1 /* 2 * Linux INET6 implementation 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #ifndef _NET_IPV6_H 14 #define _NET_IPV6_H 15 16 #include <linux/ipv6.h> 17 #include <linux/hardirq.h> 18 #include <linux/jhash.h> 19 #include <net/if_inet6.h> 20 #include <net/ndisc.h> 21 #include <net/flow.h> 22 #include <net/flow_dissector.h> 23 #include <net/snmp.h> 24 25 #define SIN6_LEN_RFC2133 24 26 27 #define IPV6_MAXPLEN 65535 28 29 /* 30 * NextHeader field of IPv6 header 31 */ 32 33 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */ 34 #define NEXTHDR_TCP 6 /* TCP segment. */ 35 #define NEXTHDR_UDP 17 /* UDP message. */ 36 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */ 37 #define NEXTHDR_ROUTING 43 /* Routing header. */ 38 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */ 39 #define NEXTHDR_GRE 47 /* GRE header. */ 40 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */ 41 #define NEXTHDR_AUTH 51 /* Authentication header. */ 42 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */ 43 #define NEXTHDR_NONE 59 /* No next header */ 44 #define NEXTHDR_DEST 60 /* Destination options header. */ 45 #define NEXTHDR_SCTP 132 /* SCTP message. */ 46 #define NEXTHDR_MOBILITY 135 /* Mobility header. */ 47 48 #define NEXTHDR_MAX 255 49 50 #define IPV6_DEFAULT_HOPLIMIT 64 51 #define IPV6_DEFAULT_MCASTHOPS 1 52 53 /* 54 * Addr type 55 * 56 * type - unicast | multicast 57 * scope - local | site | global 58 * v4 - compat 59 * v4mapped 60 * any 61 * loopback 62 */ 63 64 #define IPV6_ADDR_ANY 0x0000U 65 66 #define IPV6_ADDR_UNICAST 0x0001U 67 #define IPV6_ADDR_MULTICAST 0x0002U 68 69 #define IPV6_ADDR_LOOPBACK 0x0010U 70 #define IPV6_ADDR_LINKLOCAL 0x0020U 71 #define IPV6_ADDR_SITELOCAL 0x0040U 72 73 #define IPV6_ADDR_COMPATv4 0x0080U 74 75 #define IPV6_ADDR_SCOPE_MASK 0x00f0U 76 77 #define IPV6_ADDR_MAPPED 0x1000U 78 79 /* 80 * Addr scopes 81 */ 82 #define IPV6_ADDR_MC_SCOPE(a) \ 83 ((a)->s6_addr[1] & 0x0f) /* nonstandard */ 84 #define __IPV6_ADDR_SCOPE_INVALID -1 85 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01 86 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02 87 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05 88 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08 89 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e 90 91 /* 92 * Addr flags 93 */ 94 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \ 95 ((a)->s6_addr[1] & 0x10) 96 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \ 97 ((a)->s6_addr[1] & 0x20) 98 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \ 99 ((a)->s6_addr[1] & 0x40) 100 101 /* 102 * fragmentation header 103 */ 104 105 struct frag_hdr { 106 __u8 nexthdr; 107 __u8 reserved; 108 __be16 frag_off; 109 __be32 identification; 110 }; 111 112 #define IP6_MF 0x0001 113 #define IP6_OFFSET 0xFFF8 114 115 #define IP6_REPLY_MARK(net, mark) \ 116 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0) 117 118 #include <net/sock.h> 119 120 /* sysctls */ 121 extern int sysctl_mld_max_msf; 122 extern int sysctl_mld_qrv; 123 124 #define _DEVINC(net, statname, mod, idev, field) \ 125 ({ \ 126 struct inet6_dev *_idev = (idev); \ 127 if (likely(_idev != NULL)) \ 128 mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\ 129 mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\ 130 }) 131 132 /* per device counters are atomic_long_t */ 133 #define _DEVINCATOMIC(net, statname, mod, idev, field) \ 134 ({ \ 135 struct inet6_dev *_idev = (idev); \ 136 if (likely(_idev != NULL)) \ 137 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 138 mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\ 139 }) 140 141 /* per device and per net counters are atomic_long_t */ 142 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \ 143 ({ \ 144 struct inet6_dev *_idev = (idev); \ 145 if (likely(_idev != NULL)) \ 146 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 147 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\ 148 }) 149 150 #define _DEVADD(net, statname, mod, idev, field, val) \ 151 ({ \ 152 struct inet6_dev *_idev = (idev); \ 153 if (likely(_idev != NULL)) \ 154 mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \ 155 mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\ 156 }) 157 158 #define _DEVUPD(net, statname, mod, idev, field, val) \ 159 ({ \ 160 struct inet6_dev *_idev = (idev); \ 161 if (likely(_idev != NULL)) \ 162 mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \ 163 mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\ 164 }) 165 166 /* MIBs */ 167 168 #define IP6_INC_STATS(net, idev,field) \ 169 _DEVINC(net, ipv6, , idev, field) 170 #define __IP6_INC_STATS(net, idev,field) \ 171 _DEVINC(net, ipv6, __, idev, field) 172 #define IP6_ADD_STATS(net, idev,field,val) \ 173 _DEVADD(net, ipv6, , idev, field, val) 174 #define __IP6_ADD_STATS(net, idev,field,val) \ 175 _DEVADD(net, ipv6, __, idev, field, val) 176 #define IP6_UPD_PO_STATS(net, idev,field,val) \ 177 _DEVUPD(net, ipv6, , idev, field, val) 178 #define __IP6_UPD_PO_STATS(net, idev,field,val) \ 179 _DEVUPD(net, ipv6, __, idev, field, val) 180 #define ICMP6_INC_STATS(net, idev, field) \ 181 _DEVINCATOMIC(net, icmpv6, , idev, field) 182 #define __ICMP6_INC_STATS(net, idev, field) \ 183 _DEVINCATOMIC(net, icmpv6, __, idev, field) 184 185 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \ 186 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256) 187 #define ICMP6MSGIN_INC_STATS(net, idev, field) \ 188 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field) 189 190 struct ip6_ra_chain { 191 struct ip6_ra_chain *next; 192 struct sock *sk; 193 int sel; 194 void (*destructor)(struct sock *); 195 }; 196 197 extern struct ip6_ra_chain *ip6_ra_chain; 198 extern rwlock_t ip6_ra_lock; 199 200 /* 201 This structure is prepared by protocol, when parsing 202 ancillary data and passed to IPv6. 203 */ 204 205 struct ipv6_txoptions { 206 atomic_t refcnt; 207 /* Length of this structure */ 208 int tot_len; 209 210 /* length of extension headers */ 211 212 __u16 opt_flen; /* after fragment hdr */ 213 __u16 opt_nflen; /* before fragment hdr */ 214 215 struct ipv6_opt_hdr *hopopt; 216 struct ipv6_opt_hdr *dst0opt; 217 struct ipv6_rt_hdr *srcrt; /* Routing Header */ 218 struct ipv6_opt_hdr *dst1opt; 219 struct rcu_head rcu; 220 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */ 221 }; 222 223 struct ip6_flowlabel { 224 struct ip6_flowlabel __rcu *next; 225 __be32 label; 226 atomic_t users; 227 struct in6_addr dst; 228 struct ipv6_txoptions *opt; 229 unsigned long linger; 230 struct rcu_head rcu; 231 u8 share; 232 union { 233 struct pid *pid; 234 kuid_t uid; 235 } owner; 236 unsigned long lastuse; 237 unsigned long expires; 238 struct net *fl_net; 239 }; 240 241 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF) 242 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF) 243 #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000) 244 245 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK) 246 #define IPV6_TCLASS_SHIFT 20 247 248 struct ipv6_fl_socklist { 249 struct ipv6_fl_socklist __rcu *next; 250 struct ip6_flowlabel *fl; 251 struct rcu_head rcu; 252 }; 253 254 struct ipcm6_cookie { 255 __s16 hlimit; 256 __s16 tclass; 257 __s8 dontfrag; 258 struct ipv6_txoptions *opt; 259 }; 260 261 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np) 262 { 263 struct ipv6_txoptions *opt; 264 265 rcu_read_lock(); 266 opt = rcu_dereference(np->opt); 267 if (opt) { 268 if (!atomic_inc_not_zero(&opt->refcnt)) 269 opt = NULL; 270 else 271 opt = rcu_pointer_handoff(opt); 272 } 273 rcu_read_unlock(); 274 return opt; 275 } 276 277 static inline void txopt_put(struct ipv6_txoptions *opt) 278 { 279 if (opt && atomic_dec_and_test(&opt->refcnt)) 280 kfree_rcu(opt, rcu); 281 } 282 283 struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label); 284 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space, 285 struct ip6_flowlabel *fl, 286 struct ipv6_txoptions *fopt); 287 void fl6_free_socklist(struct sock *sk); 288 int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen); 289 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq, 290 int flags); 291 int ip6_flowlabel_init(void); 292 void ip6_flowlabel_cleanup(void); 293 294 static inline void fl6_sock_release(struct ip6_flowlabel *fl) 295 { 296 if (fl) 297 atomic_dec(&fl->users); 298 } 299 300 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info); 301 302 int icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6, 303 struct icmp6hdr *thdr, int len); 304 305 int ip6_ra_control(struct sock *sk, int sel); 306 307 int ipv6_parse_hopopts(struct sk_buff *skb); 308 309 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk, 310 struct ipv6_txoptions *opt); 311 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk, 312 struct ipv6_txoptions *opt, 313 int newtype, 314 struct ipv6_opt_hdr __user *newopt, 315 int newoptlen); 316 struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space, 317 struct ipv6_txoptions *opt); 318 319 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb, 320 const struct inet6_skb_parm *opt); 321 322 static inline bool ipv6_accept_ra(struct inet6_dev *idev) 323 { 324 /* If forwarding is enabled, RA are not accepted unless the special 325 * hybrid mode (accept_ra=2) is enabled. 326 */ 327 return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 : 328 idev->cnf.accept_ra; 329 } 330 331 #if IS_ENABLED(CONFIG_IPV6) 332 static inline int ip6_frag_mem(struct net *net) 333 { 334 return sum_frag_mem_limit(&net->ipv6.frags); 335 } 336 #endif 337 338 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */ 339 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */ 340 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */ 341 342 int __ipv6_addr_type(const struct in6_addr *addr); 343 static inline int ipv6_addr_type(const struct in6_addr *addr) 344 { 345 return __ipv6_addr_type(addr) & 0xffff; 346 } 347 348 static inline int ipv6_addr_scope(const struct in6_addr *addr) 349 { 350 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK; 351 } 352 353 static inline int __ipv6_addr_src_scope(int type) 354 { 355 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16); 356 } 357 358 static inline int ipv6_addr_src_scope(const struct in6_addr *addr) 359 { 360 return __ipv6_addr_src_scope(__ipv6_addr_type(addr)); 361 } 362 363 static inline bool __ipv6_addr_needs_scope_id(int type) 364 { 365 return type & IPV6_ADDR_LINKLOCAL || 366 (type & IPV6_ADDR_MULTICAST && 367 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL))); 368 } 369 370 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface) 371 { 372 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0; 373 } 374 375 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2) 376 { 377 return memcmp(a1, a2, sizeof(struct in6_addr)); 378 } 379 380 static inline bool 381 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m, 382 const struct in6_addr *a2) 383 { 384 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 385 const unsigned long *ul1 = (const unsigned long *)a1; 386 const unsigned long *ulm = (const unsigned long *)m; 387 const unsigned long *ul2 = (const unsigned long *)a2; 388 389 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) | 390 ((ul1[1] ^ ul2[1]) & ulm[1])); 391 #else 392 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) | 393 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) | 394 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) | 395 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3])); 396 #endif 397 } 398 399 static inline void ipv6_addr_prefix(struct in6_addr *pfx, 400 const struct in6_addr *addr, 401 int plen) 402 { 403 /* caller must guarantee 0 <= plen <= 128 */ 404 int o = plen >> 3, 405 b = plen & 0x7; 406 407 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr)); 408 memcpy(pfx->s6_addr, addr, o); 409 if (b != 0) 410 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b); 411 } 412 413 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr, 414 const struct in6_addr *pfx, 415 int plen) 416 { 417 /* caller must guarantee 0 <= plen <= 128 */ 418 int o = plen >> 3, 419 b = plen & 0x7; 420 421 memcpy(addr->s6_addr, pfx, o); 422 if (b != 0) { 423 addr->s6_addr[o] &= ~(0xff00 >> b); 424 addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b)); 425 } 426 } 427 428 static inline void __ipv6_addr_set_half(__be32 *addr, 429 __be32 wh, __be32 wl) 430 { 431 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 432 #if defined(__BIG_ENDIAN) 433 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) { 434 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl)); 435 return; 436 } 437 #elif defined(__LITTLE_ENDIAN) 438 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) { 439 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh)); 440 return; 441 } 442 #endif 443 #endif 444 addr[0] = wh; 445 addr[1] = wl; 446 } 447 448 static inline void ipv6_addr_set(struct in6_addr *addr, 449 __be32 w1, __be32 w2, 450 __be32 w3, __be32 w4) 451 { 452 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2); 453 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4); 454 } 455 456 static inline bool ipv6_addr_equal(const struct in6_addr *a1, 457 const struct in6_addr *a2) 458 { 459 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 460 const unsigned long *ul1 = (const unsigned long *)a1; 461 const unsigned long *ul2 = (const unsigned long *)a2; 462 463 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL; 464 #else 465 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) | 466 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) | 467 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) | 468 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0; 469 #endif 470 } 471 472 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 473 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1, 474 const __be64 *a2, 475 unsigned int len) 476 { 477 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len)))) 478 return false; 479 return true; 480 } 481 482 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 483 const struct in6_addr *addr2, 484 unsigned int prefixlen) 485 { 486 const __be64 *a1 = (const __be64 *)addr1; 487 const __be64 *a2 = (const __be64 *)addr2; 488 489 if (prefixlen >= 64) { 490 if (a1[0] ^ a2[0]) 491 return false; 492 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64); 493 } 494 return __ipv6_prefix_equal64_half(a1, a2, prefixlen); 495 } 496 #else 497 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 498 const struct in6_addr *addr2, 499 unsigned int prefixlen) 500 { 501 const __be32 *a1 = addr1->s6_addr32; 502 const __be32 *a2 = addr2->s6_addr32; 503 unsigned int pdw, pbi; 504 505 /* check complete u32 in prefix */ 506 pdw = prefixlen >> 5; 507 if (pdw && memcmp(a1, a2, pdw << 2)) 508 return false; 509 510 /* check incomplete u32 in prefix */ 511 pbi = prefixlen & 0x1f; 512 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi)))) 513 return false; 514 515 return true; 516 } 517 #endif 518 519 struct inet_frag_queue; 520 521 enum ip6_defrag_users { 522 IP6_DEFRAG_LOCAL_DELIVER, 523 IP6_DEFRAG_CONNTRACK_IN, 524 __IP6_DEFRAG_CONNTRACK_IN = IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX, 525 IP6_DEFRAG_CONNTRACK_OUT, 526 __IP6_DEFRAG_CONNTRACK_OUT = IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX, 527 IP6_DEFRAG_CONNTRACK_BRIDGE_IN, 528 __IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX, 529 }; 530 531 struct ip6_create_arg { 532 __be32 id; 533 u32 user; 534 const struct in6_addr *src; 535 const struct in6_addr *dst; 536 int iif; 537 u8 ecn; 538 }; 539 540 void ip6_frag_init(struct inet_frag_queue *q, const void *a); 541 bool ip6_frag_match(const struct inet_frag_queue *q, const void *a); 542 543 /* 544 * Equivalent of ipv4 struct ip 545 */ 546 struct frag_queue { 547 struct inet_frag_queue q; 548 549 __be32 id; /* fragment id */ 550 u32 user; 551 struct in6_addr saddr; 552 struct in6_addr daddr; 553 554 int iif; 555 unsigned int csum; 556 __u16 nhoffset; 557 u8 ecn; 558 }; 559 560 void ip6_expire_frag_queue(struct net *net, struct frag_queue *fq, 561 struct inet_frags *frags); 562 563 static inline bool ipv6_addr_any(const struct in6_addr *a) 564 { 565 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 566 const unsigned long *ul = (const unsigned long *)a; 567 568 return (ul[0] | ul[1]) == 0UL; 569 #else 570 return (a->s6_addr32[0] | a->s6_addr32[1] | 571 a->s6_addr32[2] | a->s6_addr32[3]) == 0; 572 #endif 573 } 574 575 static inline u32 ipv6_addr_hash(const struct in6_addr *a) 576 { 577 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 578 const unsigned long *ul = (const unsigned long *)a; 579 unsigned long x = ul[0] ^ ul[1]; 580 581 return (u32)(x ^ (x >> 32)); 582 #else 583 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^ 584 a->s6_addr32[2] ^ a->s6_addr32[3]); 585 #endif 586 } 587 588 /* more secured version of ipv6_addr_hash() */ 589 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval) 590 { 591 u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1]; 592 593 return jhash_3words(v, 594 (__force u32)a->s6_addr32[2], 595 (__force u32)a->s6_addr32[3], 596 initval); 597 } 598 599 static inline bool ipv6_addr_loopback(const struct in6_addr *a) 600 { 601 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 602 const __be64 *be = (const __be64 *)a; 603 604 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL; 605 #else 606 return (a->s6_addr32[0] | a->s6_addr32[1] | 607 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0; 608 #endif 609 } 610 611 /* 612 * Note that we must __force cast these to unsigned long to make sparse happy, 613 * since all of the endian-annotated types are fixed size regardless of arch. 614 */ 615 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a) 616 { 617 return ( 618 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 619 *(unsigned long *)a | 620 #else 621 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) | 622 #endif 623 (__force unsigned long)(a->s6_addr32[2] ^ 624 cpu_to_be32(0x0000ffff))) == 0UL; 625 } 626 627 /* 628 * Check for a RFC 4843 ORCHID address 629 * (Overlay Routable Cryptographic Hash Identifiers) 630 */ 631 static inline bool ipv6_addr_orchid(const struct in6_addr *a) 632 { 633 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010); 634 } 635 636 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr) 637 { 638 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000); 639 } 640 641 static inline void ipv6_addr_set_v4mapped(const __be32 addr, 642 struct in6_addr *v4mapped) 643 { 644 ipv6_addr_set(v4mapped, 645 0, 0, 646 htonl(0x0000FFFF), 647 addr); 648 } 649 650 /* 651 * find the first different bit between two addresses 652 * length of address must be a multiple of 32bits 653 */ 654 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen) 655 { 656 const __be32 *a1 = token1, *a2 = token2; 657 int i; 658 659 addrlen >>= 2; 660 661 for (i = 0; i < addrlen; i++) { 662 __be32 xb = a1[i] ^ a2[i]; 663 if (xb) 664 return i * 32 + 31 - __fls(ntohl(xb)); 665 } 666 667 /* 668 * we should *never* get to this point since that 669 * would mean the addrs are equal 670 * 671 * However, we do get to it 8) And exacly, when 672 * addresses are equal 8) 673 * 674 * ip route add 1111::/128 via ... 675 * ip route add 1111::/64 via ... 676 * and we are here. 677 * 678 * Ideally, this function should stop comparison 679 * at prefix length. It does not, but it is still OK, 680 * if returned value is greater than prefix length. 681 * --ANK (980803) 682 */ 683 return addrlen << 5; 684 } 685 686 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 687 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen) 688 { 689 const __be64 *a1 = token1, *a2 = token2; 690 int i; 691 692 addrlen >>= 3; 693 694 for (i = 0; i < addrlen; i++) { 695 __be64 xb = a1[i] ^ a2[i]; 696 if (xb) 697 return i * 64 + 63 - __fls(be64_to_cpu(xb)); 698 } 699 700 return addrlen << 6; 701 } 702 #endif 703 704 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen) 705 { 706 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 707 if (__builtin_constant_p(addrlen) && !(addrlen & 7)) 708 return __ipv6_addr_diff64(token1, token2, addrlen); 709 #endif 710 return __ipv6_addr_diff32(token1, token2, addrlen); 711 } 712 713 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2) 714 { 715 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr)); 716 } 717 718 __be32 ipv6_select_ident(struct net *net, 719 const struct in6_addr *daddr, 720 const struct in6_addr *saddr); 721 void ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb); 722 723 int ip6_dst_hoplimit(struct dst_entry *dst); 724 725 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6, 726 struct dst_entry *dst) 727 { 728 int hlimit; 729 730 if (ipv6_addr_is_multicast(&fl6->daddr)) 731 hlimit = np->mcast_hops; 732 else 733 hlimit = np->hop_limit; 734 if (hlimit < 0) 735 hlimit = ip6_dst_hoplimit(dst); 736 return hlimit; 737 } 738 739 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store 740 * Equivalent to : flow->v6addrs.src = iph->saddr; 741 * flow->v6addrs.dst = iph->daddr; 742 */ 743 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow, 744 const struct ipv6hdr *iph) 745 { 746 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) != 747 offsetof(typeof(flow->addrs), v6addrs.src) + 748 sizeof(flow->addrs.v6addrs.src)); 749 memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs)); 750 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 751 } 752 753 #if IS_ENABLED(CONFIG_IPV6) 754 755 /* Sysctl settings for net ipv6.auto_flowlabels */ 756 #define IP6_AUTO_FLOW_LABEL_OFF 0 757 #define IP6_AUTO_FLOW_LABEL_OPTOUT 1 758 #define IP6_AUTO_FLOW_LABEL_OPTIN 2 759 #define IP6_AUTO_FLOW_LABEL_FORCED 3 760 761 #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED 762 763 #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT 764 765 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 766 __be32 flowlabel, bool autolabel, 767 struct flowi6 *fl6) 768 { 769 u32 hash; 770 771 if (flowlabel || 772 net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF || 773 (!autolabel && 774 net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED)) 775 return flowlabel; 776 777 hash = skb_get_hash_flowi6(skb, fl6); 778 779 /* Since this is being sent on the wire obfuscate hash a bit 780 * to minimize possbility that any useful information to an 781 * attacker is leaked. Only lower 20 bits are relevant. 782 */ 783 rol32(hash, 16); 784 785 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK; 786 787 if (net->ipv6.sysctl.flowlabel_state_ranges) 788 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG; 789 790 return flowlabel; 791 } 792 793 static inline int ip6_default_np_autolabel(struct net *net) 794 { 795 switch (net->ipv6.sysctl.auto_flowlabels) { 796 case IP6_AUTO_FLOW_LABEL_OFF: 797 case IP6_AUTO_FLOW_LABEL_OPTIN: 798 default: 799 return 0; 800 case IP6_AUTO_FLOW_LABEL_OPTOUT: 801 case IP6_AUTO_FLOW_LABEL_FORCED: 802 return 1; 803 } 804 } 805 #else 806 static inline void ip6_set_txhash(struct sock *sk) { } 807 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 808 __be32 flowlabel, bool autolabel, 809 struct flowi6 *fl6) 810 { 811 return flowlabel; 812 } 813 static inline int ip6_default_np_autolabel(struct net *net) 814 { 815 return 0; 816 } 817 #endif 818 819 820 /* 821 * Header manipulation 822 */ 823 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass, 824 __be32 flowlabel) 825 { 826 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel; 827 } 828 829 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr) 830 { 831 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK; 832 } 833 834 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr) 835 { 836 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK; 837 } 838 839 static inline u8 ip6_tclass(__be32 flowinfo) 840 { 841 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT; 842 } 843 844 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel) 845 { 846 return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel; 847 } 848 849 /* 850 * Prototypes exported by ipv6 851 */ 852 853 /* 854 * rcv function (called from netdevice level) 855 */ 856 857 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev, 858 struct packet_type *pt, struct net_device *orig_dev); 859 860 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb); 861 862 /* 863 * upper-layer output functions 864 */ 865 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, 866 struct ipv6_txoptions *opt, int tclass); 867 868 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr); 869 870 int ip6_append_data(struct sock *sk, 871 int getfrag(void *from, char *to, int offset, int len, 872 int odd, struct sk_buff *skb), 873 void *from, int length, int transhdrlen, 874 struct ipcm6_cookie *ipc6, struct flowi6 *fl6, 875 struct rt6_info *rt, unsigned int flags, 876 const struct sockcm_cookie *sockc); 877 878 int ip6_push_pending_frames(struct sock *sk); 879 880 void ip6_flush_pending_frames(struct sock *sk); 881 882 int ip6_send_skb(struct sk_buff *skb); 883 884 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue, 885 struct inet_cork_full *cork, 886 struct inet6_cork *v6_cork); 887 struct sk_buff *ip6_make_skb(struct sock *sk, 888 int getfrag(void *from, char *to, int offset, 889 int len, int odd, struct sk_buff *skb), 890 void *from, int length, int transhdrlen, 891 struct ipcm6_cookie *ipc6, struct flowi6 *fl6, 892 struct rt6_info *rt, unsigned int flags, 893 const struct sockcm_cookie *sockc); 894 895 static inline struct sk_buff *ip6_finish_skb(struct sock *sk) 896 { 897 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork, 898 &inet6_sk(sk)->cork); 899 } 900 901 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst, 902 struct flowi6 *fl6); 903 struct dst_entry *ip6_dst_lookup_flow(const struct sock *sk, struct flowi6 *fl6, 904 const struct in6_addr *final_dst); 905 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, 906 const struct in6_addr *final_dst); 907 struct dst_entry *ip6_blackhole_route(struct net *net, 908 struct dst_entry *orig_dst); 909 910 /* 911 * skb processing functions 912 */ 913 914 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb); 915 int ip6_forward(struct sk_buff *skb); 916 int ip6_input(struct sk_buff *skb); 917 int ip6_mc_input(struct sk_buff *skb); 918 919 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); 920 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); 921 922 /* 923 * Extension header (options) processing 924 */ 925 926 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 927 u8 *proto, struct in6_addr **daddr_p); 928 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 929 u8 *proto); 930 931 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp, 932 __be16 *frag_offp); 933 934 bool ipv6_ext_hdr(u8 nexthdr); 935 936 enum { 937 IP6_FH_F_FRAG = (1 << 0), 938 IP6_FH_F_AUTH = (1 << 1), 939 IP6_FH_F_SKIP_RH = (1 << 2), 940 }; 941 942 /* find specified header and get offset to it */ 943 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target, 944 unsigned short *fragoff, int *fragflg); 945 946 int ipv6_find_tlv(struct sk_buff *skb, int offset, int type); 947 948 struct in6_addr *fl6_update_dst(struct flowi6 *fl6, 949 const struct ipv6_txoptions *opt, 950 struct in6_addr *orig); 951 952 /* 953 * socket options (ipv6_sockglue.c) 954 */ 955 956 int ipv6_setsockopt(struct sock *sk, int level, int optname, 957 char __user *optval, unsigned int optlen); 958 int ipv6_getsockopt(struct sock *sk, int level, int optname, 959 char __user *optval, int __user *optlen); 960 int compat_ipv6_setsockopt(struct sock *sk, int level, int optname, 961 char __user *optval, unsigned int optlen); 962 int compat_ipv6_getsockopt(struct sock *sk, int level, int optname, 963 char __user *optval, int __user *optlen); 964 965 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len); 966 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr, 967 int addr_len); 968 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr); 969 void ip6_datagram_release_cb(struct sock *sk); 970 971 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len, 972 int *addr_len); 973 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len, 974 int *addr_len); 975 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, 976 u32 info, u8 *payload); 977 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info); 978 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu); 979 980 int inet6_release(struct socket *sock); 981 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len); 982 int inet6_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len, 983 int peer); 984 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 985 986 int inet6_hash_connect(struct inet_timewait_death_row *death_row, 987 struct sock *sk); 988 989 /* 990 * reassembly.c 991 */ 992 extern const struct proto_ops inet6_stream_ops; 993 extern const struct proto_ops inet6_dgram_ops; 994 995 struct group_source_req; 996 struct group_filter; 997 998 int ip6_mc_source(int add, int omode, struct sock *sk, 999 struct group_source_req *pgsr); 1000 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf); 1001 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf, 1002 struct group_filter __user *optval, int __user *optlen); 1003 1004 #ifdef CONFIG_PROC_FS 1005 int ac6_proc_init(struct net *net); 1006 void ac6_proc_exit(struct net *net); 1007 int raw6_proc_init(void); 1008 void raw6_proc_exit(void); 1009 int tcp6_proc_init(struct net *net); 1010 void tcp6_proc_exit(struct net *net); 1011 int udp6_proc_init(struct net *net); 1012 void udp6_proc_exit(struct net *net); 1013 int udplite6_proc_init(void); 1014 void udplite6_proc_exit(void); 1015 int ipv6_misc_proc_init(void); 1016 void ipv6_misc_proc_exit(void); 1017 int snmp6_register_dev(struct inet6_dev *idev); 1018 int snmp6_unregister_dev(struct inet6_dev *idev); 1019 1020 #else 1021 static inline int ac6_proc_init(struct net *net) { return 0; } 1022 static inline void ac6_proc_exit(struct net *net) { } 1023 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; } 1024 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; } 1025 #endif 1026 1027 #ifdef CONFIG_SYSCTL 1028 extern struct ctl_table ipv6_route_table_template[]; 1029 1030 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net); 1031 struct ctl_table *ipv6_route_sysctl_init(struct net *net); 1032 int ipv6_sysctl_register(void); 1033 void ipv6_sysctl_unregister(void); 1034 #endif 1035 1036 int ipv6_sock_mc_join(struct sock *sk, int ifindex, 1037 const struct in6_addr *addr); 1038 int ipv6_sock_mc_drop(struct sock *sk, int ifindex, 1039 const struct in6_addr *addr); 1040 #endif /* _NET_IPV6_H */ 1041