1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Linux INET6 implementation 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 */ 8 9 #ifndef _NET_IPV6_H 10 #define _NET_IPV6_H 11 12 #include <linux/ipv6.h> 13 #include <linux/hardirq.h> 14 #include <linux/jhash.h> 15 #include <linux/refcount.h> 16 #include <linux/jump_label_ratelimit.h> 17 #include <net/if_inet6.h> 18 #include <net/ndisc.h> 19 #include <net/flow.h> 20 #include <net/flow_dissector.h> 21 #include <net/snmp.h> 22 #include <net/netns/hash.h> 23 24 struct ip_tunnel_info; 25 26 #define SIN6_LEN_RFC2133 24 27 28 #define IPV6_MAXPLEN 65535 29 30 /* 31 * NextHeader field of IPv6 header 32 */ 33 34 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */ 35 #define NEXTHDR_IPV4 4 /* IPv4 in IPv6 */ 36 #define NEXTHDR_TCP 6 /* TCP segment. */ 37 #define NEXTHDR_UDP 17 /* UDP message. */ 38 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */ 39 #define NEXTHDR_ROUTING 43 /* Routing header. */ 40 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */ 41 #define NEXTHDR_GRE 47 /* GRE header. */ 42 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */ 43 #define NEXTHDR_AUTH 51 /* Authentication header. */ 44 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */ 45 #define NEXTHDR_NONE 59 /* No next header */ 46 #define NEXTHDR_DEST 60 /* Destination options header. */ 47 #define NEXTHDR_SCTP 132 /* SCTP message. */ 48 #define NEXTHDR_MOBILITY 135 /* Mobility header. */ 49 50 #define NEXTHDR_MAX 255 51 52 #define IPV6_DEFAULT_HOPLIMIT 64 53 #define IPV6_DEFAULT_MCASTHOPS 1 54 55 /* Limits on Hop-by-Hop and Destination options. 56 * 57 * Per RFC8200 there is no limit on the maximum number or lengths of options in 58 * Hop-by-Hop or Destination options other then the packet must fit in an MTU. 59 * We allow configurable limits in order to mitigate potential denial of 60 * service attacks. 61 * 62 * There are three limits that may be set: 63 * - Limit the number of options in a Hop-by-Hop or Destination options 64 * extension header 65 * - Limit the byte length of a Hop-by-Hop or Destination options extension 66 * header 67 * - Disallow unknown options 68 * 69 * The limits are expressed in corresponding sysctls: 70 * 71 * ipv6.sysctl.max_dst_opts_cnt 72 * ipv6.sysctl.max_hbh_opts_cnt 73 * ipv6.sysctl.max_dst_opts_len 74 * ipv6.sysctl.max_hbh_opts_len 75 * 76 * max_*_opts_cnt is the number of TLVs that are allowed for Destination 77 * options or Hop-by-Hop options. If the number is less than zero then unknown 78 * TLVs are disallowed and the number of known options that are allowed is the 79 * absolute value. Setting the value to INT_MAX indicates no limit. 80 * 81 * max_*_opts_len is the length limit in bytes of a Destination or 82 * Hop-by-Hop options extension header. Setting the value to INT_MAX 83 * indicates no length limit. 84 * 85 * If a limit is exceeded when processing an extension header the packet is 86 * silently discarded. 87 */ 88 89 /* Default limits for Hop-by-Hop and Destination options */ 90 #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8 91 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8 92 #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */ 93 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */ 94 95 /* 96 * Addr type 97 * 98 * type - unicast | multicast 99 * scope - local | site | global 100 * v4 - compat 101 * v4mapped 102 * any 103 * loopback 104 */ 105 106 #define IPV6_ADDR_ANY 0x0000U 107 108 #define IPV6_ADDR_UNICAST 0x0001U 109 #define IPV6_ADDR_MULTICAST 0x0002U 110 111 #define IPV6_ADDR_LOOPBACK 0x0010U 112 #define IPV6_ADDR_LINKLOCAL 0x0020U 113 #define IPV6_ADDR_SITELOCAL 0x0040U 114 115 #define IPV6_ADDR_COMPATv4 0x0080U 116 117 #define IPV6_ADDR_SCOPE_MASK 0x00f0U 118 119 #define IPV6_ADDR_MAPPED 0x1000U 120 121 /* 122 * Addr scopes 123 */ 124 #define IPV6_ADDR_MC_SCOPE(a) \ 125 ((a)->s6_addr[1] & 0x0f) /* nonstandard */ 126 #define __IPV6_ADDR_SCOPE_INVALID -1 127 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01 128 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02 129 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05 130 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08 131 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e 132 133 /* 134 * Addr flags 135 */ 136 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \ 137 ((a)->s6_addr[1] & 0x10) 138 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \ 139 ((a)->s6_addr[1] & 0x20) 140 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \ 141 ((a)->s6_addr[1] & 0x40) 142 143 /* 144 * fragmentation header 145 */ 146 147 struct frag_hdr { 148 __u8 nexthdr; 149 __u8 reserved; 150 __be16 frag_off; 151 __be32 identification; 152 }; 153 154 #define IP6_MF 0x0001 155 #define IP6_OFFSET 0xFFF8 156 157 struct ip6_fraglist_iter { 158 struct ipv6hdr *tmp_hdr; 159 struct sk_buff *frag; 160 int offset; 161 unsigned int hlen; 162 __be32 frag_id; 163 u8 nexthdr; 164 }; 165 166 int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr, 167 u8 nexthdr, __be32 frag_id, 168 struct ip6_fraglist_iter *iter); 169 void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter); 170 171 static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter) 172 { 173 struct sk_buff *skb = iter->frag; 174 175 iter->frag = skb->next; 176 skb_mark_not_on_list(skb); 177 178 return skb; 179 } 180 181 struct ip6_frag_state { 182 u8 *prevhdr; 183 unsigned int hlen; 184 unsigned int mtu; 185 unsigned int left; 186 int offset; 187 int ptr; 188 int hroom; 189 int troom; 190 __be32 frag_id; 191 u8 nexthdr; 192 }; 193 194 void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu, 195 unsigned short needed_tailroom, int hdr_room, u8 *prevhdr, 196 u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state); 197 struct sk_buff *ip6_frag_next(struct sk_buff *skb, 198 struct ip6_frag_state *state); 199 200 #define IP6_REPLY_MARK(net, mark) \ 201 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0) 202 203 #include <net/sock.h> 204 205 /* sysctls */ 206 extern int sysctl_mld_max_msf; 207 extern int sysctl_mld_qrv; 208 209 #define _DEVINC(net, statname, mod, idev, field) \ 210 ({ \ 211 struct inet6_dev *_idev = (idev); \ 212 if (likely(_idev != NULL)) \ 213 mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\ 214 mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\ 215 }) 216 217 /* per device counters are atomic_long_t */ 218 #define _DEVINCATOMIC(net, statname, mod, idev, field) \ 219 ({ \ 220 struct inet6_dev *_idev = (idev); \ 221 if (likely(_idev != NULL)) \ 222 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 223 mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\ 224 }) 225 226 /* per device and per net counters are atomic_long_t */ 227 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \ 228 ({ \ 229 struct inet6_dev *_idev = (idev); \ 230 if (likely(_idev != NULL)) \ 231 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ 232 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\ 233 }) 234 235 #define _DEVADD(net, statname, mod, idev, field, val) \ 236 ({ \ 237 struct inet6_dev *_idev = (idev); \ 238 if (likely(_idev != NULL)) \ 239 mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \ 240 mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\ 241 }) 242 243 #define _DEVUPD(net, statname, mod, idev, field, val) \ 244 ({ \ 245 struct inet6_dev *_idev = (idev); \ 246 if (likely(_idev != NULL)) \ 247 mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \ 248 mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\ 249 }) 250 251 /* MIBs */ 252 253 #define IP6_INC_STATS(net, idev,field) \ 254 _DEVINC(net, ipv6, , idev, field) 255 #define __IP6_INC_STATS(net, idev,field) \ 256 _DEVINC(net, ipv6, __, idev, field) 257 #define IP6_ADD_STATS(net, idev,field,val) \ 258 _DEVADD(net, ipv6, , idev, field, val) 259 #define __IP6_ADD_STATS(net, idev,field,val) \ 260 _DEVADD(net, ipv6, __, idev, field, val) 261 #define IP6_UPD_PO_STATS(net, idev,field,val) \ 262 _DEVUPD(net, ipv6, , idev, field, val) 263 #define __IP6_UPD_PO_STATS(net, idev,field,val) \ 264 _DEVUPD(net, ipv6, __, idev, field, val) 265 #define ICMP6_INC_STATS(net, idev, field) \ 266 _DEVINCATOMIC(net, icmpv6, , idev, field) 267 #define __ICMP6_INC_STATS(net, idev, field) \ 268 _DEVINCATOMIC(net, icmpv6, __, idev, field) 269 270 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \ 271 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256) 272 #define ICMP6MSGIN_INC_STATS(net, idev, field) \ 273 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field) 274 275 struct ip6_ra_chain { 276 struct ip6_ra_chain *next; 277 struct sock *sk; 278 int sel; 279 void (*destructor)(struct sock *); 280 }; 281 282 extern struct ip6_ra_chain *ip6_ra_chain; 283 extern rwlock_t ip6_ra_lock; 284 285 /* 286 This structure is prepared by protocol, when parsing 287 ancillary data and passed to IPv6. 288 */ 289 290 struct ipv6_txoptions { 291 refcount_t refcnt; 292 /* Length of this structure */ 293 int tot_len; 294 295 /* length of extension headers */ 296 297 __u16 opt_flen; /* after fragment hdr */ 298 __u16 opt_nflen; /* before fragment hdr */ 299 300 struct ipv6_opt_hdr *hopopt; 301 struct ipv6_opt_hdr *dst0opt; 302 struct ipv6_rt_hdr *srcrt; /* Routing Header */ 303 struct ipv6_opt_hdr *dst1opt; 304 struct rcu_head rcu; 305 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */ 306 }; 307 308 /* flowlabel_reflect sysctl values */ 309 enum flowlabel_reflect { 310 FLOWLABEL_REFLECT_ESTABLISHED = 1, 311 FLOWLABEL_REFLECT_TCP_RESET = 2, 312 FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES = 4, 313 }; 314 315 struct ip6_flowlabel { 316 struct ip6_flowlabel __rcu *next; 317 __be32 label; 318 atomic_t users; 319 struct in6_addr dst; 320 struct ipv6_txoptions *opt; 321 unsigned long linger; 322 struct rcu_head rcu; 323 u8 share; 324 union { 325 struct pid *pid; 326 kuid_t uid; 327 } owner; 328 unsigned long lastuse; 329 unsigned long expires; 330 struct net *fl_net; 331 }; 332 333 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF) 334 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF) 335 #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000) 336 337 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK) 338 #define IPV6_TCLASS_SHIFT 20 339 340 struct ipv6_fl_socklist { 341 struct ipv6_fl_socklist __rcu *next; 342 struct ip6_flowlabel *fl; 343 struct rcu_head rcu; 344 }; 345 346 struct ipcm6_cookie { 347 struct sockcm_cookie sockc; 348 __s16 hlimit; 349 __s16 tclass; 350 __u16 gso_size; 351 __s8 dontfrag; 352 struct ipv6_txoptions *opt; 353 }; 354 355 static inline void ipcm6_init(struct ipcm6_cookie *ipc6) 356 { 357 *ipc6 = (struct ipcm6_cookie) { 358 .hlimit = -1, 359 .tclass = -1, 360 .dontfrag = -1, 361 }; 362 } 363 364 static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6, 365 const struct ipv6_pinfo *np) 366 { 367 *ipc6 = (struct ipcm6_cookie) { 368 .hlimit = -1, 369 .tclass = np->tclass, 370 .dontfrag = np->dontfrag, 371 }; 372 } 373 374 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np) 375 { 376 struct ipv6_txoptions *opt; 377 378 rcu_read_lock(); 379 opt = rcu_dereference(np->opt); 380 if (opt) { 381 if (!refcount_inc_not_zero(&opt->refcnt)) 382 opt = NULL; 383 else 384 opt = rcu_pointer_handoff(opt); 385 } 386 rcu_read_unlock(); 387 return opt; 388 } 389 390 static inline void txopt_put(struct ipv6_txoptions *opt) 391 { 392 if (opt && refcount_dec_and_test(&opt->refcnt)) 393 kfree_rcu(opt, rcu); 394 } 395 396 struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label); 397 398 extern struct static_key_false_deferred ipv6_flowlabel_exclusive; 399 static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, 400 __be32 label) 401 { 402 if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key)) 403 return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT); 404 405 return NULL; 406 } 407 408 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space, 409 struct ip6_flowlabel *fl, 410 struct ipv6_txoptions *fopt); 411 void fl6_free_socklist(struct sock *sk); 412 int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen); 413 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq, 414 int flags); 415 int ip6_flowlabel_init(void); 416 void ip6_flowlabel_cleanup(void); 417 bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np); 418 419 static inline void fl6_sock_release(struct ip6_flowlabel *fl) 420 { 421 if (fl) 422 atomic_dec(&fl->users); 423 } 424 425 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info); 426 427 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6, 428 struct icmp6hdr *thdr, int len); 429 430 int ip6_ra_control(struct sock *sk, int sel); 431 432 int ipv6_parse_hopopts(struct sk_buff *skb); 433 434 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk, 435 struct ipv6_txoptions *opt); 436 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk, 437 struct ipv6_txoptions *opt, 438 int newtype, 439 struct ipv6_opt_hdr *newopt); 440 struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space, 441 struct ipv6_txoptions *opt); 442 443 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb, 444 const struct inet6_skb_parm *opt); 445 struct ipv6_txoptions *ipv6_update_options(struct sock *sk, 446 struct ipv6_txoptions *opt); 447 448 static inline bool ipv6_accept_ra(struct inet6_dev *idev) 449 { 450 /* If forwarding is enabled, RA are not accepted unless the special 451 * hybrid mode (accept_ra=2) is enabled. 452 */ 453 return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 : 454 idev->cnf.accept_ra; 455 } 456 457 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */ 458 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */ 459 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */ 460 461 int __ipv6_addr_type(const struct in6_addr *addr); 462 static inline int ipv6_addr_type(const struct in6_addr *addr) 463 { 464 return __ipv6_addr_type(addr) & 0xffff; 465 } 466 467 static inline int ipv6_addr_scope(const struct in6_addr *addr) 468 { 469 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK; 470 } 471 472 static inline int __ipv6_addr_src_scope(int type) 473 { 474 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16); 475 } 476 477 static inline int ipv6_addr_src_scope(const struct in6_addr *addr) 478 { 479 return __ipv6_addr_src_scope(__ipv6_addr_type(addr)); 480 } 481 482 static inline bool __ipv6_addr_needs_scope_id(int type) 483 { 484 return type & IPV6_ADDR_LINKLOCAL || 485 (type & IPV6_ADDR_MULTICAST && 486 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL))); 487 } 488 489 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface) 490 { 491 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0; 492 } 493 494 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2) 495 { 496 return memcmp(a1, a2, sizeof(struct in6_addr)); 497 } 498 499 static inline bool 500 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m, 501 const struct in6_addr *a2) 502 { 503 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 504 const unsigned long *ul1 = (const unsigned long *)a1; 505 const unsigned long *ulm = (const unsigned long *)m; 506 const unsigned long *ul2 = (const unsigned long *)a2; 507 508 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) | 509 ((ul1[1] ^ ul2[1]) & ulm[1])); 510 #else 511 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) | 512 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) | 513 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) | 514 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3])); 515 #endif 516 } 517 518 static inline void ipv6_addr_prefix(struct in6_addr *pfx, 519 const struct in6_addr *addr, 520 int plen) 521 { 522 /* caller must guarantee 0 <= plen <= 128 */ 523 int o = plen >> 3, 524 b = plen & 0x7; 525 526 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr)); 527 memcpy(pfx->s6_addr, addr, o); 528 if (b != 0) 529 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b); 530 } 531 532 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr, 533 const struct in6_addr *pfx, 534 int plen) 535 { 536 /* caller must guarantee 0 <= plen <= 128 */ 537 int o = plen >> 3, 538 b = plen & 0x7; 539 540 memcpy(addr->s6_addr, pfx, o); 541 if (b != 0) { 542 addr->s6_addr[o] &= ~(0xff00 >> b); 543 addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b)); 544 } 545 } 546 547 static inline void __ipv6_addr_set_half(__be32 *addr, 548 __be32 wh, __be32 wl) 549 { 550 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 551 #if defined(__BIG_ENDIAN) 552 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) { 553 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl)); 554 return; 555 } 556 #elif defined(__LITTLE_ENDIAN) 557 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) { 558 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh)); 559 return; 560 } 561 #endif 562 #endif 563 addr[0] = wh; 564 addr[1] = wl; 565 } 566 567 static inline void ipv6_addr_set(struct in6_addr *addr, 568 __be32 w1, __be32 w2, 569 __be32 w3, __be32 w4) 570 { 571 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2); 572 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4); 573 } 574 575 static inline bool ipv6_addr_equal(const struct in6_addr *a1, 576 const struct in6_addr *a2) 577 { 578 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 579 const unsigned long *ul1 = (const unsigned long *)a1; 580 const unsigned long *ul2 = (const unsigned long *)a2; 581 582 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL; 583 #else 584 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) | 585 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) | 586 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) | 587 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0; 588 #endif 589 } 590 591 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 592 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1, 593 const __be64 *a2, 594 unsigned int len) 595 { 596 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len)))) 597 return false; 598 return true; 599 } 600 601 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 602 const struct in6_addr *addr2, 603 unsigned int prefixlen) 604 { 605 const __be64 *a1 = (const __be64 *)addr1; 606 const __be64 *a2 = (const __be64 *)addr2; 607 608 if (prefixlen >= 64) { 609 if (a1[0] ^ a2[0]) 610 return false; 611 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64); 612 } 613 return __ipv6_prefix_equal64_half(a1, a2, prefixlen); 614 } 615 #else 616 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, 617 const struct in6_addr *addr2, 618 unsigned int prefixlen) 619 { 620 const __be32 *a1 = addr1->s6_addr32; 621 const __be32 *a2 = addr2->s6_addr32; 622 unsigned int pdw, pbi; 623 624 /* check complete u32 in prefix */ 625 pdw = prefixlen >> 5; 626 if (pdw && memcmp(a1, a2, pdw << 2)) 627 return false; 628 629 /* check incomplete u32 in prefix */ 630 pbi = prefixlen & 0x1f; 631 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi)))) 632 return false; 633 634 return true; 635 } 636 #endif 637 638 static inline bool ipv6_addr_any(const struct in6_addr *a) 639 { 640 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 641 const unsigned long *ul = (const unsigned long *)a; 642 643 return (ul[0] | ul[1]) == 0UL; 644 #else 645 return (a->s6_addr32[0] | a->s6_addr32[1] | 646 a->s6_addr32[2] | a->s6_addr32[3]) == 0; 647 #endif 648 } 649 650 static inline u32 ipv6_addr_hash(const struct in6_addr *a) 651 { 652 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 653 const unsigned long *ul = (const unsigned long *)a; 654 unsigned long x = ul[0] ^ ul[1]; 655 656 return (u32)(x ^ (x >> 32)); 657 #else 658 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^ 659 a->s6_addr32[2] ^ a->s6_addr32[3]); 660 #endif 661 } 662 663 /* more secured version of ipv6_addr_hash() */ 664 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval) 665 { 666 u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1]; 667 668 return jhash_3words(v, 669 (__force u32)a->s6_addr32[2], 670 (__force u32)a->s6_addr32[3], 671 initval); 672 } 673 674 static inline bool ipv6_addr_loopback(const struct in6_addr *a) 675 { 676 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 677 const __be64 *be = (const __be64 *)a; 678 679 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL; 680 #else 681 return (a->s6_addr32[0] | a->s6_addr32[1] | 682 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0; 683 #endif 684 } 685 686 /* 687 * Note that we must __force cast these to unsigned long to make sparse happy, 688 * since all of the endian-annotated types are fixed size regardless of arch. 689 */ 690 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a) 691 { 692 return ( 693 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 694 *(unsigned long *)a | 695 #else 696 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) | 697 #endif 698 (__force unsigned long)(a->s6_addr32[2] ^ 699 cpu_to_be32(0x0000ffff))) == 0UL; 700 } 701 702 static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a) 703 { 704 return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]); 705 } 706 707 static inline u32 ipv6_portaddr_hash(const struct net *net, 708 const struct in6_addr *addr6, 709 unsigned int port) 710 { 711 unsigned int hash, mix = net_hash_mix(net); 712 713 if (ipv6_addr_any(addr6)) 714 hash = jhash_1word(0, mix); 715 else if (ipv6_addr_v4mapped(addr6)) 716 hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix); 717 else 718 hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix); 719 720 return hash ^ port; 721 } 722 723 /* 724 * Check for a RFC 4843 ORCHID address 725 * (Overlay Routable Cryptographic Hash Identifiers) 726 */ 727 static inline bool ipv6_addr_orchid(const struct in6_addr *a) 728 { 729 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010); 730 } 731 732 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr) 733 { 734 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000); 735 } 736 737 static inline void ipv6_addr_set_v4mapped(const __be32 addr, 738 struct in6_addr *v4mapped) 739 { 740 ipv6_addr_set(v4mapped, 741 0, 0, 742 htonl(0x0000FFFF), 743 addr); 744 } 745 746 /* 747 * find the first different bit between two addresses 748 * length of address must be a multiple of 32bits 749 */ 750 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen) 751 { 752 const __be32 *a1 = token1, *a2 = token2; 753 int i; 754 755 addrlen >>= 2; 756 757 for (i = 0; i < addrlen; i++) { 758 __be32 xb = a1[i] ^ a2[i]; 759 if (xb) 760 return i * 32 + 31 - __fls(ntohl(xb)); 761 } 762 763 /* 764 * we should *never* get to this point since that 765 * would mean the addrs are equal 766 * 767 * However, we do get to it 8) And exacly, when 768 * addresses are equal 8) 769 * 770 * ip route add 1111::/128 via ... 771 * ip route add 1111::/64 via ... 772 * and we are here. 773 * 774 * Ideally, this function should stop comparison 775 * at prefix length. It does not, but it is still OK, 776 * if returned value is greater than prefix length. 777 * --ANK (980803) 778 */ 779 return addrlen << 5; 780 } 781 782 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 783 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen) 784 { 785 const __be64 *a1 = token1, *a2 = token2; 786 int i; 787 788 addrlen >>= 3; 789 790 for (i = 0; i < addrlen; i++) { 791 __be64 xb = a1[i] ^ a2[i]; 792 if (xb) 793 return i * 64 + 63 - __fls(be64_to_cpu(xb)); 794 } 795 796 return addrlen << 6; 797 } 798 #endif 799 800 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen) 801 { 802 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 803 if (__builtin_constant_p(addrlen) && !(addrlen & 7)) 804 return __ipv6_addr_diff64(token1, token2, addrlen); 805 #endif 806 return __ipv6_addr_diff32(token1, token2, addrlen); 807 } 808 809 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2) 810 { 811 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr)); 812 } 813 814 __be32 ipv6_select_ident(struct net *net, 815 const struct in6_addr *daddr, 816 const struct in6_addr *saddr); 817 __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb); 818 819 int ip6_dst_hoplimit(struct dst_entry *dst); 820 821 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6, 822 struct dst_entry *dst) 823 { 824 int hlimit; 825 826 if (ipv6_addr_is_multicast(&fl6->daddr)) 827 hlimit = np->mcast_hops; 828 else 829 hlimit = np->hop_limit; 830 if (hlimit < 0) 831 hlimit = ip6_dst_hoplimit(dst); 832 return hlimit; 833 } 834 835 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store 836 * Equivalent to : flow->v6addrs.src = iph->saddr; 837 * flow->v6addrs.dst = iph->daddr; 838 */ 839 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow, 840 const struct ipv6hdr *iph) 841 { 842 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) != 843 offsetof(typeof(flow->addrs), v6addrs.src) + 844 sizeof(flow->addrs.v6addrs.src)); 845 memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs)); 846 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 847 } 848 849 #if IS_ENABLED(CONFIG_IPV6) 850 851 static inline bool ipv6_can_nonlocal_bind(struct net *net, 852 struct inet_sock *inet) 853 { 854 return net->ipv6.sysctl.ip_nonlocal_bind || 855 inet->freebind || inet->transparent; 856 } 857 858 /* Sysctl settings for net ipv6.auto_flowlabels */ 859 #define IP6_AUTO_FLOW_LABEL_OFF 0 860 #define IP6_AUTO_FLOW_LABEL_OPTOUT 1 861 #define IP6_AUTO_FLOW_LABEL_OPTIN 2 862 #define IP6_AUTO_FLOW_LABEL_FORCED 3 863 864 #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED 865 866 #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT 867 868 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 869 __be32 flowlabel, bool autolabel, 870 struct flowi6 *fl6) 871 { 872 u32 hash; 873 874 /* @flowlabel may include more than a flow label, eg, the traffic class. 875 * Here we want only the flow label value. 876 */ 877 flowlabel &= IPV6_FLOWLABEL_MASK; 878 879 if (flowlabel || 880 net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF || 881 (!autolabel && 882 net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED)) 883 return flowlabel; 884 885 hash = skb_get_hash_flowi6(skb, fl6); 886 887 /* Since this is being sent on the wire obfuscate hash a bit 888 * to minimize possbility that any useful information to an 889 * attacker is leaked. Only lower 20 bits are relevant. 890 */ 891 hash = rol32(hash, 16); 892 893 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK; 894 895 if (net->ipv6.sysctl.flowlabel_state_ranges) 896 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG; 897 898 return flowlabel; 899 } 900 901 static inline int ip6_default_np_autolabel(struct net *net) 902 { 903 switch (net->ipv6.sysctl.auto_flowlabels) { 904 case IP6_AUTO_FLOW_LABEL_OFF: 905 case IP6_AUTO_FLOW_LABEL_OPTIN: 906 default: 907 return 0; 908 case IP6_AUTO_FLOW_LABEL_OPTOUT: 909 case IP6_AUTO_FLOW_LABEL_FORCED: 910 return 1; 911 } 912 } 913 #else 914 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, 915 __be32 flowlabel, bool autolabel, 916 struct flowi6 *fl6) 917 { 918 return flowlabel; 919 } 920 static inline int ip6_default_np_autolabel(struct net *net) 921 { 922 return 0; 923 } 924 #endif 925 926 #if IS_ENABLED(CONFIG_IPV6) 927 static inline int ip6_multipath_hash_policy(const struct net *net) 928 { 929 return net->ipv6.sysctl.multipath_hash_policy; 930 } 931 static inline u32 ip6_multipath_hash_fields(const struct net *net) 932 { 933 return net->ipv6.sysctl.multipath_hash_fields; 934 } 935 #else 936 static inline int ip6_multipath_hash_policy(const struct net *net) 937 { 938 return 0; 939 } 940 static inline u32 ip6_multipath_hash_fields(const struct net *net) 941 { 942 return 0; 943 } 944 #endif 945 946 /* 947 * Header manipulation 948 */ 949 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass, 950 __be32 flowlabel) 951 { 952 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel; 953 } 954 955 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr) 956 { 957 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK; 958 } 959 960 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr) 961 { 962 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK; 963 } 964 965 static inline u8 ip6_tclass(__be32 flowinfo) 966 { 967 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT; 968 } 969 970 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel) 971 { 972 return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel; 973 } 974 975 static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6) 976 { 977 return fl6->flowlabel & IPV6_FLOWLABEL_MASK; 978 } 979 980 /* 981 * Prototypes exported by ipv6 982 */ 983 984 /* 985 * rcv function (called from netdevice level) 986 */ 987 988 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev, 989 struct packet_type *pt, struct net_device *orig_dev); 990 void ipv6_list_rcv(struct list_head *head, struct packet_type *pt, 991 struct net_device *orig_dev); 992 993 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb); 994 995 /* 996 * upper-layer output functions 997 */ 998 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, 999 __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority); 1000 1001 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr); 1002 1003 int ip6_append_data(struct sock *sk, 1004 int getfrag(void *from, char *to, int offset, int len, 1005 int odd, struct sk_buff *skb), 1006 void *from, int length, int transhdrlen, 1007 struct ipcm6_cookie *ipc6, struct flowi6 *fl6, 1008 struct rt6_info *rt, unsigned int flags); 1009 1010 int ip6_push_pending_frames(struct sock *sk); 1011 1012 void ip6_flush_pending_frames(struct sock *sk); 1013 1014 int ip6_send_skb(struct sk_buff *skb); 1015 1016 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue, 1017 struct inet_cork_full *cork, 1018 struct inet6_cork *v6_cork); 1019 struct sk_buff *ip6_make_skb(struct sock *sk, 1020 int getfrag(void *from, char *to, int offset, 1021 int len, int odd, struct sk_buff *skb), 1022 void *from, int length, int transhdrlen, 1023 struct ipcm6_cookie *ipc6, struct flowi6 *fl6, 1024 struct rt6_info *rt, unsigned int flags, 1025 struct inet_cork_full *cork); 1026 1027 static inline struct sk_buff *ip6_finish_skb(struct sock *sk) 1028 { 1029 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork, 1030 &inet6_sk(sk)->cork); 1031 } 1032 1033 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst, 1034 struct flowi6 *fl6); 1035 struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6, 1036 const struct in6_addr *final_dst); 1037 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, 1038 const struct in6_addr *final_dst, 1039 bool connected); 1040 struct dst_entry *ip6_dst_lookup_tunnel(struct sk_buff *skb, 1041 struct net_device *dev, 1042 struct net *net, struct socket *sock, 1043 struct in6_addr *saddr, 1044 const struct ip_tunnel_info *info, 1045 u8 protocol, bool use_cache); 1046 struct dst_entry *ip6_blackhole_route(struct net *net, 1047 struct dst_entry *orig_dst); 1048 1049 /* 1050 * skb processing functions 1051 */ 1052 1053 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb); 1054 int ip6_forward(struct sk_buff *skb); 1055 int ip6_input(struct sk_buff *skb); 1056 int ip6_mc_input(struct sk_buff *skb); 1057 void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr, 1058 bool have_final); 1059 1060 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); 1061 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); 1062 1063 /* 1064 * Extension header (options) processing 1065 */ 1066 1067 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 1068 u8 *proto, struct in6_addr **daddr_p, 1069 struct in6_addr *saddr); 1070 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, 1071 u8 *proto); 1072 1073 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp, 1074 __be16 *frag_offp); 1075 1076 bool ipv6_ext_hdr(u8 nexthdr); 1077 1078 enum { 1079 IP6_FH_F_FRAG = (1 << 0), 1080 IP6_FH_F_AUTH = (1 << 1), 1081 IP6_FH_F_SKIP_RH = (1 << 2), 1082 }; 1083 1084 /* find specified header and get offset to it */ 1085 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target, 1086 unsigned short *fragoff, int *fragflg); 1087 1088 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type); 1089 1090 struct in6_addr *fl6_update_dst(struct flowi6 *fl6, 1091 const struct ipv6_txoptions *opt, 1092 struct in6_addr *orig); 1093 1094 /* 1095 * socket options (ipv6_sockglue.c) 1096 */ 1097 DECLARE_STATIC_KEY_FALSE(ip6_min_hopcount); 1098 1099 int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 1100 unsigned int optlen); 1101 int ipv6_getsockopt(struct sock *sk, int level, int optname, 1102 char __user *optval, int __user *optlen); 1103 1104 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, 1105 int addr_len); 1106 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len); 1107 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr, 1108 int addr_len); 1109 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr); 1110 void ip6_datagram_release_cb(struct sock *sk); 1111 1112 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len, 1113 int *addr_len); 1114 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len, 1115 int *addr_len); 1116 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, 1117 u32 info, u8 *payload); 1118 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info); 1119 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu); 1120 1121 int inet6_release(struct socket *sock); 1122 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len); 1123 int inet6_getname(struct socket *sock, struct sockaddr *uaddr, 1124 int peer); 1125 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 1126 int inet6_compat_ioctl(struct socket *sock, unsigned int cmd, 1127 unsigned long arg); 1128 1129 int inet6_hash_connect(struct inet_timewait_death_row *death_row, 1130 struct sock *sk); 1131 int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size); 1132 int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1133 int flags); 1134 1135 /* 1136 * reassembly.c 1137 */ 1138 extern const struct proto_ops inet6_stream_ops; 1139 extern const struct proto_ops inet6_dgram_ops; 1140 extern const struct proto_ops inet6_sockraw_ops; 1141 1142 struct group_source_req; 1143 struct group_filter; 1144 1145 int ip6_mc_source(int add, int omode, struct sock *sk, 1146 struct group_source_req *pgsr); 1147 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf, 1148 struct sockaddr_storage *list); 1149 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf, 1150 struct sockaddr_storage __user *p); 1151 1152 #ifdef CONFIG_PROC_FS 1153 int ac6_proc_init(struct net *net); 1154 void ac6_proc_exit(struct net *net); 1155 int raw6_proc_init(void); 1156 void raw6_proc_exit(void); 1157 int tcp6_proc_init(struct net *net); 1158 void tcp6_proc_exit(struct net *net); 1159 int udp6_proc_init(struct net *net); 1160 void udp6_proc_exit(struct net *net); 1161 int udplite6_proc_init(void); 1162 void udplite6_proc_exit(void); 1163 int ipv6_misc_proc_init(void); 1164 void ipv6_misc_proc_exit(void); 1165 int snmp6_register_dev(struct inet6_dev *idev); 1166 int snmp6_unregister_dev(struct inet6_dev *idev); 1167 1168 #else 1169 static inline int ac6_proc_init(struct net *net) { return 0; } 1170 static inline void ac6_proc_exit(struct net *net) { } 1171 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; } 1172 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; } 1173 #endif 1174 1175 #ifdef CONFIG_SYSCTL 1176 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net); 1177 struct ctl_table *ipv6_route_sysctl_init(struct net *net); 1178 int ipv6_sysctl_register(void); 1179 void ipv6_sysctl_unregister(void); 1180 #endif 1181 1182 int ipv6_sock_mc_join(struct sock *sk, int ifindex, 1183 const struct in6_addr *addr); 1184 int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex, 1185 const struct in6_addr *addr, unsigned int mode); 1186 int ipv6_sock_mc_drop(struct sock *sk, int ifindex, 1187 const struct in6_addr *addr); 1188 1189 static inline int ip6_sock_set_v6only(struct sock *sk) 1190 { 1191 if (inet_sk(sk)->inet_num) 1192 return -EINVAL; 1193 lock_sock(sk); 1194 sk->sk_ipv6only = true; 1195 release_sock(sk); 1196 return 0; 1197 } 1198 1199 static inline void ip6_sock_set_recverr(struct sock *sk) 1200 { 1201 lock_sock(sk); 1202 inet6_sk(sk)->recverr = true; 1203 release_sock(sk); 1204 } 1205 1206 static inline int __ip6_sock_set_addr_preferences(struct sock *sk, int val) 1207 { 1208 unsigned int pref = 0; 1209 unsigned int prefmask = ~0; 1210 1211 /* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */ 1212 switch (val & (IPV6_PREFER_SRC_PUBLIC | 1213 IPV6_PREFER_SRC_TMP | 1214 IPV6_PREFER_SRC_PUBTMP_DEFAULT)) { 1215 case IPV6_PREFER_SRC_PUBLIC: 1216 pref |= IPV6_PREFER_SRC_PUBLIC; 1217 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | 1218 IPV6_PREFER_SRC_TMP); 1219 break; 1220 case IPV6_PREFER_SRC_TMP: 1221 pref |= IPV6_PREFER_SRC_TMP; 1222 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | 1223 IPV6_PREFER_SRC_TMP); 1224 break; 1225 case IPV6_PREFER_SRC_PUBTMP_DEFAULT: 1226 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | 1227 IPV6_PREFER_SRC_TMP); 1228 break; 1229 case 0: 1230 break; 1231 default: 1232 return -EINVAL; 1233 } 1234 1235 /* check HOME/COA conflicts */ 1236 switch (val & (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)) { 1237 case IPV6_PREFER_SRC_HOME: 1238 prefmask &= ~IPV6_PREFER_SRC_COA; 1239 break; 1240 case IPV6_PREFER_SRC_COA: 1241 pref |= IPV6_PREFER_SRC_COA; 1242 break; 1243 case 0: 1244 break; 1245 default: 1246 return -EINVAL; 1247 } 1248 1249 /* check CGA/NONCGA conflicts */ 1250 switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) { 1251 case IPV6_PREFER_SRC_CGA: 1252 case IPV6_PREFER_SRC_NONCGA: 1253 case 0: 1254 break; 1255 default: 1256 return -EINVAL; 1257 } 1258 1259 inet6_sk(sk)->srcprefs = (inet6_sk(sk)->srcprefs & prefmask) | pref; 1260 return 0; 1261 } 1262 1263 static inline int ip6_sock_set_addr_preferences(struct sock *sk, bool val) 1264 { 1265 int ret; 1266 1267 lock_sock(sk); 1268 ret = __ip6_sock_set_addr_preferences(sk, val); 1269 release_sock(sk); 1270 return ret; 1271 } 1272 1273 static inline void ip6_sock_set_recvpktinfo(struct sock *sk) 1274 { 1275 lock_sock(sk); 1276 inet6_sk(sk)->rxopt.bits.rxinfo = true; 1277 release_sock(sk); 1278 } 1279 1280 #endif /* _NET_IPV6_H */ 1281