xref: /openbmc/linux/include/net/ipv6.h (revision 2eb3ed33e55d003d721d4d1a5e72fe323c12b4c0)
1 /*
2  *	Linux INET6 implementation
3  *
4  *	Authors:
5  *	Pedro Roque		<roque@di.fc.ul.pt>
6  *
7  *	This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #ifndef _NET_IPV6_H
14 #define _NET_IPV6_H
15 
16 #include <linux/ipv6.h>
17 #include <linux/hardirq.h>
18 #include <linux/jhash.h>
19 #include <linux/refcount.h>
20 #include <net/if_inet6.h>
21 #include <net/ndisc.h>
22 #include <net/flow.h>
23 #include <net/flow_dissector.h>
24 #include <net/snmp.h>
25 
26 #define SIN6_LEN_RFC2133	24
27 
28 #define IPV6_MAXPLEN		65535
29 
30 /*
31  *	NextHeader field of IPv6 header
32  */
33 
34 #define NEXTHDR_HOP		0	/* Hop-by-hop option header. */
35 #define NEXTHDR_TCP		6	/* TCP segment. */
36 #define NEXTHDR_UDP		17	/* UDP message. */
37 #define NEXTHDR_IPV6		41	/* IPv6 in IPv6 */
38 #define NEXTHDR_ROUTING		43	/* Routing header. */
39 #define NEXTHDR_FRAGMENT	44	/* Fragmentation/reassembly header. */
40 #define NEXTHDR_GRE		47	/* GRE header. */
41 #define NEXTHDR_ESP		50	/* Encapsulating security payload. */
42 #define NEXTHDR_AUTH		51	/* Authentication header. */
43 #define NEXTHDR_ICMP		58	/* ICMP for IPv6. */
44 #define NEXTHDR_NONE		59	/* No next header */
45 #define NEXTHDR_DEST		60	/* Destination options header. */
46 #define NEXTHDR_SCTP		132	/* SCTP message. */
47 #define NEXTHDR_MOBILITY	135	/* Mobility header. */
48 
49 #define NEXTHDR_MAX		255
50 
51 #define IPV6_DEFAULT_HOPLIMIT   64
52 #define IPV6_DEFAULT_MCASTHOPS	1
53 
54 /* Limits on Hop-by-Hop and Destination options.
55  *
56  * Per RFC8200 there is no limit on the maximum number or lengths of options in
57  * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
58  * We allow configurable limits in order to mitigate potential denial of
59  * service attacks.
60  *
61  * There are three limits that may be set:
62  *   - Limit the number of options in a Hop-by-Hop or Destination options
63  *     extension header
64  *   - Limit the byte length of a Hop-by-Hop or Destination options extension
65  *     header
66  *   - Disallow unknown options
67  *
68  * The limits are expressed in corresponding sysctls:
69  *
70  * ipv6.sysctl.max_dst_opts_cnt
71  * ipv6.sysctl.max_hbh_opts_cnt
72  * ipv6.sysctl.max_dst_opts_len
73  * ipv6.sysctl.max_hbh_opts_len
74  *
75  * max_*_opts_cnt is the number of TLVs that are allowed for Destination
76  * options or Hop-by-Hop options. If the number is less than zero then unknown
77  * TLVs are disallowed and the number of known options that are allowed is the
78  * absolute value. Setting the value to INT_MAX indicates no limit.
79  *
80  * max_*_opts_len is the length limit in bytes of a Destination or
81  * Hop-by-Hop options extension header. Setting the value to INT_MAX
82  * indicates no length limit.
83  *
84  * If a limit is exceeded when processing an extension header the packet is
85  * silently discarded.
86  */
87 
88 /* Default limits for Hop-by-Hop and Destination options */
89 #define IP6_DEFAULT_MAX_DST_OPTS_CNT	 8
90 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT	 8
91 #define IP6_DEFAULT_MAX_DST_OPTS_LEN	 INT_MAX /* No limit */
92 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN	 INT_MAX /* No limit */
93 
94 /*
95  *	Addr type
96  *
97  *	type	-	unicast | multicast
98  *	scope	-	local	| site	    | global
99  *	v4	-	compat
100  *	v4mapped
101  *	any
102  *	loopback
103  */
104 
105 #define IPV6_ADDR_ANY		0x0000U
106 
107 #define IPV6_ADDR_UNICAST      	0x0001U
108 #define IPV6_ADDR_MULTICAST    	0x0002U
109 
110 #define IPV6_ADDR_LOOPBACK	0x0010U
111 #define IPV6_ADDR_LINKLOCAL	0x0020U
112 #define IPV6_ADDR_SITELOCAL	0x0040U
113 
114 #define IPV6_ADDR_COMPATv4	0x0080U
115 
116 #define IPV6_ADDR_SCOPE_MASK	0x00f0U
117 
118 #define IPV6_ADDR_MAPPED	0x1000U
119 
120 /*
121  *	Addr scopes
122  */
123 #define IPV6_ADDR_MC_SCOPE(a)	\
124 	((a)->s6_addr[1] & 0x0f)	/* nonstandard */
125 #define __IPV6_ADDR_SCOPE_INVALID	-1
126 #define IPV6_ADDR_SCOPE_NODELOCAL	0x01
127 #define IPV6_ADDR_SCOPE_LINKLOCAL	0x02
128 #define IPV6_ADDR_SCOPE_SITELOCAL	0x05
129 #define IPV6_ADDR_SCOPE_ORGLOCAL	0x08
130 #define IPV6_ADDR_SCOPE_GLOBAL		0x0e
131 
132 /*
133  *	Addr flags
134  */
135 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a)	\
136 	((a)->s6_addr[1] & 0x10)
137 #define IPV6_ADDR_MC_FLAG_PREFIX(a)	\
138 	((a)->s6_addr[1] & 0x20)
139 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a)	\
140 	((a)->s6_addr[1] & 0x40)
141 
142 /*
143  *	fragmentation header
144  */
145 
146 struct frag_hdr {
147 	__u8	nexthdr;
148 	__u8	reserved;
149 	__be16	frag_off;
150 	__be32	identification;
151 };
152 
153 #define	IP6_MF		0x0001
154 #define	IP6_OFFSET	0xFFF8
155 
156 #define IP6_REPLY_MARK(net, mark) \
157 	((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
158 
159 #include <net/sock.h>
160 
161 /* sysctls */
162 extern int sysctl_mld_max_msf;
163 extern int sysctl_mld_qrv;
164 
165 #define _DEVINC(net, statname, mod, idev, field)			\
166 ({									\
167 	struct inet6_dev *_idev = (idev);				\
168 	if (likely(_idev != NULL))					\
169 		mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
170 	mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
171 })
172 
173 /* per device counters are atomic_long_t */
174 #define _DEVINCATOMIC(net, statname, mod, idev, field)			\
175 ({									\
176 	struct inet6_dev *_idev = (idev);				\
177 	if (likely(_idev != NULL))					\
178 		SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
179 	mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
180 })
181 
182 /* per device and per net counters are atomic_long_t */
183 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field)		\
184 ({									\
185 	struct inet6_dev *_idev = (idev);				\
186 	if (likely(_idev != NULL))					\
187 		SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
188 	SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
189 })
190 
191 #define _DEVADD(net, statname, mod, idev, field, val)			\
192 ({									\
193 	struct inet6_dev *_idev = (idev);				\
194 	if (likely(_idev != NULL))					\
195 		mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
196 	mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
197 })
198 
199 #define _DEVUPD(net, statname, mod, idev, field, val)			\
200 ({									\
201 	struct inet6_dev *_idev = (idev);				\
202 	if (likely(_idev != NULL))					\
203 		mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
204 	mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
205 })
206 
207 /* MIBs */
208 
209 #define IP6_INC_STATS(net, idev,field)		\
210 		_DEVINC(net, ipv6, , idev, field)
211 #define __IP6_INC_STATS(net, idev,field)	\
212 		_DEVINC(net, ipv6, __, idev, field)
213 #define IP6_ADD_STATS(net, idev,field,val)	\
214 		_DEVADD(net, ipv6, , idev, field, val)
215 #define __IP6_ADD_STATS(net, idev,field,val)	\
216 		_DEVADD(net, ipv6, __, idev, field, val)
217 #define IP6_UPD_PO_STATS(net, idev,field,val)   \
218 		_DEVUPD(net, ipv6, , idev, field, val)
219 #define __IP6_UPD_PO_STATS(net, idev,field,val)   \
220 		_DEVUPD(net, ipv6, __, idev, field, val)
221 #define ICMP6_INC_STATS(net, idev, field)	\
222 		_DEVINCATOMIC(net, icmpv6, , idev, field)
223 #define __ICMP6_INC_STATS(net, idev, field)	\
224 		_DEVINCATOMIC(net, icmpv6, __, idev, field)
225 
226 #define ICMP6MSGOUT_INC_STATS(net, idev, field)		\
227 	_DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
228 #define ICMP6MSGIN_INC_STATS(net, idev, field)	\
229 	_DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
230 
231 struct ip6_ra_chain {
232 	struct ip6_ra_chain	*next;
233 	struct sock		*sk;
234 	int			sel;
235 	void			(*destructor)(struct sock *);
236 };
237 
238 extern struct ip6_ra_chain	*ip6_ra_chain;
239 extern rwlock_t ip6_ra_lock;
240 
241 /*
242    This structure is prepared by protocol, when parsing
243    ancillary data and passed to IPv6.
244  */
245 
246 struct ipv6_txoptions {
247 	refcount_t		refcnt;
248 	/* Length of this structure */
249 	int			tot_len;
250 
251 	/* length of extension headers   */
252 
253 	__u16			opt_flen;	/* after fragment hdr */
254 	__u16			opt_nflen;	/* before fragment hdr */
255 
256 	struct ipv6_opt_hdr	*hopopt;
257 	struct ipv6_opt_hdr	*dst0opt;
258 	struct ipv6_rt_hdr	*srcrt;	/* Routing Header */
259 	struct ipv6_opt_hdr	*dst1opt;
260 	struct rcu_head		rcu;
261 	/* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
262 };
263 
264 struct ip6_flowlabel {
265 	struct ip6_flowlabel __rcu *next;
266 	__be32			label;
267 	atomic_t		users;
268 	struct in6_addr		dst;
269 	struct ipv6_txoptions	*opt;
270 	unsigned long		linger;
271 	struct rcu_head		rcu;
272 	u8			share;
273 	union {
274 		struct pid *pid;
275 		kuid_t uid;
276 	} owner;
277 	unsigned long		lastuse;
278 	unsigned long		expires;
279 	struct net		*fl_net;
280 };
281 
282 #define IPV6_FLOWINFO_MASK		cpu_to_be32(0x0FFFFFFF)
283 #define IPV6_FLOWLABEL_MASK		cpu_to_be32(0x000FFFFF)
284 #define IPV6_FLOWLABEL_STATELESS_FLAG	cpu_to_be32(0x00080000)
285 
286 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
287 #define IPV6_TCLASS_SHIFT	20
288 
289 struct ipv6_fl_socklist {
290 	struct ipv6_fl_socklist	__rcu	*next;
291 	struct ip6_flowlabel		*fl;
292 	struct rcu_head			rcu;
293 };
294 
295 struct ipcm6_cookie {
296 	__s16 hlimit;
297 	__s16 tclass;
298 	__s8  dontfrag;
299 	struct ipv6_txoptions *opt;
300 };
301 
302 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
303 {
304 	struct ipv6_txoptions *opt;
305 
306 	rcu_read_lock();
307 	opt = rcu_dereference(np->opt);
308 	if (opt) {
309 		if (!refcount_inc_not_zero(&opt->refcnt))
310 			opt = NULL;
311 		else
312 			opt = rcu_pointer_handoff(opt);
313 	}
314 	rcu_read_unlock();
315 	return opt;
316 }
317 
318 static inline void txopt_put(struct ipv6_txoptions *opt)
319 {
320 	if (opt && refcount_dec_and_test(&opt->refcnt))
321 		kfree_rcu(opt, rcu);
322 }
323 
324 struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label);
325 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
326 					 struct ip6_flowlabel *fl,
327 					 struct ipv6_txoptions *fopt);
328 void fl6_free_socklist(struct sock *sk);
329 int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen);
330 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
331 			   int flags);
332 int ip6_flowlabel_init(void);
333 void ip6_flowlabel_cleanup(void);
334 
335 static inline void fl6_sock_release(struct ip6_flowlabel *fl)
336 {
337 	if (fl)
338 		atomic_dec(&fl->users);
339 }
340 
341 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
342 
343 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
344 				struct icmp6hdr *thdr, int len);
345 
346 int ip6_ra_control(struct sock *sk, int sel);
347 
348 int ipv6_parse_hopopts(struct sk_buff *skb);
349 
350 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
351 					struct ipv6_txoptions *opt);
352 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
353 					  struct ipv6_txoptions *opt,
354 					  int newtype,
355 					  struct ipv6_opt_hdr __user *newopt,
356 					  int newoptlen);
357 struct ipv6_txoptions *
358 ipv6_renew_options_kern(struct sock *sk,
359 			struct ipv6_txoptions *opt,
360 			int newtype,
361 			struct ipv6_opt_hdr *newopt,
362 			int newoptlen);
363 struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
364 					  struct ipv6_txoptions *opt);
365 
366 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
367 		       const struct inet6_skb_parm *opt);
368 struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
369 					   struct ipv6_txoptions *opt);
370 
371 static inline bool ipv6_accept_ra(struct inet6_dev *idev)
372 {
373 	/* If forwarding is enabled, RA are not accepted unless the special
374 	 * hybrid mode (accept_ra=2) is enabled.
375 	 */
376 	return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
377 	    idev->cnf.accept_ra;
378 }
379 
380 #if IS_ENABLED(CONFIG_IPV6)
381 static inline int ip6_frag_mem(struct net *net)
382 {
383 	return sum_frag_mem_limit(&net->ipv6.frags);
384 }
385 #endif
386 
387 #define IPV6_FRAG_HIGH_THRESH	(4 * 1024*1024)	/* 4194304 */
388 #define IPV6_FRAG_LOW_THRESH	(3 * 1024*1024)	/* 3145728 */
389 #define IPV6_FRAG_TIMEOUT	(60 * HZ)	/* 60 seconds */
390 
391 int __ipv6_addr_type(const struct in6_addr *addr);
392 static inline int ipv6_addr_type(const struct in6_addr *addr)
393 {
394 	return __ipv6_addr_type(addr) & 0xffff;
395 }
396 
397 static inline int ipv6_addr_scope(const struct in6_addr *addr)
398 {
399 	return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
400 }
401 
402 static inline int __ipv6_addr_src_scope(int type)
403 {
404 	return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
405 }
406 
407 static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
408 {
409 	return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
410 }
411 
412 static inline bool __ipv6_addr_needs_scope_id(int type)
413 {
414 	return type & IPV6_ADDR_LINKLOCAL ||
415 	       (type & IPV6_ADDR_MULTICAST &&
416 		(type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
417 }
418 
419 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
420 {
421 	return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
422 }
423 
424 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
425 {
426 	return memcmp(a1, a2, sizeof(struct in6_addr));
427 }
428 
429 static inline bool
430 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
431 		     const struct in6_addr *a2)
432 {
433 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
434 	const unsigned long *ul1 = (const unsigned long *)a1;
435 	const unsigned long *ulm = (const unsigned long *)m;
436 	const unsigned long *ul2 = (const unsigned long *)a2;
437 
438 	return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
439 		  ((ul1[1] ^ ul2[1]) & ulm[1]));
440 #else
441 	return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
442 		  ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
443 		  ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
444 		  ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
445 #endif
446 }
447 
448 static inline void ipv6_addr_prefix(struct in6_addr *pfx,
449 				    const struct in6_addr *addr,
450 				    int plen)
451 {
452 	/* caller must guarantee 0 <= plen <= 128 */
453 	int o = plen >> 3,
454 	    b = plen & 0x7;
455 
456 	memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
457 	memcpy(pfx->s6_addr, addr, o);
458 	if (b != 0)
459 		pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
460 }
461 
462 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
463 					 const struct in6_addr *pfx,
464 					 int plen)
465 {
466 	/* caller must guarantee 0 <= plen <= 128 */
467 	int o = plen >> 3,
468 	    b = plen & 0x7;
469 
470 	memcpy(addr->s6_addr, pfx, o);
471 	if (b != 0) {
472 		addr->s6_addr[o] &= ~(0xff00 >> b);
473 		addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
474 	}
475 }
476 
477 static inline void __ipv6_addr_set_half(__be32 *addr,
478 					__be32 wh, __be32 wl)
479 {
480 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
481 #if defined(__BIG_ENDIAN)
482 	if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
483 		*(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
484 		return;
485 	}
486 #elif defined(__LITTLE_ENDIAN)
487 	if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
488 		*(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
489 		return;
490 	}
491 #endif
492 #endif
493 	addr[0] = wh;
494 	addr[1] = wl;
495 }
496 
497 static inline void ipv6_addr_set(struct in6_addr *addr,
498 				     __be32 w1, __be32 w2,
499 				     __be32 w3, __be32 w4)
500 {
501 	__ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
502 	__ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
503 }
504 
505 static inline bool ipv6_addr_equal(const struct in6_addr *a1,
506 				   const struct in6_addr *a2)
507 {
508 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
509 	const unsigned long *ul1 = (const unsigned long *)a1;
510 	const unsigned long *ul2 = (const unsigned long *)a2;
511 
512 	return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
513 #else
514 	return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
515 		(a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
516 		(a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
517 		(a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
518 #endif
519 }
520 
521 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
522 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
523 					      const __be64 *a2,
524 					      unsigned int len)
525 {
526 	if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
527 		return false;
528 	return true;
529 }
530 
531 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
532 				     const struct in6_addr *addr2,
533 				     unsigned int prefixlen)
534 {
535 	const __be64 *a1 = (const __be64 *)addr1;
536 	const __be64 *a2 = (const __be64 *)addr2;
537 
538 	if (prefixlen >= 64) {
539 		if (a1[0] ^ a2[0])
540 			return false;
541 		return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
542 	}
543 	return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
544 }
545 #else
546 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
547 				     const struct in6_addr *addr2,
548 				     unsigned int prefixlen)
549 {
550 	const __be32 *a1 = addr1->s6_addr32;
551 	const __be32 *a2 = addr2->s6_addr32;
552 	unsigned int pdw, pbi;
553 
554 	/* check complete u32 in prefix */
555 	pdw = prefixlen >> 5;
556 	if (pdw && memcmp(a1, a2, pdw << 2))
557 		return false;
558 
559 	/* check incomplete u32 in prefix */
560 	pbi = prefixlen & 0x1f;
561 	if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
562 		return false;
563 
564 	return true;
565 }
566 #endif
567 
568 struct inet_frag_queue;
569 
570 enum ip6_defrag_users {
571 	IP6_DEFRAG_LOCAL_DELIVER,
572 	IP6_DEFRAG_CONNTRACK_IN,
573 	__IP6_DEFRAG_CONNTRACK_IN	= IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX,
574 	IP6_DEFRAG_CONNTRACK_OUT,
575 	__IP6_DEFRAG_CONNTRACK_OUT	= IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX,
576 	IP6_DEFRAG_CONNTRACK_BRIDGE_IN,
577 	__IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX,
578 };
579 
580 struct ip6_create_arg {
581 	__be32 id;
582 	u32 user;
583 	const struct in6_addr *src;
584 	const struct in6_addr *dst;
585 	int iif;
586 	u8 ecn;
587 };
588 
589 void ip6_frag_init(struct inet_frag_queue *q, const void *a);
590 bool ip6_frag_match(const struct inet_frag_queue *q, const void *a);
591 
592 /*
593  *	Equivalent of ipv4 struct ip
594  */
595 struct frag_queue {
596 	struct inet_frag_queue	q;
597 
598 	__be32			id;		/* fragment id		*/
599 	u32			user;
600 	struct in6_addr		saddr;
601 	struct in6_addr		daddr;
602 
603 	int			iif;
604 	unsigned int		csum;
605 	__u16			nhoffset;
606 	u8			ecn;
607 };
608 
609 void ip6_expire_frag_queue(struct net *net, struct frag_queue *fq,
610 			   struct inet_frags *frags);
611 
612 static inline bool ipv6_addr_any(const struct in6_addr *a)
613 {
614 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
615 	const unsigned long *ul = (const unsigned long *)a;
616 
617 	return (ul[0] | ul[1]) == 0UL;
618 #else
619 	return (a->s6_addr32[0] | a->s6_addr32[1] |
620 		a->s6_addr32[2] | a->s6_addr32[3]) == 0;
621 #endif
622 }
623 
624 static inline u32 ipv6_addr_hash(const struct in6_addr *a)
625 {
626 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
627 	const unsigned long *ul = (const unsigned long *)a;
628 	unsigned long x = ul[0] ^ ul[1];
629 
630 	return (u32)(x ^ (x >> 32));
631 #else
632 	return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
633 			     a->s6_addr32[2] ^ a->s6_addr32[3]);
634 #endif
635 }
636 
637 /* more secured version of ipv6_addr_hash() */
638 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
639 {
640 	u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
641 
642 	return jhash_3words(v,
643 			    (__force u32)a->s6_addr32[2],
644 			    (__force u32)a->s6_addr32[3],
645 			    initval);
646 }
647 
648 static inline bool ipv6_addr_loopback(const struct in6_addr *a)
649 {
650 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
651 	const __be64 *be = (const __be64 *)a;
652 
653 	return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
654 #else
655 	return (a->s6_addr32[0] | a->s6_addr32[1] |
656 		a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
657 #endif
658 }
659 
660 /*
661  * Note that we must __force cast these to unsigned long to make sparse happy,
662  * since all of the endian-annotated types are fixed size regardless of arch.
663  */
664 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
665 {
666 	return (
667 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
668 		*(unsigned long *)a |
669 #else
670 		(__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
671 #endif
672 		(__force unsigned long)(a->s6_addr32[2] ^
673 					cpu_to_be32(0x0000ffff))) == 0UL;
674 }
675 
676 /*
677  * Check for a RFC 4843 ORCHID address
678  * (Overlay Routable Cryptographic Hash Identifiers)
679  */
680 static inline bool ipv6_addr_orchid(const struct in6_addr *a)
681 {
682 	return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
683 }
684 
685 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
686 {
687 	return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
688 }
689 
690 static inline void ipv6_addr_set_v4mapped(const __be32 addr,
691 					  struct in6_addr *v4mapped)
692 {
693 	ipv6_addr_set(v4mapped,
694 			0, 0,
695 			htonl(0x0000FFFF),
696 			addr);
697 }
698 
699 /*
700  * find the first different bit between two addresses
701  * length of address must be a multiple of 32bits
702  */
703 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
704 {
705 	const __be32 *a1 = token1, *a2 = token2;
706 	int i;
707 
708 	addrlen >>= 2;
709 
710 	for (i = 0; i < addrlen; i++) {
711 		__be32 xb = a1[i] ^ a2[i];
712 		if (xb)
713 			return i * 32 + 31 - __fls(ntohl(xb));
714 	}
715 
716 	/*
717 	 *	we should *never* get to this point since that
718 	 *	would mean the addrs are equal
719 	 *
720 	 *	However, we do get to it 8) And exacly, when
721 	 *	addresses are equal 8)
722 	 *
723 	 *	ip route add 1111::/128 via ...
724 	 *	ip route add 1111::/64 via ...
725 	 *	and we are here.
726 	 *
727 	 *	Ideally, this function should stop comparison
728 	 *	at prefix length. It does not, but it is still OK,
729 	 *	if returned value is greater than prefix length.
730 	 *					--ANK (980803)
731 	 */
732 	return addrlen << 5;
733 }
734 
735 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
736 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
737 {
738 	const __be64 *a1 = token1, *a2 = token2;
739 	int i;
740 
741 	addrlen >>= 3;
742 
743 	for (i = 0; i < addrlen; i++) {
744 		__be64 xb = a1[i] ^ a2[i];
745 		if (xb)
746 			return i * 64 + 63 - __fls(be64_to_cpu(xb));
747 	}
748 
749 	return addrlen << 6;
750 }
751 #endif
752 
753 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
754 {
755 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
756 	if (__builtin_constant_p(addrlen) && !(addrlen & 7))
757 		return __ipv6_addr_diff64(token1, token2, addrlen);
758 #endif
759 	return __ipv6_addr_diff32(token1, token2, addrlen);
760 }
761 
762 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
763 {
764 	return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
765 }
766 
767 __be32 ipv6_select_ident(struct net *net,
768 			 const struct in6_addr *daddr,
769 			 const struct in6_addr *saddr);
770 void ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
771 
772 int ip6_dst_hoplimit(struct dst_entry *dst);
773 
774 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
775 				      struct dst_entry *dst)
776 {
777 	int hlimit;
778 
779 	if (ipv6_addr_is_multicast(&fl6->daddr))
780 		hlimit = np->mcast_hops;
781 	else
782 		hlimit = np->hop_limit;
783 	if (hlimit < 0)
784 		hlimit = ip6_dst_hoplimit(dst);
785 	return hlimit;
786 }
787 
788 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
789  * Equivalent to :	flow->v6addrs.src = iph->saddr;
790  *			flow->v6addrs.dst = iph->daddr;
791  */
792 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
793 					    const struct ipv6hdr *iph)
794 {
795 	BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
796 		     offsetof(typeof(flow->addrs), v6addrs.src) +
797 		     sizeof(flow->addrs.v6addrs.src));
798 	memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs));
799 	flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
800 }
801 
802 #if IS_ENABLED(CONFIG_IPV6)
803 
804 /* Sysctl settings for net ipv6.auto_flowlabels */
805 #define IP6_AUTO_FLOW_LABEL_OFF		0
806 #define IP6_AUTO_FLOW_LABEL_OPTOUT	1
807 #define IP6_AUTO_FLOW_LABEL_OPTIN	2
808 #define IP6_AUTO_FLOW_LABEL_FORCED	3
809 
810 #define IP6_AUTO_FLOW_LABEL_MAX		IP6_AUTO_FLOW_LABEL_FORCED
811 
812 #define IP6_DEFAULT_AUTO_FLOW_LABELS	IP6_AUTO_FLOW_LABEL_OPTOUT
813 
814 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
815 					__be32 flowlabel, bool autolabel,
816 					struct flowi6 *fl6)
817 {
818 	u32 hash;
819 
820 	/* @flowlabel may include more than a flow label, eg, the traffic class.
821 	 * Here we want only the flow label value.
822 	 */
823 	flowlabel &= IPV6_FLOWLABEL_MASK;
824 
825 	if (flowlabel ||
826 	    net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
827 	    (!autolabel &&
828 	     net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
829 		return flowlabel;
830 
831 	hash = skb_get_hash_flowi6(skb, fl6);
832 
833 	/* Since this is being sent on the wire obfuscate hash a bit
834 	 * to minimize possbility that any useful information to an
835 	 * attacker is leaked. Only lower 20 bits are relevant.
836 	 */
837 	rol32(hash, 16);
838 
839 	flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
840 
841 	if (net->ipv6.sysctl.flowlabel_state_ranges)
842 		flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
843 
844 	return flowlabel;
845 }
846 
847 static inline int ip6_default_np_autolabel(struct net *net)
848 {
849 	switch (net->ipv6.sysctl.auto_flowlabels) {
850 	case IP6_AUTO_FLOW_LABEL_OFF:
851 	case IP6_AUTO_FLOW_LABEL_OPTIN:
852 	default:
853 		return 0;
854 	case IP6_AUTO_FLOW_LABEL_OPTOUT:
855 	case IP6_AUTO_FLOW_LABEL_FORCED:
856 		return 1;
857 	}
858 }
859 #else
860 static inline void ip6_set_txhash(struct sock *sk) { }
861 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
862 					__be32 flowlabel, bool autolabel,
863 					struct flowi6 *fl6)
864 {
865 	return flowlabel;
866 }
867 static inline int ip6_default_np_autolabel(struct net *net)
868 {
869 	return 0;
870 }
871 #endif
872 
873 
874 /*
875  *	Header manipulation
876  */
877 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
878 				__be32 flowlabel)
879 {
880 	*(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
881 }
882 
883 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
884 {
885 	return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
886 }
887 
888 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
889 {
890 	return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
891 }
892 
893 static inline u8 ip6_tclass(__be32 flowinfo)
894 {
895 	return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
896 }
897 
898 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
899 {
900 	return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
901 }
902 
903 /*
904  *	Prototypes exported by ipv6
905  */
906 
907 /*
908  *	rcv function (called from netdevice level)
909  */
910 
911 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
912 	     struct packet_type *pt, struct net_device *orig_dev);
913 
914 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
915 
916 /*
917  *	upper-layer output functions
918  */
919 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
920 	     __u32 mark, struct ipv6_txoptions *opt, int tclass);
921 
922 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
923 
924 int ip6_append_data(struct sock *sk,
925 		    int getfrag(void *from, char *to, int offset, int len,
926 				int odd, struct sk_buff *skb),
927 		    void *from, int length, int transhdrlen,
928 		    struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
929 		    struct rt6_info *rt, unsigned int flags,
930 		    const struct sockcm_cookie *sockc);
931 
932 int ip6_push_pending_frames(struct sock *sk);
933 
934 void ip6_flush_pending_frames(struct sock *sk);
935 
936 int ip6_send_skb(struct sk_buff *skb);
937 
938 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
939 			       struct inet_cork_full *cork,
940 			       struct inet6_cork *v6_cork);
941 struct sk_buff *ip6_make_skb(struct sock *sk,
942 			     int getfrag(void *from, char *to, int offset,
943 					 int len, int odd, struct sk_buff *skb),
944 			     void *from, int length, int transhdrlen,
945 			     struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
946 			     struct rt6_info *rt, unsigned int flags,
947 			     const struct sockcm_cookie *sockc);
948 
949 static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
950 {
951 	return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
952 			      &inet6_sk(sk)->cork);
953 }
954 
955 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
956 		   struct flowi6 *fl6);
957 struct dst_entry *ip6_dst_lookup_flow(const struct sock *sk, struct flowi6 *fl6,
958 				      const struct in6_addr *final_dst);
959 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
960 					 const struct in6_addr *final_dst);
961 struct dst_entry *ip6_blackhole_route(struct net *net,
962 				      struct dst_entry *orig_dst);
963 
964 /*
965  *	skb processing functions
966  */
967 
968 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
969 int ip6_forward(struct sk_buff *skb);
970 int ip6_input(struct sk_buff *skb);
971 int ip6_mc_input(struct sk_buff *skb);
972 
973 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
974 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
975 
976 /*
977  *	Extension header (options) processing
978  */
979 
980 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
981 			  u8 *proto, struct in6_addr **daddr_p,
982 			  struct in6_addr *saddr);
983 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
984 			 u8 *proto);
985 
986 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
987 		     __be16 *frag_offp);
988 
989 bool ipv6_ext_hdr(u8 nexthdr);
990 
991 enum {
992 	IP6_FH_F_FRAG		= (1 << 0),
993 	IP6_FH_F_AUTH		= (1 << 1),
994 	IP6_FH_F_SKIP_RH	= (1 << 2),
995 };
996 
997 /* find specified header and get offset to it */
998 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
999 		  unsigned short *fragoff, int *fragflg);
1000 
1001 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
1002 
1003 struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
1004 				const struct ipv6_txoptions *opt,
1005 				struct in6_addr *orig);
1006 
1007 /*
1008  *	socket options (ipv6_sockglue.c)
1009  */
1010 
1011 int ipv6_setsockopt(struct sock *sk, int level, int optname,
1012 		    char __user *optval, unsigned int optlen);
1013 int ipv6_getsockopt(struct sock *sk, int level, int optname,
1014 		    char __user *optval, int __user *optlen);
1015 int compat_ipv6_setsockopt(struct sock *sk, int level, int optname,
1016 			   char __user *optval, unsigned int optlen);
1017 int compat_ipv6_getsockopt(struct sock *sk, int level, int optname,
1018 			   char __user *optval, int __user *optlen);
1019 
1020 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
1021 			   int addr_len);
1022 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
1023 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
1024 				 int addr_len);
1025 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
1026 void ip6_datagram_release_cb(struct sock *sk);
1027 
1028 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
1029 		    int *addr_len);
1030 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
1031 		     int *addr_len);
1032 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
1033 		     u32 info, u8 *payload);
1034 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
1035 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
1036 
1037 int inet6_release(struct socket *sock);
1038 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
1039 int inet6_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len,
1040 		  int peer);
1041 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
1042 
1043 int inet6_hash_connect(struct inet_timewait_death_row *death_row,
1044 			      struct sock *sk);
1045 
1046 /*
1047  * reassembly.c
1048  */
1049 extern const struct proto_ops inet6_stream_ops;
1050 extern const struct proto_ops inet6_dgram_ops;
1051 extern const struct proto_ops inet6_sockraw_ops;
1052 
1053 struct group_source_req;
1054 struct group_filter;
1055 
1056 int ip6_mc_source(int add, int omode, struct sock *sk,
1057 		  struct group_source_req *pgsr);
1058 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf);
1059 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
1060 		  struct group_filter __user *optval, int __user *optlen);
1061 
1062 #ifdef CONFIG_PROC_FS
1063 int ac6_proc_init(struct net *net);
1064 void ac6_proc_exit(struct net *net);
1065 int raw6_proc_init(void);
1066 void raw6_proc_exit(void);
1067 int tcp6_proc_init(struct net *net);
1068 void tcp6_proc_exit(struct net *net);
1069 int udp6_proc_init(struct net *net);
1070 void udp6_proc_exit(struct net *net);
1071 int udplite6_proc_init(void);
1072 void udplite6_proc_exit(void);
1073 int ipv6_misc_proc_init(void);
1074 void ipv6_misc_proc_exit(void);
1075 int snmp6_register_dev(struct inet6_dev *idev);
1076 int snmp6_unregister_dev(struct inet6_dev *idev);
1077 
1078 #else
1079 static inline int ac6_proc_init(struct net *net) { return 0; }
1080 static inline void ac6_proc_exit(struct net *net) { }
1081 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
1082 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
1083 #endif
1084 
1085 #ifdef CONFIG_SYSCTL
1086 extern struct ctl_table ipv6_route_table_template[];
1087 
1088 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
1089 struct ctl_table *ipv6_route_sysctl_init(struct net *net);
1090 int ipv6_sysctl_register(void);
1091 void ipv6_sysctl_unregister(void);
1092 #endif
1093 
1094 int ipv6_sock_mc_join(struct sock *sk, int ifindex,
1095 		      const struct in6_addr *addr);
1096 int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
1097 		      const struct in6_addr *addr);
1098 #endif /* _NET_IPV6_H */
1099