xref: /openbmc/linux/include/net/ipv6.h (revision e0f6d1a5)
1 /*
2  *	Linux INET6 implementation
3  *
4  *	Authors:
5  *	Pedro Roque		<roque@di.fc.ul.pt>
6  *
7  *	This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #ifndef _NET_IPV6_H
14 #define _NET_IPV6_H
15 
16 #include <linux/ipv6.h>
17 #include <linux/hardirq.h>
18 #include <linux/jhash.h>
19 #include <linux/refcount.h>
20 #include <net/if_inet6.h>
21 #include <net/ndisc.h>
22 #include <net/flow.h>
23 #include <net/flow_dissector.h>
24 #include <net/snmp.h>
25 #include <net/netns/hash.h>
26 
27 #define SIN6_LEN_RFC2133	24
28 
29 #define IPV6_MAXPLEN		65535
30 
31 /*
32  *	NextHeader field of IPv6 header
33  */
34 
35 #define NEXTHDR_HOP		0	/* Hop-by-hop option header. */
36 #define NEXTHDR_TCP		6	/* TCP segment. */
37 #define NEXTHDR_UDP		17	/* UDP message. */
38 #define NEXTHDR_IPV6		41	/* IPv6 in IPv6 */
39 #define NEXTHDR_ROUTING		43	/* Routing header. */
40 #define NEXTHDR_FRAGMENT	44	/* Fragmentation/reassembly header. */
41 #define NEXTHDR_GRE		47	/* GRE header. */
42 #define NEXTHDR_ESP		50	/* Encapsulating security payload. */
43 #define NEXTHDR_AUTH		51	/* Authentication header. */
44 #define NEXTHDR_ICMP		58	/* ICMP for IPv6. */
45 #define NEXTHDR_NONE		59	/* No next header */
46 #define NEXTHDR_DEST		60	/* Destination options header. */
47 #define NEXTHDR_SCTP		132	/* SCTP message. */
48 #define NEXTHDR_MOBILITY	135	/* Mobility header. */
49 
50 #define NEXTHDR_MAX		255
51 
52 #define IPV6_DEFAULT_HOPLIMIT   64
53 #define IPV6_DEFAULT_MCASTHOPS	1
54 
55 /* Limits on Hop-by-Hop and Destination options.
56  *
57  * Per RFC8200 there is no limit on the maximum number or lengths of options in
58  * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
59  * We allow configurable limits in order to mitigate potential denial of
60  * service attacks.
61  *
62  * There are three limits that may be set:
63  *   - Limit the number of options in a Hop-by-Hop or Destination options
64  *     extension header
65  *   - Limit the byte length of a Hop-by-Hop or Destination options extension
66  *     header
67  *   - Disallow unknown options
68  *
69  * The limits are expressed in corresponding sysctls:
70  *
71  * ipv6.sysctl.max_dst_opts_cnt
72  * ipv6.sysctl.max_hbh_opts_cnt
73  * ipv6.sysctl.max_dst_opts_len
74  * ipv6.sysctl.max_hbh_opts_len
75  *
76  * max_*_opts_cnt is the number of TLVs that are allowed for Destination
77  * options or Hop-by-Hop options. If the number is less than zero then unknown
78  * TLVs are disallowed and the number of known options that are allowed is the
79  * absolute value. Setting the value to INT_MAX indicates no limit.
80  *
81  * max_*_opts_len is the length limit in bytes of a Destination or
82  * Hop-by-Hop options extension header. Setting the value to INT_MAX
83  * indicates no length limit.
84  *
85  * If a limit is exceeded when processing an extension header the packet is
86  * silently discarded.
87  */
88 
89 /* Default limits for Hop-by-Hop and Destination options */
90 #define IP6_DEFAULT_MAX_DST_OPTS_CNT	 8
91 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT	 8
92 #define IP6_DEFAULT_MAX_DST_OPTS_LEN	 INT_MAX /* No limit */
93 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN	 INT_MAX /* No limit */
94 
95 /*
96  *	Addr type
97  *
98  *	type	-	unicast | multicast
99  *	scope	-	local	| site	    | global
100  *	v4	-	compat
101  *	v4mapped
102  *	any
103  *	loopback
104  */
105 
106 #define IPV6_ADDR_ANY		0x0000U
107 
108 #define IPV6_ADDR_UNICAST	0x0001U
109 #define IPV6_ADDR_MULTICAST	0x0002U
110 
111 #define IPV6_ADDR_LOOPBACK	0x0010U
112 #define IPV6_ADDR_LINKLOCAL	0x0020U
113 #define IPV6_ADDR_SITELOCAL	0x0040U
114 
115 #define IPV6_ADDR_COMPATv4	0x0080U
116 
117 #define IPV6_ADDR_SCOPE_MASK	0x00f0U
118 
119 #define IPV6_ADDR_MAPPED	0x1000U
120 
121 /*
122  *	Addr scopes
123  */
124 #define IPV6_ADDR_MC_SCOPE(a)	\
125 	((a)->s6_addr[1] & 0x0f)	/* nonstandard */
126 #define __IPV6_ADDR_SCOPE_INVALID	-1
127 #define IPV6_ADDR_SCOPE_NODELOCAL	0x01
128 #define IPV6_ADDR_SCOPE_LINKLOCAL	0x02
129 #define IPV6_ADDR_SCOPE_SITELOCAL	0x05
130 #define IPV6_ADDR_SCOPE_ORGLOCAL	0x08
131 #define IPV6_ADDR_SCOPE_GLOBAL		0x0e
132 
133 /*
134  *	Addr flags
135  */
136 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a)	\
137 	((a)->s6_addr[1] & 0x10)
138 #define IPV6_ADDR_MC_FLAG_PREFIX(a)	\
139 	((a)->s6_addr[1] & 0x20)
140 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a)	\
141 	((a)->s6_addr[1] & 0x40)
142 
143 /*
144  *	fragmentation header
145  */
146 
147 struct frag_hdr {
148 	__u8	nexthdr;
149 	__u8	reserved;
150 	__be16	frag_off;
151 	__be32	identification;
152 };
153 
154 #define	IP6_MF		0x0001
155 #define	IP6_OFFSET	0xFFF8
156 
157 #define IP6_REPLY_MARK(net, mark) \
158 	((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
159 
160 #include <net/sock.h>
161 
162 /* sysctls */
163 extern int sysctl_mld_max_msf;
164 extern int sysctl_mld_qrv;
165 
166 #define _DEVINC(net, statname, mod, idev, field)			\
167 ({									\
168 	struct inet6_dev *_idev = (idev);				\
169 	if (likely(_idev != NULL))					\
170 		mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
171 	mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
172 })
173 
174 /* per device counters are atomic_long_t */
175 #define _DEVINCATOMIC(net, statname, mod, idev, field)			\
176 ({									\
177 	struct inet6_dev *_idev = (idev);				\
178 	if (likely(_idev != NULL))					\
179 		SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
180 	mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
181 })
182 
183 /* per device and per net counters are atomic_long_t */
184 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field)		\
185 ({									\
186 	struct inet6_dev *_idev = (idev);				\
187 	if (likely(_idev != NULL))					\
188 		SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
189 	SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
190 })
191 
192 #define _DEVADD(net, statname, mod, idev, field, val)			\
193 ({									\
194 	struct inet6_dev *_idev = (idev);				\
195 	if (likely(_idev != NULL))					\
196 		mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
197 	mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
198 })
199 
200 #define _DEVUPD(net, statname, mod, idev, field, val)			\
201 ({									\
202 	struct inet6_dev *_idev = (idev);				\
203 	if (likely(_idev != NULL))					\
204 		mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
205 	mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
206 })
207 
208 /* MIBs */
209 
210 #define IP6_INC_STATS(net, idev,field)		\
211 		_DEVINC(net, ipv6, , idev, field)
212 #define __IP6_INC_STATS(net, idev,field)	\
213 		_DEVINC(net, ipv6, __, idev, field)
214 #define IP6_ADD_STATS(net, idev,field,val)	\
215 		_DEVADD(net, ipv6, , idev, field, val)
216 #define __IP6_ADD_STATS(net, idev,field,val)	\
217 		_DEVADD(net, ipv6, __, idev, field, val)
218 #define IP6_UPD_PO_STATS(net, idev,field,val)   \
219 		_DEVUPD(net, ipv6, , idev, field, val)
220 #define __IP6_UPD_PO_STATS(net, idev,field,val)   \
221 		_DEVUPD(net, ipv6, __, idev, field, val)
222 #define ICMP6_INC_STATS(net, idev, field)	\
223 		_DEVINCATOMIC(net, icmpv6, , idev, field)
224 #define __ICMP6_INC_STATS(net, idev, field)	\
225 		_DEVINCATOMIC(net, icmpv6, __, idev, field)
226 
227 #define ICMP6MSGOUT_INC_STATS(net, idev, field)		\
228 	_DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
229 #define ICMP6MSGIN_INC_STATS(net, idev, field)	\
230 	_DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
231 
232 struct ip6_ra_chain {
233 	struct ip6_ra_chain	*next;
234 	struct sock		*sk;
235 	int			sel;
236 	void			(*destructor)(struct sock *);
237 };
238 
239 extern struct ip6_ra_chain	*ip6_ra_chain;
240 extern rwlock_t ip6_ra_lock;
241 
242 /*
243    This structure is prepared by protocol, when parsing
244    ancillary data and passed to IPv6.
245  */
246 
247 struct ipv6_txoptions {
248 	refcount_t		refcnt;
249 	/* Length of this structure */
250 	int			tot_len;
251 
252 	/* length of extension headers   */
253 
254 	__u16			opt_flen;	/* after fragment hdr */
255 	__u16			opt_nflen;	/* before fragment hdr */
256 
257 	struct ipv6_opt_hdr	*hopopt;
258 	struct ipv6_opt_hdr	*dst0opt;
259 	struct ipv6_rt_hdr	*srcrt;	/* Routing Header */
260 	struct ipv6_opt_hdr	*dst1opt;
261 	struct rcu_head		rcu;
262 	/* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
263 };
264 
265 struct ip6_flowlabel {
266 	struct ip6_flowlabel __rcu *next;
267 	__be32			label;
268 	atomic_t		users;
269 	struct in6_addr		dst;
270 	struct ipv6_txoptions	*opt;
271 	unsigned long		linger;
272 	struct rcu_head		rcu;
273 	u8			share;
274 	union {
275 		struct pid *pid;
276 		kuid_t uid;
277 	} owner;
278 	unsigned long		lastuse;
279 	unsigned long		expires;
280 	struct net		*fl_net;
281 };
282 
283 #define IPV6_FLOWINFO_MASK		cpu_to_be32(0x0FFFFFFF)
284 #define IPV6_FLOWLABEL_MASK		cpu_to_be32(0x000FFFFF)
285 #define IPV6_FLOWLABEL_STATELESS_FLAG	cpu_to_be32(0x00080000)
286 
287 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
288 #define IPV6_TCLASS_SHIFT	20
289 
290 struct ipv6_fl_socklist {
291 	struct ipv6_fl_socklist	__rcu	*next;
292 	struct ip6_flowlabel		*fl;
293 	struct rcu_head			rcu;
294 };
295 
296 struct ipcm6_cookie {
297 	__s16 hlimit;
298 	__s16 tclass;
299 	__s8  dontfrag;
300 	struct ipv6_txoptions *opt;
301 };
302 
303 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
304 {
305 	struct ipv6_txoptions *opt;
306 
307 	rcu_read_lock();
308 	opt = rcu_dereference(np->opt);
309 	if (opt) {
310 		if (!refcount_inc_not_zero(&opt->refcnt))
311 			opt = NULL;
312 		else
313 			opt = rcu_pointer_handoff(opt);
314 	}
315 	rcu_read_unlock();
316 	return opt;
317 }
318 
319 static inline void txopt_put(struct ipv6_txoptions *opt)
320 {
321 	if (opt && refcount_dec_and_test(&opt->refcnt))
322 		kfree_rcu(opt, rcu);
323 }
324 
325 struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label);
326 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
327 					 struct ip6_flowlabel *fl,
328 					 struct ipv6_txoptions *fopt);
329 void fl6_free_socklist(struct sock *sk);
330 int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen);
331 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
332 			   int flags);
333 int ip6_flowlabel_init(void);
334 void ip6_flowlabel_cleanup(void);
335 bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np);
336 
337 static inline void fl6_sock_release(struct ip6_flowlabel *fl)
338 {
339 	if (fl)
340 		atomic_dec(&fl->users);
341 }
342 
343 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
344 
345 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
346 				struct icmp6hdr *thdr, int len);
347 
348 int ip6_ra_control(struct sock *sk, int sel);
349 
350 int ipv6_parse_hopopts(struct sk_buff *skb);
351 
352 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
353 					struct ipv6_txoptions *opt);
354 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
355 					  struct ipv6_txoptions *opt,
356 					  int newtype,
357 					  struct ipv6_opt_hdr __user *newopt,
358 					  int newoptlen);
359 struct ipv6_txoptions *
360 ipv6_renew_options_kern(struct sock *sk,
361 			struct ipv6_txoptions *opt,
362 			int newtype,
363 			struct ipv6_opt_hdr *newopt,
364 			int newoptlen);
365 struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
366 					  struct ipv6_txoptions *opt);
367 
368 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
369 		       const struct inet6_skb_parm *opt);
370 struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
371 					   struct ipv6_txoptions *opt);
372 
373 static inline bool ipv6_accept_ra(struct inet6_dev *idev)
374 {
375 	/* If forwarding is enabled, RA are not accepted unless the special
376 	 * hybrid mode (accept_ra=2) is enabled.
377 	 */
378 	return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
379 	    idev->cnf.accept_ra;
380 }
381 
382 #define IPV6_FRAG_HIGH_THRESH	(4 * 1024*1024)	/* 4194304 */
383 #define IPV6_FRAG_LOW_THRESH	(3 * 1024*1024)	/* 3145728 */
384 #define IPV6_FRAG_TIMEOUT	(60 * HZ)	/* 60 seconds */
385 
386 int __ipv6_addr_type(const struct in6_addr *addr);
387 static inline int ipv6_addr_type(const struct in6_addr *addr)
388 {
389 	return __ipv6_addr_type(addr) & 0xffff;
390 }
391 
392 static inline int ipv6_addr_scope(const struct in6_addr *addr)
393 {
394 	return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
395 }
396 
397 static inline int __ipv6_addr_src_scope(int type)
398 {
399 	return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
400 }
401 
402 static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
403 {
404 	return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
405 }
406 
407 static inline bool __ipv6_addr_needs_scope_id(int type)
408 {
409 	return type & IPV6_ADDR_LINKLOCAL ||
410 	       (type & IPV6_ADDR_MULTICAST &&
411 		(type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
412 }
413 
414 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
415 {
416 	return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
417 }
418 
419 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
420 {
421 	return memcmp(a1, a2, sizeof(struct in6_addr));
422 }
423 
424 static inline bool
425 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
426 		     const struct in6_addr *a2)
427 {
428 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
429 	const unsigned long *ul1 = (const unsigned long *)a1;
430 	const unsigned long *ulm = (const unsigned long *)m;
431 	const unsigned long *ul2 = (const unsigned long *)a2;
432 
433 	return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
434 		  ((ul1[1] ^ ul2[1]) & ulm[1]));
435 #else
436 	return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
437 		  ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
438 		  ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
439 		  ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
440 #endif
441 }
442 
443 static inline void ipv6_addr_prefix(struct in6_addr *pfx,
444 				    const struct in6_addr *addr,
445 				    int plen)
446 {
447 	/* caller must guarantee 0 <= plen <= 128 */
448 	int o = plen >> 3,
449 	    b = plen & 0x7;
450 
451 	memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
452 	memcpy(pfx->s6_addr, addr, o);
453 	if (b != 0)
454 		pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
455 }
456 
457 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
458 					 const struct in6_addr *pfx,
459 					 int plen)
460 {
461 	/* caller must guarantee 0 <= plen <= 128 */
462 	int o = plen >> 3,
463 	    b = plen & 0x7;
464 
465 	memcpy(addr->s6_addr, pfx, o);
466 	if (b != 0) {
467 		addr->s6_addr[o] &= ~(0xff00 >> b);
468 		addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
469 	}
470 }
471 
472 static inline void __ipv6_addr_set_half(__be32 *addr,
473 					__be32 wh, __be32 wl)
474 {
475 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
476 #if defined(__BIG_ENDIAN)
477 	if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
478 		*(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
479 		return;
480 	}
481 #elif defined(__LITTLE_ENDIAN)
482 	if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
483 		*(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
484 		return;
485 	}
486 #endif
487 #endif
488 	addr[0] = wh;
489 	addr[1] = wl;
490 }
491 
492 static inline void ipv6_addr_set(struct in6_addr *addr,
493 				     __be32 w1, __be32 w2,
494 				     __be32 w3, __be32 w4)
495 {
496 	__ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
497 	__ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
498 }
499 
500 static inline bool ipv6_addr_equal(const struct in6_addr *a1,
501 				   const struct in6_addr *a2)
502 {
503 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
504 	const unsigned long *ul1 = (const unsigned long *)a1;
505 	const unsigned long *ul2 = (const unsigned long *)a2;
506 
507 	return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
508 #else
509 	return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
510 		(a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
511 		(a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
512 		(a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
513 #endif
514 }
515 
516 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
517 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
518 					      const __be64 *a2,
519 					      unsigned int len)
520 {
521 	if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
522 		return false;
523 	return true;
524 }
525 
526 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
527 				     const struct in6_addr *addr2,
528 				     unsigned int prefixlen)
529 {
530 	const __be64 *a1 = (const __be64 *)addr1;
531 	const __be64 *a2 = (const __be64 *)addr2;
532 
533 	if (prefixlen >= 64) {
534 		if (a1[0] ^ a2[0])
535 			return false;
536 		return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
537 	}
538 	return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
539 }
540 #else
541 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
542 				     const struct in6_addr *addr2,
543 				     unsigned int prefixlen)
544 {
545 	const __be32 *a1 = addr1->s6_addr32;
546 	const __be32 *a2 = addr2->s6_addr32;
547 	unsigned int pdw, pbi;
548 
549 	/* check complete u32 in prefix */
550 	pdw = prefixlen >> 5;
551 	if (pdw && memcmp(a1, a2, pdw << 2))
552 		return false;
553 
554 	/* check incomplete u32 in prefix */
555 	pbi = prefixlen & 0x1f;
556 	if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
557 		return false;
558 
559 	return true;
560 }
561 #endif
562 
563 struct inet_frag_queue;
564 
565 enum ip6_defrag_users {
566 	IP6_DEFRAG_LOCAL_DELIVER,
567 	IP6_DEFRAG_CONNTRACK_IN,
568 	__IP6_DEFRAG_CONNTRACK_IN	= IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX,
569 	IP6_DEFRAG_CONNTRACK_OUT,
570 	__IP6_DEFRAG_CONNTRACK_OUT	= IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX,
571 	IP6_DEFRAG_CONNTRACK_BRIDGE_IN,
572 	__IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX,
573 };
574 
575 void ip6_frag_init(struct inet_frag_queue *q, const void *a);
576 extern const struct rhashtable_params ip6_rhash_params;
577 
578 /*
579  *	Equivalent of ipv4 struct ip
580  */
581 struct frag_queue {
582 	struct inet_frag_queue	q;
583 
584 	int			iif;
585 	__u16			nhoffset;
586 	u8			ecn;
587 };
588 
589 void ip6_expire_frag_queue(struct net *net, struct frag_queue *fq);
590 
591 static inline bool ipv6_addr_any(const struct in6_addr *a)
592 {
593 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
594 	const unsigned long *ul = (const unsigned long *)a;
595 
596 	return (ul[0] | ul[1]) == 0UL;
597 #else
598 	return (a->s6_addr32[0] | a->s6_addr32[1] |
599 		a->s6_addr32[2] | a->s6_addr32[3]) == 0;
600 #endif
601 }
602 
603 static inline u32 ipv6_addr_hash(const struct in6_addr *a)
604 {
605 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
606 	const unsigned long *ul = (const unsigned long *)a;
607 	unsigned long x = ul[0] ^ ul[1];
608 
609 	return (u32)(x ^ (x >> 32));
610 #else
611 	return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
612 			     a->s6_addr32[2] ^ a->s6_addr32[3]);
613 #endif
614 }
615 
616 /* more secured version of ipv6_addr_hash() */
617 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
618 {
619 	u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
620 
621 	return jhash_3words(v,
622 			    (__force u32)a->s6_addr32[2],
623 			    (__force u32)a->s6_addr32[3],
624 			    initval);
625 }
626 
627 static inline bool ipv6_addr_loopback(const struct in6_addr *a)
628 {
629 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
630 	const __be64 *be = (const __be64 *)a;
631 
632 	return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
633 #else
634 	return (a->s6_addr32[0] | a->s6_addr32[1] |
635 		a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
636 #endif
637 }
638 
639 /*
640  * Note that we must __force cast these to unsigned long to make sparse happy,
641  * since all of the endian-annotated types are fixed size regardless of arch.
642  */
643 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
644 {
645 	return (
646 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
647 		*(unsigned long *)a |
648 #else
649 		(__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
650 #endif
651 		(__force unsigned long)(a->s6_addr32[2] ^
652 					cpu_to_be32(0x0000ffff))) == 0UL;
653 }
654 
655 static inline u32 ipv6_portaddr_hash(const struct net *net,
656 				     const struct in6_addr *addr6,
657 				     unsigned int port)
658 {
659 	unsigned int hash, mix = net_hash_mix(net);
660 
661 	if (ipv6_addr_any(addr6))
662 		hash = jhash_1word(0, mix);
663 	else if (ipv6_addr_v4mapped(addr6))
664 		hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
665 	else
666 		hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
667 
668 	return hash ^ port;
669 }
670 
671 /*
672  * Check for a RFC 4843 ORCHID address
673  * (Overlay Routable Cryptographic Hash Identifiers)
674  */
675 static inline bool ipv6_addr_orchid(const struct in6_addr *a)
676 {
677 	return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
678 }
679 
680 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
681 {
682 	return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
683 }
684 
685 static inline void ipv6_addr_set_v4mapped(const __be32 addr,
686 					  struct in6_addr *v4mapped)
687 {
688 	ipv6_addr_set(v4mapped,
689 			0, 0,
690 			htonl(0x0000FFFF),
691 			addr);
692 }
693 
694 /*
695  * find the first different bit between two addresses
696  * length of address must be a multiple of 32bits
697  */
698 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
699 {
700 	const __be32 *a1 = token1, *a2 = token2;
701 	int i;
702 
703 	addrlen >>= 2;
704 
705 	for (i = 0; i < addrlen; i++) {
706 		__be32 xb = a1[i] ^ a2[i];
707 		if (xb)
708 			return i * 32 + 31 - __fls(ntohl(xb));
709 	}
710 
711 	/*
712 	 *	we should *never* get to this point since that
713 	 *	would mean the addrs are equal
714 	 *
715 	 *	However, we do get to it 8) And exacly, when
716 	 *	addresses are equal 8)
717 	 *
718 	 *	ip route add 1111::/128 via ...
719 	 *	ip route add 1111::/64 via ...
720 	 *	and we are here.
721 	 *
722 	 *	Ideally, this function should stop comparison
723 	 *	at prefix length. It does not, but it is still OK,
724 	 *	if returned value is greater than prefix length.
725 	 *					--ANK (980803)
726 	 */
727 	return addrlen << 5;
728 }
729 
730 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
731 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
732 {
733 	const __be64 *a1 = token1, *a2 = token2;
734 	int i;
735 
736 	addrlen >>= 3;
737 
738 	for (i = 0; i < addrlen; i++) {
739 		__be64 xb = a1[i] ^ a2[i];
740 		if (xb)
741 			return i * 64 + 63 - __fls(be64_to_cpu(xb));
742 	}
743 
744 	return addrlen << 6;
745 }
746 #endif
747 
748 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
749 {
750 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
751 	if (__builtin_constant_p(addrlen) && !(addrlen & 7))
752 		return __ipv6_addr_diff64(token1, token2, addrlen);
753 #endif
754 	return __ipv6_addr_diff32(token1, token2, addrlen);
755 }
756 
757 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
758 {
759 	return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
760 }
761 
762 __be32 ipv6_select_ident(struct net *net,
763 			 const struct in6_addr *daddr,
764 			 const struct in6_addr *saddr);
765 __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
766 
767 int ip6_dst_hoplimit(struct dst_entry *dst);
768 
769 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
770 				      struct dst_entry *dst)
771 {
772 	int hlimit;
773 
774 	if (ipv6_addr_is_multicast(&fl6->daddr))
775 		hlimit = np->mcast_hops;
776 	else
777 		hlimit = np->hop_limit;
778 	if (hlimit < 0)
779 		hlimit = ip6_dst_hoplimit(dst);
780 	return hlimit;
781 }
782 
783 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
784  * Equivalent to :	flow->v6addrs.src = iph->saddr;
785  *			flow->v6addrs.dst = iph->daddr;
786  */
787 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
788 					    const struct ipv6hdr *iph)
789 {
790 	BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
791 		     offsetof(typeof(flow->addrs), v6addrs.src) +
792 		     sizeof(flow->addrs.v6addrs.src));
793 	memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs));
794 	flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
795 }
796 
797 #if IS_ENABLED(CONFIG_IPV6)
798 
799 /* Sysctl settings for net ipv6.auto_flowlabels */
800 #define IP6_AUTO_FLOW_LABEL_OFF		0
801 #define IP6_AUTO_FLOW_LABEL_OPTOUT	1
802 #define IP6_AUTO_FLOW_LABEL_OPTIN	2
803 #define IP6_AUTO_FLOW_LABEL_FORCED	3
804 
805 #define IP6_AUTO_FLOW_LABEL_MAX		IP6_AUTO_FLOW_LABEL_FORCED
806 
807 #define IP6_DEFAULT_AUTO_FLOW_LABELS	IP6_AUTO_FLOW_LABEL_OPTOUT
808 
809 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
810 					__be32 flowlabel, bool autolabel,
811 					struct flowi6 *fl6)
812 {
813 	u32 hash;
814 
815 	/* @flowlabel may include more than a flow label, eg, the traffic class.
816 	 * Here we want only the flow label value.
817 	 */
818 	flowlabel &= IPV6_FLOWLABEL_MASK;
819 
820 	if (flowlabel ||
821 	    net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
822 	    (!autolabel &&
823 	     net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
824 		return flowlabel;
825 
826 	hash = skb_get_hash_flowi6(skb, fl6);
827 
828 	/* Since this is being sent on the wire obfuscate hash a bit
829 	 * to minimize possbility that any useful information to an
830 	 * attacker is leaked. Only lower 20 bits are relevant.
831 	 */
832 	rol32(hash, 16);
833 
834 	flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
835 
836 	if (net->ipv6.sysctl.flowlabel_state_ranges)
837 		flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
838 
839 	return flowlabel;
840 }
841 
842 static inline int ip6_default_np_autolabel(struct net *net)
843 {
844 	switch (net->ipv6.sysctl.auto_flowlabels) {
845 	case IP6_AUTO_FLOW_LABEL_OFF:
846 	case IP6_AUTO_FLOW_LABEL_OPTIN:
847 	default:
848 		return 0;
849 	case IP6_AUTO_FLOW_LABEL_OPTOUT:
850 	case IP6_AUTO_FLOW_LABEL_FORCED:
851 		return 1;
852 	}
853 }
854 #else
855 static inline void ip6_set_txhash(struct sock *sk) { }
856 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
857 					__be32 flowlabel, bool autolabel,
858 					struct flowi6 *fl6)
859 {
860 	return flowlabel;
861 }
862 static inline int ip6_default_np_autolabel(struct net *net)
863 {
864 	return 0;
865 }
866 #endif
867 
868 #if IS_ENABLED(CONFIG_IPV6)
869 static inline int ip6_multipath_hash_policy(const struct net *net)
870 {
871 	return net->ipv6.sysctl.multipath_hash_policy;
872 }
873 #else
874 static inline int ip6_multipath_hash_policy(const struct net *net)
875 {
876 	return 0;
877 }
878 #endif
879 
880 /*
881  *	Header manipulation
882  */
883 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
884 				__be32 flowlabel)
885 {
886 	*(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
887 }
888 
889 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
890 {
891 	return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
892 }
893 
894 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
895 {
896 	return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
897 }
898 
899 static inline u8 ip6_tclass(__be32 flowinfo)
900 {
901 	return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
902 }
903 
904 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
905 {
906 	return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
907 }
908 
909 /*
910  *	Prototypes exported by ipv6
911  */
912 
913 /*
914  *	rcv function (called from netdevice level)
915  */
916 
917 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
918 	     struct packet_type *pt, struct net_device *orig_dev);
919 
920 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
921 
922 /*
923  *	upper-layer output functions
924  */
925 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
926 	     __u32 mark, struct ipv6_txoptions *opt, int tclass);
927 
928 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
929 
930 int ip6_append_data(struct sock *sk,
931 		    int getfrag(void *from, char *to, int offset, int len,
932 				int odd, struct sk_buff *skb),
933 		    void *from, int length, int transhdrlen,
934 		    struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
935 		    struct rt6_info *rt, unsigned int flags,
936 		    const struct sockcm_cookie *sockc);
937 
938 int ip6_push_pending_frames(struct sock *sk);
939 
940 void ip6_flush_pending_frames(struct sock *sk);
941 
942 int ip6_send_skb(struct sk_buff *skb);
943 
944 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
945 			       struct inet_cork_full *cork,
946 			       struct inet6_cork *v6_cork);
947 struct sk_buff *ip6_make_skb(struct sock *sk,
948 			     int getfrag(void *from, char *to, int offset,
949 					 int len, int odd, struct sk_buff *skb),
950 			     void *from, int length, int transhdrlen,
951 			     struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
952 			     struct rt6_info *rt, unsigned int flags,
953 			     const struct sockcm_cookie *sockc);
954 
955 static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
956 {
957 	return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
958 			      &inet6_sk(sk)->cork);
959 }
960 
961 unsigned int ip6_dst_mtu_forward(const struct dst_entry *dst);
962 
963 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
964 		   struct flowi6 *fl6);
965 struct dst_entry *ip6_dst_lookup_flow(const struct sock *sk, struct flowi6 *fl6,
966 				      const struct in6_addr *final_dst);
967 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
968 					 const struct in6_addr *final_dst,
969 					 bool connected);
970 struct dst_entry *ip6_blackhole_route(struct net *net,
971 				      struct dst_entry *orig_dst);
972 
973 /*
974  *	skb processing functions
975  */
976 
977 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
978 int ip6_forward(struct sk_buff *skb);
979 int ip6_input(struct sk_buff *skb);
980 int ip6_mc_input(struct sk_buff *skb);
981 
982 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
983 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
984 
985 /*
986  *	Extension header (options) processing
987  */
988 
989 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
990 			  u8 *proto, struct in6_addr **daddr_p,
991 			  struct in6_addr *saddr);
992 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
993 			 u8 *proto);
994 
995 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
996 		     __be16 *frag_offp);
997 
998 bool ipv6_ext_hdr(u8 nexthdr);
999 
1000 enum {
1001 	IP6_FH_F_FRAG		= (1 << 0),
1002 	IP6_FH_F_AUTH		= (1 << 1),
1003 	IP6_FH_F_SKIP_RH	= (1 << 2),
1004 };
1005 
1006 /* find specified header and get offset to it */
1007 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
1008 		  unsigned short *fragoff, int *fragflg);
1009 
1010 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
1011 
1012 struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
1013 				const struct ipv6_txoptions *opt,
1014 				struct in6_addr *orig);
1015 
1016 /*
1017  *	socket options (ipv6_sockglue.c)
1018  */
1019 
1020 int ipv6_setsockopt(struct sock *sk, int level, int optname,
1021 		    char __user *optval, unsigned int optlen);
1022 int ipv6_getsockopt(struct sock *sk, int level, int optname,
1023 		    char __user *optval, int __user *optlen);
1024 int compat_ipv6_setsockopt(struct sock *sk, int level, int optname,
1025 			   char __user *optval, unsigned int optlen);
1026 int compat_ipv6_getsockopt(struct sock *sk, int level, int optname,
1027 			   char __user *optval, int __user *optlen);
1028 
1029 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
1030 			   int addr_len);
1031 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
1032 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
1033 				 int addr_len);
1034 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
1035 void ip6_datagram_release_cb(struct sock *sk);
1036 
1037 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
1038 		    int *addr_len);
1039 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
1040 		     int *addr_len);
1041 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
1042 		     u32 info, u8 *payload);
1043 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
1044 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
1045 
1046 int inet6_release(struct socket *sock);
1047 int __inet6_bind(struct sock *sock, struct sockaddr *uaddr, int addr_len,
1048 		 bool force_bind_address_no_port, bool with_lock);
1049 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
1050 int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
1051 		  int peer);
1052 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
1053 
1054 int inet6_hash_connect(struct inet_timewait_death_row *death_row,
1055 			      struct sock *sk);
1056 
1057 /*
1058  * reassembly.c
1059  */
1060 extern const struct proto_ops inet6_stream_ops;
1061 extern const struct proto_ops inet6_dgram_ops;
1062 extern const struct proto_ops inet6_sockraw_ops;
1063 
1064 struct group_source_req;
1065 struct group_filter;
1066 
1067 int ip6_mc_source(int add, int omode, struct sock *sk,
1068 		  struct group_source_req *pgsr);
1069 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf);
1070 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
1071 		  struct group_filter __user *optval, int __user *optlen);
1072 
1073 #ifdef CONFIG_PROC_FS
1074 int ac6_proc_init(struct net *net);
1075 void ac6_proc_exit(struct net *net);
1076 int raw6_proc_init(void);
1077 void raw6_proc_exit(void);
1078 int tcp6_proc_init(struct net *net);
1079 void tcp6_proc_exit(struct net *net);
1080 int udp6_proc_init(struct net *net);
1081 void udp6_proc_exit(struct net *net);
1082 int udplite6_proc_init(void);
1083 void udplite6_proc_exit(void);
1084 int ipv6_misc_proc_init(void);
1085 void ipv6_misc_proc_exit(void);
1086 int snmp6_register_dev(struct inet6_dev *idev);
1087 int snmp6_unregister_dev(struct inet6_dev *idev);
1088 
1089 #else
1090 static inline int ac6_proc_init(struct net *net) { return 0; }
1091 static inline void ac6_proc_exit(struct net *net) { }
1092 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
1093 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
1094 #endif
1095 
1096 #ifdef CONFIG_SYSCTL
1097 extern struct ctl_table ipv6_route_table_template[];
1098 
1099 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
1100 struct ctl_table *ipv6_route_sysctl_init(struct net *net);
1101 int ipv6_sysctl_register(void);
1102 void ipv6_sysctl_unregister(void);
1103 #endif
1104 
1105 int ipv6_sock_mc_join(struct sock *sk, int ifindex,
1106 		      const struct in6_addr *addr);
1107 int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
1108 		      const struct in6_addr *addr);
1109 #endif /* _NET_IPV6_H */
1110