1 /* 2 * mac80211 <-> driver interface 3 * 4 * Copyright 2002-2005, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #ifndef MAC80211_H 14 #define MAC80211_H 15 16 #include <linux/bug.h> 17 #include <linux/kernel.h> 18 #include <linux/if_ether.h> 19 #include <linux/skbuff.h> 20 #include <linux/ieee80211.h> 21 #include <net/cfg80211.h> 22 #include <asm/unaligned.h> 23 24 /** 25 * DOC: Introduction 26 * 27 * mac80211 is the Linux stack for 802.11 hardware that implements 28 * only partial functionality in hard- or firmware. This document 29 * defines the interface between mac80211 and low-level hardware 30 * drivers. 31 */ 32 33 /** 34 * DOC: Calling mac80211 from interrupts 35 * 36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be 37 * called in hardware interrupt context. The low-level driver must not call any 38 * other functions in hardware interrupt context. If there is a need for such 39 * call, the low-level driver should first ACK the interrupt and perform the 40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even 41 * tasklet function. 42 * 43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also 44 * use the non-IRQ-safe functions! 45 */ 46 47 /** 48 * DOC: Warning 49 * 50 * If you're reading this document and not the header file itself, it will 51 * be incomplete because not all documentation has been converted yet. 52 */ 53 54 /** 55 * DOC: Frame format 56 * 57 * As a general rule, when frames are passed between mac80211 and the driver, 58 * they start with the IEEE 802.11 header and include the same octets that are 59 * sent over the air except for the FCS which should be calculated by the 60 * hardware. 61 * 62 * There are, however, various exceptions to this rule for advanced features: 63 * 64 * The first exception is for hardware encryption and decryption offload 65 * where the IV/ICV may or may not be generated in hardware. 66 * 67 * Secondly, when the hardware handles fragmentation, the frame handed to 68 * the driver from mac80211 is the MSDU, not the MPDU. 69 * 70 * Finally, for received frames, the driver is able to indicate that it has 71 * filled a radiotap header and put that in front of the frame; if it does 72 * not do so then mac80211 may add this under certain circumstances. 73 */ 74 75 /** 76 * DOC: mac80211 workqueue 77 * 78 * mac80211 provides its own workqueue for drivers and internal mac80211 use. 79 * The workqueue is a single threaded workqueue and can only be accessed by 80 * helpers for sanity checking. Drivers must ensure all work added onto the 81 * mac80211 workqueue should be cancelled on the driver stop() callback. 82 * 83 * mac80211 will flushed the workqueue upon interface removal and during 84 * suspend. 85 * 86 * All work performed on the mac80211 workqueue must not acquire the RTNL lock. 87 * 88 */ 89 90 struct device; 91 92 /** 93 * enum ieee80211_max_queues - maximum number of queues 94 * 95 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues. 96 * @IEEE80211_MAX_QUEUE_MAP: bitmap with maximum queues set 97 */ 98 enum ieee80211_max_queues { 99 IEEE80211_MAX_QUEUES = 16, 100 IEEE80211_MAX_QUEUE_MAP = BIT(IEEE80211_MAX_QUEUES) - 1, 101 }; 102 103 #define IEEE80211_INVAL_HW_QUEUE 0xff 104 105 /** 106 * enum ieee80211_ac_numbers - AC numbers as used in mac80211 107 * @IEEE80211_AC_VO: voice 108 * @IEEE80211_AC_VI: video 109 * @IEEE80211_AC_BE: best effort 110 * @IEEE80211_AC_BK: background 111 */ 112 enum ieee80211_ac_numbers { 113 IEEE80211_AC_VO = 0, 114 IEEE80211_AC_VI = 1, 115 IEEE80211_AC_BE = 2, 116 IEEE80211_AC_BK = 3, 117 }; 118 #define IEEE80211_NUM_ACS 4 119 120 /** 121 * struct ieee80211_tx_queue_params - transmit queue configuration 122 * 123 * The information provided in this structure is required for QoS 124 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29. 125 * 126 * @aifs: arbitration interframe space [0..255] 127 * @cw_min: minimum contention window [a value of the form 128 * 2^n-1 in the range 1..32767] 129 * @cw_max: maximum contention window [like @cw_min] 130 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled 131 * @acm: is mandatory admission control required for the access category 132 * @uapsd: is U-APSD mode enabled for the queue 133 */ 134 struct ieee80211_tx_queue_params { 135 u16 txop; 136 u16 cw_min; 137 u16 cw_max; 138 u8 aifs; 139 bool acm; 140 bool uapsd; 141 }; 142 143 struct ieee80211_low_level_stats { 144 unsigned int dot11ACKFailureCount; 145 unsigned int dot11RTSFailureCount; 146 unsigned int dot11FCSErrorCount; 147 unsigned int dot11RTSSuccessCount; 148 }; 149 150 /** 151 * enum ieee80211_chanctx_change - change flag for channel context 152 * @IEEE80211_CHANCTX_CHANGE_WIDTH: The channel width changed 153 * @IEEE80211_CHANCTX_CHANGE_RX_CHAINS: The number of RX chains changed 154 * @IEEE80211_CHANCTX_CHANGE_RADAR: radar detection flag changed 155 */ 156 enum ieee80211_chanctx_change { 157 IEEE80211_CHANCTX_CHANGE_WIDTH = BIT(0), 158 IEEE80211_CHANCTX_CHANGE_RX_CHAINS = BIT(1), 159 IEEE80211_CHANCTX_CHANGE_RADAR = BIT(2), 160 }; 161 162 /** 163 * struct ieee80211_chanctx_conf - channel context that vifs may be tuned to 164 * 165 * This is the driver-visible part. The ieee80211_chanctx 166 * that contains it is visible in mac80211 only. 167 * 168 * @def: the channel definition 169 * @rx_chains_static: The number of RX chains that must always be 170 * active on the channel to receive MIMO transmissions 171 * @rx_chains_dynamic: The number of RX chains that must be enabled 172 * after RTS/CTS handshake to receive SMPS MIMO transmissions; 173 * this will always be >= @rx_chains_static. 174 * @radar_enabled: whether radar detection is enabled on this channel. 175 * @drv_priv: data area for driver use, will always be aligned to 176 * sizeof(void *), size is determined in hw information. 177 */ 178 struct ieee80211_chanctx_conf { 179 struct cfg80211_chan_def def; 180 181 u8 rx_chains_static, rx_chains_dynamic; 182 183 bool radar_enabled; 184 185 u8 drv_priv[0] __aligned(sizeof(void *)); 186 }; 187 188 /** 189 * enum ieee80211_bss_change - BSS change notification flags 190 * 191 * These flags are used with the bss_info_changed() callback 192 * to indicate which BSS parameter changed. 193 * 194 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated), 195 * also implies a change in the AID. 196 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed 197 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed 198 * @BSS_CHANGED_ERP_SLOT: slot timing changed 199 * @BSS_CHANGED_HT: 802.11n parameters changed 200 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed 201 * @BSS_CHANGED_BEACON_INT: Beacon interval changed 202 * @BSS_CHANGED_BSSID: BSSID changed, for whatever 203 * reason (IBSS and managed mode) 204 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve 205 * new beacon (beaconing modes) 206 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be 207 * enabled/disabled (beaconing modes) 208 * @BSS_CHANGED_CQM: Connection quality monitor config changed 209 * @BSS_CHANGED_IBSS: IBSS join status changed 210 * @BSS_CHANGED_ARP_FILTER: Hardware ARP filter address list or state changed. 211 * @BSS_CHANGED_QOS: QoS for this association was enabled/disabled. Note 212 * that it is only ever disabled for station mode. 213 * @BSS_CHANGED_IDLE: Idle changed for this BSS/interface. 214 * @BSS_CHANGED_SSID: SSID changed for this BSS (AP and IBSS mode) 215 * @BSS_CHANGED_AP_PROBE_RESP: Probe Response changed for this BSS (AP mode) 216 * @BSS_CHANGED_PS: PS changed for this BSS (STA mode) 217 * @BSS_CHANGED_TXPOWER: TX power setting changed for this interface 218 * @BSS_CHANGED_P2P_PS: P2P powersave settings (CTWindow, opportunistic PS) 219 * changed (currently only in P2P client mode, GO mode will be later) 220 * @BSS_CHANGED_DTIM_PERIOD: the DTIM period value was changed (set when 221 * it becomes valid, managed mode only) 222 * @BSS_CHANGED_BANDWIDTH: The bandwidth used by this interface changed, 223 * note that this is only called when it changes after the channel 224 * context had been assigned. 225 */ 226 enum ieee80211_bss_change { 227 BSS_CHANGED_ASSOC = 1<<0, 228 BSS_CHANGED_ERP_CTS_PROT = 1<<1, 229 BSS_CHANGED_ERP_PREAMBLE = 1<<2, 230 BSS_CHANGED_ERP_SLOT = 1<<3, 231 BSS_CHANGED_HT = 1<<4, 232 BSS_CHANGED_BASIC_RATES = 1<<5, 233 BSS_CHANGED_BEACON_INT = 1<<6, 234 BSS_CHANGED_BSSID = 1<<7, 235 BSS_CHANGED_BEACON = 1<<8, 236 BSS_CHANGED_BEACON_ENABLED = 1<<9, 237 BSS_CHANGED_CQM = 1<<10, 238 BSS_CHANGED_IBSS = 1<<11, 239 BSS_CHANGED_ARP_FILTER = 1<<12, 240 BSS_CHANGED_QOS = 1<<13, 241 BSS_CHANGED_IDLE = 1<<14, 242 BSS_CHANGED_SSID = 1<<15, 243 BSS_CHANGED_AP_PROBE_RESP = 1<<16, 244 BSS_CHANGED_PS = 1<<17, 245 BSS_CHANGED_TXPOWER = 1<<18, 246 BSS_CHANGED_P2P_PS = 1<<19, 247 BSS_CHANGED_DTIM_PERIOD = 1<<20, 248 BSS_CHANGED_BANDWIDTH = 1<<21, 249 250 /* when adding here, make sure to change ieee80211_reconfig */ 251 }; 252 253 /* 254 * The maximum number of IPv4 addresses listed for ARP filtering. If the number 255 * of addresses for an interface increase beyond this value, hardware ARP 256 * filtering will be disabled. 257 */ 258 #define IEEE80211_BSS_ARP_ADDR_LIST_LEN 4 259 260 /** 261 * enum ieee80211_rssi_event - RSSI threshold event 262 * An indicator for when RSSI goes below/above a certain threshold. 263 * @RSSI_EVENT_HIGH: AP's rssi crossed the high threshold set by the driver. 264 * @RSSI_EVENT_LOW: AP's rssi crossed the low threshold set by the driver. 265 */ 266 enum ieee80211_rssi_event { 267 RSSI_EVENT_HIGH, 268 RSSI_EVENT_LOW, 269 }; 270 271 /** 272 * struct ieee80211_bss_conf - holds the BSS's changing parameters 273 * 274 * This structure keeps information about a BSS (and an association 275 * to that BSS) that can change during the lifetime of the BSS. 276 * 277 * @assoc: association status 278 * @ibss_joined: indicates whether this station is part of an IBSS 279 * or not 280 * @ibss_creator: indicates if a new IBSS network is being created 281 * @aid: association ID number, valid only when @assoc is true 282 * @use_cts_prot: use CTS protection 283 * @use_short_preamble: use 802.11b short preamble; 284 * if the hardware cannot handle this it must set the 285 * IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag 286 * @use_short_slot: use short slot time (only relevant for ERP); 287 * if the hardware cannot handle this it must set the 288 * IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag 289 * @dtim_period: num of beacons before the next DTIM, for beaconing, 290 * valid in station mode only if after the driver was notified 291 * with the %BSS_CHANGED_DTIM_PERIOD flag, will be non-zero then. 292 * @sync_tsf: last beacon's/probe response's TSF timestamp (could be old 293 * as it may have been received during scanning long ago). If the 294 * HW flag %IEEE80211_HW_TIMING_BEACON_ONLY is set, then this can 295 * only come from a beacon, but might not become valid until after 296 * association when a beacon is received (which is notified with the 297 * %BSS_CHANGED_DTIM flag.) 298 * @sync_device_ts: the device timestamp corresponding to the sync_tsf, 299 * the driver/device can use this to calculate synchronisation 300 * (see @sync_tsf) 301 * @sync_dtim_count: Only valid when %IEEE80211_HW_TIMING_BEACON_ONLY 302 * is requested, see @sync_tsf/@sync_device_ts. 303 * @beacon_int: beacon interval 304 * @assoc_capability: capabilities taken from assoc resp 305 * @basic_rates: bitmap of basic rates, each bit stands for an 306 * index into the rate table configured by the driver in 307 * the current band. 308 * @mcast_rate: per-band multicast rate index + 1 (0: disabled) 309 * @bssid: The BSSID for this BSS 310 * @enable_beacon: whether beaconing should be enabled or not 311 * @chandef: Channel definition for this BSS -- the hardware might be 312 * configured a higher bandwidth than this BSS uses, for example. 313 * @ht_operation_mode: HT operation mode like in &struct ieee80211_ht_operation. 314 * This field is only valid when the channel type is one of the HT types. 315 * @cqm_rssi_thold: Connection quality monitor RSSI threshold, a zero value 316 * implies disabled 317 * @cqm_rssi_hyst: Connection quality monitor RSSI hysteresis 318 * @arp_addr_list: List of IPv4 addresses for hardware ARP filtering. The 319 * may filter ARP queries targeted for other addresses than listed here. 320 * The driver must allow ARP queries targeted for all address listed here 321 * to pass through. An empty list implies no ARP queries need to pass. 322 * @arp_addr_cnt: Number of addresses currently on the list. Note that this 323 * may be larger than %IEEE80211_BSS_ARP_ADDR_LIST_LEN (the arp_addr_list 324 * array size), it's up to the driver what to do in that case. 325 * @qos: This is a QoS-enabled BSS. 326 * @idle: This interface is idle. There's also a global idle flag in the 327 * hardware config which may be more appropriate depending on what 328 * your driver/device needs to do. 329 * @ps: power-save mode (STA only). This flag is NOT affected by 330 * offchannel/dynamic_ps operations. 331 * @ssid: The SSID of the current vif. Valid in AP and IBSS mode. 332 * @ssid_len: Length of SSID given in @ssid. 333 * @hidden_ssid: The SSID of the current vif is hidden. Only valid in AP-mode. 334 * @txpower: TX power in dBm 335 * @p2p_noa_attr: P2P NoA attribute for P2P powersave 336 */ 337 struct ieee80211_bss_conf { 338 const u8 *bssid; 339 /* association related data */ 340 bool assoc, ibss_joined; 341 bool ibss_creator; 342 u16 aid; 343 /* erp related data */ 344 bool use_cts_prot; 345 bool use_short_preamble; 346 bool use_short_slot; 347 bool enable_beacon; 348 u8 dtim_period; 349 u16 beacon_int; 350 u16 assoc_capability; 351 u64 sync_tsf; 352 u32 sync_device_ts; 353 u8 sync_dtim_count; 354 u32 basic_rates; 355 int mcast_rate[IEEE80211_NUM_BANDS]; 356 u16 ht_operation_mode; 357 s32 cqm_rssi_thold; 358 u32 cqm_rssi_hyst; 359 struct cfg80211_chan_def chandef; 360 __be32 arp_addr_list[IEEE80211_BSS_ARP_ADDR_LIST_LEN]; 361 int arp_addr_cnt; 362 bool qos; 363 bool idle; 364 bool ps; 365 u8 ssid[IEEE80211_MAX_SSID_LEN]; 366 size_t ssid_len; 367 bool hidden_ssid; 368 int txpower; 369 struct ieee80211_p2p_noa_attr p2p_noa_attr; 370 }; 371 372 /** 373 * enum mac80211_tx_control_flags - flags to describe transmission information/status 374 * 375 * These flags are used with the @flags member of &ieee80211_tx_info. 376 * 377 * @IEEE80211_TX_CTL_REQ_TX_STATUS: require TX status callback for this frame. 378 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence 379 * number to this frame, taking care of not overwriting the fragment 380 * number and increasing the sequence number only when the 381 * IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly 382 * assign sequence numbers to QoS-data frames but cannot do so correctly 383 * for non-QoS-data and management frames because beacons need them from 384 * that counter as well and mac80211 cannot guarantee proper sequencing. 385 * If this flag is set, the driver should instruct the hardware to 386 * assign a sequence number to the frame or assign one itself. Cf. IEEE 387 * 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for 388 * beacons and always be clear for frames without a sequence number field. 389 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack 390 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination 391 * station 392 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame 393 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon 394 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU 395 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211. 396 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted 397 * because the destination STA was in powersave mode. Note that to 398 * avoid race conditions, the filter must be set by the hardware or 399 * firmware upon receiving a frame that indicates that the station 400 * went to sleep (must be done on device to filter frames already on 401 * the queue) and may only be unset after mac80211 gives the OK for 402 * that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above), 403 * since only then is it guaranteed that no more frames are in the 404 * hardware queue. 405 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged 406 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status 407 * is for the whole aggregation. 408 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned, 409 * so consider using block ack request (BAR). 410 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be 411 * set by rate control algorithms to indicate probe rate, will 412 * be cleared for fragmented frames (except on the last fragment) 413 * @IEEE80211_TX_INTFL_OFFCHAN_TX_OK: Internal to mac80211. Used to indicate 414 * that a frame can be transmitted while the queues are stopped for 415 * off-channel operation. 416 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211, 417 * used to indicate that a pending frame requires TX processing before 418 * it can be sent out. 419 * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211, 420 * used to indicate that a frame was already retried due to PS 421 * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211, 422 * used to indicate frame should not be encrypted 423 * @IEEE80211_TX_CTL_NO_PS_BUFFER: This frame is a response to a poll 424 * frame (PS-Poll or uAPSD) or a non-bufferable MMPDU and must 425 * be sent although the station is in powersave mode. 426 * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the 427 * transmit function after the current frame, this can be used 428 * by drivers to kick the DMA queue only if unset or when the 429 * queue gets full. 430 * @IEEE80211_TX_INTFL_RETRANSMISSION: This frame is being retransmitted 431 * after TX status because the destination was asleep, it must not 432 * be modified again (no seqno assignment, crypto, etc.) 433 * @IEEE80211_TX_INTFL_MLME_CONN_TX: This frame was transmitted by the MLME 434 * code for connection establishment, this indicates that its status 435 * should kick the MLME state machine. 436 * @IEEE80211_TX_INTFL_NL80211_FRAME_TX: Frame was requested through nl80211 437 * MLME command (internal to mac80211 to figure out whether to send TX 438 * status to user space) 439 * @IEEE80211_TX_CTL_LDPC: tells the driver to use LDPC for this frame 440 * @IEEE80211_TX_CTL_STBC: Enables Space-Time Block Coding (STBC) for this 441 * frame and selects the maximum number of streams that it can use. 442 * @IEEE80211_TX_CTL_TX_OFFCHAN: Marks this packet to be transmitted on 443 * the off-channel channel when a remain-on-channel offload is done 444 * in hardware -- normal packets still flow and are expected to be 445 * handled properly by the device. 446 * @IEEE80211_TX_INTFL_TKIP_MIC_FAILURE: Marks this packet to be used for TKIP 447 * testing. It will be sent out with incorrect Michael MIC key to allow 448 * TKIP countermeasures to be tested. 449 * @IEEE80211_TX_CTL_NO_CCK_RATE: This frame will be sent at non CCK rate. 450 * This flag is actually used for management frame especially for P2P 451 * frames not being sent at CCK rate in 2GHz band. 452 * @IEEE80211_TX_STATUS_EOSP: This packet marks the end of service period, 453 * when its status is reported the service period ends. For frames in 454 * an SP that mac80211 transmits, it is already set; for driver frames 455 * the driver may set this flag. It is also used to do the same for 456 * PS-Poll responses. 457 * @IEEE80211_TX_CTL_USE_MINRATE: This frame will be sent at lowest rate. 458 * This flag is used to send nullfunc frame at minimum rate when 459 * the nullfunc is used for connection monitoring purpose. 460 * @IEEE80211_TX_CTL_DONTFRAG: Don't fragment this packet even if it 461 * would be fragmented by size (this is optional, only used for 462 * monitor injection). 463 * 464 * Note: If you have to add new flags to the enumeration, then don't 465 * forget to update %IEEE80211_TX_TEMPORARY_FLAGS when necessary. 466 */ 467 enum mac80211_tx_control_flags { 468 IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0), 469 IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1), 470 IEEE80211_TX_CTL_NO_ACK = BIT(2), 471 IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3), 472 IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4), 473 IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5), 474 IEEE80211_TX_CTL_AMPDU = BIT(6), 475 IEEE80211_TX_CTL_INJECTED = BIT(7), 476 IEEE80211_TX_STAT_TX_FILTERED = BIT(8), 477 IEEE80211_TX_STAT_ACK = BIT(9), 478 IEEE80211_TX_STAT_AMPDU = BIT(10), 479 IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11), 480 IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12), 481 IEEE80211_TX_INTFL_OFFCHAN_TX_OK = BIT(13), 482 IEEE80211_TX_INTFL_NEED_TXPROCESSING = BIT(14), 483 IEEE80211_TX_INTFL_RETRIED = BIT(15), 484 IEEE80211_TX_INTFL_DONT_ENCRYPT = BIT(16), 485 IEEE80211_TX_CTL_NO_PS_BUFFER = BIT(17), 486 IEEE80211_TX_CTL_MORE_FRAMES = BIT(18), 487 IEEE80211_TX_INTFL_RETRANSMISSION = BIT(19), 488 IEEE80211_TX_INTFL_MLME_CONN_TX = BIT(20), 489 IEEE80211_TX_INTFL_NL80211_FRAME_TX = BIT(21), 490 IEEE80211_TX_CTL_LDPC = BIT(22), 491 IEEE80211_TX_CTL_STBC = BIT(23) | BIT(24), 492 IEEE80211_TX_CTL_TX_OFFCHAN = BIT(25), 493 IEEE80211_TX_INTFL_TKIP_MIC_FAILURE = BIT(26), 494 IEEE80211_TX_CTL_NO_CCK_RATE = BIT(27), 495 IEEE80211_TX_STATUS_EOSP = BIT(28), 496 IEEE80211_TX_CTL_USE_MINRATE = BIT(29), 497 IEEE80211_TX_CTL_DONTFRAG = BIT(30), 498 }; 499 500 #define IEEE80211_TX_CTL_STBC_SHIFT 23 501 502 /* 503 * This definition is used as a mask to clear all temporary flags, which are 504 * set by the tx handlers for each transmission attempt by the mac80211 stack. 505 */ 506 #define IEEE80211_TX_TEMPORARY_FLAGS (IEEE80211_TX_CTL_NO_ACK | \ 507 IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT | \ 508 IEEE80211_TX_CTL_SEND_AFTER_DTIM | IEEE80211_TX_CTL_AMPDU | \ 509 IEEE80211_TX_STAT_TX_FILTERED | IEEE80211_TX_STAT_ACK | \ 510 IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_STAT_AMPDU_NO_BACK | \ 511 IEEE80211_TX_CTL_RATE_CTRL_PROBE | IEEE80211_TX_CTL_NO_PS_BUFFER | \ 512 IEEE80211_TX_CTL_MORE_FRAMES | IEEE80211_TX_CTL_LDPC | \ 513 IEEE80211_TX_CTL_STBC | IEEE80211_TX_STATUS_EOSP) 514 515 /** 516 * enum mac80211_rate_control_flags - per-rate flags set by the 517 * Rate Control algorithm. 518 * 519 * These flags are set by the Rate control algorithm for each rate during tx, 520 * in the @flags member of struct ieee80211_tx_rate. 521 * 522 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate. 523 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required. 524 * This is set if the current BSS requires ERP protection. 525 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble. 526 * @IEEE80211_TX_RC_MCS: HT rate. 527 * @IEEE80211_TX_RC_VHT_MCS: VHT MCS rate, in this case the idx field is split 528 * into a higher 4 bits (Nss) and lower 4 bits (MCS number) 529 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in 530 * Greenfield mode. 531 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz. 532 * @IEEE80211_TX_RC_80_MHZ_WIDTH: Indicates 80 MHz transmission 533 * @IEEE80211_TX_RC_160_MHZ_WIDTH: Indicates 160 MHz transmission 534 * (80+80 isn't supported yet) 535 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the 536 * adjacent 20 MHz channels, if the current channel type is 537 * NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS. 538 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate. 539 */ 540 enum mac80211_rate_control_flags { 541 IEEE80211_TX_RC_USE_RTS_CTS = BIT(0), 542 IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1), 543 IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2), 544 545 /* rate index is an HT/VHT MCS instead of an index */ 546 IEEE80211_TX_RC_MCS = BIT(3), 547 IEEE80211_TX_RC_GREEN_FIELD = BIT(4), 548 IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5), 549 IEEE80211_TX_RC_DUP_DATA = BIT(6), 550 IEEE80211_TX_RC_SHORT_GI = BIT(7), 551 IEEE80211_TX_RC_VHT_MCS = BIT(8), 552 IEEE80211_TX_RC_80_MHZ_WIDTH = BIT(9), 553 IEEE80211_TX_RC_160_MHZ_WIDTH = BIT(10), 554 }; 555 556 557 /* there are 40 bytes if you don't need the rateset to be kept */ 558 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40 559 560 /* if you do need the rateset, then you have less space */ 561 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24 562 563 /* maximum number of rate stages */ 564 #define IEEE80211_TX_MAX_RATES 4 565 566 /* maximum number of rate table entries */ 567 #define IEEE80211_TX_RATE_TABLE_SIZE 4 568 569 /** 570 * struct ieee80211_tx_rate - rate selection/status 571 * 572 * @idx: rate index to attempt to send with 573 * @flags: rate control flags (&enum mac80211_rate_control_flags) 574 * @count: number of tries in this rate before going to the next rate 575 * 576 * A value of -1 for @idx indicates an invalid rate and, if used 577 * in an array of retry rates, that no more rates should be tried. 578 * 579 * When used for transmit status reporting, the driver should 580 * always report the rate along with the flags it used. 581 * 582 * &struct ieee80211_tx_info contains an array of these structs 583 * in the control information, and it will be filled by the rate 584 * control algorithm according to what should be sent. For example, 585 * if this array contains, in the format { <idx>, <count> } the 586 * information 587 * { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 } 588 * then this means that the frame should be transmitted 589 * up to twice at rate 3, up to twice at rate 2, and up to four 590 * times at rate 1 if it doesn't get acknowledged. Say it gets 591 * acknowledged by the peer after the fifth attempt, the status 592 * information should then contain 593 * { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ... 594 * since it was transmitted twice at rate 3, twice at rate 2 595 * and once at rate 1 after which we received an acknowledgement. 596 */ 597 struct ieee80211_tx_rate { 598 s8 idx; 599 u16 count:5, 600 flags:11; 601 } __packed; 602 603 #define IEEE80211_MAX_TX_RETRY 31 604 605 static inline void ieee80211_rate_set_vht(struct ieee80211_tx_rate *rate, 606 u8 mcs, u8 nss) 607 { 608 WARN_ON(mcs & ~0xF); 609 WARN_ON((nss - 1) & ~0x7); 610 rate->idx = ((nss - 1) << 4) | mcs; 611 } 612 613 static inline u8 614 ieee80211_rate_get_vht_mcs(const struct ieee80211_tx_rate *rate) 615 { 616 return rate->idx & 0xF; 617 } 618 619 static inline u8 620 ieee80211_rate_get_vht_nss(const struct ieee80211_tx_rate *rate) 621 { 622 return (rate->idx >> 4) + 1; 623 } 624 625 /** 626 * struct ieee80211_tx_info - skb transmit information 627 * 628 * This structure is placed in skb->cb for three uses: 629 * (1) mac80211 TX control - mac80211 tells the driver what to do 630 * (2) driver internal use (if applicable) 631 * (3) TX status information - driver tells mac80211 what happened 632 * 633 * @flags: transmit info flags, defined above 634 * @band: the band to transmit on (use for checking for races) 635 * @hw_queue: HW queue to put the frame on, skb_get_queue_mapping() gives the AC 636 * @ack_frame_id: internal frame ID for TX status, used internally 637 * @control: union for control data 638 * @status: union for status data 639 * @driver_data: array of driver_data pointers 640 * @ampdu_ack_len: number of acked aggregated frames. 641 * relevant only if IEEE80211_TX_STAT_AMPDU was set. 642 * @ampdu_len: number of aggregated frames. 643 * relevant only if IEEE80211_TX_STAT_AMPDU was set. 644 * @ack_signal: signal strength of the ACK frame 645 */ 646 struct ieee80211_tx_info { 647 /* common information */ 648 u32 flags; 649 u8 band; 650 651 u8 hw_queue; 652 653 u16 ack_frame_id; 654 655 union { 656 struct { 657 union { 658 /* rate control */ 659 struct { 660 struct ieee80211_tx_rate rates[ 661 IEEE80211_TX_MAX_RATES]; 662 s8 rts_cts_rate_idx; 663 u8 use_rts:1; 664 u8 use_cts_prot:1; 665 u8 short_preamble:1; 666 u8 skip_table:1; 667 /* 2 bytes free */ 668 }; 669 /* only needed before rate control */ 670 unsigned long jiffies; 671 }; 672 /* NB: vif can be NULL for injected frames */ 673 struct ieee80211_vif *vif; 674 struct ieee80211_key_conf *hw_key; 675 /* 8 bytes free */ 676 } control; 677 struct { 678 struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES]; 679 int ack_signal; 680 u8 ampdu_ack_len; 681 u8 ampdu_len; 682 u8 antenna; 683 /* 21 bytes free */ 684 } status; 685 struct { 686 struct ieee80211_tx_rate driver_rates[ 687 IEEE80211_TX_MAX_RATES]; 688 u8 pad[4]; 689 690 void *rate_driver_data[ 691 IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)]; 692 }; 693 void *driver_data[ 694 IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)]; 695 }; 696 }; 697 698 /** 699 * struct ieee80211_sched_scan_ies - scheduled scan IEs 700 * 701 * This structure is used to pass the appropriate IEs to be used in scheduled 702 * scans for all bands. It contains both the IEs passed from the userspace 703 * and the ones generated by mac80211. 704 * 705 * @ie: array with the IEs for each supported band 706 * @len: array with the total length of the IEs for each band 707 */ 708 struct ieee80211_sched_scan_ies { 709 u8 *ie[IEEE80211_NUM_BANDS]; 710 size_t len[IEEE80211_NUM_BANDS]; 711 }; 712 713 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb) 714 { 715 return (struct ieee80211_tx_info *)skb->cb; 716 } 717 718 static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb) 719 { 720 return (struct ieee80211_rx_status *)skb->cb; 721 } 722 723 /** 724 * ieee80211_tx_info_clear_status - clear TX status 725 * 726 * @info: The &struct ieee80211_tx_info to be cleared. 727 * 728 * When the driver passes an skb back to mac80211, it must report 729 * a number of things in TX status. This function clears everything 730 * in the TX status but the rate control information (it does clear 731 * the count since you need to fill that in anyway). 732 * 733 * NOTE: You can only use this function if you do NOT use 734 * info->driver_data! Use info->rate_driver_data 735 * instead if you need only the less space that allows. 736 */ 737 static inline void 738 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info) 739 { 740 int i; 741 742 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 743 offsetof(struct ieee80211_tx_info, control.rates)); 744 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 745 offsetof(struct ieee80211_tx_info, driver_rates)); 746 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8); 747 /* clear the rate counts */ 748 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) 749 info->status.rates[i].count = 0; 750 751 BUILD_BUG_ON( 752 offsetof(struct ieee80211_tx_info, status.ack_signal) != 20); 753 memset(&info->status.ampdu_ack_len, 0, 754 sizeof(struct ieee80211_tx_info) - 755 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len)); 756 } 757 758 759 /** 760 * enum mac80211_rx_flags - receive flags 761 * 762 * These flags are used with the @flag member of &struct ieee80211_rx_status. 763 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame. 764 * Use together with %RX_FLAG_MMIC_STRIPPED. 765 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware. 766 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame, 767 * verification has been done by the hardware. 768 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame. 769 * If this flag is set, the stack cannot do any replay detection 770 * hence the driver or hardware will have to do that. 771 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on 772 * the frame. 773 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on 774 * the frame. 775 * @RX_FLAG_MACTIME_START: The timestamp passed in the RX status (@mactime 776 * field) is valid and contains the time the first symbol of the MPDU 777 * was received. This is useful in monitor mode and for proper IBSS 778 * merging. 779 * @RX_FLAG_MACTIME_END: The timestamp passed in the RX status (@mactime 780 * field) is valid and contains the time the last symbol of the MPDU 781 * (including FCS) was received. 782 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame 783 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index 784 * @RX_FLAG_VHT: VHT MCS was used and rate_index is MCS index 785 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used 786 * @RX_FLAG_80MHZ: 80 MHz was used 787 * @RX_FLAG_80P80MHZ: 80+80 MHz was used 788 * @RX_FLAG_160MHZ: 160 MHz was used 789 * @RX_FLAG_SHORT_GI: Short guard interval was used 790 * @RX_FLAG_NO_SIGNAL_VAL: The signal strength value is not present. 791 * Valid only for data frames (mainly A-MPDU) 792 * @RX_FLAG_HT_GF: This frame was received in a HT-greenfield transmission, if 793 * the driver fills this value it should add %IEEE80211_RADIOTAP_MCS_HAVE_FMT 794 * to hw.radiotap_mcs_details to advertise that fact 795 * @RX_FLAG_AMPDU_DETAILS: A-MPDU details are known, in particular the reference 796 * number (@ampdu_reference) must be populated and be a distinct number for 797 * each A-MPDU 798 * @RX_FLAG_AMPDU_REPORT_ZEROLEN: driver reports 0-length subframes 799 * @RX_FLAG_AMPDU_IS_ZEROLEN: This is a zero-length subframe, for 800 * monitoring purposes only 801 * @RX_FLAG_AMPDU_LAST_KNOWN: last subframe is known, should be set on all 802 * subframes of a single A-MPDU 803 * @RX_FLAG_AMPDU_IS_LAST: this subframe is the last subframe of the A-MPDU 804 * @RX_FLAG_AMPDU_DELIM_CRC_ERROR: A delimiter CRC error has been detected 805 * on this subframe 806 * @RX_FLAG_AMPDU_DELIM_CRC_KNOWN: The delimiter CRC field is known (the CRC 807 * is stored in the @ampdu_delimiter_crc field) 808 */ 809 enum mac80211_rx_flags { 810 RX_FLAG_MMIC_ERROR = BIT(0), 811 RX_FLAG_DECRYPTED = BIT(1), 812 RX_FLAG_MMIC_STRIPPED = BIT(3), 813 RX_FLAG_IV_STRIPPED = BIT(4), 814 RX_FLAG_FAILED_FCS_CRC = BIT(5), 815 RX_FLAG_FAILED_PLCP_CRC = BIT(6), 816 RX_FLAG_MACTIME_START = BIT(7), 817 RX_FLAG_SHORTPRE = BIT(8), 818 RX_FLAG_HT = BIT(9), 819 RX_FLAG_40MHZ = BIT(10), 820 RX_FLAG_SHORT_GI = BIT(11), 821 RX_FLAG_NO_SIGNAL_VAL = BIT(12), 822 RX_FLAG_HT_GF = BIT(13), 823 RX_FLAG_AMPDU_DETAILS = BIT(14), 824 RX_FLAG_AMPDU_REPORT_ZEROLEN = BIT(15), 825 RX_FLAG_AMPDU_IS_ZEROLEN = BIT(16), 826 RX_FLAG_AMPDU_LAST_KNOWN = BIT(17), 827 RX_FLAG_AMPDU_IS_LAST = BIT(18), 828 RX_FLAG_AMPDU_DELIM_CRC_ERROR = BIT(19), 829 RX_FLAG_AMPDU_DELIM_CRC_KNOWN = BIT(20), 830 RX_FLAG_MACTIME_END = BIT(21), 831 RX_FLAG_VHT = BIT(22), 832 RX_FLAG_80MHZ = BIT(23), 833 RX_FLAG_80P80MHZ = BIT(24), 834 RX_FLAG_160MHZ = BIT(25), 835 }; 836 837 /** 838 * struct ieee80211_rx_status - receive status 839 * 840 * The low-level driver should provide this information (the subset 841 * supported by hardware) to the 802.11 code with each received 842 * frame, in the skb's control buffer (cb). 843 * 844 * @mactime: value in microseconds of the 64-bit Time Synchronization Function 845 * (TSF) timer when the first data symbol (MPDU) arrived at the hardware. 846 * @device_timestamp: arbitrary timestamp for the device, mac80211 doesn't use 847 * it but can store it and pass it back to the driver for synchronisation 848 * @band: the active band when this frame was received 849 * @freq: frequency the radio was tuned to when receiving this frame, in MHz 850 * @signal: signal strength when receiving this frame, either in dBm, in dB or 851 * unspecified depending on the hardware capabilities flags 852 * @IEEE80211_HW_SIGNAL_* 853 * @antenna: antenna used 854 * @rate_idx: index of data rate into band's supported rates or MCS index if 855 * HT or VHT is used (%RX_FLAG_HT/%RX_FLAG_VHT) 856 * @vht_nss: number of streams (VHT only) 857 * @flag: %RX_FLAG_* 858 * @rx_flags: internal RX flags for mac80211 859 * @ampdu_reference: A-MPDU reference number, must be a different value for 860 * each A-MPDU but the same for each subframe within one A-MPDU 861 * @ampdu_delimiter_crc: A-MPDU delimiter CRC 862 * @vendor_radiotap_bitmap: radiotap vendor namespace presence bitmap 863 * @vendor_radiotap_len: radiotap vendor namespace length 864 * @vendor_radiotap_align: radiotap vendor namespace alignment. Note 865 * that the actual data must be at the start of the SKB data 866 * already. 867 * @vendor_radiotap_oui: radiotap vendor namespace OUI 868 * @vendor_radiotap_subns: radiotap vendor sub namespace 869 */ 870 struct ieee80211_rx_status { 871 u64 mactime; 872 u32 device_timestamp; 873 u32 ampdu_reference; 874 u32 flag; 875 u32 vendor_radiotap_bitmap; 876 u16 vendor_radiotap_len; 877 u16 freq; 878 u8 rate_idx; 879 u8 vht_nss; 880 u8 rx_flags; 881 u8 band; 882 u8 antenna; 883 s8 signal; 884 u8 ampdu_delimiter_crc; 885 u8 vendor_radiotap_align; 886 u8 vendor_radiotap_oui[3]; 887 u8 vendor_radiotap_subns; 888 }; 889 890 /** 891 * enum ieee80211_conf_flags - configuration flags 892 * 893 * Flags to define PHY configuration options 894 * 895 * @IEEE80211_CONF_MONITOR: there's a monitor interface present -- use this 896 * to determine for example whether to calculate timestamps for packets 897 * or not, do not use instead of filter flags! 898 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only). 899 * This is the power save mode defined by IEEE 802.11-2007 section 11.2, 900 * meaning that the hardware still wakes up for beacons, is able to 901 * transmit frames and receive the possible acknowledgment frames. 902 * Not to be confused with hardware specific wakeup/sleep states, 903 * driver is responsible for that. See the section "Powersave support" 904 * for more. 905 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set 906 * the driver should be prepared to handle configuration requests but 907 * may turn the device off as much as possible. Typically, this flag will 908 * be set when an interface is set UP but not associated or scanning, but 909 * it can also be unset in that case when monitor interfaces are active. 910 * @IEEE80211_CONF_OFFCHANNEL: The device is currently not on its main 911 * operating channel. 912 */ 913 enum ieee80211_conf_flags { 914 IEEE80211_CONF_MONITOR = (1<<0), 915 IEEE80211_CONF_PS = (1<<1), 916 IEEE80211_CONF_IDLE = (1<<2), 917 IEEE80211_CONF_OFFCHANNEL = (1<<3), 918 }; 919 920 921 /** 922 * enum ieee80211_conf_changed - denotes which configuration changed 923 * 924 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed 925 * @IEEE80211_CONF_CHANGE_MONITOR: the monitor flag changed 926 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed 927 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed 928 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed 929 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed 930 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed 931 * @IEEE80211_CONF_CHANGE_SMPS: Spatial multiplexing powersave mode changed 932 * Note that this is only valid if channel contexts are not used, 933 * otherwise each channel context has the number of chains listed. 934 */ 935 enum ieee80211_conf_changed { 936 IEEE80211_CONF_CHANGE_SMPS = BIT(1), 937 IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2), 938 IEEE80211_CONF_CHANGE_MONITOR = BIT(3), 939 IEEE80211_CONF_CHANGE_PS = BIT(4), 940 IEEE80211_CONF_CHANGE_POWER = BIT(5), 941 IEEE80211_CONF_CHANGE_CHANNEL = BIT(6), 942 IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(7), 943 IEEE80211_CONF_CHANGE_IDLE = BIT(8), 944 }; 945 946 /** 947 * enum ieee80211_smps_mode - spatial multiplexing power save mode 948 * 949 * @IEEE80211_SMPS_AUTOMATIC: automatic 950 * @IEEE80211_SMPS_OFF: off 951 * @IEEE80211_SMPS_STATIC: static 952 * @IEEE80211_SMPS_DYNAMIC: dynamic 953 * @IEEE80211_SMPS_NUM_MODES: internal, don't use 954 */ 955 enum ieee80211_smps_mode { 956 IEEE80211_SMPS_AUTOMATIC, 957 IEEE80211_SMPS_OFF, 958 IEEE80211_SMPS_STATIC, 959 IEEE80211_SMPS_DYNAMIC, 960 961 /* keep last */ 962 IEEE80211_SMPS_NUM_MODES, 963 }; 964 965 /** 966 * struct ieee80211_conf - configuration of the device 967 * 968 * This struct indicates how the driver shall configure the hardware. 969 * 970 * @flags: configuration flags defined above 971 * 972 * @listen_interval: listen interval in units of beacon interval 973 * @max_sleep_period: the maximum number of beacon intervals to sleep for 974 * before checking the beacon for a TIM bit (managed mode only); this 975 * value will be only achievable between DTIM frames, the hardware 976 * needs to check for the multicast traffic bit in DTIM beacons. 977 * This variable is valid only when the CONF_PS flag is set. 978 * @ps_dtim_period: The DTIM period of the AP we're connected to, for use 979 * in power saving. Power saving will not be enabled until a beacon 980 * has been received and the DTIM period is known. 981 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the 982 * powersave documentation below. This variable is valid only when 983 * the CONF_PS flag is set. 984 * 985 * @power_level: requested transmit power (in dBm), backward compatibility 986 * value only that is set to the minimum of all interfaces 987 * 988 * @chandef: the channel definition to tune to 989 * @radar_enabled: whether radar detection is enabled 990 * 991 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame 992 * (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11, 993 * but actually means the number of transmissions not the number of retries 994 * @short_frame_max_tx_count: Maximum number of transmissions for a "short" 995 * frame, called "dot11ShortRetryLimit" in 802.11, but actually means the 996 * number of transmissions not the number of retries 997 * 998 * @smps_mode: spatial multiplexing powersave mode; note that 999 * %IEEE80211_SMPS_STATIC is used when the device is not 1000 * configured for an HT channel. 1001 * Note that this is only valid if channel contexts are not used, 1002 * otherwise each channel context has the number of chains listed. 1003 */ 1004 struct ieee80211_conf { 1005 u32 flags; 1006 int power_level, dynamic_ps_timeout; 1007 int max_sleep_period; 1008 1009 u16 listen_interval; 1010 u8 ps_dtim_period; 1011 1012 u8 long_frame_max_tx_count, short_frame_max_tx_count; 1013 1014 struct cfg80211_chan_def chandef; 1015 bool radar_enabled; 1016 enum ieee80211_smps_mode smps_mode; 1017 }; 1018 1019 /** 1020 * struct ieee80211_channel_switch - holds the channel switch data 1021 * 1022 * The information provided in this structure is required for channel switch 1023 * operation. 1024 * 1025 * @timestamp: value in microseconds of the 64-bit Time Synchronization 1026 * Function (TSF) timer when the frame containing the channel switch 1027 * announcement was received. This is simply the rx.mactime parameter 1028 * the driver passed into mac80211. 1029 * @block_tx: Indicates whether transmission must be blocked before the 1030 * scheduled channel switch, as indicated by the AP. 1031 * @chandef: the new channel to switch to 1032 * @count: the number of TBTT's until the channel switch event 1033 */ 1034 struct ieee80211_channel_switch { 1035 u64 timestamp; 1036 bool block_tx; 1037 struct cfg80211_chan_def chandef; 1038 u8 count; 1039 }; 1040 1041 /** 1042 * enum ieee80211_vif_flags - virtual interface flags 1043 * 1044 * @IEEE80211_VIF_BEACON_FILTER: the device performs beacon filtering 1045 * on this virtual interface to avoid unnecessary CPU wakeups 1046 * @IEEE80211_VIF_SUPPORTS_CQM_RSSI: the device can do connection quality 1047 * monitoring on this virtual interface -- i.e. it can monitor 1048 * connection quality related parameters, such as the RSSI level and 1049 * provide notifications if configured trigger levels are reached. 1050 */ 1051 enum ieee80211_vif_flags { 1052 IEEE80211_VIF_BEACON_FILTER = BIT(0), 1053 IEEE80211_VIF_SUPPORTS_CQM_RSSI = BIT(1), 1054 }; 1055 1056 /** 1057 * struct ieee80211_vif - per-interface data 1058 * 1059 * Data in this structure is continually present for driver 1060 * use during the life of a virtual interface. 1061 * 1062 * @type: type of this virtual interface 1063 * @bss_conf: BSS configuration for this interface, either our own 1064 * or the BSS we're associated to 1065 * @addr: address of this interface 1066 * @p2p: indicates whether this AP or STA interface is a p2p 1067 * interface, i.e. a GO or p2p-sta respectively 1068 * @driver_flags: flags/capabilities the driver has for this interface, 1069 * these need to be set (or cleared) when the interface is added 1070 * or, if supported by the driver, the interface type is changed 1071 * at runtime, mac80211 will never touch this field 1072 * @hw_queue: hardware queue for each AC 1073 * @cab_queue: content-after-beacon (DTIM beacon really) queue, AP mode only 1074 * @chanctx_conf: The channel context this interface is assigned to, or %NULL 1075 * when it is not assigned. This pointer is RCU-protected due to the TX 1076 * path needing to access it; even though the netdev carrier will always 1077 * be off when it is %NULL there can still be races and packets could be 1078 * processed after it switches back to %NULL. 1079 * @debugfs_dir: debugfs dentry, can be used by drivers to create own per 1080 * interface debug files. Note that it will be NULL for the virtual 1081 * monitor interface (if that is requested.) 1082 * @drv_priv: data area for driver use, will always be aligned to 1083 * sizeof(void *). 1084 */ 1085 struct ieee80211_vif { 1086 enum nl80211_iftype type; 1087 struct ieee80211_bss_conf bss_conf; 1088 u8 addr[ETH_ALEN]; 1089 bool p2p; 1090 1091 u8 cab_queue; 1092 u8 hw_queue[IEEE80211_NUM_ACS]; 1093 1094 struct ieee80211_chanctx_conf __rcu *chanctx_conf; 1095 1096 u32 driver_flags; 1097 1098 #ifdef CONFIG_MAC80211_DEBUGFS 1099 struct dentry *debugfs_dir; 1100 #endif 1101 1102 /* must be last */ 1103 u8 drv_priv[0] __aligned(sizeof(void *)); 1104 }; 1105 1106 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif) 1107 { 1108 #ifdef CONFIG_MAC80211_MESH 1109 return vif->type == NL80211_IFTYPE_MESH_POINT; 1110 #endif 1111 return false; 1112 } 1113 1114 /** 1115 * enum ieee80211_key_flags - key flags 1116 * 1117 * These flags are used for communication about keys between the driver 1118 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf. 1119 * 1120 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the 1121 * driver to indicate that it requires IV generation for this 1122 * particular key. 1123 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by 1124 * the driver for a TKIP key if it requires Michael MIC 1125 * generation in software. 1126 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates 1127 * that the key is pairwise rather then a shared key. 1128 * @IEEE80211_KEY_FLAG_SW_MGMT_TX: This flag should be set by the driver for a 1129 * CCMP key if it requires CCMP encryption of management frames (MFP) to 1130 * be done in software. 1131 * @IEEE80211_KEY_FLAG_PUT_IV_SPACE: This flag should be set by the driver 1132 * if space should be prepared for the IV, but the IV 1133 * itself should not be generated. Do not set together with 1134 * @IEEE80211_KEY_FLAG_GENERATE_IV on the same key. 1135 * @IEEE80211_KEY_FLAG_RX_MGMT: This key will be used to decrypt received 1136 * management frames. The flag can help drivers that have a hardware 1137 * crypto implementation that doesn't deal with management frames 1138 * properly by allowing them to not upload the keys to hardware and 1139 * fall back to software crypto. Note that this flag deals only with 1140 * RX, if your crypto engine can't deal with TX you can also set the 1141 * %IEEE80211_KEY_FLAG_SW_MGMT_TX flag to encrypt such frames in SW. 1142 */ 1143 enum ieee80211_key_flags { 1144 IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1, 1145 IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2, 1146 IEEE80211_KEY_FLAG_PAIRWISE = 1<<3, 1147 IEEE80211_KEY_FLAG_SW_MGMT_TX = 1<<4, 1148 IEEE80211_KEY_FLAG_PUT_IV_SPACE = 1<<5, 1149 IEEE80211_KEY_FLAG_RX_MGMT = 1<<6, 1150 }; 1151 1152 /** 1153 * struct ieee80211_key_conf - key information 1154 * 1155 * This key information is given by mac80211 to the driver by 1156 * the set_key() callback in &struct ieee80211_ops. 1157 * 1158 * @hw_key_idx: To be set by the driver, this is the key index the driver 1159 * wants to be given when a frame is transmitted and needs to be 1160 * encrypted in hardware. 1161 * @cipher: The key's cipher suite selector. 1162 * @flags: key flags, see &enum ieee80211_key_flags. 1163 * @keyidx: the key index (0-3) 1164 * @keylen: key material length 1165 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte) 1166 * data block: 1167 * - Temporal Encryption Key (128 bits) 1168 * - Temporal Authenticator Tx MIC Key (64 bits) 1169 * - Temporal Authenticator Rx MIC Key (64 bits) 1170 * @icv_len: The ICV length for this key type 1171 * @iv_len: The IV length for this key type 1172 */ 1173 struct ieee80211_key_conf { 1174 u32 cipher; 1175 u8 icv_len; 1176 u8 iv_len; 1177 u8 hw_key_idx; 1178 u8 flags; 1179 s8 keyidx; 1180 u8 keylen; 1181 u8 key[0]; 1182 }; 1183 1184 /** 1185 * enum set_key_cmd - key command 1186 * 1187 * Used with the set_key() callback in &struct ieee80211_ops, this 1188 * indicates whether a key is being removed or added. 1189 * 1190 * @SET_KEY: a key is set 1191 * @DISABLE_KEY: a key must be disabled 1192 */ 1193 enum set_key_cmd { 1194 SET_KEY, DISABLE_KEY, 1195 }; 1196 1197 /** 1198 * enum ieee80211_sta_state - station state 1199 * 1200 * @IEEE80211_STA_NOTEXIST: station doesn't exist at all, 1201 * this is a special state for add/remove transitions 1202 * @IEEE80211_STA_NONE: station exists without special state 1203 * @IEEE80211_STA_AUTH: station is authenticated 1204 * @IEEE80211_STA_ASSOC: station is associated 1205 * @IEEE80211_STA_AUTHORIZED: station is authorized (802.1X) 1206 */ 1207 enum ieee80211_sta_state { 1208 /* NOTE: These need to be ordered correctly! */ 1209 IEEE80211_STA_NOTEXIST, 1210 IEEE80211_STA_NONE, 1211 IEEE80211_STA_AUTH, 1212 IEEE80211_STA_ASSOC, 1213 IEEE80211_STA_AUTHORIZED, 1214 }; 1215 1216 /** 1217 * enum ieee80211_sta_rx_bandwidth - station RX bandwidth 1218 * @IEEE80211_STA_RX_BW_20: station can only receive 20 MHz 1219 * @IEEE80211_STA_RX_BW_40: station can receive up to 40 MHz 1220 * @IEEE80211_STA_RX_BW_80: station can receive up to 80 MHz 1221 * @IEEE80211_STA_RX_BW_160: station can receive up to 160 MHz 1222 * (including 80+80 MHz) 1223 * 1224 * Implementation note: 20 must be zero to be initialized 1225 * correctly, the values must be sorted. 1226 */ 1227 enum ieee80211_sta_rx_bandwidth { 1228 IEEE80211_STA_RX_BW_20 = 0, 1229 IEEE80211_STA_RX_BW_40, 1230 IEEE80211_STA_RX_BW_80, 1231 IEEE80211_STA_RX_BW_160, 1232 }; 1233 1234 /** 1235 * struct ieee80211_sta_rates - station rate selection table 1236 * 1237 * @rcu_head: RCU head used for freeing the table on update 1238 * @rates: transmit rates/flags to be used by default. 1239 * Overriding entries per-packet is possible by using cb tx control. 1240 */ 1241 struct ieee80211_sta_rates { 1242 struct rcu_head rcu_head; 1243 struct { 1244 s8 idx; 1245 u8 count; 1246 u8 count_cts; 1247 u8 count_rts; 1248 u16 flags; 1249 } rate[IEEE80211_TX_RATE_TABLE_SIZE]; 1250 }; 1251 1252 /** 1253 * struct ieee80211_sta - station table entry 1254 * 1255 * A station table entry represents a station we are possibly 1256 * communicating with. Since stations are RCU-managed in 1257 * mac80211, any ieee80211_sta pointer you get access to must 1258 * either be protected by rcu_read_lock() explicitly or implicitly, 1259 * or you must take good care to not use such a pointer after a 1260 * call to your sta_remove callback that removed it. 1261 * 1262 * @addr: MAC address 1263 * @aid: AID we assigned to the station if we're an AP 1264 * @supp_rates: Bitmap of supported rates (per band) 1265 * @ht_cap: HT capabilities of this STA; restricted to our own capabilities 1266 * @vht_cap: VHT capabilities of this STA; restricted to our own capabilities 1267 * @wme: indicates whether the STA supports WME. Only valid during AP-mode. 1268 * @drv_priv: data area for driver use, will always be aligned to 1269 * sizeof(void *), size is determined in hw information. 1270 * @uapsd_queues: bitmap of queues configured for uapsd. Only valid 1271 * if wme is supported. 1272 * @max_sp: max Service Period. Only valid if wme is supported. 1273 * @bandwidth: current bandwidth the station can receive with 1274 * @rx_nss: in HT/VHT, the maximum number of spatial streams the 1275 * station can receive at the moment, changed by operating mode 1276 * notifications and capabilities. The value is only valid after 1277 * the station moves to associated state. 1278 * @smps_mode: current SMPS mode (off, static or dynamic) 1279 * @tx_rates: rate control selection table 1280 */ 1281 struct ieee80211_sta { 1282 u32 supp_rates[IEEE80211_NUM_BANDS]; 1283 u8 addr[ETH_ALEN]; 1284 u16 aid; 1285 struct ieee80211_sta_ht_cap ht_cap; 1286 struct ieee80211_sta_vht_cap vht_cap; 1287 bool wme; 1288 u8 uapsd_queues; 1289 u8 max_sp; 1290 u8 rx_nss; 1291 enum ieee80211_sta_rx_bandwidth bandwidth; 1292 enum ieee80211_smps_mode smps_mode; 1293 struct ieee80211_sta_rates __rcu *rates; 1294 1295 /* must be last */ 1296 u8 drv_priv[0] __aligned(sizeof(void *)); 1297 }; 1298 1299 /** 1300 * enum sta_notify_cmd - sta notify command 1301 * 1302 * Used with the sta_notify() callback in &struct ieee80211_ops, this 1303 * indicates if an associated station made a power state transition. 1304 * 1305 * @STA_NOTIFY_SLEEP: a station is now sleeping 1306 * @STA_NOTIFY_AWAKE: a sleeping station woke up 1307 */ 1308 enum sta_notify_cmd { 1309 STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE, 1310 }; 1311 1312 /** 1313 * struct ieee80211_tx_control - TX control data 1314 * 1315 * @sta: station table entry, this sta pointer may be NULL and 1316 * it is not allowed to copy the pointer, due to RCU. 1317 */ 1318 struct ieee80211_tx_control { 1319 struct ieee80211_sta *sta; 1320 }; 1321 1322 /** 1323 * enum ieee80211_hw_flags - hardware flags 1324 * 1325 * These flags are used to indicate hardware capabilities to 1326 * the stack. Generally, flags here should have their meaning 1327 * done in a way that the simplest hardware doesn't need setting 1328 * any particular flags. There are some exceptions to this rule, 1329 * however, so you are advised to review these flags carefully. 1330 * 1331 * @IEEE80211_HW_HAS_RATE_CONTROL: 1332 * The hardware or firmware includes rate control, and cannot be 1333 * controlled by the stack. As such, no rate control algorithm 1334 * should be instantiated, and the TX rate reported to userspace 1335 * will be taken from the TX status instead of the rate control 1336 * algorithm. 1337 * Note that this requires that the driver implement a number of 1338 * callbacks so it has the correct information, it needs to have 1339 * the @set_rts_threshold callback and must look at the BSS config 1340 * @use_cts_prot for G/N protection, @use_short_slot for slot 1341 * timing in 2.4 GHz and @use_short_preamble for preambles for 1342 * CCK frames. 1343 * 1344 * @IEEE80211_HW_RX_INCLUDES_FCS: 1345 * Indicates that received frames passed to the stack include 1346 * the FCS at the end. 1347 * 1348 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING: 1349 * Some wireless LAN chipsets buffer broadcast/multicast frames 1350 * for power saving stations in the hardware/firmware and others 1351 * rely on the host system for such buffering. This option is used 1352 * to configure the IEEE 802.11 upper layer to buffer broadcast and 1353 * multicast frames when there are power saving stations so that 1354 * the driver can fetch them with ieee80211_get_buffered_bc(). 1355 * 1356 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE: 1357 * Hardware is not capable of short slot operation on the 2.4 GHz band. 1358 * 1359 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE: 1360 * Hardware is not capable of receiving frames with short preamble on 1361 * the 2.4 GHz band. 1362 * 1363 * @IEEE80211_HW_SIGNAL_UNSPEC: 1364 * Hardware can provide signal values but we don't know its units. We 1365 * expect values between 0 and @max_signal. 1366 * If possible please provide dB or dBm instead. 1367 * 1368 * @IEEE80211_HW_SIGNAL_DBM: 1369 * Hardware gives signal values in dBm, decibel difference from 1370 * one milliwatt. This is the preferred method since it is standardized 1371 * between different devices. @max_signal does not need to be set. 1372 * 1373 * @IEEE80211_HW_SPECTRUM_MGMT: 1374 * Hardware supports spectrum management defined in 802.11h 1375 * Measurement, Channel Switch, Quieting, TPC 1376 * 1377 * @IEEE80211_HW_AMPDU_AGGREGATION: 1378 * Hardware supports 11n A-MPDU aggregation. 1379 * 1380 * @IEEE80211_HW_SUPPORTS_PS: 1381 * Hardware has power save support (i.e. can go to sleep). 1382 * 1383 * @IEEE80211_HW_PS_NULLFUNC_STACK: 1384 * Hardware requires nullfunc frame handling in stack, implies 1385 * stack support for dynamic PS. 1386 * 1387 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS: 1388 * Hardware has support for dynamic PS. 1389 * 1390 * @IEEE80211_HW_MFP_CAPABLE: 1391 * Hardware supports management frame protection (MFP, IEEE 802.11w). 1392 * 1393 * @IEEE80211_HW_SUPPORTS_STATIC_SMPS: 1394 * Hardware supports static spatial multiplexing powersave, 1395 * ie. can turn off all but one chain even on HT connections 1396 * that should be using more chains. 1397 * 1398 * @IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS: 1399 * Hardware supports dynamic spatial multiplexing powersave, 1400 * ie. can turn off all but one chain and then wake the rest 1401 * up as required after, for example, rts/cts handshake. 1402 * 1403 * @IEEE80211_HW_SUPPORTS_UAPSD: 1404 * Hardware supports Unscheduled Automatic Power Save Delivery 1405 * (U-APSD) in managed mode. The mode is configured with 1406 * conf_tx() operation. 1407 * 1408 * @IEEE80211_HW_REPORTS_TX_ACK_STATUS: 1409 * Hardware can provide ack status reports of Tx frames to 1410 * the stack. 1411 * 1412 * @IEEE80211_HW_CONNECTION_MONITOR: 1413 * The hardware performs its own connection monitoring, including 1414 * periodic keep-alives to the AP and probing the AP on beacon loss. 1415 * When this flag is set, signaling beacon-loss will cause an immediate 1416 * change to disassociated state. 1417 * 1418 * @IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC: 1419 * This device needs to get data from beacon before association (i.e. 1420 * dtim_period). 1421 * 1422 * @IEEE80211_HW_SUPPORTS_PER_STA_GTK: The device's crypto engine supports 1423 * per-station GTKs as used by IBSS RSN or during fast transition. If 1424 * the device doesn't support per-station GTKs, but can be asked not 1425 * to decrypt group addressed frames, then IBSS RSN support is still 1426 * possible but software crypto will be used. Advertise the wiphy flag 1427 * only in that case. 1428 * 1429 * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device 1430 * autonomously manages the PS status of connected stations. When 1431 * this flag is set mac80211 will not trigger PS mode for connected 1432 * stations based on the PM bit of incoming frames. 1433 * Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure 1434 * the PS mode of connected stations. 1435 * 1436 * @IEEE80211_HW_TX_AMPDU_SETUP_IN_HW: The device handles TX A-MPDU session 1437 * setup strictly in HW. mac80211 should not attempt to do this in 1438 * software. 1439 * 1440 * @IEEE80211_HW_WANT_MONITOR_VIF: The driver would like to be informed of 1441 * a virtual monitor interface when monitor interfaces are the only 1442 * active interfaces. 1443 * 1444 * @IEEE80211_HW_QUEUE_CONTROL: The driver wants to control per-interface 1445 * queue mapping in order to use different queues (not just one per AC) 1446 * for different virtual interfaces. See the doc section on HW queue 1447 * control for more details. 1448 * 1449 * @IEEE80211_HW_SUPPORTS_RC_TABLE: The driver supports using a rate 1450 * selection table provided by the rate control algorithm. 1451 * 1452 * @IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF: Use the P2P Device address for any 1453 * P2P Interface. This will be honoured even if more than one interface 1454 * is supported. 1455 * 1456 * @IEEE80211_HW_TIMING_BEACON_ONLY: Use sync timing from beacon frames 1457 * only, to allow getting TBTT of a DTIM beacon. 1458 */ 1459 enum ieee80211_hw_flags { 1460 IEEE80211_HW_HAS_RATE_CONTROL = 1<<0, 1461 IEEE80211_HW_RX_INCLUDES_FCS = 1<<1, 1462 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2, 1463 IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3, 1464 IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4, 1465 IEEE80211_HW_SIGNAL_UNSPEC = 1<<5, 1466 IEEE80211_HW_SIGNAL_DBM = 1<<6, 1467 IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC = 1<<7, 1468 IEEE80211_HW_SPECTRUM_MGMT = 1<<8, 1469 IEEE80211_HW_AMPDU_AGGREGATION = 1<<9, 1470 IEEE80211_HW_SUPPORTS_PS = 1<<10, 1471 IEEE80211_HW_PS_NULLFUNC_STACK = 1<<11, 1472 IEEE80211_HW_SUPPORTS_DYNAMIC_PS = 1<<12, 1473 IEEE80211_HW_MFP_CAPABLE = 1<<13, 1474 IEEE80211_HW_WANT_MONITOR_VIF = 1<<14, 1475 IEEE80211_HW_SUPPORTS_STATIC_SMPS = 1<<15, 1476 IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS = 1<<16, 1477 IEEE80211_HW_SUPPORTS_UAPSD = 1<<17, 1478 IEEE80211_HW_REPORTS_TX_ACK_STATUS = 1<<18, 1479 IEEE80211_HW_CONNECTION_MONITOR = 1<<19, 1480 IEEE80211_HW_QUEUE_CONTROL = 1<<20, 1481 IEEE80211_HW_SUPPORTS_PER_STA_GTK = 1<<21, 1482 IEEE80211_HW_AP_LINK_PS = 1<<22, 1483 IEEE80211_HW_TX_AMPDU_SETUP_IN_HW = 1<<23, 1484 IEEE80211_HW_SUPPORTS_RC_TABLE = 1<<24, 1485 IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF = 1<<25, 1486 IEEE80211_HW_TIMING_BEACON_ONLY = 1<<26, 1487 }; 1488 1489 /** 1490 * struct ieee80211_hw - hardware information and state 1491 * 1492 * This structure contains the configuration and hardware 1493 * information for an 802.11 PHY. 1494 * 1495 * @wiphy: This points to the &struct wiphy allocated for this 1496 * 802.11 PHY. You must fill in the @perm_addr and @dev 1497 * members of this structure using SET_IEEE80211_DEV() 1498 * and SET_IEEE80211_PERM_ADDR(). Additionally, all supported 1499 * bands (with channels, bitrates) are registered here. 1500 * 1501 * @conf: &struct ieee80211_conf, device configuration, don't use. 1502 * 1503 * @priv: pointer to private area that was allocated for driver use 1504 * along with this structure. 1505 * 1506 * @flags: hardware flags, see &enum ieee80211_hw_flags. 1507 * 1508 * @extra_tx_headroom: headroom to reserve in each transmit skb 1509 * for use by the driver (e.g. for transmit headers.) 1510 * 1511 * @channel_change_time: time (in microseconds) it takes to change channels. 1512 * 1513 * @max_signal: Maximum value for signal (rssi) in RX information, used 1514 * only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB 1515 * 1516 * @max_listen_interval: max listen interval in units of beacon interval 1517 * that HW supports 1518 * 1519 * @queues: number of available hardware transmit queues for 1520 * data packets. WMM/QoS requires at least four, these 1521 * queues need to have configurable access parameters. 1522 * 1523 * @rate_control_algorithm: rate control algorithm for this hardware. 1524 * If unset (NULL), the default algorithm will be used. Must be 1525 * set before calling ieee80211_register_hw(). 1526 * 1527 * @vif_data_size: size (in bytes) of the drv_priv data area 1528 * within &struct ieee80211_vif. 1529 * @sta_data_size: size (in bytes) of the drv_priv data area 1530 * within &struct ieee80211_sta. 1531 * @chanctx_data_size: size (in bytes) of the drv_priv data area 1532 * within &struct ieee80211_chanctx_conf. 1533 * 1534 * @max_rates: maximum number of alternate rate retry stages the hw 1535 * can handle. 1536 * @max_report_rates: maximum number of alternate rate retry stages 1537 * the hw can report back. 1538 * @max_rate_tries: maximum number of tries for each stage 1539 * 1540 * @napi_weight: weight used for NAPI polling. You must specify an 1541 * appropriate value here if a napi_poll operation is provided 1542 * by your driver. 1543 * 1544 * @max_rx_aggregation_subframes: maximum buffer size (number of 1545 * sub-frames) to be used for A-MPDU block ack receiver 1546 * aggregation. 1547 * This is only relevant if the device has restrictions on the 1548 * number of subframes, if it relies on mac80211 to do reordering 1549 * it shouldn't be set. 1550 * 1551 * @max_tx_aggregation_subframes: maximum number of subframes in an 1552 * aggregate an HT driver will transmit, used by the peer as a 1553 * hint to size its reorder buffer. 1554 * 1555 * @offchannel_tx_hw_queue: HW queue ID to use for offchannel TX 1556 * (if %IEEE80211_HW_QUEUE_CONTROL is set) 1557 * 1558 * @radiotap_mcs_details: lists which MCS information can the HW 1559 * reports, by default it is set to _MCS, _GI and _BW but doesn't 1560 * include _FMT. Use %IEEE80211_RADIOTAP_MCS_HAVE_* values, only 1561 * adding _BW is supported today. 1562 * 1563 * @radiotap_vht_details: lists which VHT MCS information the HW reports, 1564 * the default is _GI | _BANDWIDTH. 1565 * Use the %IEEE80211_RADIOTAP_VHT_KNOWN_* values. 1566 * 1567 * @netdev_features: netdev features to be set in each netdev created 1568 * from this HW. Note only HW checksum features are currently 1569 * compatible with mac80211. Other feature bits will be rejected. 1570 * 1571 * @uapsd_queues: This bitmap is included in (re)association frame to indicate 1572 * for each access category if it is uAPSD trigger-enabled and delivery- 1573 * enabled. Use IEEE80211_WMM_IE_STA_QOSINFO_AC_* to set this bitmap. 1574 * Each bit corresponds to different AC. Value '1' in specific bit means 1575 * that corresponding AC is both trigger- and delivery-enabled. '0' means 1576 * neither enabled. 1577 * 1578 * @uapsd_max_sp_len: maximum number of total buffered frames the WMM AP may 1579 * deliver to a WMM STA during any Service Period triggered by the WMM STA. 1580 * Use IEEE80211_WMM_IE_STA_QOSINFO_SP_* for correct values. 1581 */ 1582 struct ieee80211_hw { 1583 struct ieee80211_conf conf; 1584 struct wiphy *wiphy; 1585 const char *rate_control_algorithm; 1586 void *priv; 1587 u32 flags; 1588 unsigned int extra_tx_headroom; 1589 int channel_change_time; 1590 int vif_data_size; 1591 int sta_data_size; 1592 int chanctx_data_size; 1593 int napi_weight; 1594 u16 queues; 1595 u16 max_listen_interval; 1596 s8 max_signal; 1597 u8 max_rates; 1598 u8 max_report_rates; 1599 u8 max_rate_tries; 1600 u8 max_rx_aggregation_subframes; 1601 u8 max_tx_aggregation_subframes; 1602 u8 offchannel_tx_hw_queue; 1603 u8 radiotap_mcs_details; 1604 u16 radiotap_vht_details; 1605 netdev_features_t netdev_features; 1606 u8 uapsd_queues; 1607 u8 uapsd_max_sp_len; 1608 }; 1609 1610 /** 1611 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy 1612 * 1613 * @wiphy: the &struct wiphy which we want to query 1614 * 1615 * mac80211 drivers can use this to get to their respective 1616 * &struct ieee80211_hw. Drivers wishing to get to their own private 1617 * structure can then access it via hw->priv. Note that mac802111 drivers should 1618 * not use wiphy_priv() to try to get their private driver structure as this 1619 * is already used internally by mac80211. 1620 * 1621 * Return: The mac80211 driver hw struct of @wiphy. 1622 */ 1623 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy); 1624 1625 /** 1626 * SET_IEEE80211_DEV - set device for 802.11 hardware 1627 * 1628 * @hw: the &struct ieee80211_hw to set the device for 1629 * @dev: the &struct device of this 802.11 device 1630 */ 1631 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev) 1632 { 1633 set_wiphy_dev(hw->wiphy, dev); 1634 } 1635 1636 /** 1637 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware 1638 * 1639 * @hw: the &struct ieee80211_hw to set the MAC address for 1640 * @addr: the address to set 1641 */ 1642 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr) 1643 { 1644 memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN); 1645 } 1646 1647 static inline struct ieee80211_rate * 1648 ieee80211_get_tx_rate(const struct ieee80211_hw *hw, 1649 const struct ieee80211_tx_info *c) 1650 { 1651 if (WARN_ON_ONCE(c->control.rates[0].idx < 0)) 1652 return NULL; 1653 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx]; 1654 } 1655 1656 static inline struct ieee80211_rate * 1657 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw, 1658 const struct ieee80211_tx_info *c) 1659 { 1660 if (c->control.rts_cts_rate_idx < 0) 1661 return NULL; 1662 return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx]; 1663 } 1664 1665 static inline struct ieee80211_rate * 1666 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw, 1667 const struct ieee80211_tx_info *c, int idx) 1668 { 1669 if (c->control.rates[idx + 1].idx < 0) 1670 return NULL; 1671 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx]; 1672 } 1673 1674 /** 1675 * ieee80211_free_txskb - free TX skb 1676 * @hw: the hardware 1677 * @skb: the skb 1678 * 1679 * Free a transmit skb. Use this funtion when some failure 1680 * to transmit happened and thus status cannot be reported. 1681 */ 1682 void ieee80211_free_txskb(struct ieee80211_hw *hw, struct sk_buff *skb); 1683 1684 /** 1685 * DOC: Hardware crypto acceleration 1686 * 1687 * mac80211 is capable of taking advantage of many hardware 1688 * acceleration designs for encryption and decryption operations. 1689 * 1690 * The set_key() callback in the &struct ieee80211_ops for a given 1691 * device is called to enable hardware acceleration of encryption and 1692 * decryption. The callback takes a @sta parameter that will be NULL 1693 * for default keys or keys used for transmission only, or point to 1694 * the station information for the peer for individual keys. 1695 * Multiple transmission keys with the same key index may be used when 1696 * VLANs are configured for an access point. 1697 * 1698 * When transmitting, the TX control data will use the @hw_key_idx 1699 * selected by the driver by modifying the &struct ieee80211_key_conf 1700 * pointed to by the @key parameter to the set_key() function. 1701 * 1702 * The set_key() call for the %SET_KEY command should return 0 if 1703 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be 1704 * added; if you return 0 then hw_key_idx must be assigned to the 1705 * hardware key index, you are free to use the full u8 range. 1706 * 1707 * When the cmd is %DISABLE_KEY then it must succeed. 1708 * 1709 * Note that it is permissible to not decrypt a frame even if a key 1710 * for it has been uploaded to hardware, the stack will not make any 1711 * decision based on whether a key has been uploaded or not but rather 1712 * based on the receive flags. 1713 * 1714 * The &struct ieee80211_key_conf structure pointed to by the @key 1715 * parameter is guaranteed to be valid until another call to set_key() 1716 * removes it, but it can only be used as a cookie to differentiate 1717 * keys. 1718 * 1719 * In TKIP some HW need to be provided a phase 1 key, for RX decryption 1720 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key 1721 * handler. 1722 * The update_tkip_key() call updates the driver with the new phase 1 key. 1723 * This happens every time the iv16 wraps around (every 65536 packets). The 1724 * set_key() call will happen only once for each key (unless the AP did 1725 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is 1726 * provided by update_tkip_key only. The trigger that makes mac80211 call this 1727 * handler is software decryption with wrap around of iv16. 1728 * 1729 * The set_default_unicast_key() call updates the default WEP key index 1730 * configured to the hardware for WEP encryption type. This is required 1731 * for devices that support offload of data packets (e.g. ARP responses). 1732 */ 1733 1734 /** 1735 * DOC: Powersave support 1736 * 1737 * mac80211 has support for various powersave implementations. 1738 * 1739 * First, it can support hardware that handles all powersaving by itself, 1740 * such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS hardware 1741 * flag. In that case, it will be told about the desired powersave mode 1742 * with the %IEEE80211_CONF_PS flag depending on the association status. 1743 * The hardware must take care of sending nullfunc frames when necessary, 1744 * i.e. when entering and leaving powersave mode. The hardware is required 1745 * to look at the AID in beacons and signal to the AP that it woke up when 1746 * it finds traffic directed to it. 1747 * 1748 * %IEEE80211_CONF_PS flag enabled means that the powersave mode defined in 1749 * IEEE 802.11-2007 section 11.2 is enabled. This is not to be confused 1750 * with hardware wakeup and sleep states. Driver is responsible for waking 1751 * up the hardware before issuing commands to the hardware and putting it 1752 * back to sleep at appropriate times. 1753 * 1754 * When PS is enabled, hardware needs to wakeup for beacons and receive the 1755 * buffered multicast/broadcast frames after the beacon. Also it must be 1756 * possible to send frames and receive the acknowledment frame. 1757 * 1758 * Other hardware designs cannot send nullfunc frames by themselves and also 1759 * need software support for parsing the TIM bitmap. This is also supported 1760 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and 1761 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still 1762 * required to pass up beacons. The hardware is still required to handle 1763 * waking up for multicast traffic; if it cannot the driver must handle that 1764 * as best as it can, mac80211 is too slow to do that. 1765 * 1766 * Dynamic powersave is an extension to normal powersave in which the 1767 * hardware stays awake for a user-specified period of time after sending a 1768 * frame so that reply frames need not be buffered and therefore delayed to 1769 * the next wakeup. It's compromise of getting good enough latency when 1770 * there's data traffic and still saving significantly power in idle 1771 * periods. 1772 * 1773 * Dynamic powersave is simply supported by mac80211 enabling and disabling 1774 * PS based on traffic. Driver needs to only set %IEEE80211_HW_SUPPORTS_PS 1775 * flag and mac80211 will handle everything automatically. Additionally, 1776 * hardware having support for the dynamic PS feature may set the 1777 * %IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support 1778 * dynamic PS mode itself. The driver needs to look at the 1779 * @dynamic_ps_timeout hardware configuration value and use it that value 1780 * whenever %IEEE80211_CONF_PS is set. In this case mac80211 will disable 1781 * dynamic PS feature in stack and will just keep %IEEE80211_CONF_PS 1782 * enabled whenever user has enabled powersave. 1783 * 1784 * Driver informs U-APSD client support by enabling 1785 * %IEEE80211_HW_SUPPORTS_UAPSD flag. The mode is configured through the 1786 * uapsd paramater in conf_tx() operation. Hardware needs to send the QoS 1787 * Nullfunc frames and stay awake until the service period has ended. To 1788 * utilize U-APSD, dynamic powersave is disabled for voip AC and all frames 1789 * from that AC are transmitted with powersave enabled. 1790 * 1791 * Note: U-APSD client mode is not yet supported with 1792 * %IEEE80211_HW_PS_NULLFUNC_STACK. 1793 */ 1794 1795 /** 1796 * DOC: Beacon filter support 1797 * 1798 * Some hardware have beacon filter support to reduce host cpu wakeups 1799 * which will reduce system power consumption. It usually works so that 1800 * the firmware creates a checksum of the beacon but omits all constantly 1801 * changing elements (TSF, TIM etc). Whenever the checksum changes the 1802 * beacon is forwarded to the host, otherwise it will be just dropped. That 1803 * way the host will only receive beacons where some relevant information 1804 * (for example ERP protection or WMM settings) have changed. 1805 * 1806 * Beacon filter support is advertised with the %IEEE80211_VIF_BEACON_FILTER 1807 * interface capability. The driver needs to enable beacon filter support 1808 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When 1809 * power save is enabled, the stack will not check for beacon loss and the 1810 * driver needs to notify about loss of beacons with ieee80211_beacon_loss(). 1811 * 1812 * The time (or number of beacons missed) until the firmware notifies the 1813 * driver of a beacon loss event (which in turn causes the driver to call 1814 * ieee80211_beacon_loss()) should be configurable and will be controlled 1815 * by mac80211 and the roaming algorithm in the future. 1816 * 1817 * Since there may be constantly changing information elements that nothing 1818 * in the software stack cares about, we will, in the future, have mac80211 1819 * tell the driver which information elements are interesting in the sense 1820 * that we want to see changes in them. This will include 1821 * - a list of information element IDs 1822 * - a list of OUIs for the vendor information element 1823 * 1824 * Ideally, the hardware would filter out any beacons without changes in the 1825 * requested elements, but if it cannot support that it may, at the expense 1826 * of some efficiency, filter out only a subset. For example, if the device 1827 * doesn't support checking for OUIs it should pass up all changes in all 1828 * vendor information elements. 1829 * 1830 * Note that change, for the sake of simplification, also includes information 1831 * elements appearing or disappearing from the beacon. 1832 * 1833 * Some hardware supports an "ignore list" instead, just make sure nothing 1834 * that was requested is on the ignore list, and include commonly changing 1835 * information element IDs in the ignore list, for example 11 (BSS load) and 1836 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136, 1837 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility 1838 * it could also include some currently unused IDs. 1839 * 1840 * 1841 * In addition to these capabilities, hardware should support notifying the 1842 * host of changes in the beacon RSSI. This is relevant to implement roaming 1843 * when no traffic is flowing (when traffic is flowing we see the RSSI of 1844 * the received data packets). This can consist in notifying the host when 1845 * the RSSI changes significantly or when it drops below or rises above 1846 * configurable thresholds. In the future these thresholds will also be 1847 * configured by mac80211 (which gets them from userspace) to implement 1848 * them as the roaming algorithm requires. 1849 * 1850 * If the hardware cannot implement this, the driver should ask it to 1851 * periodically pass beacon frames to the host so that software can do the 1852 * signal strength threshold checking. 1853 */ 1854 1855 /** 1856 * DOC: Spatial multiplexing power save 1857 * 1858 * SMPS (Spatial multiplexing power save) is a mechanism to conserve 1859 * power in an 802.11n implementation. For details on the mechanism 1860 * and rationale, please refer to 802.11 (as amended by 802.11n-2009) 1861 * "11.2.3 SM power save". 1862 * 1863 * The mac80211 implementation is capable of sending action frames 1864 * to update the AP about the station's SMPS mode, and will instruct 1865 * the driver to enter the specific mode. It will also announce the 1866 * requested SMPS mode during the association handshake. Hardware 1867 * support for this feature is required, and can be indicated by 1868 * hardware flags. 1869 * 1870 * The default mode will be "automatic", which nl80211/cfg80211 1871 * defines to be dynamic SMPS in (regular) powersave, and SMPS 1872 * turned off otherwise. 1873 * 1874 * To support this feature, the driver must set the appropriate 1875 * hardware support flags, and handle the SMPS flag to the config() 1876 * operation. It will then with this mechanism be instructed to 1877 * enter the requested SMPS mode while associated to an HT AP. 1878 */ 1879 1880 /** 1881 * DOC: Frame filtering 1882 * 1883 * mac80211 requires to see many management frames for proper 1884 * operation, and users may want to see many more frames when 1885 * in monitor mode. However, for best CPU usage and power consumption, 1886 * having as few frames as possible percolate through the stack is 1887 * desirable. Hence, the hardware should filter as much as possible. 1888 * 1889 * To achieve this, mac80211 uses filter flags (see below) to tell 1890 * the driver's configure_filter() function which frames should be 1891 * passed to mac80211 and which should be filtered out. 1892 * 1893 * Before configure_filter() is invoked, the prepare_multicast() 1894 * callback is invoked with the parameters @mc_count and @mc_list 1895 * for the combined multicast address list of all virtual interfaces. 1896 * It's use is optional, and it returns a u64 that is passed to 1897 * configure_filter(). Additionally, configure_filter() has the 1898 * arguments @changed_flags telling which flags were changed and 1899 * @total_flags with the new flag states. 1900 * 1901 * If your device has no multicast address filters your driver will 1902 * need to check both the %FIF_ALLMULTI flag and the @mc_count 1903 * parameter to see whether multicast frames should be accepted 1904 * or dropped. 1905 * 1906 * All unsupported flags in @total_flags must be cleared. 1907 * Hardware does not support a flag if it is incapable of _passing_ 1908 * the frame to the stack. Otherwise the driver must ignore 1909 * the flag, but not clear it. 1910 * You must _only_ clear the flag (announce no support for the 1911 * flag to mac80211) if you are not able to pass the packet type 1912 * to the stack (so the hardware always filters it). 1913 * So for example, you should clear @FIF_CONTROL, if your hardware 1914 * always filters control frames. If your hardware always passes 1915 * control frames to the kernel and is incapable of filtering them, 1916 * you do _not_ clear the @FIF_CONTROL flag. 1917 * This rule applies to all other FIF flags as well. 1918 */ 1919 1920 /** 1921 * DOC: AP support for powersaving clients 1922 * 1923 * In order to implement AP and P2P GO modes, mac80211 has support for 1924 * client powersaving, both "legacy" PS (PS-Poll/null data) and uAPSD. 1925 * There currently is no support for sAPSD. 1926 * 1927 * There is one assumption that mac80211 makes, namely that a client 1928 * will not poll with PS-Poll and trigger with uAPSD at the same time. 1929 * Both are supported, and both can be used by the same client, but 1930 * they can't be used concurrently by the same client. This simplifies 1931 * the driver code. 1932 * 1933 * The first thing to keep in mind is that there is a flag for complete 1934 * driver implementation: %IEEE80211_HW_AP_LINK_PS. If this flag is set, 1935 * mac80211 expects the driver to handle most of the state machine for 1936 * powersaving clients and will ignore the PM bit in incoming frames. 1937 * Drivers then use ieee80211_sta_ps_transition() to inform mac80211 of 1938 * stations' powersave transitions. In this mode, mac80211 also doesn't 1939 * handle PS-Poll/uAPSD. 1940 * 1941 * In the mode without %IEEE80211_HW_AP_LINK_PS, mac80211 will check the 1942 * PM bit in incoming frames for client powersave transitions. When a 1943 * station goes to sleep, we will stop transmitting to it. There is, 1944 * however, a race condition: a station might go to sleep while there is 1945 * data buffered on hardware queues. If the device has support for this 1946 * it will reject frames, and the driver should give the frames back to 1947 * mac80211 with the %IEEE80211_TX_STAT_TX_FILTERED flag set which will 1948 * cause mac80211 to retry the frame when the station wakes up. The 1949 * driver is also notified of powersave transitions by calling its 1950 * @sta_notify callback. 1951 * 1952 * When the station is asleep, it has three choices: it can wake up, 1953 * it can PS-Poll, or it can possibly start a uAPSD service period. 1954 * Waking up is implemented by simply transmitting all buffered (and 1955 * filtered) frames to the station. This is the easiest case. When 1956 * the station sends a PS-Poll or a uAPSD trigger frame, mac80211 1957 * will inform the driver of this with the @allow_buffered_frames 1958 * callback; this callback is optional. mac80211 will then transmit 1959 * the frames as usual and set the %IEEE80211_TX_CTL_NO_PS_BUFFER 1960 * on each frame. The last frame in the service period (or the only 1961 * response to a PS-Poll) also has %IEEE80211_TX_STATUS_EOSP set to 1962 * indicate that it ends the service period; as this frame must have 1963 * TX status report it also sets %IEEE80211_TX_CTL_REQ_TX_STATUS. 1964 * When TX status is reported for this frame, the service period is 1965 * marked has having ended and a new one can be started by the peer. 1966 * 1967 * Additionally, non-bufferable MMPDUs can also be transmitted by 1968 * mac80211 with the %IEEE80211_TX_CTL_NO_PS_BUFFER set in them. 1969 * 1970 * Another race condition can happen on some devices like iwlwifi 1971 * when there are frames queued for the station and it wakes up 1972 * or polls; the frames that are already queued could end up being 1973 * transmitted first instead, causing reordering and/or wrong 1974 * processing of the EOSP. The cause is that allowing frames to be 1975 * transmitted to a certain station is out-of-band communication to 1976 * the device. To allow this problem to be solved, the driver can 1977 * call ieee80211_sta_block_awake() if frames are buffered when it 1978 * is notified that the station went to sleep. When all these frames 1979 * have been filtered (see above), it must call the function again 1980 * to indicate that the station is no longer blocked. 1981 * 1982 * If the driver buffers frames in the driver for aggregation in any 1983 * way, it must use the ieee80211_sta_set_buffered() call when it is 1984 * notified of the station going to sleep to inform mac80211 of any 1985 * TIDs that have frames buffered. Note that when a station wakes up 1986 * this information is reset (hence the requirement to call it when 1987 * informed of the station going to sleep). Then, when a service 1988 * period starts for any reason, @release_buffered_frames is called 1989 * with the number of frames to be released and which TIDs they are 1990 * to come from. In this case, the driver is responsible for setting 1991 * the EOSP (for uAPSD) and MORE_DATA bits in the released frames, 1992 * to help the @more_data paramter is passed to tell the driver if 1993 * there is more data on other TIDs -- the TIDs to release frames 1994 * from are ignored since mac80211 doesn't know how many frames the 1995 * buffers for those TIDs contain. 1996 * 1997 * If the driver also implement GO mode, where absence periods may 1998 * shorten service periods (or abort PS-Poll responses), it must 1999 * filter those response frames except in the case of frames that 2000 * are buffered in the driver -- those must remain buffered to avoid 2001 * reordering. Because it is possible that no frames are released 2002 * in this case, the driver must call ieee80211_sta_eosp() 2003 * to indicate to mac80211 that the service period ended anyway. 2004 * 2005 * Finally, if frames from multiple TIDs are released from mac80211 2006 * but the driver might reorder them, it must clear & set the flags 2007 * appropriately (only the last frame may have %IEEE80211_TX_STATUS_EOSP) 2008 * and also take care of the EOSP and MORE_DATA bits in the frame. 2009 * The driver may also use ieee80211_sta_eosp() in this case. 2010 */ 2011 2012 /** 2013 * DOC: HW queue control 2014 * 2015 * Before HW queue control was introduced, mac80211 only had a single static 2016 * assignment of per-interface AC software queues to hardware queues. This 2017 * was problematic for a few reasons: 2018 * 1) off-channel transmissions might get stuck behind other frames 2019 * 2) multiple virtual interfaces couldn't be handled correctly 2020 * 3) after-DTIM frames could get stuck behind other frames 2021 * 2022 * To solve this, hardware typically uses multiple different queues for all 2023 * the different usages, and this needs to be propagated into mac80211 so it 2024 * won't have the same problem with the software queues. 2025 * 2026 * Therefore, mac80211 now offers the %IEEE80211_HW_QUEUE_CONTROL capability 2027 * flag that tells it that the driver implements its own queue control. To do 2028 * so, the driver will set up the various queues in each &struct ieee80211_vif 2029 * and the offchannel queue in &struct ieee80211_hw. In response, mac80211 will 2030 * use those queue IDs in the hw_queue field of &struct ieee80211_tx_info and 2031 * if necessary will queue the frame on the right software queue that mirrors 2032 * the hardware queue. 2033 * Additionally, the driver has to then use these HW queue IDs for the queue 2034 * management functions (ieee80211_stop_queue() et al.) 2035 * 2036 * The driver is free to set up the queue mappings as needed, multiple virtual 2037 * interfaces may map to the same hardware queues if needed. The setup has to 2038 * happen during add_interface or change_interface callbacks. For example, a 2039 * driver supporting station+station and station+AP modes might decide to have 2040 * 10 hardware queues to handle different scenarios: 2041 * 2042 * 4 AC HW queues for 1st vif: 0, 1, 2, 3 2043 * 4 AC HW queues for 2nd vif: 4, 5, 6, 7 2044 * after-DTIM queue for AP: 8 2045 * off-channel queue: 9 2046 * 2047 * It would then set up the hardware like this: 2048 * hw.offchannel_tx_hw_queue = 9 2049 * 2050 * and the first virtual interface that is added as follows: 2051 * vif.hw_queue[IEEE80211_AC_VO] = 0 2052 * vif.hw_queue[IEEE80211_AC_VI] = 1 2053 * vif.hw_queue[IEEE80211_AC_BE] = 2 2054 * vif.hw_queue[IEEE80211_AC_BK] = 3 2055 * vif.cab_queue = 8 // if AP mode, otherwise %IEEE80211_INVAL_HW_QUEUE 2056 * and the second virtual interface with 4-7. 2057 * 2058 * If queue 6 gets full, for example, mac80211 would only stop the second 2059 * virtual interface's BE queue since virtual interface queues are per AC. 2060 * 2061 * Note that the vif.cab_queue value should be set to %IEEE80211_INVAL_HW_QUEUE 2062 * whenever the queue is not used (i.e. the interface is not in AP mode) if the 2063 * queue could potentially be shared since mac80211 will look at cab_queue when 2064 * a queue is stopped/woken even if the interface is not in AP mode. 2065 */ 2066 2067 /** 2068 * enum ieee80211_filter_flags - hardware filter flags 2069 * 2070 * These flags determine what the filter in hardware should be 2071 * programmed to let through and what should not be passed to the 2072 * stack. It is always safe to pass more frames than requested, 2073 * but this has negative impact on power consumption. 2074 * 2075 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS, 2076 * think of the BSS as your network segment and then this corresponds 2077 * to the regular ethernet device promiscuous mode. 2078 * 2079 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested 2080 * by the user or if the hardware is not capable of filtering by 2081 * multicast address. 2082 * 2083 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the 2084 * %RX_FLAG_FAILED_FCS_CRC for them) 2085 * 2086 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set 2087 * the %RX_FLAG_FAILED_PLCP_CRC for them 2088 * 2089 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate 2090 * to the hardware that it should not filter beacons or probe responses 2091 * by BSSID. Filtering them can greatly reduce the amount of processing 2092 * mac80211 needs to do and the amount of CPU wakeups, so you should 2093 * honour this flag if possible. 2094 * 2095 * @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS 2096 * is not set then only those addressed to this station. 2097 * 2098 * @FIF_OTHER_BSS: pass frames destined to other BSSes 2099 * 2100 * @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS is not set then only 2101 * those addressed to this station. 2102 * 2103 * @FIF_PROBE_REQ: pass probe request frames 2104 */ 2105 enum ieee80211_filter_flags { 2106 FIF_PROMISC_IN_BSS = 1<<0, 2107 FIF_ALLMULTI = 1<<1, 2108 FIF_FCSFAIL = 1<<2, 2109 FIF_PLCPFAIL = 1<<3, 2110 FIF_BCN_PRBRESP_PROMISC = 1<<4, 2111 FIF_CONTROL = 1<<5, 2112 FIF_OTHER_BSS = 1<<6, 2113 FIF_PSPOLL = 1<<7, 2114 FIF_PROBE_REQ = 1<<8, 2115 }; 2116 2117 /** 2118 * enum ieee80211_ampdu_mlme_action - A-MPDU actions 2119 * 2120 * These flags are used with the ampdu_action() callback in 2121 * &struct ieee80211_ops to indicate which action is needed. 2122 * 2123 * Note that drivers MUST be able to deal with a TX aggregation 2124 * session being stopped even before they OK'ed starting it by 2125 * calling ieee80211_start_tx_ba_cb_irqsafe, because the peer 2126 * might receive the addBA frame and send a delBA right away! 2127 * 2128 * @IEEE80211_AMPDU_RX_START: start RX aggregation 2129 * @IEEE80211_AMPDU_RX_STOP: stop RX aggregation 2130 * @IEEE80211_AMPDU_TX_START: start TX aggregation 2131 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational 2132 * @IEEE80211_AMPDU_TX_STOP_CONT: stop TX aggregation but continue transmitting 2133 * queued packets, now unaggregated. After all packets are transmitted the 2134 * driver has to call ieee80211_stop_tx_ba_cb_irqsafe(). 2135 * @IEEE80211_AMPDU_TX_STOP_FLUSH: stop TX aggregation and flush all packets, 2136 * called when the station is removed. There's no need or reason to call 2137 * ieee80211_stop_tx_ba_cb_irqsafe() in this case as mac80211 assumes the 2138 * session is gone and removes the station. 2139 * @IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: called when TX aggregation is stopped 2140 * but the driver hasn't called ieee80211_stop_tx_ba_cb_irqsafe() yet and 2141 * now the connection is dropped and the station will be removed. Drivers 2142 * should clean up and drop remaining packets when this is called. 2143 */ 2144 enum ieee80211_ampdu_mlme_action { 2145 IEEE80211_AMPDU_RX_START, 2146 IEEE80211_AMPDU_RX_STOP, 2147 IEEE80211_AMPDU_TX_START, 2148 IEEE80211_AMPDU_TX_STOP_CONT, 2149 IEEE80211_AMPDU_TX_STOP_FLUSH, 2150 IEEE80211_AMPDU_TX_STOP_FLUSH_CONT, 2151 IEEE80211_AMPDU_TX_OPERATIONAL, 2152 }; 2153 2154 /** 2155 * enum ieee80211_frame_release_type - frame release reason 2156 * @IEEE80211_FRAME_RELEASE_PSPOLL: frame released for PS-Poll 2157 * @IEEE80211_FRAME_RELEASE_UAPSD: frame(s) released due to 2158 * frame received on trigger-enabled AC 2159 */ 2160 enum ieee80211_frame_release_type { 2161 IEEE80211_FRAME_RELEASE_PSPOLL, 2162 IEEE80211_FRAME_RELEASE_UAPSD, 2163 }; 2164 2165 /** 2166 * enum ieee80211_rate_control_changed - flags to indicate what changed 2167 * 2168 * @IEEE80211_RC_BW_CHANGED: The bandwidth that can be used to transmit 2169 * to this station changed. The actual bandwidth is in the station 2170 * information -- for HT20/40 the IEEE80211_HT_CAP_SUP_WIDTH_20_40 2171 * flag changes, for HT and VHT the bandwidth field changes. 2172 * @IEEE80211_RC_SMPS_CHANGED: The SMPS state of the station changed. 2173 * @IEEE80211_RC_SUPP_RATES_CHANGED: The supported rate set of this peer 2174 * changed (in IBSS mode) due to discovering more information about 2175 * the peer. 2176 * @IEEE80211_RC_NSS_CHANGED: N_SS (number of spatial streams) was changed 2177 * by the peer 2178 */ 2179 enum ieee80211_rate_control_changed { 2180 IEEE80211_RC_BW_CHANGED = BIT(0), 2181 IEEE80211_RC_SMPS_CHANGED = BIT(1), 2182 IEEE80211_RC_SUPP_RATES_CHANGED = BIT(2), 2183 IEEE80211_RC_NSS_CHANGED = BIT(3), 2184 }; 2185 2186 /** 2187 * enum ieee80211_roc_type - remain on channel type 2188 * 2189 * With the support for multi channel contexts and multi channel operations, 2190 * remain on channel operations might be limited/deferred/aborted by other 2191 * flows/operations which have higher priority (and vise versa). 2192 * Specifying the ROC type can be used by devices to prioritize the ROC 2193 * operations compared to other operations/flows. 2194 * 2195 * @IEEE80211_ROC_TYPE_NORMAL: There are no special requirements for this ROC. 2196 * @IEEE80211_ROC_TYPE_MGMT_TX: The remain on channel request is required 2197 * for sending managment frames offchannel. 2198 */ 2199 enum ieee80211_roc_type { 2200 IEEE80211_ROC_TYPE_NORMAL = 0, 2201 IEEE80211_ROC_TYPE_MGMT_TX, 2202 }; 2203 2204 /** 2205 * struct ieee80211_ops - callbacks from mac80211 to the driver 2206 * 2207 * This structure contains various callbacks that the driver may 2208 * handle or, in some cases, must handle, for example to configure 2209 * the hardware to a new channel or to transmit a frame. 2210 * 2211 * @tx: Handler that 802.11 module calls for each transmitted frame. 2212 * skb contains the buffer starting from the IEEE 802.11 header. 2213 * The low-level driver should send the frame out based on 2214 * configuration in the TX control data. This handler should, 2215 * preferably, never fail and stop queues appropriately. 2216 * Must be atomic. 2217 * 2218 * @start: Called before the first netdevice attached to the hardware 2219 * is enabled. This should turn on the hardware and must turn on 2220 * frame reception (for possibly enabled monitor interfaces.) 2221 * Returns negative error codes, these may be seen in userspace, 2222 * or zero. 2223 * When the device is started it should not have a MAC address 2224 * to avoid acknowledging frames before a non-monitor device 2225 * is added. 2226 * Must be implemented and can sleep. 2227 * 2228 * @stop: Called after last netdevice attached to the hardware 2229 * is disabled. This should turn off the hardware (at least 2230 * it must turn off frame reception.) 2231 * May be called right after add_interface if that rejects 2232 * an interface. If you added any work onto the mac80211 workqueue 2233 * you should ensure to cancel it on this callback. 2234 * Must be implemented and can sleep. 2235 * 2236 * @suspend: Suspend the device; mac80211 itself will quiesce before and 2237 * stop transmitting and doing any other configuration, and then 2238 * ask the device to suspend. This is only invoked when WoWLAN is 2239 * configured, otherwise the device is deconfigured completely and 2240 * reconfigured at resume time. 2241 * The driver may also impose special conditions under which it 2242 * wants to use the "normal" suspend (deconfigure), say if it only 2243 * supports WoWLAN when the device is associated. In this case, it 2244 * must return 1 from this function. 2245 * 2246 * @resume: If WoWLAN was configured, this indicates that mac80211 is 2247 * now resuming its operation, after this the device must be fully 2248 * functional again. If this returns an error, the only way out is 2249 * to also unregister the device. If it returns 1, then mac80211 2250 * will also go through the regular complete restart on resume. 2251 * 2252 * @set_wakeup: Enable or disable wakeup when WoWLAN configuration is 2253 * modified. The reason is that device_set_wakeup_enable() is 2254 * supposed to be called when the configuration changes, not only 2255 * in suspend(). 2256 * 2257 * @add_interface: Called when a netdevice attached to the hardware is 2258 * enabled. Because it is not called for monitor mode devices, @start 2259 * and @stop must be implemented. 2260 * The driver should perform any initialization it needs before 2261 * the device can be enabled. The initial configuration for the 2262 * interface is given in the conf parameter. 2263 * The callback may refuse to add an interface by returning a 2264 * negative error code (which will be seen in userspace.) 2265 * Must be implemented and can sleep. 2266 * 2267 * @change_interface: Called when a netdevice changes type. This callback 2268 * is optional, but only if it is supported can interface types be 2269 * switched while the interface is UP. The callback may sleep. 2270 * Note that while an interface is being switched, it will not be 2271 * found by the interface iteration callbacks. 2272 * 2273 * @remove_interface: Notifies a driver that an interface is going down. 2274 * The @stop callback is called after this if it is the last interface 2275 * and no monitor interfaces are present. 2276 * When all interfaces are removed, the MAC address in the hardware 2277 * must be cleared so the device no longer acknowledges packets, 2278 * the mac_addr member of the conf structure is, however, set to the 2279 * MAC address of the device going away. 2280 * Hence, this callback must be implemented. It can sleep. 2281 * 2282 * @config: Handler for configuration requests. IEEE 802.11 code calls this 2283 * function to change hardware configuration, e.g., channel. 2284 * This function should never fail but returns a negative error code 2285 * if it does. The callback can sleep. 2286 * 2287 * @bss_info_changed: Handler for configuration requests related to BSS 2288 * parameters that may vary during BSS's lifespan, and may affect low 2289 * level driver (e.g. assoc/disassoc status, erp parameters). 2290 * This function should not be used if no BSS has been set, unless 2291 * for association indication. The @changed parameter indicates which 2292 * of the bss parameters has changed when a call is made. The callback 2293 * can sleep. 2294 * 2295 * @prepare_multicast: Prepare for multicast filter configuration. 2296 * This callback is optional, and its return value is passed 2297 * to configure_filter(). This callback must be atomic. 2298 * 2299 * @configure_filter: Configure the device's RX filter. 2300 * See the section "Frame filtering" for more information. 2301 * This callback must be implemented and can sleep. 2302 * 2303 * @set_multicast_list: Configure the device's interface specific RX multicast 2304 * filter. This callback is optional. This callback must be atomic. 2305 * 2306 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit 2307 * must be set or cleared for a given STA. Must be atomic. 2308 * 2309 * @set_key: See the section "Hardware crypto acceleration" 2310 * This callback is only called between add_interface and 2311 * remove_interface calls, i.e. while the given virtual interface 2312 * is enabled. 2313 * Returns a negative error code if the key can't be added. 2314 * The callback can sleep. 2315 * 2316 * @update_tkip_key: See the section "Hardware crypto acceleration" 2317 * This callback will be called in the context of Rx. Called for drivers 2318 * which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY. 2319 * The callback must be atomic. 2320 * 2321 * @set_rekey_data: If the device supports GTK rekeying, for example while the 2322 * host is suspended, it can assign this callback to retrieve the data 2323 * necessary to do GTK rekeying, this is the KEK, KCK and replay counter. 2324 * After rekeying was done it should (for example during resume) notify 2325 * userspace of the new replay counter using ieee80211_gtk_rekey_notify(). 2326 * 2327 * @set_default_unicast_key: Set the default (unicast) key index, useful for 2328 * WEP when the device sends data packets autonomously, e.g. for ARP 2329 * offloading. The index can be 0-3, or -1 for unsetting it. 2330 * 2331 * @hw_scan: Ask the hardware to service the scan request, no need to start 2332 * the scan state machine in stack. The scan must honour the channel 2333 * configuration done by the regulatory agent in the wiphy's 2334 * registered bands. The hardware (or the driver) needs to make sure 2335 * that power save is disabled. 2336 * The @req ie/ie_len members are rewritten by mac80211 to contain the 2337 * entire IEs after the SSID, so that drivers need not look at these 2338 * at all but just send them after the SSID -- mac80211 includes the 2339 * (extended) supported rates and HT information (where applicable). 2340 * When the scan finishes, ieee80211_scan_completed() must be called; 2341 * note that it also must be called when the scan cannot finish due to 2342 * any error unless this callback returned a negative error code. 2343 * The callback can sleep. 2344 * 2345 * @cancel_hw_scan: Ask the low-level tp cancel the active hw scan. 2346 * The driver should ask the hardware to cancel the scan (if possible), 2347 * but the scan will be completed only after the driver will call 2348 * ieee80211_scan_completed(). 2349 * This callback is needed for wowlan, to prevent enqueueing a new 2350 * scan_work after the low-level driver was already suspended. 2351 * The callback can sleep. 2352 * 2353 * @sched_scan_start: Ask the hardware to start scanning repeatedly at 2354 * specific intervals. The driver must call the 2355 * ieee80211_sched_scan_results() function whenever it finds results. 2356 * This process will continue until sched_scan_stop is called. 2357 * 2358 * @sched_scan_stop: Tell the hardware to stop an ongoing scheduled scan. 2359 * 2360 * @sw_scan_start: Notifier function that is called just before a software scan 2361 * is started. Can be NULL, if the driver doesn't need this notification. 2362 * The callback can sleep. 2363 * 2364 * @sw_scan_complete: Notifier function that is called just after a 2365 * software scan finished. Can be NULL, if the driver doesn't need 2366 * this notification. 2367 * The callback can sleep. 2368 * 2369 * @get_stats: Return low-level statistics. 2370 * Returns zero if statistics are available. 2371 * The callback can sleep. 2372 * 2373 * @get_tkip_seq: If your device implements TKIP encryption in hardware this 2374 * callback should be provided to read the TKIP transmit IVs (both IV32 2375 * and IV16) for the given key from hardware. 2376 * The callback must be atomic. 2377 * 2378 * @set_frag_threshold: Configuration of fragmentation threshold. Assign this 2379 * if the device does fragmentation by itself; if this callback is 2380 * implemented then the stack will not do fragmentation. 2381 * The callback can sleep. 2382 * 2383 * @set_rts_threshold: Configuration of RTS threshold (if device needs it) 2384 * The callback can sleep. 2385 * 2386 * @sta_add: Notifies low level driver about addition of an associated station, 2387 * AP, IBSS/WDS/mesh peer etc. This callback can sleep. 2388 * 2389 * @sta_remove: Notifies low level driver about removal of an associated 2390 * station, AP, IBSS/WDS/mesh peer etc. This callback can sleep. 2391 * 2392 * @sta_add_debugfs: Drivers can use this callback to add debugfs files 2393 * when a station is added to mac80211's station list. This callback 2394 * and @sta_remove_debugfs should be within a CONFIG_MAC80211_DEBUGFS 2395 * conditional. This callback can sleep. 2396 * 2397 * @sta_remove_debugfs: Remove the debugfs files which were added using 2398 * @sta_add_debugfs. This callback can sleep. 2399 * 2400 * @sta_notify: Notifies low level driver about power state transition of an 2401 * associated station, AP, IBSS/WDS/mesh peer etc. For a VIF operating 2402 * in AP mode, this callback will not be called when the flag 2403 * %IEEE80211_HW_AP_LINK_PS is set. Must be atomic. 2404 * 2405 * @sta_state: Notifies low level driver about state transition of a 2406 * station (which can be the AP, a client, IBSS/WDS/mesh peer etc.) 2407 * This callback is mutually exclusive with @sta_add/@sta_remove. 2408 * It must not fail for down transitions but may fail for transitions 2409 * up the list of states. 2410 * The callback can sleep. 2411 * 2412 * @sta_rc_update: Notifies the driver of changes to the bitrates that can be 2413 * used to transmit to the station. The changes are advertised with bits 2414 * from &enum ieee80211_rate_control_changed and the values are reflected 2415 * in the station data. This callback should only be used when the driver 2416 * uses hardware rate control (%IEEE80211_HW_HAS_RATE_CONTROL) since 2417 * otherwise the rate control algorithm is notified directly. 2418 * Must be atomic. 2419 * 2420 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), 2421 * bursting) for a hardware TX queue. 2422 * Returns a negative error code on failure. 2423 * The callback can sleep. 2424 * 2425 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently, 2426 * this is only used for IBSS mode BSSID merging and debugging. Is not a 2427 * required function. 2428 * The callback can sleep. 2429 * 2430 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware. 2431 * Currently, this is only used for IBSS mode debugging. Is not a 2432 * required function. 2433 * The callback can sleep. 2434 * 2435 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize 2436 * with other STAs in the IBSS. This is only used in IBSS mode. This 2437 * function is optional if the firmware/hardware takes full care of 2438 * TSF synchronization. 2439 * The callback can sleep. 2440 * 2441 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us. 2442 * This is needed only for IBSS mode and the result of this function is 2443 * used to determine whether to reply to Probe Requests. 2444 * Returns non-zero if this device sent the last beacon. 2445 * The callback can sleep. 2446 * 2447 * @ampdu_action: Perform a certain A-MPDU action 2448 * The RA/TID combination determines the destination and TID we want 2449 * the ampdu action to be performed for. The action is defined through 2450 * ieee80211_ampdu_mlme_action. Starting sequence number (@ssn) 2451 * is the first frame we expect to perform the action on. Notice 2452 * that TX/RX_STOP can pass NULL for this parameter. 2453 * The @buf_size parameter is only valid when the action is set to 2454 * %IEEE80211_AMPDU_TX_OPERATIONAL and indicates the peer's reorder 2455 * buffer size (number of subframes) for this session -- the driver 2456 * may neither send aggregates containing more subframes than this 2457 * nor send aggregates in a way that lost frames would exceed the 2458 * buffer size. If just limiting the aggregate size, this would be 2459 * possible with a buf_size of 8: 2460 * - TX: 1.....7 2461 * - RX: 2....7 (lost frame #1) 2462 * - TX: 8..1... 2463 * which is invalid since #1 was now re-transmitted well past the 2464 * buffer size of 8. Correct ways to retransmit #1 would be: 2465 * - TX: 1 or 18 or 81 2466 * Even "189" would be wrong since 1 could be lost again. 2467 * 2468 * Returns a negative error code on failure. 2469 * The callback can sleep. 2470 * 2471 * @get_survey: Return per-channel survey information 2472 * 2473 * @rfkill_poll: Poll rfkill hardware state. If you need this, you also 2474 * need to set wiphy->rfkill_poll to %true before registration, 2475 * and need to call wiphy_rfkill_set_hw_state() in the callback. 2476 * The callback can sleep. 2477 * 2478 * @set_coverage_class: Set slot time for given coverage class as specified 2479 * in IEEE 802.11-2007 section 17.3.8.6 and modify ACK timeout 2480 * accordingly. This callback is not required and may sleep. 2481 * 2482 * @testmode_cmd: Implement a cfg80211 test mode command. 2483 * The callback can sleep. 2484 * @testmode_dump: Implement a cfg80211 test mode dump. The callback can sleep. 2485 * 2486 * @flush: Flush all pending frames from the hardware queue, making sure 2487 * that the hardware queues are empty. The @queues parameter is a bitmap 2488 * of queues to flush, which is useful if different virtual interfaces 2489 * use different hardware queues; it may also indicate all queues. 2490 * If the parameter @drop is set to %true, pending frames may be dropped. 2491 * The callback can sleep. 2492 * 2493 * @channel_switch: Drivers that need (or want) to offload the channel 2494 * switch operation for CSAs received from the AP may implement this 2495 * callback. They must then call ieee80211_chswitch_done() to indicate 2496 * completion of the channel switch. 2497 * 2498 * @napi_poll: Poll Rx queue for incoming data frames. 2499 * 2500 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device. 2501 * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may 2502 * reject TX/RX mask combinations they cannot support by returning -EINVAL 2503 * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX). 2504 * 2505 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant). 2506 * 2507 * @remain_on_channel: Starts an off-channel period on the given channel, must 2508 * call back to ieee80211_ready_on_channel() when on that channel. Note 2509 * that normal channel traffic is not stopped as this is intended for hw 2510 * offload. Frames to transmit on the off-channel channel are transmitted 2511 * normally except for the %IEEE80211_TX_CTL_TX_OFFCHAN flag. When the 2512 * duration (which will always be non-zero) expires, the driver must call 2513 * ieee80211_remain_on_channel_expired(). 2514 * Note that this callback may be called while the device is in IDLE and 2515 * must be accepted in this case. 2516 * This callback may sleep. 2517 * @cancel_remain_on_channel: Requests that an ongoing off-channel period is 2518 * aborted before it expires. This callback may sleep. 2519 * 2520 * @set_ringparam: Set tx and rx ring sizes. 2521 * 2522 * @get_ringparam: Get tx and rx ring current and maximum sizes. 2523 * 2524 * @tx_frames_pending: Check if there is any pending frame in the hardware 2525 * queues before entering power save. 2526 * 2527 * @set_bitrate_mask: Set a mask of rates to be used for rate control selection 2528 * when transmitting a frame. Currently only legacy rates are handled. 2529 * The callback can sleep. 2530 * @rssi_callback: Notify driver when the average RSSI goes above/below 2531 * thresholds that were registered previously. The callback can sleep. 2532 * 2533 * @release_buffered_frames: Release buffered frames according to the given 2534 * parameters. In the case where the driver buffers some frames for 2535 * sleeping stations mac80211 will use this callback to tell the driver 2536 * to release some frames, either for PS-poll or uAPSD. 2537 * Note that if the @more_data paramter is %false the driver must check 2538 * if there are more frames on the given TIDs, and if there are more than 2539 * the frames being released then it must still set the more-data bit in 2540 * the frame. If the @more_data parameter is %true, then of course the 2541 * more-data bit must always be set. 2542 * The @tids parameter tells the driver which TIDs to release frames 2543 * from, for PS-poll it will always have only a single bit set. 2544 * In the case this is used for a PS-poll initiated release, the 2545 * @num_frames parameter will always be 1 so code can be shared. In 2546 * this case the driver must also set %IEEE80211_TX_STATUS_EOSP flag 2547 * on the TX status (and must report TX status) so that the PS-poll 2548 * period is properly ended. This is used to avoid sending multiple 2549 * responses for a retried PS-poll frame. 2550 * In the case this is used for uAPSD, the @num_frames parameter may be 2551 * bigger than one, but the driver may send fewer frames (it must send 2552 * at least one, however). In this case it is also responsible for 2553 * setting the EOSP flag in the QoS header of the frames. Also, when the 2554 * service period ends, the driver must set %IEEE80211_TX_STATUS_EOSP 2555 * on the last frame in the SP. Alternatively, it may call the function 2556 * ieee80211_sta_eosp() to inform mac80211 of the end of the SP. 2557 * This callback must be atomic. 2558 * @allow_buffered_frames: Prepare device to allow the given number of frames 2559 * to go out to the given station. The frames will be sent by mac80211 2560 * via the usual TX path after this call. The TX information for frames 2561 * released will also have the %IEEE80211_TX_CTL_NO_PS_BUFFER flag set 2562 * and the last one will also have %IEEE80211_TX_STATUS_EOSP set. In case 2563 * frames from multiple TIDs are released and the driver might reorder 2564 * them between the TIDs, it must set the %IEEE80211_TX_STATUS_EOSP flag 2565 * on the last frame and clear it on all others and also handle the EOSP 2566 * bit in the QoS header correctly. Alternatively, it can also call the 2567 * ieee80211_sta_eosp() function. 2568 * The @tids parameter is a bitmap and tells the driver which TIDs the 2569 * frames will be on; it will at most have two bits set. 2570 * This callback must be atomic. 2571 * 2572 * @get_et_sset_count: Ethtool API to get string-set count. 2573 * 2574 * @get_et_stats: Ethtool API to get a set of u64 stats. 2575 * 2576 * @get_et_strings: Ethtool API to get a set of strings to describe stats 2577 * and perhaps other supported types of ethtool data-sets. 2578 * 2579 * @get_rssi: Get current signal strength in dBm, the function is optional 2580 * and can sleep. 2581 * 2582 * @mgd_prepare_tx: Prepare for transmitting a management frame for association 2583 * before associated. In multi-channel scenarios, a virtual interface is 2584 * bound to a channel before it is associated, but as it isn't associated 2585 * yet it need not necessarily be given airtime, in particular since any 2586 * transmission to a P2P GO needs to be synchronized against the GO's 2587 * powersave state. mac80211 will call this function before transmitting a 2588 * management frame prior to having successfully associated to allow the 2589 * driver to give it channel time for the transmission, to get a response 2590 * and to be able to synchronize with the GO. 2591 * The callback will be called before each transmission and upon return 2592 * mac80211 will transmit the frame right away. 2593 * The callback is optional and can (should!) sleep. 2594 * 2595 * @add_chanctx: Notifies device driver about new channel context creation. 2596 * @remove_chanctx: Notifies device driver about channel context destruction. 2597 * @change_chanctx: Notifies device driver about channel context changes that 2598 * may happen when combining different virtual interfaces on the same 2599 * channel context with different settings 2600 * @assign_vif_chanctx: Notifies device driver about channel context being bound 2601 * to vif. Possible use is for hw queue remapping. 2602 * @unassign_vif_chanctx: Notifies device driver about channel context being 2603 * unbound from vif. 2604 * @start_ap: Start operation on the AP interface, this is called after all the 2605 * information in bss_conf is set and beacon can be retrieved. A channel 2606 * context is bound before this is called. Note that if the driver uses 2607 * software scan or ROC, this (and @stop_ap) isn't called when the AP is 2608 * just "paused" for scanning/ROC, which is indicated by the beacon being 2609 * disabled/enabled via @bss_info_changed. 2610 * @stop_ap: Stop operation on the AP interface. 2611 * 2612 * @restart_complete: Called after a call to ieee80211_restart_hw(), when the 2613 * reconfiguration has completed. This can help the driver implement the 2614 * reconfiguration step. Also called when reconfiguring because the 2615 * driver's resume function returned 1, as this is just like an "inline" 2616 * hardware restart. This callback may sleep. 2617 * 2618 * @ipv6_addr_change: IPv6 address assignment on the given interface changed. 2619 * Currently, this is only called for managed or P2P client interfaces. 2620 * This callback is optional; it must not sleep. 2621 */ 2622 struct ieee80211_ops { 2623 void (*tx)(struct ieee80211_hw *hw, 2624 struct ieee80211_tx_control *control, 2625 struct sk_buff *skb); 2626 int (*start)(struct ieee80211_hw *hw); 2627 void (*stop)(struct ieee80211_hw *hw); 2628 #ifdef CONFIG_PM 2629 int (*suspend)(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan); 2630 int (*resume)(struct ieee80211_hw *hw); 2631 void (*set_wakeup)(struct ieee80211_hw *hw, bool enabled); 2632 #endif 2633 int (*add_interface)(struct ieee80211_hw *hw, 2634 struct ieee80211_vif *vif); 2635 int (*change_interface)(struct ieee80211_hw *hw, 2636 struct ieee80211_vif *vif, 2637 enum nl80211_iftype new_type, bool p2p); 2638 void (*remove_interface)(struct ieee80211_hw *hw, 2639 struct ieee80211_vif *vif); 2640 int (*config)(struct ieee80211_hw *hw, u32 changed); 2641 void (*bss_info_changed)(struct ieee80211_hw *hw, 2642 struct ieee80211_vif *vif, 2643 struct ieee80211_bss_conf *info, 2644 u32 changed); 2645 2646 int (*start_ap)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 2647 void (*stop_ap)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 2648 2649 u64 (*prepare_multicast)(struct ieee80211_hw *hw, 2650 struct netdev_hw_addr_list *mc_list); 2651 void (*configure_filter)(struct ieee80211_hw *hw, 2652 unsigned int changed_flags, 2653 unsigned int *total_flags, 2654 u64 multicast); 2655 void (*set_multicast_list)(struct ieee80211_hw *hw, 2656 struct ieee80211_vif *vif, bool allmulti, 2657 struct netdev_hw_addr_list *mc_list); 2658 2659 int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 2660 bool set); 2661 int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd, 2662 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 2663 struct ieee80211_key_conf *key); 2664 void (*update_tkip_key)(struct ieee80211_hw *hw, 2665 struct ieee80211_vif *vif, 2666 struct ieee80211_key_conf *conf, 2667 struct ieee80211_sta *sta, 2668 u32 iv32, u16 *phase1key); 2669 void (*set_rekey_data)(struct ieee80211_hw *hw, 2670 struct ieee80211_vif *vif, 2671 struct cfg80211_gtk_rekey_data *data); 2672 void (*set_default_unicast_key)(struct ieee80211_hw *hw, 2673 struct ieee80211_vif *vif, int idx); 2674 int (*hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2675 struct cfg80211_scan_request *req); 2676 void (*cancel_hw_scan)(struct ieee80211_hw *hw, 2677 struct ieee80211_vif *vif); 2678 int (*sched_scan_start)(struct ieee80211_hw *hw, 2679 struct ieee80211_vif *vif, 2680 struct cfg80211_sched_scan_request *req, 2681 struct ieee80211_sched_scan_ies *ies); 2682 void (*sched_scan_stop)(struct ieee80211_hw *hw, 2683 struct ieee80211_vif *vif); 2684 void (*sw_scan_start)(struct ieee80211_hw *hw); 2685 void (*sw_scan_complete)(struct ieee80211_hw *hw); 2686 int (*get_stats)(struct ieee80211_hw *hw, 2687 struct ieee80211_low_level_stats *stats); 2688 void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx, 2689 u32 *iv32, u16 *iv16); 2690 int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value); 2691 int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value); 2692 int (*sta_add)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2693 struct ieee80211_sta *sta); 2694 int (*sta_remove)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2695 struct ieee80211_sta *sta); 2696 #ifdef CONFIG_MAC80211_DEBUGFS 2697 void (*sta_add_debugfs)(struct ieee80211_hw *hw, 2698 struct ieee80211_vif *vif, 2699 struct ieee80211_sta *sta, 2700 struct dentry *dir); 2701 void (*sta_remove_debugfs)(struct ieee80211_hw *hw, 2702 struct ieee80211_vif *vif, 2703 struct ieee80211_sta *sta, 2704 struct dentry *dir); 2705 #endif 2706 void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2707 enum sta_notify_cmd, struct ieee80211_sta *sta); 2708 int (*sta_state)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2709 struct ieee80211_sta *sta, 2710 enum ieee80211_sta_state old_state, 2711 enum ieee80211_sta_state new_state); 2712 void (*sta_rc_update)(struct ieee80211_hw *hw, 2713 struct ieee80211_vif *vif, 2714 struct ieee80211_sta *sta, 2715 u32 changed); 2716 int (*conf_tx)(struct ieee80211_hw *hw, 2717 struct ieee80211_vif *vif, u16 ac, 2718 const struct ieee80211_tx_queue_params *params); 2719 u64 (*get_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 2720 void (*set_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2721 u64 tsf); 2722 void (*reset_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 2723 int (*tx_last_beacon)(struct ieee80211_hw *hw); 2724 int (*ampdu_action)(struct ieee80211_hw *hw, 2725 struct ieee80211_vif *vif, 2726 enum ieee80211_ampdu_mlme_action action, 2727 struct ieee80211_sta *sta, u16 tid, u16 *ssn, 2728 u8 buf_size); 2729 int (*get_survey)(struct ieee80211_hw *hw, int idx, 2730 struct survey_info *survey); 2731 void (*rfkill_poll)(struct ieee80211_hw *hw); 2732 void (*set_coverage_class)(struct ieee80211_hw *hw, u8 coverage_class); 2733 #ifdef CONFIG_NL80211_TESTMODE 2734 int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len); 2735 int (*testmode_dump)(struct ieee80211_hw *hw, struct sk_buff *skb, 2736 struct netlink_callback *cb, 2737 void *data, int len); 2738 #endif 2739 void (*flush)(struct ieee80211_hw *hw, u32 queues, bool drop); 2740 void (*channel_switch)(struct ieee80211_hw *hw, 2741 struct ieee80211_channel_switch *ch_switch); 2742 int (*napi_poll)(struct ieee80211_hw *hw, int budget); 2743 int (*set_antenna)(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); 2744 int (*get_antenna)(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); 2745 2746 int (*remain_on_channel)(struct ieee80211_hw *hw, 2747 struct ieee80211_vif *vif, 2748 struct ieee80211_channel *chan, 2749 int duration, 2750 enum ieee80211_roc_type type); 2751 int (*cancel_remain_on_channel)(struct ieee80211_hw *hw); 2752 int (*set_ringparam)(struct ieee80211_hw *hw, u32 tx, u32 rx); 2753 void (*get_ringparam)(struct ieee80211_hw *hw, 2754 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); 2755 bool (*tx_frames_pending)(struct ieee80211_hw *hw); 2756 int (*set_bitrate_mask)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2757 const struct cfg80211_bitrate_mask *mask); 2758 void (*rssi_callback)(struct ieee80211_hw *hw, 2759 struct ieee80211_vif *vif, 2760 enum ieee80211_rssi_event rssi_event); 2761 2762 void (*allow_buffered_frames)(struct ieee80211_hw *hw, 2763 struct ieee80211_sta *sta, 2764 u16 tids, int num_frames, 2765 enum ieee80211_frame_release_type reason, 2766 bool more_data); 2767 void (*release_buffered_frames)(struct ieee80211_hw *hw, 2768 struct ieee80211_sta *sta, 2769 u16 tids, int num_frames, 2770 enum ieee80211_frame_release_type reason, 2771 bool more_data); 2772 2773 int (*get_et_sset_count)(struct ieee80211_hw *hw, 2774 struct ieee80211_vif *vif, int sset); 2775 void (*get_et_stats)(struct ieee80211_hw *hw, 2776 struct ieee80211_vif *vif, 2777 struct ethtool_stats *stats, u64 *data); 2778 void (*get_et_strings)(struct ieee80211_hw *hw, 2779 struct ieee80211_vif *vif, 2780 u32 sset, u8 *data); 2781 int (*get_rssi)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2782 struct ieee80211_sta *sta, s8 *rssi_dbm); 2783 2784 void (*mgd_prepare_tx)(struct ieee80211_hw *hw, 2785 struct ieee80211_vif *vif); 2786 2787 int (*add_chanctx)(struct ieee80211_hw *hw, 2788 struct ieee80211_chanctx_conf *ctx); 2789 void (*remove_chanctx)(struct ieee80211_hw *hw, 2790 struct ieee80211_chanctx_conf *ctx); 2791 void (*change_chanctx)(struct ieee80211_hw *hw, 2792 struct ieee80211_chanctx_conf *ctx, 2793 u32 changed); 2794 int (*assign_vif_chanctx)(struct ieee80211_hw *hw, 2795 struct ieee80211_vif *vif, 2796 struct ieee80211_chanctx_conf *ctx); 2797 void (*unassign_vif_chanctx)(struct ieee80211_hw *hw, 2798 struct ieee80211_vif *vif, 2799 struct ieee80211_chanctx_conf *ctx); 2800 2801 void (*restart_complete)(struct ieee80211_hw *hw); 2802 2803 #if IS_ENABLED(CONFIG_IPV6) 2804 void (*ipv6_addr_change)(struct ieee80211_hw *hw, 2805 struct ieee80211_vif *vif, 2806 struct inet6_dev *idev); 2807 #endif 2808 }; 2809 2810 /** 2811 * ieee80211_alloc_hw - Allocate a new hardware device 2812 * 2813 * This must be called once for each hardware device. The returned pointer 2814 * must be used to refer to this device when calling other functions. 2815 * mac80211 allocates a private data area for the driver pointed to by 2816 * @priv in &struct ieee80211_hw, the size of this area is given as 2817 * @priv_data_len. 2818 * 2819 * @priv_data_len: length of private data 2820 * @ops: callbacks for this device 2821 * 2822 * Return: A pointer to the new hardware device, or %NULL on error. 2823 */ 2824 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, 2825 const struct ieee80211_ops *ops); 2826 2827 /** 2828 * ieee80211_register_hw - Register hardware device 2829 * 2830 * You must call this function before any other functions in 2831 * mac80211. Note that before a hardware can be registered, you 2832 * need to fill the contained wiphy's information. 2833 * 2834 * @hw: the device to register as returned by ieee80211_alloc_hw() 2835 * 2836 * Return: 0 on success. An error code otherwise. 2837 */ 2838 int ieee80211_register_hw(struct ieee80211_hw *hw); 2839 2840 /** 2841 * struct ieee80211_tpt_blink - throughput blink description 2842 * @throughput: throughput in Kbit/sec 2843 * @blink_time: blink time in milliseconds 2844 * (full cycle, ie. one off + one on period) 2845 */ 2846 struct ieee80211_tpt_blink { 2847 int throughput; 2848 int blink_time; 2849 }; 2850 2851 /** 2852 * enum ieee80211_tpt_led_trigger_flags - throughput trigger flags 2853 * @IEEE80211_TPT_LEDTRIG_FL_RADIO: enable blinking with radio 2854 * @IEEE80211_TPT_LEDTRIG_FL_WORK: enable blinking when working 2855 * @IEEE80211_TPT_LEDTRIG_FL_CONNECTED: enable blinking when at least one 2856 * interface is connected in some way, including being an AP 2857 */ 2858 enum ieee80211_tpt_led_trigger_flags { 2859 IEEE80211_TPT_LEDTRIG_FL_RADIO = BIT(0), 2860 IEEE80211_TPT_LEDTRIG_FL_WORK = BIT(1), 2861 IEEE80211_TPT_LEDTRIG_FL_CONNECTED = BIT(2), 2862 }; 2863 2864 #ifdef CONFIG_MAC80211_LEDS 2865 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw); 2866 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw); 2867 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw); 2868 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw); 2869 extern char *__ieee80211_create_tpt_led_trigger( 2870 struct ieee80211_hw *hw, unsigned int flags, 2871 const struct ieee80211_tpt_blink *blink_table, 2872 unsigned int blink_table_len); 2873 #endif 2874 /** 2875 * ieee80211_get_tx_led_name - get name of TX LED 2876 * 2877 * mac80211 creates a transmit LED trigger for each wireless hardware 2878 * that can be used to drive LEDs if your driver registers a LED device. 2879 * This function returns the name (or %NULL if not configured for LEDs) 2880 * of the trigger so you can automatically link the LED device. 2881 * 2882 * @hw: the hardware to get the LED trigger name for 2883 * 2884 * Return: The name of the LED trigger. %NULL if not configured for LEDs. 2885 */ 2886 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw) 2887 { 2888 #ifdef CONFIG_MAC80211_LEDS 2889 return __ieee80211_get_tx_led_name(hw); 2890 #else 2891 return NULL; 2892 #endif 2893 } 2894 2895 /** 2896 * ieee80211_get_rx_led_name - get name of RX LED 2897 * 2898 * mac80211 creates a receive LED trigger for each wireless hardware 2899 * that can be used to drive LEDs if your driver registers a LED device. 2900 * This function returns the name (or %NULL if not configured for LEDs) 2901 * of the trigger so you can automatically link the LED device. 2902 * 2903 * @hw: the hardware to get the LED trigger name for 2904 * 2905 * Return: The name of the LED trigger. %NULL if not configured for LEDs. 2906 */ 2907 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw) 2908 { 2909 #ifdef CONFIG_MAC80211_LEDS 2910 return __ieee80211_get_rx_led_name(hw); 2911 #else 2912 return NULL; 2913 #endif 2914 } 2915 2916 /** 2917 * ieee80211_get_assoc_led_name - get name of association LED 2918 * 2919 * mac80211 creates a association LED trigger for each wireless hardware 2920 * that can be used to drive LEDs if your driver registers a LED device. 2921 * This function returns the name (or %NULL if not configured for LEDs) 2922 * of the trigger so you can automatically link the LED device. 2923 * 2924 * @hw: the hardware to get the LED trigger name for 2925 * 2926 * Return: The name of the LED trigger. %NULL if not configured for LEDs. 2927 */ 2928 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw) 2929 { 2930 #ifdef CONFIG_MAC80211_LEDS 2931 return __ieee80211_get_assoc_led_name(hw); 2932 #else 2933 return NULL; 2934 #endif 2935 } 2936 2937 /** 2938 * ieee80211_get_radio_led_name - get name of radio LED 2939 * 2940 * mac80211 creates a radio change LED trigger for each wireless hardware 2941 * that can be used to drive LEDs if your driver registers a LED device. 2942 * This function returns the name (or %NULL if not configured for LEDs) 2943 * of the trigger so you can automatically link the LED device. 2944 * 2945 * @hw: the hardware to get the LED trigger name for 2946 * 2947 * Return: The name of the LED trigger. %NULL if not configured for LEDs. 2948 */ 2949 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw) 2950 { 2951 #ifdef CONFIG_MAC80211_LEDS 2952 return __ieee80211_get_radio_led_name(hw); 2953 #else 2954 return NULL; 2955 #endif 2956 } 2957 2958 /** 2959 * ieee80211_create_tpt_led_trigger - create throughput LED trigger 2960 * @hw: the hardware to create the trigger for 2961 * @flags: trigger flags, see &enum ieee80211_tpt_led_trigger_flags 2962 * @blink_table: the blink table -- needs to be ordered by throughput 2963 * @blink_table_len: size of the blink table 2964 * 2965 * Return: %NULL (in case of error, or if no LED triggers are 2966 * configured) or the name of the new trigger. 2967 * 2968 * Note: This function must be called before ieee80211_register_hw(). 2969 */ 2970 static inline char * 2971 ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, unsigned int flags, 2972 const struct ieee80211_tpt_blink *blink_table, 2973 unsigned int blink_table_len) 2974 { 2975 #ifdef CONFIG_MAC80211_LEDS 2976 return __ieee80211_create_tpt_led_trigger(hw, flags, blink_table, 2977 blink_table_len); 2978 #else 2979 return NULL; 2980 #endif 2981 } 2982 2983 /** 2984 * ieee80211_unregister_hw - Unregister a hardware device 2985 * 2986 * This function instructs mac80211 to free allocated resources 2987 * and unregister netdevices from the networking subsystem. 2988 * 2989 * @hw: the hardware to unregister 2990 */ 2991 void ieee80211_unregister_hw(struct ieee80211_hw *hw); 2992 2993 /** 2994 * ieee80211_free_hw - free hardware descriptor 2995 * 2996 * This function frees everything that was allocated, including the 2997 * private data for the driver. You must call ieee80211_unregister_hw() 2998 * before calling this function. 2999 * 3000 * @hw: the hardware to free 3001 */ 3002 void ieee80211_free_hw(struct ieee80211_hw *hw); 3003 3004 /** 3005 * ieee80211_restart_hw - restart hardware completely 3006 * 3007 * Call this function when the hardware was restarted for some reason 3008 * (hardware error, ...) and the driver is unable to restore its state 3009 * by itself. mac80211 assumes that at this point the driver/hardware 3010 * is completely uninitialised and stopped, it starts the process by 3011 * calling the ->start() operation. The driver will need to reset all 3012 * internal state that it has prior to calling this function. 3013 * 3014 * @hw: the hardware to restart 3015 */ 3016 void ieee80211_restart_hw(struct ieee80211_hw *hw); 3017 3018 /** ieee80211_napi_schedule - schedule NAPI poll 3019 * 3020 * Use this function to schedule NAPI polling on a device. 3021 * 3022 * @hw: the hardware to start polling 3023 */ 3024 void ieee80211_napi_schedule(struct ieee80211_hw *hw); 3025 3026 /** ieee80211_napi_complete - complete NAPI polling 3027 * 3028 * Use this function to finish NAPI polling on a device. 3029 * 3030 * @hw: the hardware to stop polling 3031 */ 3032 void ieee80211_napi_complete(struct ieee80211_hw *hw); 3033 3034 /** 3035 * ieee80211_rx - receive frame 3036 * 3037 * Use this function to hand received frames to mac80211. The receive 3038 * buffer in @skb must start with an IEEE 802.11 header. In case of a 3039 * paged @skb is used, the driver is recommended to put the ieee80211 3040 * header of the frame on the linear part of the @skb to avoid memory 3041 * allocation and/or memcpy by the stack. 3042 * 3043 * This function may not be called in IRQ context. Calls to this function 3044 * for a single hardware must be synchronized against each other. Calls to 3045 * this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be 3046 * mixed for a single hardware. Must not run concurrently with 3047 * ieee80211_tx_status() or ieee80211_tx_status_ni(). 3048 * 3049 * In process context use instead ieee80211_rx_ni(). 3050 * 3051 * @hw: the hardware this frame came in on 3052 * @skb: the buffer to receive, owned by mac80211 after this call 3053 */ 3054 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb); 3055 3056 /** 3057 * ieee80211_rx_irqsafe - receive frame 3058 * 3059 * Like ieee80211_rx() but can be called in IRQ context 3060 * (internally defers to a tasklet.) 3061 * 3062 * Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not 3063 * be mixed for a single hardware.Must not run concurrently with 3064 * ieee80211_tx_status() or ieee80211_tx_status_ni(). 3065 * 3066 * @hw: the hardware this frame came in on 3067 * @skb: the buffer to receive, owned by mac80211 after this call 3068 */ 3069 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb); 3070 3071 /** 3072 * ieee80211_rx_ni - receive frame (in process context) 3073 * 3074 * Like ieee80211_rx() but can be called in process context 3075 * (internally disables bottom halves). 3076 * 3077 * Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe() may 3078 * not be mixed for a single hardware. Must not run concurrently with 3079 * ieee80211_tx_status() or ieee80211_tx_status_ni(). 3080 * 3081 * @hw: the hardware this frame came in on 3082 * @skb: the buffer to receive, owned by mac80211 after this call 3083 */ 3084 static inline void ieee80211_rx_ni(struct ieee80211_hw *hw, 3085 struct sk_buff *skb) 3086 { 3087 local_bh_disable(); 3088 ieee80211_rx(hw, skb); 3089 local_bh_enable(); 3090 } 3091 3092 /** 3093 * ieee80211_sta_ps_transition - PS transition for connected sta 3094 * 3095 * When operating in AP mode with the %IEEE80211_HW_AP_LINK_PS 3096 * flag set, use this function to inform mac80211 about a connected station 3097 * entering/leaving PS mode. 3098 * 3099 * This function may not be called in IRQ context or with softirqs enabled. 3100 * 3101 * Calls to this function for a single hardware must be synchronized against 3102 * each other. 3103 * 3104 * @sta: currently connected sta 3105 * @start: start or stop PS 3106 * 3107 * Return: 0 on success. -EINVAL when the requested PS mode is already set. 3108 */ 3109 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start); 3110 3111 /** 3112 * ieee80211_sta_ps_transition_ni - PS transition for connected sta 3113 * (in process context) 3114 * 3115 * Like ieee80211_sta_ps_transition() but can be called in process context 3116 * (internally disables bottom halves). Concurrent call restriction still 3117 * applies. 3118 * 3119 * @sta: currently connected sta 3120 * @start: start or stop PS 3121 * 3122 * Return: Like ieee80211_sta_ps_transition(). 3123 */ 3124 static inline int ieee80211_sta_ps_transition_ni(struct ieee80211_sta *sta, 3125 bool start) 3126 { 3127 int ret; 3128 3129 local_bh_disable(); 3130 ret = ieee80211_sta_ps_transition(sta, start); 3131 local_bh_enable(); 3132 3133 return ret; 3134 } 3135 3136 /* 3137 * The TX headroom reserved by mac80211 for its own tx_status functions. 3138 * This is enough for the radiotap header. 3139 */ 3140 #define IEEE80211_TX_STATUS_HEADROOM 14 3141 3142 /** 3143 * ieee80211_sta_set_buffered - inform mac80211 about driver-buffered frames 3144 * @sta: &struct ieee80211_sta pointer for the sleeping station 3145 * @tid: the TID that has buffered frames 3146 * @buffered: indicates whether or not frames are buffered for this TID 3147 * 3148 * If a driver buffers frames for a powersave station instead of passing 3149 * them back to mac80211 for retransmission, the station may still need 3150 * to be told that there are buffered frames via the TIM bit. 3151 * 3152 * This function informs mac80211 whether or not there are frames that are 3153 * buffered in the driver for a given TID; mac80211 can then use this data 3154 * to set the TIM bit (NOTE: This may call back into the driver's set_tim 3155 * call! Beware of the locking!) 3156 * 3157 * If all frames are released to the station (due to PS-poll or uAPSD) 3158 * then the driver needs to inform mac80211 that there no longer are 3159 * frames buffered. However, when the station wakes up mac80211 assumes 3160 * that all buffered frames will be transmitted and clears this data, 3161 * drivers need to make sure they inform mac80211 about all buffered 3162 * frames on the sleep transition (sta_notify() with %STA_NOTIFY_SLEEP). 3163 * 3164 * Note that technically mac80211 only needs to know this per AC, not per 3165 * TID, but since driver buffering will inevitably happen per TID (since 3166 * it is related to aggregation) it is easier to make mac80211 map the 3167 * TID to the AC as required instead of keeping track in all drivers that 3168 * use this API. 3169 */ 3170 void ieee80211_sta_set_buffered(struct ieee80211_sta *sta, 3171 u8 tid, bool buffered); 3172 3173 /** 3174 * ieee80211_get_tx_rates - get the selected transmit rates for a packet 3175 * 3176 * Call this function in a driver with per-packet rate selection support 3177 * to combine the rate info in the packet tx info with the most recent 3178 * rate selection table for the station entry. 3179 * 3180 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3181 * @sta: the receiver station to which this packet is sent. 3182 * @skb: the frame to be transmitted. 3183 * @dest: buffer for extracted rate/retry information 3184 * @max_rates: maximum number of rates to fetch 3185 */ 3186 void ieee80211_get_tx_rates(struct ieee80211_vif *vif, 3187 struct ieee80211_sta *sta, 3188 struct sk_buff *skb, 3189 struct ieee80211_tx_rate *dest, 3190 int max_rates); 3191 3192 /** 3193 * ieee80211_tx_status - transmit status callback 3194 * 3195 * Call this function for all transmitted frames after they have been 3196 * transmitted. It is permissible to not call this function for 3197 * multicast frames but this can affect statistics. 3198 * 3199 * This function may not be called in IRQ context. Calls to this function 3200 * for a single hardware must be synchronized against each other. Calls 3201 * to this function, ieee80211_tx_status_ni() and ieee80211_tx_status_irqsafe() 3202 * may not be mixed for a single hardware. Must not run concurrently with 3203 * ieee80211_rx() or ieee80211_rx_ni(). 3204 * 3205 * @hw: the hardware the frame was transmitted by 3206 * @skb: the frame that was transmitted, owned by mac80211 after this call 3207 */ 3208 void ieee80211_tx_status(struct ieee80211_hw *hw, 3209 struct sk_buff *skb); 3210 3211 /** 3212 * ieee80211_tx_status_ni - transmit status callback (in process context) 3213 * 3214 * Like ieee80211_tx_status() but can be called in process context. 3215 * 3216 * Calls to this function, ieee80211_tx_status() and 3217 * ieee80211_tx_status_irqsafe() may not be mixed 3218 * for a single hardware. 3219 * 3220 * @hw: the hardware the frame was transmitted by 3221 * @skb: the frame that was transmitted, owned by mac80211 after this call 3222 */ 3223 static inline void ieee80211_tx_status_ni(struct ieee80211_hw *hw, 3224 struct sk_buff *skb) 3225 { 3226 local_bh_disable(); 3227 ieee80211_tx_status(hw, skb); 3228 local_bh_enable(); 3229 } 3230 3231 /** 3232 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback 3233 * 3234 * Like ieee80211_tx_status() but can be called in IRQ context 3235 * (internally defers to a tasklet.) 3236 * 3237 * Calls to this function, ieee80211_tx_status() and 3238 * ieee80211_tx_status_ni() may not be mixed for a single hardware. 3239 * 3240 * @hw: the hardware the frame was transmitted by 3241 * @skb: the frame that was transmitted, owned by mac80211 after this call 3242 */ 3243 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, 3244 struct sk_buff *skb); 3245 3246 /** 3247 * ieee80211_report_low_ack - report non-responding station 3248 * 3249 * When operating in AP-mode, call this function to report a non-responding 3250 * connected STA. 3251 * 3252 * @sta: the non-responding connected sta 3253 * @num_packets: number of packets sent to @sta without a response 3254 */ 3255 void ieee80211_report_low_ack(struct ieee80211_sta *sta, u32 num_packets); 3256 3257 /** 3258 * ieee80211_beacon_get_tim - beacon generation function 3259 * @hw: pointer obtained from ieee80211_alloc_hw(). 3260 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3261 * @tim_offset: pointer to variable that will receive the TIM IE offset. 3262 * Set to 0 if invalid (in non-AP modes). 3263 * @tim_length: pointer to variable that will receive the TIM IE length, 3264 * (including the ID and length bytes!). 3265 * Set to 0 if invalid (in non-AP modes). 3266 * 3267 * If the driver implements beaconing modes, it must use this function to 3268 * obtain the beacon frame/template. 3269 * 3270 * If the beacon frames are generated by the host system (i.e., not in 3271 * hardware/firmware), the driver uses this function to get each beacon 3272 * frame from mac80211 -- it is responsible for calling this function 3273 * before the beacon is needed (e.g. based on hardware interrupt). 3274 * 3275 * If the beacon frames are generated by the device, then the driver 3276 * must use the returned beacon as the template and change the TIM IE 3277 * according to the current DTIM parameters/TIM bitmap. 3278 * 3279 * The driver is responsible for freeing the returned skb. 3280 * 3281 * Return: The beacon template. %NULL on error. 3282 */ 3283 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, 3284 struct ieee80211_vif *vif, 3285 u16 *tim_offset, u16 *tim_length); 3286 3287 /** 3288 * ieee80211_beacon_get - beacon generation function 3289 * @hw: pointer obtained from ieee80211_alloc_hw(). 3290 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3291 * 3292 * See ieee80211_beacon_get_tim(). 3293 * 3294 * Return: See ieee80211_beacon_get_tim(). 3295 */ 3296 static inline struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, 3297 struct ieee80211_vif *vif) 3298 { 3299 return ieee80211_beacon_get_tim(hw, vif, NULL, NULL); 3300 } 3301 3302 /** 3303 * ieee80211_proberesp_get - retrieve a Probe Response template 3304 * @hw: pointer obtained from ieee80211_alloc_hw(). 3305 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3306 * 3307 * Creates a Probe Response template which can, for example, be uploaded to 3308 * hardware. The destination address should be set by the caller. 3309 * 3310 * Can only be called in AP mode. 3311 * 3312 * Return: The Probe Response template. %NULL on error. 3313 */ 3314 struct sk_buff *ieee80211_proberesp_get(struct ieee80211_hw *hw, 3315 struct ieee80211_vif *vif); 3316 3317 /** 3318 * ieee80211_pspoll_get - retrieve a PS Poll template 3319 * @hw: pointer obtained from ieee80211_alloc_hw(). 3320 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3321 * 3322 * Creates a PS Poll a template which can, for example, uploaded to 3323 * hardware. The template must be updated after association so that correct 3324 * AID, BSSID and MAC address is used. 3325 * 3326 * Note: Caller (or hardware) is responsible for setting the 3327 * &IEEE80211_FCTL_PM bit. 3328 * 3329 * Return: The PS Poll template. %NULL on error. 3330 */ 3331 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, 3332 struct ieee80211_vif *vif); 3333 3334 /** 3335 * ieee80211_nullfunc_get - retrieve a nullfunc template 3336 * @hw: pointer obtained from ieee80211_alloc_hw(). 3337 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3338 * 3339 * Creates a Nullfunc template which can, for example, uploaded to 3340 * hardware. The template must be updated after association so that correct 3341 * BSSID and address is used. 3342 * 3343 * Note: Caller (or hardware) is responsible for setting the 3344 * &IEEE80211_FCTL_PM bit as well as Duration and Sequence Control fields. 3345 * 3346 * Return: The nullfunc template. %NULL on error. 3347 */ 3348 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, 3349 struct ieee80211_vif *vif); 3350 3351 /** 3352 * ieee80211_probereq_get - retrieve a Probe Request template 3353 * @hw: pointer obtained from ieee80211_alloc_hw(). 3354 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3355 * @ssid: SSID buffer 3356 * @ssid_len: length of SSID 3357 * @tailroom: tailroom to reserve at end of SKB for IEs 3358 * 3359 * Creates a Probe Request template which can, for example, be uploaded to 3360 * hardware. 3361 * 3362 * Return: The Probe Request template. %NULL on error. 3363 */ 3364 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, 3365 struct ieee80211_vif *vif, 3366 const u8 *ssid, size_t ssid_len, 3367 size_t tailroom); 3368 3369 /** 3370 * ieee80211_rts_get - RTS frame generation function 3371 * @hw: pointer obtained from ieee80211_alloc_hw(). 3372 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3373 * @frame: pointer to the frame that is going to be protected by the RTS. 3374 * @frame_len: the frame length (in octets). 3375 * @frame_txctl: &struct ieee80211_tx_info of the frame. 3376 * @rts: The buffer where to store the RTS frame. 3377 * 3378 * If the RTS frames are generated by the host system (i.e., not in 3379 * hardware/firmware), the low-level driver uses this function to receive 3380 * the next RTS frame from the 802.11 code. The low-level is responsible 3381 * for calling this function before and RTS frame is needed. 3382 */ 3383 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 3384 const void *frame, size_t frame_len, 3385 const struct ieee80211_tx_info *frame_txctl, 3386 struct ieee80211_rts *rts); 3387 3388 /** 3389 * ieee80211_rts_duration - Get the duration field for an RTS frame 3390 * @hw: pointer obtained from ieee80211_alloc_hw(). 3391 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3392 * @frame_len: the length of the frame that is going to be protected by the RTS. 3393 * @frame_txctl: &struct ieee80211_tx_info of the frame. 3394 * 3395 * If the RTS is generated in firmware, but the host system must provide 3396 * the duration field, the low-level driver uses this function to receive 3397 * the duration field value in little-endian byteorder. 3398 * 3399 * Return: The duration. 3400 */ 3401 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 3402 struct ieee80211_vif *vif, size_t frame_len, 3403 const struct ieee80211_tx_info *frame_txctl); 3404 3405 /** 3406 * ieee80211_ctstoself_get - CTS-to-self frame generation function 3407 * @hw: pointer obtained from ieee80211_alloc_hw(). 3408 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3409 * @frame: pointer to the frame that is going to be protected by the CTS-to-self. 3410 * @frame_len: the frame length (in octets). 3411 * @frame_txctl: &struct ieee80211_tx_info of the frame. 3412 * @cts: The buffer where to store the CTS-to-self frame. 3413 * 3414 * If the CTS-to-self frames are generated by the host system (i.e., not in 3415 * hardware/firmware), the low-level driver uses this function to receive 3416 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible 3417 * for calling this function before and CTS-to-self frame is needed. 3418 */ 3419 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, 3420 struct ieee80211_vif *vif, 3421 const void *frame, size_t frame_len, 3422 const struct ieee80211_tx_info *frame_txctl, 3423 struct ieee80211_cts *cts); 3424 3425 /** 3426 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame 3427 * @hw: pointer obtained from ieee80211_alloc_hw(). 3428 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3429 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self. 3430 * @frame_txctl: &struct ieee80211_tx_info of the frame. 3431 * 3432 * If the CTS-to-self is generated in firmware, but the host system must provide 3433 * the duration field, the low-level driver uses this function to receive 3434 * the duration field value in little-endian byteorder. 3435 * 3436 * Return: The duration. 3437 */ 3438 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 3439 struct ieee80211_vif *vif, 3440 size_t frame_len, 3441 const struct ieee80211_tx_info *frame_txctl); 3442 3443 /** 3444 * ieee80211_generic_frame_duration - Calculate the duration field for a frame 3445 * @hw: pointer obtained from ieee80211_alloc_hw(). 3446 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3447 * @band: the band to calculate the frame duration on 3448 * @frame_len: the length of the frame. 3449 * @rate: the rate at which the frame is going to be transmitted. 3450 * 3451 * Calculate the duration field of some generic frame, given its 3452 * length and transmission rate (in 100kbps). 3453 * 3454 * Return: The duration. 3455 */ 3456 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 3457 struct ieee80211_vif *vif, 3458 enum ieee80211_band band, 3459 size_t frame_len, 3460 struct ieee80211_rate *rate); 3461 3462 /** 3463 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames 3464 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3465 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3466 * 3467 * Function for accessing buffered broadcast and multicast frames. If 3468 * hardware/firmware does not implement buffering of broadcast/multicast 3469 * frames when power saving is used, 802.11 code buffers them in the host 3470 * memory. The low-level driver uses this function to fetch next buffered 3471 * frame. In most cases, this is used when generating beacon frame. 3472 * 3473 * Return: A pointer to the next buffered skb or NULL if no more buffered 3474 * frames are available. 3475 * 3476 * Note: buffered frames are returned only after DTIM beacon frame was 3477 * generated with ieee80211_beacon_get() and the low-level driver must thus 3478 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns 3479 * NULL if the previous generated beacon was not DTIM, so the low-level driver 3480 * does not need to check for DTIM beacons separately and should be able to 3481 * use common code for all beacons. 3482 */ 3483 struct sk_buff * 3484 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif); 3485 3486 /** 3487 * ieee80211_get_tkip_p1k_iv - get a TKIP phase 1 key for IV32 3488 * 3489 * This function returns the TKIP phase 1 key for the given IV32. 3490 * 3491 * @keyconf: the parameter passed with the set key 3492 * @iv32: IV32 to get the P1K for 3493 * @p1k: a buffer to which the key will be written, as 5 u16 values 3494 */ 3495 void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf *keyconf, 3496 u32 iv32, u16 *p1k); 3497 3498 /** 3499 * ieee80211_get_tkip_p1k - get a TKIP phase 1 key 3500 * 3501 * This function returns the TKIP phase 1 key for the IV32 taken 3502 * from the given packet. 3503 * 3504 * @keyconf: the parameter passed with the set key 3505 * @skb: the packet to take the IV32 value from that will be encrypted 3506 * with this P1K 3507 * @p1k: a buffer to which the key will be written, as 5 u16 values 3508 */ 3509 static inline void ieee80211_get_tkip_p1k(struct ieee80211_key_conf *keyconf, 3510 struct sk_buff *skb, u16 *p1k) 3511 { 3512 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 3513 const u8 *data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 3514 u32 iv32 = get_unaligned_le32(&data[4]); 3515 3516 ieee80211_get_tkip_p1k_iv(keyconf, iv32, p1k); 3517 } 3518 3519 /** 3520 * ieee80211_get_tkip_rx_p1k - get a TKIP phase 1 key for RX 3521 * 3522 * This function returns the TKIP phase 1 key for the given IV32 3523 * and transmitter address. 3524 * 3525 * @keyconf: the parameter passed with the set key 3526 * @ta: TA that will be used with the key 3527 * @iv32: IV32 to get the P1K for 3528 * @p1k: a buffer to which the key will be written, as 5 u16 values 3529 */ 3530 void ieee80211_get_tkip_rx_p1k(struct ieee80211_key_conf *keyconf, 3531 const u8 *ta, u32 iv32, u16 *p1k); 3532 3533 /** 3534 * ieee80211_get_tkip_p2k - get a TKIP phase 2 key 3535 * 3536 * This function computes the TKIP RC4 key for the IV values 3537 * in the packet. 3538 * 3539 * @keyconf: the parameter passed with the set key 3540 * @skb: the packet to take the IV32/IV16 values from that will be 3541 * encrypted with this key 3542 * @p2k: a buffer to which the key will be written, 16 bytes 3543 */ 3544 void ieee80211_get_tkip_p2k(struct ieee80211_key_conf *keyconf, 3545 struct sk_buff *skb, u8 *p2k); 3546 3547 /** 3548 * ieee80211_aes_cmac_calculate_k1_k2 - calculate the AES-CMAC sub keys 3549 * 3550 * This function computes the two AES-CMAC sub-keys, based on the 3551 * previously installed master key. 3552 * 3553 * @keyconf: the parameter passed with the set key 3554 * @k1: a buffer to be filled with the 1st sub-key 3555 * @k2: a buffer to be filled with the 2nd sub-key 3556 */ 3557 void ieee80211_aes_cmac_calculate_k1_k2(struct ieee80211_key_conf *keyconf, 3558 u8 *k1, u8 *k2); 3559 3560 /** 3561 * struct ieee80211_key_seq - key sequence counter 3562 * 3563 * @tkip: TKIP data, containing IV32 and IV16 in host byte order 3564 * @ccmp: PN data, most significant byte first (big endian, 3565 * reverse order than in packet) 3566 * @aes_cmac: PN data, most significant byte first (big endian, 3567 * reverse order than in packet) 3568 */ 3569 struct ieee80211_key_seq { 3570 union { 3571 struct { 3572 u32 iv32; 3573 u16 iv16; 3574 } tkip; 3575 struct { 3576 u8 pn[6]; 3577 } ccmp; 3578 struct { 3579 u8 pn[6]; 3580 } aes_cmac; 3581 }; 3582 }; 3583 3584 /** 3585 * ieee80211_get_key_tx_seq - get key TX sequence counter 3586 * 3587 * @keyconf: the parameter passed with the set key 3588 * @seq: buffer to receive the sequence data 3589 * 3590 * This function allows a driver to retrieve the current TX IV/PN 3591 * for the given key. It must not be called if IV generation is 3592 * offloaded to the device. 3593 * 3594 * Note that this function may only be called when no TX processing 3595 * can be done concurrently, for example when queues are stopped 3596 * and the stop has been synchronized. 3597 */ 3598 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf, 3599 struct ieee80211_key_seq *seq); 3600 3601 /** 3602 * ieee80211_get_key_rx_seq - get key RX sequence counter 3603 * 3604 * @keyconf: the parameter passed with the set key 3605 * @tid: The TID, or -1 for the management frame value (CCMP only); 3606 * the value on TID 0 is also used for non-QoS frames. For 3607 * CMAC, only TID 0 is valid. 3608 * @seq: buffer to receive the sequence data 3609 * 3610 * This function allows a driver to retrieve the current RX IV/PNs 3611 * for the given key. It must not be called if IV checking is done 3612 * by the device and not by mac80211. 3613 * 3614 * Note that this function may only be called when no RX processing 3615 * can be done concurrently. 3616 */ 3617 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf, 3618 int tid, struct ieee80211_key_seq *seq); 3619 3620 /** 3621 * ieee80211_gtk_rekey_notify - notify userspace supplicant of rekeying 3622 * @vif: virtual interface the rekeying was done on 3623 * @bssid: The BSSID of the AP, for checking association 3624 * @replay_ctr: the new replay counter after GTK rekeying 3625 * @gfp: allocation flags 3626 */ 3627 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid, 3628 const u8 *replay_ctr, gfp_t gfp); 3629 3630 /** 3631 * ieee80211_wake_queue - wake specific queue 3632 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3633 * @queue: queue number (counted from zero). 3634 * 3635 * Drivers should use this function instead of netif_wake_queue. 3636 */ 3637 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue); 3638 3639 /** 3640 * ieee80211_stop_queue - stop specific queue 3641 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3642 * @queue: queue number (counted from zero). 3643 * 3644 * Drivers should use this function instead of netif_stop_queue. 3645 */ 3646 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue); 3647 3648 /** 3649 * ieee80211_queue_stopped - test status of the queue 3650 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3651 * @queue: queue number (counted from zero). 3652 * 3653 * Drivers should use this function instead of netif_stop_queue. 3654 * 3655 * Return: %true if the queue is stopped. %false otherwise. 3656 */ 3657 3658 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue); 3659 3660 /** 3661 * ieee80211_stop_queues - stop all queues 3662 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3663 * 3664 * Drivers should use this function instead of netif_stop_queue. 3665 */ 3666 void ieee80211_stop_queues(struct ieee80211_hw *hw); 3667 3668 /** 3669 * ieee80211_wake_queues - wake all queues 3670 * @hw: pointer as obtained from ieee80211_alloc_hw(). 3671 * 3672 * Drivers should use this function instead of netif_wake_queue. 3673 */ 3674 void ieee80211_wake_queues(struct ieee80211_hw *hw); 3675 3676 /** 3677 * ieee80211_scan_completed - completed hardware scan 3678 * 3679 * When hardware scan offload is used (i.e. the hw_scan() callback is 3680 * assigned) this function needs to be called by the driver to notify 3681 * mac80211 that the scan finished. This function can be called from 3682 * any context, including hardirq context. 3683 * 3684 * @hw: the hardware that finished the scan 3685 * @aborted: set to true if scan was aborted 3686 */ 3687 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted); 3688 3689 /** 3690 * ieee80211_sched_scan_results - got results from scheduled scan 3691 * 3692 * When a scheduled scan is running, this function needs to be called by the 3693 * driver whenever there are new scan results available. 3694 * 3695 * @hw: the hardware that is performing scheduled scans 3696 */ 3697 void ieee80211_sched_scan_results(struct ieee80211_hw *hw); 3698 3699 /** 3700 * ieee80211_sched_scan_stopped - inform that the scheduled scan has stopped 3701 * 3702 * When a scheduled scan is running, this function can be called by 3703 * the driver if it needs to stop the scan to perform another task. 3704 * Usual scenarios are drivers that cannot continue the scheduled scan 3705 * while associating, for instance. 3706 * 3707 * @hw: the hardware that is performing scheduled scans 3708 */ 3709 void ieee80211_sched_scan_stopped(struct ieee80211_hw *hw); 3710 3711 /** 3712 * enum ieee80211_interface_iteration_flags - interface iteration flags 3713 * @IEEE80211_IFACE_ITER_NORMAL: Iterate over all interfaces that have 3714 * been added to the driver; However, note that during hardware 3715 * reconfiguration (after restart_hw) it will iterate over a new 3716 * interface and over all the existing interfaces even if they 3717 * haven't been re-added to the driver yet. 3718 * @IEEE80211_IFACE_ITER_RESUME_ALL: During resume, iterate over all 3719 * interfaces, even if they haven't been re-added to the driver yet. 3720 */ 3721 enum ieee80211_interface_iteration_flags { 3722 IEEE80211_IFACE_ITER_NORMAL = 0, 3723 IEEE80211_IFACE_ITER_RESUME_ALL = BIT(0), 3724 }; 3725 3726 /** 3727 * ieee80211_iterate_active_interfaces - iterate active interfaces 3728 * 3729 * This function iterates over the interfaces associated with a given 3730 * hardware that are currently active and calls the callback for them. 3731 * This function allows the iterator function to sleep, when the iterator 3732 * function is atomic @ieee80211_iterate_active_interfaces_atomic can 3733 * be used. 3734 * Does not iterate over a new interface during add_interface(). 3735 * 3736 * @hw: the hardware struct of which the interfaces should be iterated over 3737 * @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags 3738 * @iterator: the iterator function to call 3739 * @data: first argument of the iterator function 3740 */ 3741 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw, 3742 u32 iter_flags, 3743 void (*iterator)(void *data, u8 *mac, 3744 struct ieee80211_vif *vif), 3745 void *data); 3746 3747 /** 3748 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces 3749 * 3750 * This function iterates over the interfaces associated with a given 3751 * hardware that are currently active and calls the callback for them. 3752 * This function requires the iterator callback function to be atomic, 3753 * if that is not desired, use @ieee80211_iterate_active_interfaces instead. 3754 * Does not iterate over a new interface during add_interface(). 3755 * 3756 * @hw: the hardware struct of which the interfaces should be iterated over 3757 * @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags 3758 * @iterator: the iterator function to call, cannot sleep 3759 * @data: first argument of the iterator function 3760 */ 3761 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw, 3762 u32 iter_flags, 3763 void (*iterator)(void *data, 3764 u8 *mac, 3765 struct ieee80211_vif *vif), 3766 void *data); 3767 3768 /** 3769 * ieee80211_queue_work - add work onto the mac80211 workqueue 3770 * 3771 * Drivers and mac80211 use this to add work onto the mac80211 workqueue. 3772 * This helper ensures drivers are not queueing work when they should not be. 3773 * 3774 * @hw: the hardware struct for the interface we are adding work for 3775 * @work: the work we want to add onto the mac80211 workqueue 3776 */ 3777 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work); 3778 3779 /** 3780 * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue 3781 * 3782 * Drivers and mac80211 use this to queue delayed work onto the mac80211 3783 * workqueue. 3784 * 3785 * @hw: the hardware struct for the interface we are adding work for 3786 * @dwork: delayable work to queue onto the mac80211 workqueue 3787 * @delay: number of jiffies to wait before queueing 3788 */ 3789 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 3790 struct delayed_work *dwork, 3791 unsigned long delay); 3792 3793 /** 3794 * ieee80211_start_tx_ba_session - Start a tx Block Ack session. 3795 * @sta: the station for which to start a BA session 3796 * @tid: the TID to BA on. 3797 * @timeout: session timeout value (in TUs) 3798 * 3799 * Return: success if addBA request was sent, failure otherwise 3800 * 3801 * Although mac80211/low level driver/user space application can estimate 3802 * the need to start aggregation on a certain RA/TID, the session level 3803 * will be managed by the mac80211. 3804 */ 3805 int ieee80211_start_tx_ba_session(struct ieee80211_sta *sta, u16 tid, 3806 u16 timeout); 3807 3808 /** 3809 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate. 3810 * @vif: &struct ieee80211_vif pointer from the add_interface callback 3811 * @ra: receiver address of the BA session recipient. 3812 * @tid: the TID to BA on. 3813 * 3814 * This function must be called by low level driver once it has 3815 * finished with preparations for the BA session. It can be called 3816 * from any context. 3817 */ 3818 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, 3819 u16 tid); 3820 3821 /** 3822 * ieee80211_stop_tx_ba_session - Stop a Block Ack session. 3823 * @sta: the station whose BA session to stop 3824 * @tid: the TID to stop BA. 3825 * 3826 * Return: negative error if the TID is invalid, or no aggregation active 3827 * 3828 * Although mac80211/low level driver/user space application can estimate 3829 * the need to stop aggregation on a certain RA/TID, the session level 3830 * will be managed by the mac80211. 3831 */ 3832 int ieee80211_stop_tx_ba_session(struct ieee80211_sta *sta, u16 tid); 3833 3834 /** 3835 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate. 3836 * @vif: &struct ieee80211_vif pointer from the add_interface callback 3837 * @ra: receiver address of the BA session recipient. 3838 * @tid: the desired TID to BA on. 3839 * 3840 * This function must be called by low level driver once it has 3841 * finished with preparations for the BA session tear down. It 3842 * can be called from any context. 3843 */ 3844 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, 3845 u16 tid); 3846 3847 /** 3848 * ieee80211_find_sta - find a station 3849 * 3850 * @vif: virtual interface to look for station on 3851 * @addr: station's address 3852 * 3853 * Return: The station, if found. %NULL otherwise. 3854 * 3855 * Note: This function must be called under RCU lock and the 3856 * resulting pointer is only valid under RCU lock as well. 3857 */ 3858 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 3859 const u8 *addr); 3860 3861 /** 3862 * ieee80211_find_sta_by_ifaddr - find a station on hardware 3863 * 3864 * @hw: pointer as obtained from ieee80211_alloc_hw() 3865 * @addr: remote station's address 3866 * @localaddr: local address (vif->sdata->vif.addr). Use NULL for 'any'. 3867 * 3868 * Return: The station, if found. %NULL otherwise. 3869 * 3870 * Note: This function must be called under RCU lock and the 3871 * resulting pointer is only valid under RCU lock as well. 3872 * 3873 * NOTE: You may pass NULL for localaddr, but then you will just get 3874 * the first STA that matches the remote address 'addr'. 3875 * We can have multiple STA associated with multiple 3876 * logical stations (e.g. consider a station connecting to another 3877 * BSSID on the same AP hardware without disconnecting first). 3878 * In this case, the result of this method with localaddr NULL 3879 * is not reliable. 3880 * 3881 * DO NOT USE THIS FUNCTION with localaddr NULL if at all possible. 3882 */ 3883 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 3884 const u8 *addr, 3885 const u8 *localaddr); 3886 3887 /** 3888 * ieee80211_sta_block_awake - block station from waking up 3889 * @hw: the hardware 3890 * @pubsta: the station 3891 * @block: whether to block or unblock 3892 * 3893 * Some devices require that all frames that are on the queues 3894 * for a specific station that went to sleep are flushed before 3895 * a poll response or frames after the station woke up can be 3896 * delivered to that it. Note that such frames must be rejected 3897 * by the driver as filtered, with the appropriate status flag. 3898 * 3899 * This function allows implementing this mode in a race-free 3900 * manner. 3901 * 3902 * To do this, a driver must keep track of the number of frames 3903 * still enqueued for a specific station. If this number is not 3904 * zero when the station goes to sleep, the driver must call 3905 * this function to force mac80211 to consider the station to 3906 * be asleep regardless of the station's actual state. Once the 3907 * number of outstanding frames reaches zero, the driver must 3908 * call this function again to unblock the station. That will 3909 * cause mac80211 to be able to send ps-poll responses, and if 3910 * the station queried in the meantime then frames will also 3911 * be sent out as a result of this. Additionally, the driver 3912 * will be notified that the station woke up some time after 3913 * it is unblocked, regardless of whether the station actually 3914 * woke up while blocked or not. 3915 */ 3916 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 3917 struct ieee80211_sta *pubsta, bool block); 3918 3919 /** 3920 * ieee80211_sta_eosp - notify mac80211 about end of SP 3921 * @pubsta: the station 3922 * 3923 * When a device transmits frames in a way that it can't tell 3924 * mac80211 in the TX status about the EOSP, it must clear the 3925 * %IEEE80211_TX_STATUS_EOSP bit and call this function instead. 3926 * This applies for PS-Poll as well as uAPSD. 3927 * 3928 * Note that just like with _tx_status() and _rx() drivers must 3929 * not mix calls to irqsafe/non-irqsafe versions, this function 3930 * must not be mixed with those either. Use the all irqsafe, or 3931 * all non-irqsafe, don't mix! 3932 * 3933 * NB: the _irqsafe version of this function doesn't exist, no 3934 * driver needs it right now. Don't call this function if 3935 * you'd need the _irqsafe version, look at the git history 3936 * and restore the _irqsafe version! 3937 */ 3938 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta); 3939 3940 /** 3941 * ieee80211_iter_keys - iterate keys programmed into the device 3942 * @hw: pointer obtained from ieee80211_alloc_hw() 3943 * @vif: virtual interface to iterate, may be %NULL for all 3944 * @iter: iterator function that will be called for each key 3945 * @iter_data: custom data to pass to the iterator function 3946 * 3947 * This function can be used to iterate all the keys known to 3948 * mac80211, even those that weren't previously programmed into 3949 * the device. This is intended for use in WoWLAN if the device 3950 * needs reprogramming of the keys during suspend. Note that due 3951 * to locking reasons, it is also only safe to call this at few 3952 * spots since it must hold the RTNL and be able to sleep. 3953 * 3954 * The order in which the keys are iterated matches the order 3955 * in which they were originally installed and handed to the 3956 * set_key callback. 3957 */ 3958 void ieee80211_iter_keys(struct ieee80211_hw *hw, 3959 struct ieee80211_vif *vif, 3960 void (*iter)(struct ieee80211_hw *hw, 3961 struct ieee80211_vif *vif, 3962 struct ieee80211_sta *sta, 3963 struct ieee80211_key_conf *key, 3964 void *data), 3965 void *iter_data); 3966 3967 /** 3968 * ieee80211_iter_chan_contexts_atomic - iterate channel contexts 3969 * @hw: pointre obtained from ieee80211_alloc_hw(). 3970 * @iter: iterator function 3971 * @iter_data: data passed to iterator function 3972 * 3973 * Iterate all active channel contexts. This function is atomic and 3974 * doesn't acquire any locks internally that might be held in other 3975 * places while calling into the driver. 3976 * 3977 * The iterator will not find a context that's being added (during 3978 * the driver callback to add it) but will find it while it's being 3979 * removed. 3980 * 3981 * Note that during hardware restart, all contexts that existed 3982 * before the restart are considered already present so will be 3983 * found while iterating, whether they've been re-added already 3984 * or not. 3985 */ 3986 void ieee80211_iter_chan_contexts_atomic( 3987 struct ieee80211_hw *hw, 3988 void (*iter)(struct ieee80211_hw *hw, 3989 struct ieee80211_chanctx_conf *chanctx_conf, 3990 void *data), 3991 void *iter_data); 3992 3993 /** 3994 * ieee80211_ap_probereq_get - retrieve a Probe Request template 3995 * @hw: pointer obtained from ieee80211_alloc_hw(). 3996 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 3997 * 3998 * Creates a Probe Request template which can, for example, be uploaded to 3999 * hardware. The template is filled with bssid, ssid and supported rate 4000 * information. This function must only be called from within the 4001 * .bss_info_changed callback function and only in managed mode. The function 4002 * is only useful when the interface is associated, otherwise it will return 4003 * %NULL. 4004 * 4005 * Return: The Probe Request template. %NULL on error. 4006 */ 4007 struct sk_buff *ieee80211_ap_probereq_get(struct ieee80211_hw *hw, 4008 struct ieee80211_vif *vif); 4009 4010 /** 4011 * ieee80211_beacon_loss - inform hardware does not receive beacons 4012 * 4013 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4014 * 4015 * When beacon filtering is enabled with %IEEE80211_VIF_BEACON_FILTER and 4016 * %IEEE80211_CONF_PS is set, the driver needs to inform whenever the 4017 * hardware is not receiving beacons with this function. 4018 */ 4019 void ieee80211_beacon_loss(struct ieee80211_vif *vif); 4020 4021 /** 4022 * ieee80211_connection_loss - inform hardware has lost connection to the AP 4023 * 4024 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4025 * 4026 * When beacon filtering is enabled with %IEEE80211_VIF_BEACON_FILTER, and 4027 * %IEEE80211_CONF_PS and %IEEE80211_HW_CONNECTION_MONITOR are set, the driver 4028 * needs to inform if the connection to the AP has been lost. 4029 * The function may also be called if the connection needs to be terminated 4030 * for some other reason, even if %IEEE80211_HW_CONNECTION_MONITOR isn't set. 4031 * 4032 * This function will cause immediate change to disassociated state, 4033 * without connection recovery attempts. 4034 */ 4035 void ieee80211_connection_loss(struct ieee80211_vif *vif); 4036 4037 /** 4038 * ieee80211_resume_disconnect - disconnect from AP after resume 4039 * 4040 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4041 * 4042 * Instructs mac80211 to disconnect from the AP after resume. 4043 * Drivers can use this after WoWLAN if they know that the 4044 * connection cannot be kept up, for example because keys were 4045 * used while the device was asleep but the replay counters or 4046 * similar cannot be retrieved from the device during resume. 4047 * 4048 * Note that due to implementation issues, if the driver uses 4049 * the reconfiguration functionality during resume the interface 4050 * will still be added as associated first during resume and then 4051 * disconnect normally later. 4052 * 4053 * This function can only be called from the resume callback and 4054 * the driver must not be holding any of its own locks while it 4055 * calls this function, or at least not any locks it needs in the 4056 * key configuration paths (if it supports HW crypto). 4057 */ 4058 void ieee80211_resume_disconnect(struct ieee80211_vif *vif); 4059 4060 /** 4061 * ieee80211_cqm_rssi_notify - inform a configured connection quality monitoring 4062 * rssi threshold triggered 4063 * 4064 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4065 * @rssi_event: the RSSI trigger event type 4066 * @gfp: context flags 4067 * 4068 * When the %IEEE80211_VIF_SUPPORTS_CQM_RSSI is set, and a connection quality 4069 * monitoring is configured with an rssi threshold, the driver will inform 4070 * whenever the rssi level reaches the threshold. 4071 */ 4072 void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif, 4073 enum nl80211_cqm_rssi_threshold_event rssi_event, 4074 gfp_t gfp); 4075 4076 /** 4077 * ieee80211_radar_detected - inform that a radar was detected 4078 * 4079 * @hw: pointer as obtained from ieee80211_alloc_hw() 4080 */ 4081 void ieee80211_radar_detected(struct ieee80211_hw *hw); 4082 4083 /** 4084 * ieee80211_chswitch_done - Complete channel switch process 4085 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4086 * @success: make the channel switch successful or not 4087 * 4088 * Complete the channel switch post-process: set the new operational channel 4089 * and wake up the suspended queues. 4090 */ 4091 void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success); 4092 4093 /** 4094 * ieee80211_request_smps - request SM PS transition 4095 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4096 * @smps_mode: new SM PS mode 4097 * 4098 * This allows the driver to request an SM PS transition in managed 4099 * mode. This is useful when the driver has more information than 4100 * the stack about possible interference, for example by bluetooth. 4101 */ 4102 void ieee80211_request_smps(struct ieee80211_vif *vif, 4103 enum ieee80211_smps_mode smps_mode); 4104 4105 /** 4106 * ieee80211_ready_on_channel - notification of remain-on-channel start 4107 * @hw: pointer as obtained from ieee80211_alloc_hw() 4108 */ 4109 void ieee80211_ready_on_channel(struct ieee80211_hw *hw); 4110 4111 /** 4112 * ieee80211_remain_on_channel_expired - remain_on_channel duration expired 4113 * @hw: pointer as obtained from ieee80211_alloc_hw() 4114 */ 4115 void ieee80211_remain_on_channel_expired(struct ieee80211_hw *hw); 4116 4117 /** 4118 * ieee80211_stop_rx_ba_session - callback to stop existing BA sessions 4119 * 4120 * in order not to harm the system performance and user experience, the device 4121 * may request not to allow any rx ba session and tear down existing rx ba 4122 * sessions based on system constraints such as periodic BT activity that needs 4123 * to limit wlan activity (eg.sco or a2dp)." 4124 * in such cases, the intention is to limit the duration of the rx ppdu and 4125 * therefore prevent the peer device to use a-mpdu aggregation. 4126 * 4127 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4128 * @ba_rx_bitmap: Bit map of open rx ba per tid 4129 * @addr: & to bssid mac address 4130 */ 4131 void ieee80211_stop_rx_ba_session(struct ieee80211_vif *vif, u16 ba_rx_bitmap, 4132 const u8 *addr); 4133 4134 /** 4135 * ieee80211_send_bar - send a BlockAckReq frame 4136 * 4137 * can be used to flush pending frames from the peer's aggregation reorder 4138 * buffer. 4139 * 4140 * @vif: &struct ieee80211_vif pointer from the add_interface callback. 4141 * @ra: the peer's destination address 4142 * @tid: the TID of the aggregation session 4143 * @ssn: the new starting sequence number for the receiver 4144 */ 4145 void ieee80211_send_bar(struct ieee80211_vif *vif, u8 *ra, u16 tid, u16 ssn); 4146 4147 /* Rate control API */ 4148 4149 /** 4150 * struct ieee80211_tx_rate_control - rate control information for/from RC algo 4151 * 4152 * @hw: The hardware the algorithm is invoked for. 4153 * @sband: The band this frame is being transmitted on. 4154 * @bss_conf: the current BSS configuration 4155 * @skb: the skb that will be transmitted, the control information in it needs 4156 * to be filled in 4157 * @reported_rate: The rate control algorithm can fill this in to indicate 4158 * which rate should be reported to userspace as the current rate and 4159 * used for rate calculations in the mesh network. 4160 * @rts: whether RTS will be used for this frame because it is longer than the 4161 * RTS threshold 4162 * @short_preamble: whether mac80211 will request short-preamble transmission 4163 * if the selected rate supports it 4164 * @max_rate_idx: user-requested maximum (legacy) rate 4165 * (deprecated; this will be removed once drivers get updated to use 4166 * rate_idx_mask) 4167 * @rate_idx_mask: user-requested (legacy) rate mask 4168 * @rate_idx_mcs_mask: user-requested MCS rate mask (NULL if not in use) 4169 * @bss: whether this frame is sent out in AP or IBSS mode 4170 */ 4171 struct ieee80211_tx_rate_control { 4172 struct ieee80211_hw *hw; 4173 struct ieee80211_supported_band *sband; 4174 struct ieee80211_bss_conf *bss_conf; 4175 struct sk_buff *skb; 4176 struct ieee80211_tx_rate reported_rate; 4177 bool rts, short_preamble; 4178 u8 max_rate_idx; 4179 u32 rate_idx_mask; 4180 u8 *rate_idx_mcs_mask; 4181 bool bss; 4182 }; 4183 4184 struct rate_control_ops { 4185 struct module *module; 4186 const char *name; 4187 void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir); 4188 void (*free)(void *priv); 4189 4190 void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp); 4191 void (*rate_init)(void *priv, struct ieee80211_supported_band *sband, 4192 struct ieee80211_sta *sta, void *priv_sta); 4193 void (*rate_update)(void *priv, struct ieee80211_supported_band *sband, 4194 struct ieee80211_sta *sta, void *priv_sta, 4195 u32 changed); 4196 void (*free_sta)(void *priv, struct ieee80211_sta *sta, 4197 void *priv_sta); 4198 4199 void (*tx_status)(void *priv, struct ieee80211_supported_band *sband, 4200 struct ieee80211_sta *sta, void *priv_sta, 4201 struct sk_buff *skb); 4202 void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta, 4203 struct ieee80211_tx_rate_control *txrc); 4204 4205 void (*add_sta_debugfs)(void *priv, void *priv_sta, 4206 struct dentry *dir); 4207 void (*remove_sta_debugfs)(void *priv, void *priv_sta); 4208 }; 4209 4210 static inline int rate_supported(struct ieee80211_sta *sta, 4211 enum ieee80211_band band, 4212 int index) 4213 { 4214 return (sta == NULL || sta->supp_rates[band] & BIT(index)); 4215 } 4216 4217 /** 4218 * rate_control_send_low - helper for drivers for management/no-ack frames 4219 * 4220 * Rate control algorithms that agree to use the lowest rate to 4221 * send management frames and NO_ACK data with the respective hw 4222 * retries should use this in the beginning of their mac80211 get_rate 4223 * callback. If true is returned the rate control can simply return. 4224 * If false is returned we guarantee that sta and sta and priv_sta is 4225 * not null. 4226 * 4227 * Rate control algorithms wishing to do more intelligent selection of 4228 * rate for multicast/broadcast frames may choose to not use this. 4229 * 4230 * @sta: &struct ieee80211_sta pointer to the target destination. Note 4231 * that this may be null. 4232 * @priv_sta: private rate control structure. This may be null. 4233 * @txrc: rate control information we sholud populate for mac80211. 4234 */ 4235 bool rate_control_send_low(struct ieee80211_sta *sta, 4236 void *priv_sta, 4237 struct ieee80211_tx_rate_control *txrc); 4238 4239 4240 static inline s8 4241 rate_lowest_index(struct ieee80211_supported_band *sband, 4242 struct ieee80211_sta *sta) 4243 { 4244 int i; 4245 4246 for (i = 0; i < sband->n_bitrates; i++) 4247 if (rate_supported(sta, sband->band, i)) 4248 return i; 4249 4250 /* warn when we cannot find a rate. */ 4251 WARN_ON_ONCE(1); 4252 4253 /* and return 0 (the lowest index) */ 4254 return 0; 4255 } 4256 4257 static inline 4258 bool rate_usable_index_exists(struct ieee80211_supported_band *sband, 4259 struct ieee80211_sta *sta) 4260 { 4261 unsigned int i; 4262 4263 for (i = 0; i < sband->n_bitrates; i++) 4264 if (rate_supported(sta, sband->band, i)) 4265 return true; 4266 return false; 4267 } 4268 4269 /** 4270 * rate_control_set_rates - pass the sta rate selection to mac80211/driver 4271 * 4272 * When not doing a rate control probe to test rates, rate control should pass 4273 * its rate selection to mac80211. If the driver supports receiving a station 4274 * rate table, it will use it to ensure that frames are always sent based on 4275 * the most recent rate control module decision. 4276 * 4277 * @hw: pointer as obtained from ieee80211_alloc_hw() 4278 * @pubsta: &struct ieee80211_sta pointer to the target destination. 4279 * @rates: new tx rate set to be used for this station. 4280 */ 4281 int rate_control_set_rates(struct ieee80211_hw *hw, 4282 struct ieee80211_sta *pubsta, 4283 struct ieee80211_sta_rates *rates); 4284 4285 int ieee80211_rate_control_register(struct rate_control_ops *ops); 4286 void ieee80211_rate_control_unregister(struct rate_control_ops *ops); 4287 4288 static inline bool 4289 conf_is_ht20(struct ieee80211_conf *conf) 4290 { 4291 return conf->chandef.width == NL80211_CHAN_WIDTH_20; 4292 } 4293 4294 static inline bool 4295 conf_is_ht40_minus(struct ieee80211_conf *conf) 4296 { 4297 return conf->chandef.width == NL80211_CHAN_WIDTH_40 && 4298 conf->chandef.center_freq1 < conf->chandef.chan->center_freq; 4299 } 4300 4301 static inline bool 4302 conf_is_ht40_plus(struct ieee80211_conf *conf) 4303 { 4304 return conf->chandef.width == NL80211_CHAN_WIDTH_40 && 4305 conf->chandef.center_freq1 > conf->chandef.chan->center_freq; 4306 } 4307 4308 static inline bool 4309 conf_is_ht40(struct ieee80211_conf *conf) 4310 { 4311 return conf->chandef.width == NL80211_CHAN_WIDTH_40; 4312 } 4313 4314 static inline bool 4315 conf_is_ht(struct ieee80211_conf *conf) 4316 { 4317 return conf->chandef.width != NL80211_CHAN_WIDTH_20_NOHT; 4318 } 4319 4320 static inline enum nl80211_iftype 4321 ieee80211_iftype_p2p(enum nl80211_iftype type, bool p2p) 4322 { 4323 if (p2p) { 4324 switch (type) { 4325 case NL80211_IFTYPE_STATION: 4326 return NL80211_IFTYPE_P2P_CLIENT; 4327 case NL80211_IFTYPE_AP: 4328 return NL80211_IFTYPE_P2P_GO; 4329 default: 4330 break; 4331 } 4332 } 4333 return type; 4334 } 4335 4336 static inline enum nl80211_iftype 4337 ieee80211_vif_type_p2p(struct ieee80211_vif *vif) 4338 { 4339 return ieee80211_iftype_p2p(vif->type, vif->p2p); 4340 } 4341 4342 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 4343 int rssi_min_thold, 4344 int rssi_max_thold); 4345 4346 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif); 4347 4348 /** 4349 * ieee80211_ave_rssi - report the average RSSI for the specified interface 4350 * 4351 * @vif: the specified virtual interface 4352 * 4353 * Note: This function assumes that the given vif is valid. 4354 * 4355 * Return: The average RSSI value for the requested interface, or 0 if not 4356 * applicable. 4357 */ 4358 int ieee80211_ave_rssi(struct ieee80211_vif *vif); 4359 4360 /** 4361 * ieee80211_report_wowlan_wakeup - report WoWLAN wakeup 4362 * @vif: virtual interface 4363 * @wakeup: wakeup reason(s) 4364 * @gfp: allocation flags 4365 * 4366 * See cfg80211_report_wowlan_wakeup(). 4367 */ 4368 void ieee80211_report_wowlan_wakeup(struct ieee80211_vif *vif, 4369 struct cfg80211_wowlan_wakeup *wakeup, 4370 gfp_t gfp); 4371 4372 #endif /* MAC80211_H */ 4373