter in hardware should be 924 * programmed to let through and what should not be passed to the 925 * stack. It is always safe to pass more frames than requested, 926 * but this has negative impact on power consumption. 927 * 928 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS, 929 * think of the BSS as your network segment and then this corresponds 930 * to the regular ethernet device promiscuous mode. 931 * 932 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested 933 * by the user or if the hardware is not capable of filtering by 934 * multicast address. 935 * 936 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the 937 * %RX_FLAG_FAILED_FCS_CRC for them) 938 * 939 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set 940 * the %RX_FLAG_FAILED_PLCP_CRC for them 941 * 942 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate 943 * to the hardware that it should not filter beacons or probe responses 944 * by BSSID. Filtering them can greatly reduce the amount of processing 945 * mac80211 needs to do and the amount of CPU wakeups, so you should 946 * honour this flag if possible. 947 * 948 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then 949 * only those addressed to this station 950 * 951 * @FIF_OTHER_BSS: pass frames destined to other BSSes 952 */ 953 enum ieee80211_filter_flags { 954 FIF_PROMISC_IN_BSS = 1<<0, 955 FIF_ALLMULTI = 1<<1, 956 FIF_FCSFAIL = 1<<2, 957 FIF_PLCPFAIL = 1<<3, 958 FIF_BCN_PRBRESP_PROMISC = 1<<4, 959 FIF_CONTROL = 1<<5, 960 FIF_OTHER_BSS = 1<<6, 961 }; 962 963 /** 964 * enum ieee80211_ampdu_mlme_action - A-MPDU actions 965 * 966 * These flags are used with the ampdu_action() callback in 967 * &struct ieee80211_ops to indicate which action is needed. 968 * @IEEE80211_AMPDU_RX_START: start Rx aggregation 969 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation 970 */ 971 enum ieee80211_ampdu_mlme_action { 972 IEEE80211_AMPDU_RX_START, 973 IEEE80211_AMPDU_RX_STOP, 974 }; 975 976 /** 977 * struct ieee80211_ops - callbacks from mac80211 to the driver 978 * 979 * This structure contains various callbacks that the driver may 980 * handle or, in some cases, must handle, for example to configure 981 * the hardware to a new channel or to transmit a frame. 982 * 983 * @tx: Handler that 802.11 module calls for each transmitted frame. 984 * skb contains the buffer starting from the IEEE 802.11 header. 985 * The low-level driver should send the frame out based on 986 * configuration in the TX control data. Must be implemented and 987 * atomic. 988 * 989 * @start: Called before the first netdevice attached to the hardware 990 * is enabled. This should turn on the hardware and must turn on 991 * frame reception (for possibly enabled monitor interfaces.) 992 * Returns negative error codes, these may be seen in userspace, 993 * or zero. 994 * When the device is started it should not have a MAC address 995 * to avoid acknowledging frames before a non-monitor device 996 * is added. 997 * Must be implemented. 998 * 999 * @stop: Called after last netdevice attached to the hardware 1000 * is disabled. This should turn off the hardware (at least 1001 * it must turn off frame reception.) 1002 * May be called right after add_interface if that rejects 1003 * an interface. 1004 * Must be implemented. 1005 * 1006 * @add_interface: Called when a netdevice attached to the hardware is 1007 * enabled. Because it is not called for monitor mode devices, @open 1008 * and @stop must be implemented. 1009 * The driver should perform any initialization it needs before 1010 * the device can be enabled. The initial configuration for the 1011 * interface is given in the conf parameter. 1012 * The callback may refuse to add an interface by returning a 1013 * negative error code (which will be seen in userspace.) 1014 * Must be implemented. 1015 * 1016 * @remove_interface: Notifies a driver that an interface is going down. 1017 * The @stop callback is called after this if it is the last interface 1018 * and no monitor interfaces are present. 1019 * When all interfaces are removed, the MAC address in the hardware 1020 * must be cleared so the device no longer acknowledges packets, 1021 * the mac_addr member of the conf structure is, however, set to the 1022 * MAC address of the device going away. 1023 * Hence, this callback must be implemented. 1024 * 1025 * @config: Handler for configuration requests. IEEE 802.11 code calls this 1026 * function to change hardware configuration, e.g., channel. 1027 * 1028 * @config_interface: Handler for configuration requests related to interfaces 1029 * (e.g. BSSID changes.) 1030 * 1031 * @bss_info_changed: Handler for configuration requests related to BSS 1032 * parameters that may vary during BSS's lifespan, and may affect low 1033 * level driver (e.g. assoc/disassoc status, erp parameters). 1034 * This function should not be used if no BSS has been set, unless 1035 * for association indication. The @changed parameter indicates which 1036 * of the bss parameters has changed when a call is made. This callback 1037 * has to be atomic. 1038 * 1039 * @configure_filter: Configure the device's RX filter. 1040 * See the section "Frame filtering" for more information. 1041 * This callback must be implemented and atomic. 1042 * 1043 * @set_tim: Set TIM bit. If the hardware/firmware takes care of beacon 1044 * generation (that is, %IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE is set) 1045 * mac80211 calls this function when a TIM bit must be set or cleared 1046 * for a given AID. Must be atomic. 1047 * 1048 * @set_key: See the section "Hardware crypto acceleration" 1049 * This callback can sleep, and is only called between add_interface 1050 * and remove_interface calls, i.e. while the interface with the 1051 * given local_address is enabled. 1052 * 1053 * @hw_scan: Ask the hardware to service the scan request, no need to start 1054 * the scan state machine in stack. 1055 * 1056 * @get_stats: return low-level statistics 1057 * 1058 * @get_tkip_seq: If your device implements TKIP encryption in hardware this 1059 * callback should be provided to read the TKIP transmit IVs (both IV32 1060 * and IV16) for the given key from hardware. 1061 * 1062 * @set_rts_threshold: Configuration of RTS threshold (if device needs it) 1063 * 1064 * @set_frag_threshold: Configuration of fragmentation threshold. Assign this if 1065 * the device does fragmentation by itself; if this method is assigned then 1066 * the stack will not do fragmentation. 1067 * 1068 * @set_retry_limit: Configuration of retry limits (if device needs it) 1069 * 1070 * @sta_notify: Notifies low level driver about addition or removal 1071 * of assocaited station or AP. 1072 * 1073 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), 1074 * bursting) for a hardware TX queue. The @queue parameter uses the 1075 * %IEEE80211_TX_QUEUE_* constants. Must be atomic. 1076 * 1077 * @get_tx_stats: Get statistics of the current TX queue status. This is used 1078 * to get number of currently queued packets (queue length), maximum queue 1079 * size (limit), and total number of packets sent using each TX queue 1080 * (count). This information is used for WMM to find out which TX 1081 * queues have room for more packets and by hostapd to provide 1082 * statistics about the current queueing state to external programs. 1083 * 1084 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently, 1085 * this is only used for IBSS mode debugging and, as such, is not a 1086 * required function. Must be atomic. 1087 * 1088 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize 1089 * with other STAs in the IBSS. This is only used in IBSS mode. This 1090 * function is optional if the firmware/hardware takes full care of 1091 * TSF synchronization. 1092 * 1093 * @beacon_update: Setup beacon data for IBSS beacons. Unlike access point, 1094 * IBSS uses a fixed beacon frame which is configured using this 1095 * function. 1096 * If the driver returns success (0) from this callback, it owns 1097 * the skb. That means the driver is responsible to kfree_skb() it. 1098 * The control structure is not dynamically allocated. That means the 1099 * driver does not own the pointer and if it needs it somewhere 1100 * outside of the context of this function, it must copy it 1101 * somewhere else. 1102 * This handler is required only for IBSS mode. 1103 * 1104 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us. 1105 * This is needed only for IBSS mode and the result of this function is 1106 * used to determine whether to reply to Probe Requests. 1107 * 1108 * @conf_ht: Configures low level driver with 802.11n HT data. Must be atomic. 1109 * 1110 * @ampdu_action: Perform a certain A-MPDU action 1111 * The RA/TID combination determines the destination and TID we want 1112 * the ampdu action to be performed for. The action is defined through 1113 * ieee80211_ampdu_mlme_action. Starting sequence number (@ssn) 1114 * is the first frame we expect to perform the action on. 1115 */ 1116 struct ieee80211_ops { 1117 int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb, 1118 struct ieee80211_tx_control *control); 1119 int (*start)(struct ieee80211_hw *hw); 1120 void (*stop)(struct ieee80211_hw *hw); 1121 int (*add_interface)(struct ieee80211_hw *hw, 1122 struct ieee80211_if_init_conf *conf); 1123 void (*remove_interface)(struct ieee80211_hw *hw, 1124 struct ieee80211_if_init_conf *conf); 1125 int (*config)(struct ieee80211_hw *hw, struct ieee80211_conf *conf); 1126 int (*config_interface)(struct ieee80211_hw *hw, 1127 struct ieee80211_vif *vif, 1128 struct ieee80211_if_conf *conf); 1129 void (*bss_info_changed)(struct ieee80211_hw *hw, 1130 struct ieee80211_vif *vif, 1131 struct ieee80211_bss_conf *info, 1132 u32 changed); 1133 void (*configure_filter)(struct ieee80211_hw *hw, 1134 unsigned int changed_flags, 1135 unsigned int *total_flags, 1136 int mc_count, struct dev_addr_list *mc_list); 1137 int (*set_tim)(struct ieee80211_hw *hw, int aid, int set); 1138 int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1139 const u8 *local_address, const u8 *address, 1140 struct ieee80211_key_conf *key); 1141 int (*hw_scan)(struct ieee80211_hw *hw, u8 *ssid, size_t len); 1142 int (*get_stats)(struct ieee80211_hw *hw, 1143 struct ieee80211_low_level_stats *stats); 1144 void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx, 1145 u32 *iv32, u16 *iv16); 1146 int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value); 1147 int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value); 1148 int (*set_retry_limit)(struct ieee80211_hw *hw, 1149 u32 short_retry, u32 long_retr); 1150 void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1151 enum sta_notify_cmd, const u8 *addr); 1152 int (*conf_tx)(struct ieee80211_hw *hw, int queue, 1153 const struct ieee80211_tx_queue_params *params); 1154 int (*get_tx_stats)(struct ieee80211_hw *hw, 1155 struct ieee80211_tx_queue_stats *stats); 1156 u64 (*get_tsf)(struct ieee80211_hw *hw); 1157 void (*reset_tsf)(struct ieee80211_hw *hw); 1158 int (*beacon_update)(struct ieee80211_hw *hw, 1159 struct sk_buff *skb, 1160 struct ieee80211_tx_control *control); 1161 int (*tx_last_beacon)(struct ieee80211_hw *hw); 1162 int (*conf_ht)(struct ieee80211_hw *hw, struct ieee80211_conf *conf); 1163 int (*ampdu_action)(struct ieee80211_hw *hw, 1164 enum ieee80211_ampdu_mlme_action action, 1165 const u8 *ra, u16 tid, u16 ssn); 1166 }; 1167 1168 /** 1169 * ieee80211_alloc_hw - Allocate a new hardware device 1170 * 1171 * This must be called once for each hardware device. The returned pointer 1172 * must be used to refer to this device when calling other functions. 1173 * mac80211 allocates a private data area for the driver pointed to by 1174 * @priv in &struct ieee80211_hw, the size of this area is given as 1175 * @priv_data_len. 1176 * 1177 * @priv_data_len: length of private data 1178 * @ops: callbacks for this device 1179 */ 1180 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, 1181 const struct ieee80211_ops *ops); 1182 1183 /** 1184 * ieee80211_register_hw - Register hardware device 1185 * 1186 * You must call this function before any other functions 1187 * except ieee80211_register_hwmode. 1188 * 1189 * @hw: the device to register as returned by ieee80211_alloc_hw() 1190 */ 1191 int ieee80211_register_hw(struct ieee80211_hw *hw); 1192 1193 #ifdef CONFIG_MAC80211_LEDS 1194 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw); 1195 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw); 1196 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw); 1197 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw); 1198 #endif 1199 /** 1200 * ieee80211_get_tx_led_name - get name of TX LED 1201 * 1202 * mac80211 creates a transmit LED trigger for each wireless hardware 1203 * that can be used to drive LEDs if your driver registers a LED device. 1204 * This function returns the name (or %NULL if not configured for LEDs) 1205 * of the trigger so you can automatically link the LED device. 1206 * 1207 * @hw: the hardware to get the LED trigger name for 1208 */ 1209 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw) 1210 { 1211 #ifdef CONFIG_MAC80211_LEDS 1212 return __ieee80211_get_tx_led_name(hw); 1213 #else 1214 return NULL; 1215 #endif 1216 } 1217 1218 /** 1219 * ieee80211_get_rx_led_name - get name of RX LED 1220 * 1221 * mac80211 creates a receive LED trigger for each wireless hardware 1222 * that can be used to drive LEDs if your driver registers a LED device. 1223 * This function returns the name (or %NULL if not configured for LEDs) 1224 * of the trigger so you can automatically link the LED device. 1225 * 1226 * @hw: the hardware to get the LED trigger name for 1227 */ 1228 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw) 1229 { 1230 #ifdef CONFIG_MAC80211_LEDS 1231 return __ieee80211_get_rx_led_name(hw); 1232 #else 1233 return NULL; 1234 #endif 1235 } 1236 1237 /** 1238 * ieee80211_get_assoc_led_name - get name of association LED 1239 * 1240 * mac80211 creates a association LED trigger for each wireless hardware 1241 * that can be used to drive LEDs if your driver registers a LED device. 1242 * This function returns the name (or %NULL if not configured for LEDs) 1243 * of the trigger so you can automatically link the LED device. 1244 * 1245 * @hw: the hardware to get the LED trigger name for 1246 */ 1247 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw) 1248 { 1249 #ifdef CONFIG_MAC80211_LEDS 1250 return __ieee80211_get_assoc_led_name(hw); 1251 #else 1252 return NULL; 1253 #endif 1254 } 1255 1256 /** 1257 * ieee80211_get_radio_led_name - get name of radio LED 1258 * 1259 * mac80211 creates a radio change LED trigger for each wireless hardware 1260 * that can be used to drive LEDs if your driver registers a LED device. 1261 * This function returns the name (or %NULL if not configured for LEDs) 1262 * of the trigger so you can automatically link the LED device. 1263 * 1264 * @hw: the hardware to get the LED trigger name for 1265 */ 1266 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw) 1267 { 1268 #ifdef CONFIG_MAC80211_LEDS 1269 return __ieee80211_get_radio_led_name(hw); 1270 #else 1271 return NULL; 1272 #endif 1273 } 1274 1275 /* Register a new hardware PHYMODE capability to the stack. */ 1276 int ieee80211_register_hwmode(struct ieee80211_hw *hw, 1277 struct ieee80211_hw_mode *mode); 1278 1279 /** 1280 * ieee80211_unregister_hw - Unregister a hardware device 1281 * 1282 * This function instructs mac80211 to free allocated resources 1283 * and unregister netdevices from the networking subsystem. 1284 * 1285 * @hw: the hardware to unregister 1286 */ 1287 void ieee80211_unregister_hw(struct ieee80211_hw *hw); 1288 1289 /** 1290 * ieee80211_free_hw - free hardware descriptor 1291 * 1292 * This function frees everything that was allocated, including the 1293 * private data for the driver. You must call ieee80211_unregister_hw() 1294 * before calling this function 1295 * 1296 * @hw: the hardware to free 1297 */ 1298 void ieee80211_free_hw(struct ieee80211_hw *hw); 1299 1300 /* trick to avoid symbol clashes with the ieee80211 subsystem */ 1301 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, 1302 struct ieee80211_rx_status *status); 1303 1304 /** 1305 * ieee80211_rx - receive frame 1306 * 1307 * Use this function to hand received frames to mac80211. The receive 1308 * buffer in @skb must start with an IEEE 802.11 header or a radiotap 1309 * header if %RX_FLAG_RADIOTAP is set in the @status flags. 1310 * 1311 * This function may not be called in IRQ context. 1312 * 1313 * @hw: the hardware this frame came in on 1314 * @skb: the buffer to receive, owned by mac80211 after this call 1315 * @status: status of this frame; the status pointer need not be valid 1316 * after this function returns 1317 */ 1318 static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, 1319 struct ieee80211_rx_status *status) 1320 { 1321 __ieee80211_rx(hw, skb, status); 1322 } 1323 1324 /** 1325 * ieee80211_rx_irqsafe - receive frame 1326 * 1327 * Like ieee80211_rx() but can be called in IRQ context 1328 * (internally defers to a workqueue.) 1329 * 1330 * @hw: the hardware this frame came in on 1331 * @skb: the buffer to receive, owned by mac80211 after this call 1332 * @status: status of this frame; the status pointer need not be valid 1333 * after this function returns and is not freed by mac80211, 1334 * it is recommended that it points to a stack area 1335 */ 1336 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, 1337 struct sk_buff *skb, 1338 struct ieee80211_rx_status *status); 1339 1340 /** 1341 * ieee80211_tx_status - transmit status callback 1342 * 1343 * Call this function for all transmitted frames after they have been 1344 * transmitted. It is permissible to not call this function for 1345 * multicast frames but this can affect statistics. 1346 * 1347 * @hw: the hardware the frame was transmitted by 1348 * @skb: the frame that was transmitted, owned by mac80211 after this call 1349 * @status: status information for this frame; the status pointer need not 1350 * be valid after this function returns and is not freed by mac80211, 1351 * it is recommended that it points to a stack area 1352 */ 1353 void ieee80211_tx_status(struct ieee80211_hw *hw, 1354 struct sk_buff *skb, 1355 struct ieee80211_tx_status *status); 1356 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, 1357 struct sk_buff *skb, 1358 struct ieee80211_tx_status *status); 1359 1360 /** 1361 * ieee80211_beacon_get - beacon generation function 1362 * @hw: pointer obtained from ieee80211_alloc_hw(). 1363 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1364 * @control: will be filled with information needed to send this beacon. 1365 * 1366 * If the beacon frames are generated by the host system (i.e., not in 1367 * hardware/firmware), the low-level driver uses this function to receive 1368 * the next beacon frame from the 802.11 code. The low-level is responsible 1369 * for calling this function before beacon data is needed (e.g., based on 1370 * hardware interrupt). Returned skb is used only once and low-level driver 1371 * is responsible of freeing it. 1372 */ 1373 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, 1374 struct ieee80211_vif *vif, 1375 struct ieee80211_tx_control *control); 1376 1377 /** 1378 * ieee80211_rts_get - RTS frame generation function 1379 * @hw: pointer obtained from ieee80211_alloc_hw(). 1380 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1381 * @frame: pointer to the frame that is going to be protected by the RTS. 1382 * @frame_len: the frame length (in octets). 1383 * @frame_txctl: &struct ieee80211_tx_control of the frame. 1384 * @rts: The buffer where to store the RTS frame. 1385 * 1386 * If the RTS frames are generated by the host system (i.e., not in 1387 * hardware/firmware), the low-level driver uses this function to receive 1388 * the next RTS frame from the 802.11 code. The low-level is responsible 1389 * for calling this function before and RTS frame is needed. 1390 */ 1391 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1392 const void *frame, size_t frame_len, 1393 const struct ieee80211_tx_control *frame_txctl, 1394 struct ieee80211_rts *rts); 1395 1396 /** 1397 * ieee80211_rts_duration - Get the duration field for an RTS frame 1398 * @hw: pointer obtained from ieee80211_alloc_hw(). 1399 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1400 * @frame_len: the length of the frame that is going to be protected by the RTS. 1401 * @frame_txctl: &struct ieee80211_tx_control of the frame. 1402 * 1403 * If the RTS is generated in firmware, but the host system must provide 1404 * the duration field, the low-level driver uses this function to receive 1405 * the duration field value in little-endian byteorder. 1406 */ 1407 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 1408 struct ieee80211_vif *vif, size_t frame_len, 1409 const struct ieee80211_tx_control *frame_txctl); 1410 1411 /** 1412 * ieee80211_ctstoself_get - CTS-to-self frame generation function 1413 * @hw: pointer obtained from ieee80211_alloc_hw(). 1414 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1415 * @frame: pointer to the frame that is going to be protected by the CTS-to-self. 1416 * @frame_len: the frame length (in octets). 1417 * @frame_txctl: &struct ieee80211_tx_control of the frame. 1418 * @cts: The buffer where to store the CTS-to-self frame. 1419 * 1420 * If the CTS-to-self frames are generated by the host system (i.e., not in 1421 * hardware/firmware), the low-level driver uses this function to receive 1422 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible 1423 * for calling this function before and CTS-to-self frame is needed. 1424 */ 1425 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, 1426 struct ieee80211_vif *vif, 1427 const void *frame, size_t frame_len, 1428 const struct ieee80211_tx_control *frame_txctl, 1429 struct ieee80211_cts *cts); 1430 1431 /** 1432 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame 1433 * @hw: pointer obtained from ieee80211_alloc_hw(). 1434 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1435 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self. 1436 * @frame_txctl: &struct ieee80211_tx_control of the frame. 1437 * 1438 * If the CTS-to-self is generated in firmware, but the host system must provide 1439 * the duration field, the low-level driver uses this function to receive 1440 * the duration field value in little-endian byteorder. 1441 */ 1442 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 1443 struct ieee80211_vif *vif, 1444 size_t frame_len, 1445 const struct ieee80211_tx_control *frame_txctl); 1446 1447 /** 1448 * ieee80211_generic_frame_duration - Calculate the duration field for a frame 1449 * @hw: pointer obtained from ieee80211_alloc_hw(). 1450 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1451 * @frame_len: the length of the frame. 1452 * @rate: the rate (in 100kbps) at which the frame is going to be transmitted. 1453 * 1454 * Calculate the duration field of some generic frame, given its 1455 * length and transmission rate (in 100kbps). 1456 */ 1457 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 1458 struct ieee80211_vif *vif, 1459 size_t frame_len, 1460 int rate); 1461 1462 /** 1463 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames 1464 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1465 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf. 1466 * @control: will be filled with information needed to send returned frame. 1467 * 1468 * Function for accessing buffered broadcast and multicast frames. If 1469 * hardware/firmware does not implement buffering of broadcast/multicast 1470 * frames when power saving is used, 802.11 code buffers them in the host 1471 * memory. The low-level driver uses this function to fetch next buffered 1472 * frame. In most cases, this is used when generating beacon frame. This 1473 * function returns a pointer to the next buffered skb or NULL if no more 1474 * buffered frames are available. 1475 * 1476 * Note: buffered frames are returned only after DTIM beacon frame was 1477 * generated with ieee80211_beacon_get() and the low-level driver must thus 1478 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns 1479 * NULL if the previous generated beacon was not DTIM, so the low-level driver 1480 * does not need to check for DTIM beacons separately and should be able to 1481 * use common code for all beacons. 1482 */ 1483 struct sk_buff * 1484 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1485 struct ieee80211_tx_control *control); 1486 1487 /** 1488 * ieee80211_get_hdrlen_from_skb - get header length from data 1489 * 1490 * Given an skb with a raw 802.11 header at the data pointer this function 1491 * returns the 802.11 header length in bytes (not including encryption 1492 * headers). If the data in the sk_buff is too short to contain a valid 802.11 1493 * header the function returns 0. 1494 * 1495 * @skb: the frame 1496 */ 1497 int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb); 1498 1499 /** 1500 * ieee80211_get_hdrlen - get header length from frame control 1501 * 1502 * This function returns the 802.11 header length in bytes (not including 1503 * encryption headers.) 1504 * 1505 * @fc: the frame control field (in CPU endianness) 1506 */ 1507 int ieee80211_get_hdrlen(u16 fc); 1508 1509 /** 1510 * ieee80211_wake_queue - wake specific queue 1511 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1512 * @queue: queue number (counted from zero). 1513 * 1514 * Drivers should use this function instead of netif_wake_queue. 1515 */ 1516 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue); 1517 1518 /** 1519 * ieee80211_stop_queue - stop specific queue 1520 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1521 * @queue: queue number (counted from zero). 1522 * 1523 * Drivers should use this function instead of netif_stop_queue. 1524 */ 1525 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue); 1526 1527 /** 1528 * ieee80211_start_queues - start all queues 1529 * @hw: pointer to as obtained from ieee80211_alloc_hw(). 1530 * 1531 * Drivers should use this function instead of netif_start_queue. 1532 */ 1533 void ieee80211_start_queues(struct ieee80211_hw *hw); 1534 1535 /** 1536 * ieee80211_stop_queues - stop all queues 1537 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1538 * 1539 * Drivers should use this function instead of netif_stop_queue. 1540 */ 1541 void ieee80211_stop_queues(struct ieee80211_hw *hw); 1542 1543 /** 1544 * ieee80211_wake_queues - wake all queues 1545 * @hw: pointer as obtained from ieee80211_alloc_hw(). 1546 * 1547 * Drivers should use this function instead of netif_wake_queue. 1548 */ 1549 void ieee80211_wake_queues(struct ieee80211_hw *hw); 1550 1551 /** 1552 * ieee80211_scan_completed - completed hardware scan 1553 * 1554 * When hardware scan offload is used (i.e. the hw_scan() callback is 1555 * assigned) this function needs to be called by the driver to notify 1556 * mac80211 that the scan finished. 1557 * 1558 * @hw: the hardware that finished the scan 1559 */ 1560 void ieee80211_scan_completed(struct ieee80211_hw *hw); 1561 1562 /** 1563 * ieee80211_iterate_active_interfaces - iterate active interfaces 1564 * 1565 * This function iterates over the interfaces associated with a given 1566 * hardware that are currently active and calls the callback for them. 1567 * 1568 * @hw: the hardware struct of which the interfaces should be iterated over 1569 * @iterator: the iterator function to call, cannot sleep 1570 * @data: first argument of the iterator function 1571 */ 1572 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw, 1573 void (*iterator)(void *data, u8 *mac, 1574 struct ieee80211_vif *vif), 1575 void *data); 1576 1577 #endif /* MAC80211_H */ 1578