xref: /openbmc/linux/include/net/ipv6.h (revision 1802d0beecafe581ad584634ba92f8a471d8a63a)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Linux INET6 implementation
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  */
8 
9 #ifndef _NET_IPV6_H
10 #define _NET_IPV6_H
11 
12 #include <linux/ipv6.h>
13 #include <linux/hardirq.h>
14 #include <linux/jhash.h>
15 #include <linux/refcount.h>
16 #include <net/if_inet6.h>
17 #include <net/ndisc.h>
18 #include <net/flow.h>
19 #include <net/flow_dissector.h>
20 #include <net/snmp.h>
21 #include <net/netns/hash.h>
22 
23 #define SIN6_LEN_RFC2133	24
24 
25 #define IPV6_MAXPLEN		65535
26 
27 /*
28  *	NextHeader field of IPv6 header
29  */
30 
31 #define NEXTHDR_HOP		0	/* Hop-by-hop option header. */
32 #define NEXTHDR_TCP		6	/* TCP segment. */
33 #define NEXTHDR_UDP		17	/* UDP message. */
34 #define NEXTHDR_IPV6		41	/* IPv6 in IPv6 */
35 #define NEXTHDR_ROUTING		43	/* Routing header. */
36 #define NEXTHDR_FRAGMENT	44	/* Fragmentation/reassembly header. */
37 #define NEXTHDR_GRE		47	/* GRE header. */
38 #define NEXTHDR_ESP		50	/* Encapsulating security payload. */
39 #define NEXTHDR_AUTH		51	/* Authentication header. */
40 #define NEXTHDR_ICMP		58	/* ICMP for IPv6. */
41 #define NEXTHDR_NONE		59	/* No next header */
42 #define NEXTHDR_DEST		60	/* Destination options header. */
43 #define NEXTHDR_SCTP		132	/* SCTP message. */
44 #define NEXTHDR_MOBILITY	135	/* Mobility header. */
45 
46 #define NEXTHDR_MAX		255
47 
48 #define IPV6_DEFAULT_HOPLIMIT   64
49 #define IPV6_DEFAULT_MCASTHOPS	1
50 
51 /* Limits on Hop-by-Hop and Destination options.
52  *
53  * Per RFC8200 there is no limit on the maximum number or lengths of options in
54  * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
55  * We allow configurable limits in order to mitigate potential denial of
56  * service attacks.
57  *
58  * There are three limits that may be set:
59  *   - Limit the number of options in a Hop-by-Hop or Destination options
60  *     extension header
61  *   - Limit the byte length of a Hop-by-Hop or Destination options extension
62  *     header
63  *   - Disallow unknown options
64  *
65  * The limits are expressed in corresponding sysctls:
66  *
67  * ipv6.sysctl.max_dst_opts_cnt
68  * ipv6.sysctl.max_hbh_opts_cnt
69  * ipv6.sysctl.max_dst_opts_len
70  * ipv6.sysctl.max_hbh_opts_len
71  *
72  * max_*_opts_cnt is the number of TLVs that are allowed for Destination
73  * options or Hop-by-Hop options. If the number is less than zero then unknown
74  * TLVs are disallowed and the number of known options that are allowed is the
75  * absolute value. Setting the value to INT_MAX indicates no limit.
76  *
77  * max_*_opts_len is the length limit in bytes of a Destination or
78  * Hop-by-Hop options extension header. Setting the value to INT_MAX
79  * indicates no length limit.
80  *
81  * If a limit is exceeded when processing an extension header the packet is
82  * silently discarded.
83  */
84 
85 /* Default limits for Hop-by-Hop and Destination options */
86 #define IP6_DEFAULT_MAX_DST_OPTS_CNT	 8
87 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT	 8
88 #define IP6_DEFAULT_MAX_DST_OPTS_LEN	 INT_MAX /* No limit */
89 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN	 INT_MAX /* No limit */
90 
91 /*
92  *	Addr type
93  *
94  *	type	-	unicast | multicast
95  *	scope	-	local	| site	    | global
96  *	v4	-	compat
97  *	v4mapped
98  *	any
99  *	loopback
100  */
101 
102 #define IPV6_ADDR_ANY		0x0000U
103 
104 #define IPV6_ADDR_UNICAST	0x0001U
105 #define IPV6_ADDR_MULTICAST	0x0002U
106 
107 #define IPV6_ADDR_LOOPBACK	0x0010U
108 #define IPV6_ADDR_LINKLOCAL	0x0020U
109 #define IPV6_ADDR_SITELOCAL	0x0040U
110 
111 #define IPV6_ADDR_COMPATv4	0x0080U
112 
113 #define IPV6_ADDR_SCOPE_MASK	0x00f0U
114 
115 #define IPV6_ADDR_MAPPED	0x1000U
116 
117 /*
118  *	Addr scopes
119  */
120 #define IPV6_ADDR_MC_SCOPE(a)	\
121 	((a)->s6_addr[1] & 0x0f)	/* nonstandard */
122 #define __IPV6_ADDR_SCOPE_INVALID	-1
123 #define IPV6_ADDR_SCOPE_NODELOCAL	0x01
124 #define IPV6_ADDR_SCOPE_LINKLOCAL	0x02
125 #define IPV6_ADDR_SCOPE_SITELOCAL	0x05
126 #define IPV6_ADDR_SCOPE_ORGLOCAL	0x08
127 #define IPV6_ADDR_SCOPE_GLOBAL		0x0e
128 
129 /*
130  *	Addr flags
131  */
132 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a)	\
133 	((a)->s6_addr[1] & 0x10)
134 #define IPV6_ADDR_MC_FLAG_PREFIX(a)	\
135 	((a)->s6_addr[1] & 0x20)
136 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a)	\
137 	((a)->s6_addr[1] & 0x40)
138 
139 /*
140  *	fragmentation header
141  */
142 
143 struct frag_hdr {
144 	__u8	nexthdr;
145 	__u8	reserved;
146 	__be16	frag_off;
147 	__be32	identification;
148 };
149 
150 #define	IP6_MF		0x0001
151 #define	IP6_OFFSET	0xFFF8
152 
153 #define IP6_REPLY_MARK(net, mark) \
154 	((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
155 
156 #include <net/sock.h>
157 
158 /* sysctls */
159 extern int sysctl_mld_max_msf;
160 extern int sysctl_mld_qrv;
161 
162 #define _DEVINC(net, statname, mod, idev, field)			\
163 ({									\
164 	struct inet6_dev *_idev = (idev);				\
165 	if (likely(_idev != NULL))					\
166 		mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
167 	mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
168 })
169 
170 /* per device counters are atomic_long_t */
171 #define _DEVINCATOMIC(net, statname, mod, idev, field)			\
172 ({									\
173 	struct inet6_dev *_idev = (idev);				\
174 	if (likely(_idev != NULL))					\
175 		SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
176 	mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
177 })
178 
179 /* per device and per net counters are atomic_long_t */
180 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field)		\
181 ({									\
182 	struct inet6_dev *_idev = (idev);				\
183 	if (likely(_idev != NULL))					\
184 		SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
185 	SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
186 })
187 
188 #define _DEVADD(net, statname, mod, idev, field, val)			\
189 ({									\
190 	struct inet6_dev *_idev = (idev);				\
191 	if (likely(_idev != NULL))					\
192 		mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
193 	mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
194 })
195 
196 #define _DEVUPD(net, statname, mod, idev, field, val)			\
197 ({									\
198 	struct inet6_dev *_idev = (idev);				\
199 	if (likely(_idev != NULL))					\
200 		mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
201 	mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
202 })
203 
204 /* MIBs */
205 
206 #define IP6_INC_STATS(net, idev,field)		\
207 		_DEVINC(net, ipv6, , idev, field)
208 #define __IP6_INC_STATS(net, idev,field)	\
209 		_DEVINC(net, ipv6, __, idev, field)
210 #define IP6_ADD_STATS(net, idev,field,val)	\
211 		_DEVADD(net, ipv6, , idev, field, val)
212 #define __IP6_ADD_STATS(net, idev,field,val)	\
213 		_DEVADD(net, ipv6, __, idev, field, val)
214 #define IP6_UPD_PO_STATS(net, idev,field,val)   \
215 		_DEVUPD(net, ipv6, , idev, field, val)
216 #define __IP6_UPD_PO_STATS(net, idev,field,val)   \
217 		_DEVUPD(net, ipv6, __, idev, field, val)
218 #define ICMP6_INC_STATS(net, idev, field)	\
219 		_DEVINCATOMIC(net, icmpv6, , idev, field)
220 #define __ICMP6_INC_STATS(net, idev, field)	\
221 		_DEVINCATOMIC(net, icmpv6, __, idev, field)
222 
223 #define ICMP6MSGOUT_INC_STATS(net, idev, field)		\
224 	_DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
225 #define ICMP6MSGIN_INC_STATS(net, idev, field)	\
226 	_DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
227 
228 struct ip6_ra_chain {
229 	struct ip6_ra_chain	*next;
230 	struct sock		*sk;
231 	int			sel;
232 	void			(*destructor)(struct sock *);
233 };
234 
235 extern struct ip6_ra_chain	*ip6_ra_chain;
236 extern rwlock_t ip6_ra_lock;
237 
238 /*
239    This structure is prepared by protocol, when parsing
240    ancillary data and passed to IPv6.
241  */
242 
243 struct ipv6_txoptions {
244 	refcount_t		refcnt;
245 	/* Length of this structure */
246 	int			tot_len;
247 
248 	/* length of extension headers   */
249 
250 	__u16			opt_flen;	/* after fragment hdr */
251 	__u16			opt_nflen;	/* before fragment hdr */
252 
253 	struct ipv6_opt_hdr	*hopopt;
254 	struct ipv6_opt_hdr	*dst0opt;
255 	struct ipv6_rt_hdr	*srcrt;	/* Routing Header */
256 	struct ipv6_opt_hdr	*dst1opt;
257 	struct rcu_head		rcu;
258 	/* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
259 };
260 
261 struct ip6_flowlabel {
262 	struct ip6_flowlabel __rcu *next;
263 	__be32			label;
264 	atomic_t		users;
265 	struct in6_addr		dst;
266 	struct ipv6_txoptions	*opt;
267 	unsigned long		linger;
268 	struct rcu_head		rcu;
269 	u8			share;
270 	union {
271 		struct pid *pid;
272 		kuid_t uid;
273 	} owner;
274 	unsigned long		lastuse;
275 	unsigned long		expires;
276 	struct net		*fl_net;
277 };
278 
279 #define IPV6_FLOWINFO_MASK		cpu_to_be32(0x0FFFFFFF)
280 #define IPV6_FLOWLABEL_MASK		cpu_to_be32(0x000FFFFF)
281 #define IPV6_FLOWLABEL_STATELESS_FLAG	cpu_to_be32(0x00080000)
282 
283 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
284 #define IPV6_TCLASS_SHIFT	20
285 
286 struct ipv6_fl_socklist {
287 	struct ipv6_fl_socklist	__rcu	*next;
288 	struct ip6_flowlabel		*fl;
289 	struct rcu_head			rcu;
290 };
291 
292 struct ipcm6_cookie {
293 	struct sockcm_cookie sockc;
294 	__s16 hlimit;
295 	__s16 tclass;
296 	__s8  dontfrag;
297 	struct ipv6_txoptions *opt;
298 	__u16 gso_size;
299 };
300 
301 static inline void ipcm6_init(struct ipcm6_cookie *ipc6)
302 {
303 	*ipc6 = (struct ipcm6_cookie) {
304 		.hlimit = -1,
305 		.tclass = -1,
306 		.dontfrag = -1,
307 	};
308 }
309 
310 static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6,
311 				 const struct ipv6_pinfo *np)
312 {
313 	*ipc6 = (struct ipcm6_cookie) {
314 		.hlimit = -1,
315 		.tclass = np->tclass,
316 		.dontfrag = np->dontfrag,
317 	};
318 }
319 
320 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
321 {
322 	struct ipv6_txoptions *opt;
323 
324 	rcu_read_lock();
325 	opt = rcu_dereference(np->opt);
326 	if (opt) {
327 		if (!refcount_inc_not_zero(&opt->refcnt))
328 			opt = NULL;
329 		else
330 			opt = rcu_pointer_handoff(opt);
331 	}
332 	rcu_read_unlock();
333 	return opt;
334 }
335 
336 static inline void txopt_put(struct ipv6_txoptions *opt)
337 {
338 	if (opt && refcount_dec_and_test(&opt->refcnt))
339 		kfree_rcu(opt, rcu);
340 }
341 
342 struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label);
343 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
344 					 struct ip6_flowlabel *fl,
345 					 struct ipv6_txoptions *fopt);
346 void fl6_free_socklist(struct sock *sk);
347 int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen);
348 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
349 			   int flags);
350 int ip6_flowlabel_init(void);
351 void ip6_flowlabel_cleanup(void);
352 bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np);
353 
354 static inline void fl6_sock_release(struct ip6_flowlabel *fl)
355 {
356 	if (fl)
357 		atomic_dec(&fl->users);
358 }
359 
360 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
361 
362 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
363 				struct icmp6hdr *thdr, int len);
364 
365 int ip6_ra_control(struct sock *sk, int sel);
366 
367 int ipv6_parse_hopopts(struct sk_buff *skb);
368 
369 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
370 					struct ipv6_txoptions *opt);
371 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
372 					  struct ipv6_txoptions *opt,
373 					  int newtype,
374 					  struct ipv6_opt_hdr *newopt);
375 struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
376 					  struct ipv6_txoptions *opt);
377 
378 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
379 		       const struct inet6_skb_parm *opt);
380 struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
381 					   struct ipv6_txoptions *opt);
382 
383 static inline bool ipv6_accept_ra(struct inet6_dev *idev)
384 {
385 	/* If forwarding is enabled, RA are not accepted unless the special
386 	 * hybrid mode (accept_ra=2) is enabled.
387 	 */
388 	return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
389 	    idev->cnf.accept_ra;
390 }
391 
392 #define IPV6_FRAG_HIGH_THRESH	(4 * 1024*1024)	/* 4194304 */
393 #define IPV6_FRAG_LOW_THRESH	(3 * 1024*1024)	/* 3145728 */
394 #define IPV6_FRAG_TIMEOUT	(60 * HZ)	/* 60 seconds */
395 
396 int __ipv6_addr_type(const struct in6_addr *addr);
397 static inline int ipv6_addr_type(const struct in6_addr *addr)
398 {
399 	return __ipv6_addr_type(addr) & 0xffff;
400 }
401 
402 static inline int ipv6_addr_scope(const struct in6_addr *addr)
403 {
404 	return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
405 }
406 
407 static inline int __ipv6_addr_src_scope(int type)
408 {
409 	return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
410 }
411 
412 static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
413 {
414 	return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
415 }
416 
417 static inline bool __ipv6_addr_needs_scope_id(int type)
418 {
419 	return type & IPV6_ADDR_LINKLOCAL ||
420 	       (type & IPV6_ADDR_MULTICAST &&
421 		(type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
422 }
423 
424 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
425 {
426 	return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
427 }
428 
429 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
430 {
431 	return memcmp(a1, a2, sizeof(struct in6_addr));
432 }
433 
434 static inline bool
435 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
436 		     const struct in6_addr *a2)
437 {
438 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
439 	const unsigned long *ul1 = (const unsigned long *)a1;
440 	const unsigned long *ulm = (const unsigned long *)m;
441 	const unsigned long *ul2 = (const unsigned long *)a2;
442 
443 	return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
444 		  ((ul1[1] ^ ul2[1]) & ulm[1]));
445 #else
446 	return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
447 		  ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
448 		  ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
449 		  ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
450 #endif
451 }
452 
453 static inline void ipv6_addr_prefix(struct in6_addr *pfx,
454 				    const struct in6_addr *addr,
455 				    int plen)
456 {
457 	/* caller must guarantee 0 <= plen <= 128 */
458 	int o = plen >> 3,
459 	    b = plen & 0x7;
460 
461 	memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
462 	memcpy(pfx->s6_addr, addr, o);
463 	if (b != 0)
464 		pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
465 }
466 
467 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
468 					 const struct in6_addr *pfx,
469 					 int plen)
470 {
471 	/* caller must guarantee 0 <= plen <= 128 */
472 	int o = plen >> 3,
473 	    b = plen & 0x7;
474 
475 	memcpy(addr->s6_addr, pfx, o);
476 	if (b != 0) {
477 		addr->s6_addr[o] &= ~(0xff00 >> b);
478 		addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
479 	}
480 }
481 
482 static inline void __ipv6_addr_set_half(__be32 *addr,
483 					__be32 wh, __be32 wl)
484 {
485 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
486 #if defined(__BIG_ENDIAN)
487 	if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
488 		*(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
489 		return;
490 	}
491 #elif defined(__LITTLE_ENDIAN)
492 	if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
493 		*(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
494 		return;
495 	}
496 #endif
497 #endif
498 	addr[0] = wh;
499 	addr[1] = wl;
500 }
501 
502 static inline void ipv6_addr_set(struct in6_addr *addr,
503 				     __be32 w1, __be32 w2,
504 				     __be32 w3, __be32 w4)
505 {
506 	__ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
507 	__ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
508 }
509 
510 static inline bool ipv6_addr_equal(const struct in6_addr *a1,
511 				   const struct in6_addr *a2)
512 {
513 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
514 	const unsigned long *ul1 = (const unsigned long *)a1;
515 	const unsigned long *ul2 = (const unsigned long *)a2;
516 
517 	return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
518 #else
519 	return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
520 		(a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
521 		(a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
522 		(a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
523 #endif
524 }
525 
526 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
527 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
528 					      const __be64 *a2,
529 					      unsigned int len)
530 {
531 	if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
532 		return false;
533 	return true;
534 }
535 
536 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
537 				     const struct in6_addr *addr2,
538 				     unsigned int prefixlen)
539 {
540 	const __be64 *a1 = (const __be64 *)addr1;
541 	const __be64 *a2 = (const __be64 *)addr2;
542 
543 	if (prefixlen >= 64) {
544 		if (a1[0] ^ a2[0])
545 			return false;
546 		return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
547 	}
548 	return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
549 }
550 #else
551 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
552 				     const struct in6_addr *addr2,
553 				     unsigned int prefixlen)
554 {
555 	const __be32 *a1 = addr1->s6_addr32;
556 	const __be32 *a2 = addr2->s6_addr32;
557 	unsigned int pdw, pbi;
558 
559 	/* check complete u32 in prefix */
560 	pdw = prefixlen >> 5;
561 	if (pdw && memcmp(a1, a2, pdw << 2))
562 		return false;
563 
564 	/* check incomplete u32 in prefix */
565 	pbi = prefixlen & 0x1f;
566 	if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
567 		return false;
568 
569 	return true;
570 }
571 #endif
572 
573 static inline bool ipv6_addr_any(const struct in6_addr *a)
574 {
575 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
576 	const unsigned long *ul = (const unsigned long *)a;
577 
578 	return (ul[0] | ul[1]) == 0UL;
579 #else
580 	return (a->s6_addr32[0] | a->s6_addr32[1] |
581 		a->s6_addr32[2] | a->s6_addr32[3]) == 0;
582 #endif
583 }
584 
585 static inline u32 ipv6_addr_hash(const struct in6_addr *a)
586 {
587 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
588 	const unsigned long *ul = (const unsigned long *)a;
589 	unsigned long x = ul[0] ^ ul[1];
590 
591 	return (u32)(x ^ (x >> 32));
592 #else
593 	return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
594 			     a->s6_addr32[2] ^ a->s6_addr32[3]);
595 #endif
596 }
597 
598 /* more secured version of ipv6_addr_hash() */
599 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
600 {
601 	u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
602 
603 	return jhash_3words(v,
604 			    (__force u32)a->s6_addr32[2],
605 			    (__force u32)a->s6_addr32[3],
606 			    initval);
607 }
608 
609 static inline bool ipv6_addr_loopback(const struct in6_addr *a)
610 {
611 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
612 	const __be64 *be = (const __be64 *)a;
613 
614 	return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
615 #else
616 	return (a->s6_addr32[0] | a->s6_addr32[1] |
617 		a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
618 #endif
619 }
620 
621 /*
622  * Note that we must __force cast these to unsigned long to make sparse happy,
623  * since all of the endian-annotated types are fixed size regardless of arch.
624  */
625 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
626 {
627 	return (
628 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
629 		*(unsigned long *)a |
630 #else
631 		(__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
632 #endif
633 		(__force unsigned long)(a->s6_addr32[2] ^
634 					cpu_to_be32(0x0000ffff))) == 0UL;
635 }
636 
637 static inline u32 ipv6_portaddr_hash(const struct net *net,
638 				     const struct in6_addr *addr6,
639 				     unsigned int port)
640 {
641 	unsigned int hash, mix = net_hash_mix(net);
642 
643 	if (ipv6_addr_any(addr6))
644 		hash = jhash_1word(0, mix);
645 	else if (ipv6_addr_v4mapped(addr6))
646 		hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
647 	else
648 		hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
649 
650 	return hash ^ port;
651 }
652 
653 /*
654  * Check for a RFC 4843 ORCHID address
655  * (Overlay Routable Cryptographic Hash Identifiers)
656  */
657 static inline bool ipv6_addr_orchid(const struct in6_addr *a)
658 {
659 	return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
660 }
661 
662 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
663 {
664 	return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
665 }
666 
667 static inline void ipv6_addr_set_v4mapped(const __be32 addr,
668 					  struct in6_addr *v4mapped)
669 {
670 	ipv6_addr_set(v4mapped,
671 			0, 0,
672 			htonl(0x0000FFFF),
673 			addr);
674 }
675 
676 /*
677  * find the first different bit between two addresses
678  * length of address must be a multiple of 32bits
679  */
680 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
681 {
682 	const __be32 *a1 = token1, *a2 = token2;
683 	int i;
684 
685 	addrlen >>= 2;
686 
687 	for (i = 0; i < addrlen; i++) {
688 		__be32 xb = a1[i] ^ a2[i];
689 		if (xb)
690 			return i * 32 + 31 - __fls(ntohl(xb));
691 	}
692 
693 	/*
694 	 *	we should *never* get to this point since that
695 	 *	would mean the addrs are equal
696 	 *
697 	 *	However, we do get to it 8) And exacly, when
698 	 *	addresses are equal 8)
699 	 *
700 	 *	ip route add 1111::/128 via ...
701 	 *	ip route add 1111::/64 via ...
702 	 *	and we are here.
703 	 *
704 	 *	Ideally, this function should stop comparison
705 	 *	at prefix length. It does not, but it is still OK,
706 	 *	if returned value is greater than prefix length.
707 	 *					--ANK (980803)
708 	 */
709 	return addrlen << 5;
710 }
711 
712 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
713 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
714 {
715 	const __be64 *a1 = token1, *a2 = token2;
716 	int i;
717 
718 	addrlen >>= 3;
719 
720 	for (i = 0; i < addrlen; i++) {
721 		__be64 xb = a1[i] ^ a2[i];
722 		if (xb)
723 			return i * 64 + 63 - __fls(be64_to_cpu(xb));
724 	}
725 
726 	return addrlen << 6;
727 }
728 #endif
729 
730 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
731 {
732 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
733 	if (__builtin_constant_p(addrlen) && !(addrlen & 7))
734 		return __ipv6_addr_diff64(token1, token2, addrlen);
735 #endif
736 	return __ipv6_addr_diff32(token1, token2, addrlen);
737 }
738 
739 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
740 {
741 	return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
742 }
743 
744 __be32 ipv6_select_ident(struct net *net,
745 			 const struct in6_addr *daddr,
746 			 const struct in6_addr *saddr);
747 __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
748 
749 int ip6_dst_hoplimit(struct dst_entry *dst);
750 
751 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
752 				      struct dst_entry *dst)
753 {
754 	int hlimit;
755 
756 	if (ipv6_addr_is_multicast(&fl6->daddr))
757 		hlimit = np->mcast_hops;
758 	else
759 		hlimit = np->hop_limit;
760 	if (hlimit < 0)
761 		hlimit = ip6_dst_hoplimit(dst);
762 	return hlimit;
763 }
764 
765 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
766  * Equivalent to :	flow->v6addrs.src = iph->saddr;
767  *			flow->v6addrs.dst = iph->daddr;
768  */
769 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
770 					    const struct ipv6hdr *iph)
771 {
772 	BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
773 		     offsetof(typeof(flow->addrs), v6addrs.src) +
774 		     sizeof(flow->addrs.v6addrs.src));
775 	memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs));
776 	flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
777 }
778 
779 #if IS_ENABLED(CONFIG_IPV6)
780 
781 static inline bool ipv6_can_nonlocal_bind(struct net *net,
782 					  struct inet_sock *inet)
783 {
784 	return net->ipv6.sysctl.ip_nonlocal_bind ||
785 		inet->freebind || inet->transparent;
786 }
787 
788 /* Sysctl settings for net ipv6.auto_flowlabels */
789 #define IP6_AUTO_FLOW_LABEL_OFF		0
790 #define IP6_AUTO_FLOW_LABEL_OPTOUT	1
791 #define IP6_AUTO_FLOW_LABEL_OPTIN	2
792 #define IP6_AUTO_FLOW_LABEL_FORCED	3
793 
794 #define IP6_AUTO_FLOW_LABEL_MAX		IP6_AUTO_FLOW_LABEL_FORCED
795 
796 #define IP6_DEFAULT_AUTO_FLOW_LABELS	IP6_AUTO_FLOW_LABEL_OPTOUT
797 
798 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
799 					__be32 flowlabel, bool autolabel,
800 					struct flowi6 *fl6)
801 {
802 	u32 hash;
803 
804 	/* @flowlabel may include more than a flow label, eg, the traffic class.
805 	 * Here we want only the flow label value.
806 	 */
807 	flowlabel &= IPV6_FLOWLABEL_MASK;
808 
809 	if (flowlabel ||
810 	    net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
811 	    (!autolabel &&
812 	     net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
813 		return flowlabel;
814 
815 	hash = skb_get_hash_flowi6(skb, fl6);
816 
817 	/* Since this is being sent on the wire obfuscate hash a bit
818 	 * to minimize possbility that any useful information to an
819 	 * attacker is leaked. Only lower 20 bits are relevant.
820 	 */
821 	hash = rol32(hash, 16);
822 
823 	flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
824 
825 	if (net->ipv6.sysctl.flowlabel_state_ranges)
826 		flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
827 
828 	return flowlabel;
829 }
830 
831 static inline int ip6_default_np_autolabel(struct net *net)
832 {
833 	switch (net->ipv6.sysctl.auto_flowlabels) {
834 	case IP6_AUTO_FLOW_LABEL_OFF:
835 	case IP6_AUTO_FLOW_LABEL_OPTIN:
836 	default:
837 		return 0;
838 	case IP6_AUTO_FLOW_LABEL_OPTOUT:
839 	case IP6_AUTO_FLOW_LABEL_FORCED:
840 		return 1;
841 	}
842 }
843 #else
844 static inline void ip6_set_txhash(struct sock *sk) { }
845 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
846 					__be32 flowlabel, bool autolabel,
847 					struct flowi6 *fl6)
848 {
849 	return flowlabel;
850 }
851 static inline int ip6_default_np_autolabel(struct net *net)
852 {
853 	return 0;
854 }
855 #endif
856 
857 #if IS_ENABLED(CONFIG_IPV6)
858 static inline int ip6_multipath_hash_policy(const struct net *net)
859 {
860 	return net->ipv6.sysctl.multipath_hash_policy;
861 }
862 #else
863 static inline int ip6_multipath_hash_policy(const struct net *net)
864 {
865 	return 0;
866 }
867 #endif
868 
869 /*
870  *	Header manipulation
871  */
872 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
873 				__be32 flowlabel)
874 {
875 	*(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
876 }
877 
878 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
879 {
880 	return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
881 }
882 
883 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
884 {
885 	return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
886 }
887 
888 static inline u8 ip6_tclass(__be32 flowinfo)
889 {
890 	return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
891 }
892 
893 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
894 {
895 	return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
896 }
897 
898 static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6)
899 {
900 	return fl6->flowlabel & IPV6_FLOWLABEL_MASK;
901 }
902 
903 /*
904  *	Prototypes exported by ipv6
905  */
906 
907 /*
908  *	rcv function (called from netdevice level)
909  */
910 
911 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
912 	     struct packet_type *pt, struct net_device *orig_dev);
913 void ipv6_list_rcv(struct list_head *head, struct packet_type *pt,
914 		   struct net_device *orig_dev);
915 
916 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
917 
918 /*
919  *	upper-layer output functions
920  */
921 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
922 	     __u32 mark, struct ipv6_txoptions *opt, int tclass);
923 
924 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
925 
926 int ip6_append_data(struct sock *sk,
927 		    int getfrag(void *from, char *to, int offset, int len,
928 				int odd, struct sk_buff *skb),
929 		    void *from, int length, int transhdrlen,
930 		    struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
931 		    struct rt6_info *rt, unsigned int flags);
932 
933 int ip6_push_pending_frames(struct sock *sk);
934 
935 void ip6_flush_pending_frames(struct sock *sk);
936 
937 int ip6_send_skb(struct sk_buff *skb);
938 
939 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
940 			       struct inet_cork_full *cork,
941 			       struct inet6_cork *v6_cork);
942 struct sk_buff *ip6_make_skb(struct sock *sk,
943 			     int getfrag(void *from, char *to, int offset,
944 					 int len, int odd, struct sk_buff *skb),
945 			     void *from, int length, int transhdrlen,
946 			     struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
947 			     struct rt6_info *rt, unsigned int flags,
948 			     struct inet_cork_full *cork);
949 
950 static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
951 {
952 	return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
953 			      &inet6_sk(sk)->cork);
954 }
955 
956 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
957 		   struct flowi6 *fl6);
958 struct dst_entry *ip6_dst_lookup_flow(const struct sock *sk, struct flowi6 *fl6,
959 				      const struct in6_addr *final_dst);
960 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
961 					 const struct in6_addr *final_dst,
962 					 bool connected);
963 struct dst_entry *ip6_blackhole_route(struct net *net,
964 				      struct dst_entry *orig_dst);
965 
966 /*
967  *	skb processing functions
968  */
969 
970 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
971 int ip6_forward(struct sk_buff *skb);
972 int ip6_input(struct sk_buff *skb);
973 int ip6_mc_input(struct sk_buff *skb);
974 void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr,
975 			      bool have_final);
976 
977 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
978 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
979 
980 /*
981  *	Extension header (options) processing
982  */
983 
984 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
985 			  u8 *proto, struct in6_addr **daddr_p,
986 			  struct in6_addr *saddr);
987 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
988 			 u8 *proto);
989 
990 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
991 		     __be16 *frag_offp);
992 
993 bool ipv6_ext_hdr(u8 nexthdr);
994 
995 enum {
996 	IP6_FH_F_FRAG		= (1 << 0),
997 	IP6_FH_F_AUTH		= (1 << 1),
998 	IP6_FH_F_SKIP_RH	= (1 << 2),
999 };
1000 
1001 /* find specified header and get offset to it */
1002 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
1003 		  unsigned short *fragoff, int *fragflg);
1004 
1005 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
1006 
1007 struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
1008 				const struct ipv6_txoptions *opt,
1009 				struct in6_addr *orig);
1010 
1011 /*
1012  *	socket options (ipv6_sockglue.c)
1013  */
1014 
1015 int ipv6_setsockopt(struct sock *sk, int level, int optname,
1016 		    char __user *optval, unsigned int optlen);
1017 int ipv6_getsockopt(struct sock *sk, int level, int optname,
1018 		    char __user *optval, int __user *optlen);
1019 int compat_ipv6_setsockopt(struct sock *sk, int level, int optname,
1020 			   char __user *optval, unsigned int optlen);
1021 int compat_ipv6_getsockopt(struct sock *sk, int level, int optname,
1022 			   char __user *optval, int __user *optlen);
1023 
1024 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
1025 			   int addr_len);
1026 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
1027 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
1028 				 int addr_len);
1029 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
1030 void ip6_datagram_release_cb(struct sock *sk);
1031 
1032 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
1033 		    int *addr_len);
1034 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
1035 		     int *addr_len);
1036 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
1037 		     u32 info, u8 *payload);
1038 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
1039 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
1040 
1041 int inet6_release(struct socket *sock);
1042 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
1043 int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
1044 		  int peer);
1045 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
1046 
1047 int inet6_hash_connect(struct inet_timewait_death_row *death_row,
1048 			      struct sock *sk);
1049 
1050 /*
1051  * reassembly.c
1052  */
1053 extern const struct proto_ops inet6_stream_ops;
1054 extern const struct proto_ops inet6_dgram_ops;
1055 extern const struct proto_ops inet6_sockraw_ops;
1056 
1057 struct group_source_req;
1058 struct group_filter;
1059 
1060 int ip6_mc_source(int add, int omode, struct sock *sk,
1061 		  struct group_source_req *pgsr);
1062 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf);
1063 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
1064 		  struct group_filter __user *optval, int __user *optlen);
1065 
1066 #ifdef CONFIG_PROC_FS
1067 int ac6_proc_init(struct net *net);
1068 void ac6_proc_exit(struct net *net);
1069 int raw6_proc_init(void);
1070 void raw6_proc_exit(void);
1071 int tcp6_proc_init(struct net *net);
1072 void tcp6_proc_exit(struct net *net);
1073 int udp6_proc_init(struct net *net);
1074 void udp6_proc_exit(struct net *net);
1075 int udplite6_proc_init(void);
1076 void udplite6_proc_exit(void);
1077 int ipv6_misc_proc_init(void);
1078 void ipv6_misc_proc_exit(void);
1079 int snmp6_register_dev(struct inet6_dev *idev);
1080 int snmp6_unregister_dev(struct inet6_dev *idev);
1081 
1082 #else
1083 static inline int ac6_proc_init(struct net *net) { return 0; }
1084 static inline void ac6_proc_exit(struct net *net) { }
1085 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
1086 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
1087 #endif
1088 
1089 #ifdef CONFIG_SYSCTL
1090 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
1091 struct ctl_table *ipv6_route_sysctl_init(struct net *net);
1092 int ipv6_sysctl_register(void);
1093 void ipv6_sysctl_unregister(void);
1094 #endif
1095 
1096 int ipv6_sock_mc_join(struct sock *sk, int ifindex,
1097 		      const struct in6_addr *addr);
1098 int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex,
1099 			  const struct in6_addr *addr, unsigned int mode);
1100 int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
1101 		      const struct in6_addr *addr);
1102 #endif /* _NET_IPV6_H */
1103