1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __NET_CFG80211_H
3 #define __NET_CFG80211_H
4 /*
5 * 802.11 device and configuration interface
6 *
7 * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net>
8 * Copyright 2013-2014 Intel Mobile Communications GmbH
9 * Copyright 2015-2017 Intel Deutschland GmbH
10 * Copyright (C) 2018-2021, 2023 Intel Corporation
11 */
12
13 #include <linux/ethtool.h>
14 #include <uapi/linux/rfkill.h>
15 #include <linux/netdevice.h>
16 #include <linux/debugfs.h>
17 #include <linux/list.h>
18 #include <linux/bug.h>
19 #include <linux/netlink.h>
20 #include <linux/skbuff.h>
21 #include <linux/nl80211.h>
22 #include <linux/if_ether.h>
23 #include <linux/ieee80211.h>
24 #include <linux/net.h>
25 #include <linux/rfkill.h>
26 #include <net/regulatory.h>
27
28 /**
29 * DOC: Introduction
30 *
31 * cfg80211 is the configuration API for 802.11 devices in Linux. It bridges
32 * userspace and drivers, and offers some utility functionality associated
33 * with 802.11. cfg80211 must, directly or indirectly via mac80211, be used
34 * by all modern wireless drivers in Linux, so that they offer a consistent
35 * API through nl80211. For backward compatibility, cfg80211 also offers
36 * wireless extensions to userspace, but hides them from drivers completely.
37 *
38 * Additionally, cfg80211 contains code to help enforce regulatory spectrum
39 * use restrictions.
40 */
41
42
43 /**
44 * DOC: Device registration
45 *
46 * In order for a driver to use cfg80211, it must register the hardware device
47 * with cfg80211. This happens through a number of hardware capability structs
48 * described below.
49 *
50 * The fundamental structure for each device is the 'wiphy', of which each
51 * instance describes a physical wireless device connected to the system. Each
52 * such wiphy can have zero, one, or many virtual interfaces associated with
53 * it, which need to be identified as such by pointing the network interface's
54 * @ieee80211_ptr pointer to a &struct wireless_dev which further describes
55 * the wireless part of the interface, normally this struct is embedded in the
56 * network interface's private data area. Drivers can optionally allow creating
57 * or destroying virtual interfaces on the fly, but without at least one or the
58 * ability to create some the wireless device isn't useful.
59 *
60 * Each wiphy structure contains device capability information, and also has
61 * a pointer to the various operations the driver offers. The definitions and
62 * structures here describe these capabilities in detail.
63 */
64
65 struct wiphy;
66
67 /*
68 * wireless hardware capability structures
69 */
70
71 /**
72 * enum ieee80211_channel_flags - channel flags
73 *
74 * Channel flags set by the regulatory control code.
75 *
76 * @IEEE80211_CHAN_DISABLED: This channel is disabled.
77 * @IEEE80211_CHAN_NO_IR: do not initiate radiation, this includes
78 * sending probe requests or beaconing.
79 * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel.
80 * @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel
81 * is not permitted.
82 * @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel
83 * is not permitted.
84 * @IEEE80211_CHAN_NO_OFDM: OFDM is not allowed on this channel.
85 * @IEEE80211_CHAN_NO_80MHZ: If the driver supports 80 MHz on the band,
86 * this flag indicates that an 80 MHz channel cannot use this
87 * channel as the control or any of the secondary channels.
88 * This may be due to the driver or due to regulatory bandwidth
89 * restrictions.
90 * @IEEE80211_CHAN_NO_160MHZ: If the driver supports 160 MHz on the band,
91 * this flag indicates that an 160 MHz channel cannot use this
92 * channel as the control or any of the secondary channels.
93 * This may be due to the driver or due to regulatory bandwidth
94 * restrictions.
95 * @IEEE80211_CHAN_INDOOR_ONLY: see %NL80211_FREQUENCY_ATTR_INDOOR_ONLY
96 * @IEEE80211_CHAN_IR_CONCURRENT: see %NL80211_FREQUENCY_ATTR_IR_CONCURRENT
97 * @IEEE80211_CHAN_NO_20MHZ: 20 MHz bandwidth is not permitted
98 * on this channel.
99 * @IEEE80211_CHAN_NO_10MHZ: 10 MHz bandwidth is not permitted
100 * on this channel.
101 * @IEEE80211_CHAN_NO_HE: HE operation is not permitted on this channel.
102 * @IEEE80211_CHAN_1MHZ: 1 MHz bandwidth is permitted
103 * on this channel.
104 * @IEEE80211_CHAN_2MHZ: 2 MHz bandwidth is permitted
105 * on this channel.
106 * @IEEE80211_CHAN_4MHZ: 4 MHz bandwidth is permitted
107 * on this channel.
108 * @IEEE80211_CHAN_8MHZ: 8 MHz bandwidth is permitted
109 * on this channel.
110 * @IEEE80211_CHAN_16MHZ: 16 MHz bandwidth is permitted
111 * on this channel.
112 * @IEEE80211_CHAN_NO_320MHZ: If the driver supports 320 MHz on the band,
113 * this flag indicates that a 320 MHz channel cannot use this
114 * channel as the control or any of the secondary channels.
115 * This may be due to the driver or due to regulatory bandwidth
116 * restrictions.
117 * @IEEE80211_CHAN_NO_EHT: EHT operation is not permitted on this channel.
118 */
119 enum ieee80211_channel_flags {
120 IEEE80211_CHAN_DISABLED = 1<<0,
121 IEEE80211_CHAN_NO_IR = 1<<1,
122 /* hole at 1<<2 */
123 IEEE80211_CHAN_RADAR = 1<<3,
124 IEEE80211_CHAN_NO_HT40PLUS = 1<<4,
125 IEEE80211_CHAN_NO_HT40MINUS = 1<<5,
126 IEEE80211_CHAN_NO_OFDM = 1<<6,
127 IEEE80211_CHAN_NO_80MHZ = 1<<7,
128 IEEE80211_CHAN_NO_160MHZ = 1<<8,
129 IEEE80211_CHAN_INDOOR_ONLY = 1<<9,
130 IEEE80211_CHAN_IR_CONCURRENT = 1<<10,
131 IEEE80211_CHAN_NO_20MHZ = 1<<11,
132 IEEE80211_CHAN_NO_10MHZ = 1<<12,
133 IEEE80211_CHAN_NO_HE = 1<<13,
134 IEEE80211_CHAN_1MHZ = 1<<14,
135 IEEE80211_CHAN_2MHZ = 1<<15,
136 IEEE80211_CHAN_4MHZ = 1<<16,
137 IEEE80211_CHAN_8MHZ = 1<<17,
138 IEEE80211_CHAN_16MHZ = 1<<18,
139 IEEE80211_CHAN_NO_320MHZ = 1<<19,
140 IEEE80211_CHAN_NO_EHT = 1<<20,
141 };
142
143 #define IEEE80211_CHAN_NO_HT40 \
144 (IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS)
145
146 #define IEEE80211_DFS_MIN_CAC_TIME_MS 60000
147 #define IEEE80211_DFS_MIN_NOP_TIME_MS (30 * 60 * 1000)
148
149 /**
150 * struct ieee80211_channel - channel definition
151 *
152 * This structure describes a single channel for use
153 * with cfg80211.
154 *
155 * @center_freq: center frequency in MHz
156 * @freq_offset: offset from @center_freq, in KHz
157 * @hw_value: hardware-specific value for the channel
158 * @flags: channel flags from &enum ieee80211_channel_flags.
159 * @orig_flags: channel flags at registration time, used by regulatory
160 * code to support devices with additional restrictions
161 * @band: band this channel belongs to.
162 * @max_antenna_gain: maximum antenna gain in dBi
163 * @max_power: maximum transmission power (in dBm)
164 * @max_reg_power: maximum regulatory transmission power (in dBm)
165 * @beacon_found: helper to regulatory code to indicate when a beacon
166 * has been found on this channel. Use regulatory_hint_found_beacon()
167 * to enable this, this is useful only on 5 GHz band.
168 * @orig_mag: internal use
169 * @orig_mpwr: internal use
170 * @dfs_state: current state of this channel. Only relevant if radar is required
171 * on this channel.
172 * @dfs_state_entered: timestamp (jiffies) when the dfs state was entered.
173 * @dfs_cac_ms: DFS CAC time in milliseconds, this is valid for DFS channels.
174 */
175 struct ieee80211_channel {
176 enum nl80211_band band;
177 u32 center_freq;
178 u16 freq_offset;
179 u16 hw_value;
180 u32 flags;
181 int max_antenna_gain;
182 int max_power;
183 int max_reg_power;
184 bool beacon_found;
185 u32 orig_flags;
186 int orig_mag, orig_mpwr;
187 enum nl80211_dfs_state dfs_state;
188 unsigned long dfs_state_entered;
189 unsigned int dfs_cac_ms;
190 };
191
192 /**
193 * enum ieee80211_rate_flags - rate flags
194 *
195 * Hardware/specification flags for rates. These are structured
196 * in a way that allows using the same bitrate structure for
197 * different bands/PHY modes.
198 *
199 * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short
200 * preamble on this bitrate; only relevant in 2.4GHz band and
201 * with CCK rates.
202 * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate
203 * when used with 802.11a (on the 5 GHz band); filled by the
204 * core code when registering the wiphy.
205 * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate
206 * when used with 802.11b (on the 2.4 GHz band); filled by the
207 * core code when registering the wiphy.
208 * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate
209 * when used with 802.11g (on the 2.4 GHz band); filled by the
210 * core code when registering the wiphy.
211 * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode.
212 * @IEEE80211_RATE_SUPPORTS_5MHZ: Rate can be used in 5 MHz mode
213 * @IEEE80211_RATE_SUPPORTS_10MHZ: Rate can be used in 10 MHz mode
214 */
215 enum ieee80211_rate_flags {
216 IEEE80211_RATE_SHORT_PREAMBLE = 1<<0,
217 IEEE80211_RATE_MANDATORY_A = 1<<1,
218 IEEE80211_RATE_MANDATORY_B = 1<<2,
219 IEEE80211_RATE_MANDATORY_G = 1<<3,
220 IEEE80211_RATE_ERP_G = 1<<4,
221 IEEE80211_RATE_SUPPORTS_5MHZ = 1<<5,
222 IEEE80211_RATE_SUPPORTS_10MHZ = 1<<6,
223 };
224
225 /**
226 * enum ieee80211_bss_type - BSS type filter
227 *
228 * @IEEE80211_BSS_TYPE_ESS: Infrastructure BSS
229 * @IEEE80211_BSS_TYPE_PBSS: Personal BSS
230 * @IEEE80211_BSS_TYPE_IBSS: Independent BSS
231 * @IEEE80211_BSS_TYPE_MBSS: Mesh BSS
232 * @IEEE80211_BSS_TYPE_ANY: Wildcard value for matching any BSS type
233 */
234 enum ieee80211_bss_type {
235 IEEE80211_BSS_TYPE_ESS,
236 IEEE80211_BSS_TYPE_PBSS,
237 IEEE80211_BSS_TYPE_IBSS,
238 IEEE80211_BSS_TYPE_MBSS,
239 IEEE80211_BSS_TYPE_ANY
240 };
241
242 /**
243 * enum ieee80211_privacy - BSS privacy filter
244 *
245 * @IEEE80211_PRIVACY_ON: privacy bit set
246 * @IEEE80211_PRIVACY_OFF: privacy bit clear
247 * @IEEE80211_PRIVACY_ANY: Wildcard value for matching any privacy setting
248 */
249 enum ieee80211_privacy {
250 IEEE80211_PRIVACY_ON,
251 IEEE80211_PRIVACY_OFF,
252 IEEE80211_PRIVACY_ANY
253 };
254
255 #define IEEE80211_PRIVACY(x) \
256 ((x) ? IEEE80211_PRIVACY_ON : IEEE80211_PRIVACY_OFF)
257
258 /**
259 * struct ieee80211_rate - bitrate definition
260 *
261 * This structure describes a bitrate that an 802.11 PHY can
262 * operate with. The two values @hw_value and @hw_value_short
263 * are only for driver use when pointers to this structure are
264 * passed around.
265 *
266 * @flags: rate-specific flags from &enum ieee80211_rate_flags
267 * @bitrate: bitrate in units of 100 Kbps
268 * @hw_value: driver/hardware value for this rate
269 * @hw_value_short: driver/hardware value for this rate when
270 * short preamble is used
271 */
272 struct ieee80211_rate {
273 u32 flags;
274 u16 bitrate;
275 u16 hw_value, hw_value_short;
276 };
277
278 /**
279 * struct ieee80211_he_obss_pd - AP settings for spatial reuse
280 *
281 * @enable: is the feature enabled.
282 * @sr_ctrl: The SR Control field of SRP element.
283 * @non_srg_max_offset: non-SRG maximum tx power offset
284 * @min_offset: minimal tx power offset an associated station shall use
285 * @max_offset: maximum tx power offset an associated station shall use
286 * @bss_color_bitmap: bitmap that indicates the BSS color values used by
287 * members of the SRG
288 * @partial_bssid_bitmap: bitmap that indicates the partial BSSID values
289 * used by members of the SRG
290 */
291 struct ieee80211_he_obss_pd {
292 bool enable;
293 u8 sr_ctrl;
294 u8 non_srg_max_offset;
295 u8 min_offset;
296 u8 max_offset;
297 u8 bss_color_bitmap[8];
298 u8 partial_bssid_bitmap[8];
299 };
300
301 /**
302 * struct cfg80211_he_bss_color - AP settings for BSS coloring
303 *
304 * @color: the current color.
305 * @enabled: HE BSS color is used
306 * @partial: define the AID equation.
307 */
308 struct cfg80211_he_bss_color {
309 u8 color;
310 bool enabled;
311 bool partial;
312 };
313
314 /**
315 * struct ieee80211_sta_ht_cap - STA's HT capabilities
316 *
317 * This structure describes most essential parameters needed
318 * to describe 802.11n HT capabilities for an STA.
319 *
320 * @ht_supported: is HT supported by the STA
321 * @cap: HT capabilities map as described in 802.11n spec
322 * @ampdu_factor: Maximum A-MPDU length factor
323 * @ampdu_density: Minimum A-MPDU spacing
324 * @mcs: Supported MCS rates
325 */
326 struct ieee80211_sta_ht_cap {
327 u16 cap; /* use IEEE80211_HT_CAP_ */
328 bool ht_supported;
329 u8 ampdu_factor;
330 u8 ampdu_density;
331 struct ieee80211_mcs_info mcs;
332 };
333
334 /**
335 * struct ieee80211_sta_vht_cap - STA's VHT capabilities
336 *
337 * This structure describes most essential parameters needed
338 * to describe 802.11ac VHT capabilities for an STA.
339 *
340 * @vht_supported: is VHT supported by the STA
341 * @cap: VHT capabilities map as described in 802.11ac spec
342 * @vht_mcs: Supported VHT MCS rates
343 */
344 struct ieee80211_sta_vht_cap {
345 bool vht_supported;
346 u32 cap; /* use IEEE80211_VHT_CAP_ */
347 struct ieee80211_vht_mcs_info vht_mcs;
348 };
349
350 #define IEEE80211_HE_PPE_THRES_MAX_LEN 25
351
352 /**
353 * struct ieee80211_sta_he_cap - STA's HE capabilities
354 *
355 * This structure describes most essential parameters needed
356 * to describe 802.11ax HE capabilities for a STA.
357 *
358 * @has_he: true iff HE data is valid.
359 * @he_cap_elem: Fixed portion of the HE capabilities element.
360 * @he_mcs_nss_supp: The supported NSS/MCS combinations.
361 * @ppe_thres: Holds the PPE Thresholds data.
362 */
363 struct ieee80211_sta_he_cap {
364 bool has_he;
365 struct ieee80211_he_cap_elem he_cap_elem;
366 struct ieee80211_he_mcs_nss_supp he_mcs_nss_supp;
367 u8 ppe_thres[IEEE80211_HE_PPE_THRES_MAX_LEN];
368 };
369
370 /**
371 * struct ieee80211_eht_mcs_nss_supp - EHT max supported NSS per MCS
372 *
373 * See P802.11be_D1.3 Table 9-401k - "Subfields of the Supported EHT-MCS
374 * and NSS Set field"
375 *
376 * @only_20mhz: MCS/NSS support for 20 MHz-only STA.
377 * @bw: MCS/NSS support for 80, 160 and 320 MHz
378 * @bw._80: MCS/NSS support for BW <= 80 MHz
379 * @bw._160: MCS/NSS support for BW = 160 MHz
380 * @bw._320: MCS/NSS support for BW = 320 MHz
381 */
382 struct ieee80211_eht_mcs_nss_supp {
383 union {
384 struct ieee80211_eht_mcs_nss_supp_20mhz_only only_20mhz;
385 struct {
386 struct ieee80211_eht_mcs_nss_supp_bw _80;
387 struct ieee80211_eht_mcs_nss_supp_bw _160;
388 struct ieee80211_eht_mcs_nss_supp_bw _320;
389 } __packed bw;
390 } __packed;
391 } __packed;
392
393 #define IEEE80211_EHT_PPE_THRES_MAX_LEN 32
394
395 /**
396 * struct ieee80211_sta_eht_cap - STA's EHT capabilities
397 *
398 * This structure describes most essential parameters needed
399 * to describe 802.11be EHT capabilities for a STA.
400 *
401 * @has_eht: true iff EHT data is valid.
402 * @eht_cap_elem: Fixed portion of the eht capabilities element.
403 * @eht_mcs_nss_supp: The supported NSS/MCS combinations.
404 * @eht_ppe_thres: Holds the PPE Thresholds data.
405 */
406 struct ieee80211_sta_eht_cap {
407 bool has_eht;
408 struct ieee80211_eht_cap_elem_fixed eht_cap_elem;
409 struct ieee80211_eht_mcs_nss_supp eht_mcs_nss_supp;
410 u8 eht_ppe_thres[IEEE80211_EHT_PPE_THRES_MAX_LEN];
411 };
412
413 /**
414 * struct ieee80211_sband_iftype_data - sband data per interface type
415 *
416 * This structure encapsulates sband data that is relevant for the
417 * interface types defined in @types_mask. Each type in the
418 * @types_mask must be unique across all instances of iftype_data.
419 *
420 * @types_mask: interface types mask
421 * @he_cap: holds the HE capabilities
422 * @he_6ghz_capa: HE 6 GHz capabilities, must be filled in for a
423 * 6 GHz band channel (and 0 may be valid value).
424 * @eht_cap: STA's EHT capabilities
425 * @vendor_elems: vendor element(s) to advertise
426 * @vendor_elems.data: vendor element(s) data
427 * @vendor_elems.len: vendor element(s) length
428 */
429 struct ieee80211_sband_iftype_data {
430 u16 types_mask;
431 struct ieee80211_sta_he_cap he_cap;
432 struct ieee80211_he_6ghz_capa he_6ghz_capa;
433 struct ieee80211_sta_eht_cap eht_cap;
434 struct {
435 const u8 *data;
436 unsigned int len;
437 } vendor_elems;
438 };
439
440 /**
441 * enum ieee80211_edmg_bw_config - allowed channel bandwidth configurations
442 *
443 * @IEEE80211_EDMG_BW_CONFIG_4: 2.16GHz
444 * @IEEE80211_EDMG_BW_CONFIG_5: 2.16GHz and 4.32GHz
445 * @IEEE80211_EDMG_BW_CONFIG_6: 2.16GHz, 4.32GHz and 6.48GHz
446 * @IEEE80211_EDMG_BW_CONFIG_7: 2.16GHz, 4.32GHz, 6.48GHz and 8.64GHz
447 * @IEEE80211_EDMG_BW_CONFIG_8: 2.16GHz and 2.16GHz + 2.16GHz
448 * @IEEE80211_EDMG_BW_CONFIG_9: 2.16GHz, 4.32GHz and 2.16GHz + 2.16GHz
449 * @IEEE80211_EDMG_BW_CONFIG_10: 2.16GHz, 4.32GHz, 6.48GHz and 2.16GHz+2.16GHz
450 * @IEEE80211_EDMG_BW_CONFIG_11: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz and
451 * 2.16GHz+2.16GHz
452 * @IEEE80211_EDMG_BW_CONFIG_12: 2.16GHz, 2.16GHz + 2.16GHz and
453 * 4.32GHz + 4.32GHz
454 * @IEEE80211_EDMG_BW_CONFIG_13: 2.16GHz, 4.32GHz, 2.16GHz + 2.16GHz and
455 * 4.32GHz + 4.32GHz
456 * @IEEE80211_EDMG_BW_CONFIG_14: 2.16GHz, 4.32GHz, 6.48GHz, 2.16GHz + 2.16GHz
457 * and 4.32GHz + 4.32GHz
458 * @IEEE80211_EDMG_BW_CONFIG_15: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz,
459 * 2.16GHz + 2.16GHz and 4.32GHz + 4.32GHz
460 */
461 enum ieee80211_edmg_bw_config {
462 IEEE80211_EDMG_BW_CONFIG_4 = 4,
463 IEEE80211_EDMG_BW_CONFIG_5 = 5,
464 IEEE80211_EDMG_BW_CONFIG_6 = 6,
465 IEEE80211_EDMG_BW_CONFIG_7 = 7,
466 IEEE80211_EDMG_BW_CONFIG_8 = 8,
467 IEEE80211_EDMG_BW_CONFIG_9 = 9,
468 IEEE80211_EDMG_BW_CONFIG_10 = 10,
469 IEEE80211_EDMG_BW_CONFIG_11 = 11,
470 IEEE80211_EDMG_BW_CONFIG_12 = 12,
471 IEEE80211_EDMG_BW_CONFIG_13 = 13,
472 IEEE80211_EDMG_BW_CONFIG_14 = 14,
473 IEEE80211_EDMG_BW_CONFIG_15 = 15,
474 };
475
476 /**
477 * struct ieee80211_edmg - EDMG configuration
478 *
479 * This structure describes most essential parameters needed
480 * to describe 802.11ay EDMG configuration
481 *
482 * @channels: bitmap that indicates the 2.16 GHz channel(s)
483 * that are allowed to be used for transmissions.
484 * Bit 0 indicates channel 1, bit 1 indicates channel 2, etc.
485 * Set to 0 indicate EDMG not supported.
486 * @bw_config: Channel BW Configuration subfield encodes
487 * the allowed channel bandwidth configurations
488 */
489 struct ieee80211_edmg {
490 u8 channels;
491 enum ieee80211_edmg_bw_config bw_config;
492 };
493
494 /**
495 * struct ieee80211_sta_s1g_cap - STA's S1G capabilities
496 *
497 * This structure describes most essential parameters needed
498 * to describe 802.11ah S1G capabilities for a STA.
499 *
500 * @s1g: is STA an S1G STA
501 * @cap: S1G capabilities information
502 * @nss_mcs: Supported NSS MCS set
503 */
504 struct ieee80211_sta_s1g_cap {
505 bool s1g;
506 u8 cap[10]; /* use S1G_CAPAB_ */
507 u8 nss_mcs[5];
508 };
509
510 /**
511 * struct ieee80211_supported_band - frequency band definition
512 *
513 * This structure describes a frequency band a wiphy
514 * is able to operate in.
515 *
516 * @channels: Array of channels the hardware can operate with
517 * in this band.
518 * @band: the band this structure represents
519 * @n_channels: Number of channels in @channels
520 * @bitrates: Array of bitrates the hardware can operate with
521 * in this band. Must be sorted to give a valid "supported
522 * rates" IE, i.e. CCK rates first, then OFDM.
523 * @n_bitrates: Number of bitrates in @bitrates
524 * @ht_cap: HT capabilities in this band
525 * @vht_cap: VHT capabilities in this band
526 * @s1g_cap: S1G capabilities in this band
527 * @edmg_cap: EDMG capabilities in this band
528 * @s1g_cap: S1G capabilities in this band (S1B band only, of course)
529 * @n_iftype_data: number of iftype data entries
530 * @iftype_data: interface type data entries. Note that the bits in
531 * @types_mask inside this structure cannot overlap (i.e. only
532 * one occurrence of each type is allowed across all instances of
533 * iftype_data).
534 */
535 struct ieee80211_supported_band {
536 struct ieee80211_channel *channels;
537 struct ieee80211_rate *bitrates;
538 enum nl80211_band band;
539 int n_channels;
540 int n_bitrates;
541 struct ieee80211_sta_ht_cap ht_cap;
542 struct ieee80211_sta_vht_cap vht_cap;
543 struct ieee80211_sta_s1g_cap s1g_cap;
544 struct ieee80211_edmg edmg_cap;
545 u16 n_iftype_data;
546 const struct ieee80211_sband_iftype_data *iftype_data;
547 };
548
549 /**
550 * ieee80211_get_sband_iftype_data - return sband data for a given iftype
551 * @sband: the sband to search for the STA on
552 * @iftype: enum nl80211_iftype
553 *
554 * Return: pointer to struct ieee80211_sband_iftype_data, or NULL is none found
555 */
556 static inline const struct ieee80211_sband_iftype_data *
ieee80211_get_sband_iftype_data(const struct ieee80211_supported_band * sband,u8 iftype)557 ieee80211_get_sband_iftype_data(const struct ieee80211_supported_band *sband,
558 u8 iftype)
559 {
560 int i;
561
562 if (WARN_ON(iftype >= NL80211_IFTYPE_MAX))
563 return NULL;
564
565 if (iftype == NL80211_IFTYPE_AP_VLAN)
566 iftype = NL80211_IFTYPE_AP;
567
568 for (i = 0; i < sband->n_iftype_data; i++) {
569 const struct ieee80211_sband_iftype_data *data =
570 &sband->iftype_data[i];
571
572 if (data->types_mask & BIT(iftype))
573 return data;
574 }
575
576 return NULL;
577 }
578
579 /**
580 * ieee80211_get_he_iftype_cap - return HE capabilities for an sband's iftype
581 * @sband: the sband to search for the iftype on
582 * @iftype: enum nl80211_iftype
583 *
584 * Return: pointer to the struct ieee80211_sta_he_cap, or NULL is none found
585 */
586 static inline const struct ieee80211_sta_he_cap *
ieee80211_get_he_iftype_cap(const struct ieee80211_supported_band * sband,u8 iftype)587 ieee80211_get_he_iftype_cap(const struct ieee80211_supported_band *sband,
588 u8 iftype)
589 {
590 const struct ieee80211_sband_iftype_data *data =
591 ieee80211_get_sband_iftype_data(sband, iftype);
592
593 if (data && data->he_cap.has_he)
594 return &data->he_cap;
595
596 return NULL;
597 }
598
599 /**
600 * ieee80211_get_he_6ghz_capa - return HE 6 GHz capabilities
601 * @sband: the sband to search for the STA on
602 * @iftype: the iftype to search for
603 *
604 * Return: the 6GHz capabilities
605 */
606 static inline __le16
ieee80211_get_he_6ghz_capa(const struct ieee80211_supported_band * sband,enum nl80211_iftype iftype)607 ieee80211_get_he_6ghz_capa(const struct ieee80211_supported_band *sband,
608 enum nl80211_iftype iftype)
609 {
610 const struct ieee80211_sband_iftype_data *data =
611 ieee80211_get_sband_iftype_data(sband, iftype);
612
613 if (WARN_ON(!data || !data->he_cap.has_he))
614 return 0;
615
616 return data->he_6ghz_capa.capa;
617 }
618
619 /**
620 * ieee80211_get_eht_iftype_cap - return ETH capabilities for an sband's iftype
621 * @sband: the sband to search for the iftype on
622 * @iftype: enum nl80211_iftype
623 *
624 * Return: pointer to the struct ieee80211_sta_eht_cap, or NULL is none found
625 */
626 static inline const struct ieee80211_sta_eht_cap *
ieee80211_get_eht_iftype_cap(const struct ieee80211_supported_band * sband,enum nl80211_iftype iftype)627 ieee80211_get_eht_iftype_cap(const struct ieee80211_supported_band *sband,
628 enum nl80211_iftype iftype)
629 {
630 const struct ieee80211_sband_iftype_data *data =
631 ieee80211_get_sband_iftype_data(sband, iftype);
632
633 if (data && data->eht_cap.has_eht)
634 return &data->eht_cap;
635
636 return NULL;
637 }
638
639 /**
640 * wiphy_read_of_freq_limits - read frequency limits from device tree
641 *
642 * @wiphy: the wireless device to get extra limits for
643 *
644 * Some devices may have extra limitations specified in DT. This may be useful
645 * for chipsets that normally support more bands but are limited due to board
646 * design (e.g. by antennas or external power amplifier).
647 *
648 * This function reads info from DT and uses it to *modify* channels (disable
649 * unavailable ones). It's usually a *bad* idea to use it in drivers with
650 * shared channel data as DT limitations are device specific. You should make
651 * sure to call it only if channels in wiphy are copied and can be modified
652 * without affecting other devices.
653 *
654 * As this function access device node it has to be called after set_wiphy_dev.
655 * It also modifies channels so they have to be set first.
656 * If using this helper, call it before wiphy_register().
657 */
658 #ifdef CONFIG_OF
659 void wiphy_read_of_freq_limits(struct wiphy *wiphy);
660 #else /* CONFIG_OF */
wiphy_read_of_freq_limits(struct wiphy * wiphy)661 static inline void wiphy_read_of_freq_limits(struct wiphy *wiphy)
662 {
663 }
664 #endif /* !CONFIG_OF */
665
666
667 /*
668 * Wireless hardware/device configuration structures and methods
669 */
670
671 /**
672 * DOC: Actions and configuration
673 *
674 * Each wireless device and each virtual interface offer a set of configuration
675 * operations and other actions that are invoked by userspace. Each of these
676 * actions is described in the operations structure, and the parameters these
677 * operations use are described separately.
678 *
679 * Additionally, some operations are asynchronous and expect to get status
680 * information via some functions that drivers need to call.
681 *
682 * Scanning and BSS list handling with its associated functionality is described
683 * in a separate chapter.
684 */
685
686 #define VHT_MUMIMO_GROUPS_DATA_LEN (WLAN_MEMBERSHIP_LEN +\
687 WLAN_USER_POSITION_LEN)
688
689 /**
690 * struct vif_params - describes virtual interface parameters
691 * @flags: monitor interface flags, unchanged if 0, otherwise
692 * %MONITOR_FLAG_CHANGED will be set
693 * @use_4addr: use 4-address frames
694 * @macaddr: address to use for this virtual interface.
695 * If this parameter is set to zero address the driver may
696 * determine the address as needed.
697 * This feature is only fully supported by drivers that enable the
698 * %NL80211_FEATURE_MAC_ON_CREATE flag. Others may support creating
699 ** only p2p devices with specified MAC.
700 * @vht_mumimo_groups: MU-MIMO groupID, used for monitoring MU-MIMO packets
701 * belonging to that MU-MIMO groupID; %NULL if not changed
702 * @vht_mumimo_follow_addr: MU-MIMO follow address, used for monitoring
703 * MU-MIMO packets going to the specified station; %NULL if not changed
704 */
705 struct vif_params {
706 u32 flags;
707 int use_4addr;
708 u8 macaddr[ETH_ALEN];
709 const u8 *vht_mumimo_groups;
710 const u8 *vht_mumimo_follow_addr;
711 };
712
713 /**
714 * struct key_params - key information
715 *
716 * Information about a key
717 *
718 * @key: key material
719 * @key_len: length of key material
720 * @cipher: cipher suite selector
721 * @seq: sequence counter (IV/PN) for TKIP and CCMP keys, only used
722 * with the get_key() callback, must be in little endian,
723 * length given by @seq_len.
724 * @seq_len: length of @seq.
725 * @vlan_id: vlan_id for VLAN group key (if nonzero)
726 * @mode: key install mode (RX_TX, NO_TX or SET_TX)
727 */
728 struct key_params {
729 const u8 *key;
730 const u8 *seq;
731 int key_len;
732 int seq_len;
733 u16 vlan_id;
734 u32 cipher;
735 enum nl80211_key_mode mode;
736 };
737
738 /**
739 * struct cfg80211_chan_def - channel definition
740 * @chan: the (control) channel
741 * @width: channel width
742 * @center_freq1: center frequency of first segment
743 * @center_freq2: center frequency of second segment
744 * (only with 80+80 MHz)
745 * @edmg: define the EDMG channels configuration.
746 * If edmg is requested (i.e. the .channels member is non-zero),
747 * chan will define the primary channel and all other
748 * parameters are ignored.
749 * @freq1_offset: offset from @center_freq1, in KHz
750 */
751 struct cfg80211_chan_def {
752 struct ieee80211_channel *chan;
753 enum nl80211_chan_width width;
754 u32 center_freq1;
755 u32 center_freq2;
756 struct ieee80211_edmg edmg;
757 u16 freq1_offset;
758 };
759
760 /*
761 * cfg80211_bitrate_mask - masks for bitrate control
762 */
763 struct cfg80211_bitrate_mask {
764 struct {
765 u32 legacy;
766 u8 ht_mcs[IEEE80211_HT_MCS_MASK_LEN];
767 u16 vht_mcs[NL80211_VHT_NSS_MAX];
768 u16 he_mcs[NL80211_HE_NSS_MAX];
769 enum nl80211_txrate_gi gi;
770 enum nl80211_he_gi he_gi;
771 enum nl80211_he_ltf he_ltf;
772 } control[NUM_NL80211_BANDS];
773 };
774
775
776 /**
777 * struct cfg80211_tid_cfg - TID specific configuration
778 * @config_override: Flag to notify driver to reset TID configuration
779 * of the peer.
780 * @tids: bitmap of TIDs to modify
781 * @mask: bitmap of attributes indicating which parameter changed,
782 * similar to &nl80211_tid_config_supp.
783 * @noack: noack configuration value for the TID
784 * @retry_long: retry count value
785 * @retry_short: retry count value
786 * @ampdu: Enable/Disable MPDU aggregation
787 * @rtscts: Enable/Disable RTS/CTS
788 * @amsdu: Enable/Disable MSDU aggregation
789 * @txrate_type: Tx bitrate mask type
790 * @txrate_mask: Tx bitrate to be applied for the TID
791 */
792 struct cfg80211_tid_cfg {
793 bool config_override;
794 u8 tids;
795 u64 mask;
796 enum nl80211_tid_config noack;
797 u8 retry_long, retry_short;
798 enum nl80211_tid_config ampdu;
799 enum nl80211_tid_config rtscts;
800 enum nl80211_tid_config amsdu;
801 enum nl80211_tx_rate_setting txrate_type;
802 struct cfg80211_bitrate_mask txrate_mask;
803 };
804
805 /**
806 * struct cfg80211_tid_config - TID configuration
807 * @peer: Station's MAC address
808 * @n_tid_conf: Number of TID specific configurations to be applied
809 * @tid_conf: Configuration change info
810 */
811 struct cfg80211_tid_config {
812 const u8 *peer;
813 u32 n_tid_conf;
814 struct cfg80211_tid_cfg tid_conf[] __counted_by(n_tid_conf);
815 };
816
817 /**
818 * struct cfg80211_fils_aad - FILS AAD data
819 * @macaddr: STA MAC address
820 * @kek: FILS KEK
821 * @kek_len: FILS KEK length
822 * @snonce: STA Nonce
823 * @anonce: AP Nonce
824 */
825 struct cfg80211_fils_aad {
826 const u8 *macaddr;
827 const u8 *kek;
828 u8 kek_len;
829 const u8 *snonce;
830 const u8 *anonce;
831 };
832
833 /**
834 * struct cfg80211_set_hw_timestamp - enable/disable HW timestamping
835 * @macaddr: peer MAC address. NULL to enable/disable HW timestamping for all
836 * addresses.
837 * @enable: if set, enable HW timestamping for the specified MAC address.
838 * Otherwise disable HW timestamping for the specified MAC address.
839 */
840 struct cfg80211_set_hw_timestamp {
841 const u8 *macaddr;
842 bool enable;
843 };
844
845 /**
846 * cfg80211_get_chandef_type - return old channel type from chandef
847 * @chandef: the channel definition
848 *
849 * Return: The old channel type (NOHT, HT20, HT40+/-) from a given
850 * chandef, which must have a bandwidth allowing this conversion.
851 */
852 static inline enum nl80211_channel_type
cfg80211_get_chandef_type(const struct cfg80211_chan_def * chandef)853 cfg80211_get_chandef_type(const struct cfg80211_chan_def *chandef)
854 {
855 switch (chandef->width) {
856 case NL80211_CHAN_WIDTH_20_NOHT:
857 return NL80211_CHAN_NO_HT;
858 case NL80211_CHAN_WIDTH_20:
859 return NL80211_CHAN_HT20;
860 case NL80211_CHAN_WIDTH_40:
861 if (chandef->center_freq1 > chandef->chan->center_freq)
862 return NL80211_CHAN_HT40PLUS;
863 return NL80211_CHAN_HT40MINUS;
864 default:
865 WARN_ON(1);
866 return NL80211_CHAN_NO_HT;
867 }
868 }
869
870 /**
871 * cfg80211_chandef_create - create channel definition using channel type
872 * @chandef: the channel definition struct to fill
873 * @channel: the control channel
874 * @chantype: the channel type
875 *
876 * Given a channel type, create a channel definition.
877 */
878 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
879 struct ieee80211_channel *channel,
880 enum nl80211_channel_type chantype);
881
882 /**
883 * cfg80211_chandef_identical - check if two channel definitions are identical
884 * @chandef1: first channel definition
885 * @chandef2: second channel definition
886 *
887 * Return: %true if the channels defined by the channel definitions are
888 * identical, %false otherwise.
889 */
890 static inline bool
cfg80211_chandef_identical(const struct cfg80211_chan_def * chandef1,const struct cfg80211_chan_def * chandef2)891 cfg80211_chandef_identical(const struct cfg80211_chan_def *chandef1,
892 const struct cfg80211_chan_def *chandef2)
893 {
894 return (chandef1->chan == chandef2->chan &&
895 chandef1->width == chandef2->width &&
896 chandef1->center_freq1 == chandef2->center_freq1 &&
897 chandef1->freq1_offset == chandef2->freq1_offset &&
898 chandef1->center_freq2 == chandef2->center_freq2);
899 }
900
901 /**
902 * cfg80211_chandef_is_edmg - check if chandef represents an EDMG channel
903 *
904 * @chandef: the channel definition
905 *
906 * Return: %true if EDMG defined, %false otherwise.
907 */
908 static inline bool
cfg80211_chandef_is_edmg(const struct cfg80211_chan_def * chandef)909 cfg80211_chandef_is_edmg(const struct cfg80211_chan_def *chandef)
910 {
911 return chandef->edmg.channels || chandef->edmg.bw_config;
912 }
913
914 /**
915 * cfg80211_chandef_compatible - check if two channel definitions are compatible
916 * @chandef1: first channel definition
917 * @chandef2: second channel definition
918 *
919 * Return: %NULL if the given channel definitions are incompatible,
920 * chandef1 or chandef2 otherwise.
921 */
922 const struct cfg80211_chan_def *
923 cfg80211_chandef_compatible(const struct cfg80211_chan_def *chandef1,
924 const struct cfg80211_chan_def *chandef2);
925
926 /**
927 * cfg80211_chandef_valid - check if a channel definition is valid
928 * @chandef: the channel definition to check
929 * Return: %true if the channel definition is valid. %false otherwise.
930 */
931 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef);
932
933 /**
934 * cfg80211_chandef_usable - check if secondary channels can be used
935 * @wiphy: the wiphy to validate against
936 * @chandef: the channel definition to check
937 * @prohibited_flags: the regulatory channel flags that must not be set
938 * Return: %true if secondary channels are usable. %false otherwise.
939 */
940 bool cfg80211_chandef_usable(struct wiphy *wiphy,
941 const struct cfg80211_chan_def *chandef,
942 u32 prohibited_flags);
943
944 /**
945 * cfg80211_chandef_dfs_required - checks if radar detection is required
946 * @wiphy: the wiphy to validate against
947 * @chandef: the channel definition to check
948 * @iftype: the interface type as specified in &enum nl80211_iftype
949 * Returns:
950 * 1 if radar detection is required, 0 if it is not, < 0 on error
951 */
952 int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
953 const struct cfg80211_chan_def *chandef,
954 enum nl80211_iftype iftype);
955
956 /**
957 * nl80211_send_chandef - sends the channel definition.
958 * @msg: the msg to send channel definition
959 * @chandef: the channel definition to check
960 *
961 * Returns: 0 if sent the channel definition to msg, < 0 on error
962 **/
963 int nl80211_send_chandef(struct sk_buff *msg, const struct cfg80211_chan_def *chandef);
964
965 /**
966 * ieee80211_chanwidth_rate_flags - return rate flags for channel width
967 * @width: the channel width of the channel
968 *
969 * In some channel types, not all rates may be used - for example CCK
970 * rates may not be used in 5/10 MHz channels.
971 *
972 * Returns: rate flags which apply for this channel width
973 */
974 static inline enum ieee80211_rate_flags
ieee80211_chanwidth_rate_flags(enum nl80211_chan_width width)975 ieee80211_chanwidth_rate_flags(enum nl80211_chan_width width)
976 {
977 switch (width) {
978 case NL80211_CHAN_WIDTH_5:
979 return IEEE80211_RATE_SUPPORTS_5MHZ;
980 case NL80211_CHAN_WIDTH_10:
981 return IEEE80211_RATE_SUPPORTS_10MHZ;
982 default:
983 break;
984 }
985 return 0;
986 }
987
988 /**
989 * ieee80211_chandef_rate_flags - returns rate flags for a channel
990 * @chandef: channel definition for the channel
991 *
992 * See ieee80211_chanwidth_rate_flags().
993 *
994 * Returns: rate flags which apply for this channel
995 */
996 static inline enum ieee80211_rate_flags
ieee80211_chandef_rate_flags(struct cfg80211_chan_def * chandef)997 ieee80211_chandef_rate_flags(struct cfg80211_chan_def *chandef)
998 {
999 return ieee80211_chanwidth_rate_flags(chandef->width);
1000 }
1001
1002 /**
1003 * ieee80211_chandef_max_power - maximum transmission power for the chandef
1004 *
1005 * In some regulations, the transmit power may depend on the configured channel
1006 * bandwidth which may be defined as dBm/MHz. This function returns the actual
1007 * max_power for non-standard (20 MHz) channels.
1008 *
1009 * @chandef: channel definition for the channel
1010 *
1011 * Returns: maximum allowed transmission power in dBm for the chandef
1012 */
1013 static inline int
ieee80211_chandef_max_power(struct cfg80211_chan_def * chandef)1014 ieee80211_chandef_max_power(struct cfg80211_chan_def *chandef)
1015 {
1016 switch (chandef->width) {
1017 case NL80211_CHAN_WIDTH_5:
1018 return min(chandef->chan->max_reg_power - 6,
1019 chandef->chan->max_power);
1020 case NL80211_CHAN_WIDTH_10:
1021 return min(chandef->chan->max_reg_power - 3,
1022 chandef->chan->max_power);
1023 default:
1024 break;
1025 }
1026 return chandef->chan->max_power;
1027 }
1028
1029 /**
1030 * cfg80211_any_usable_channels - check for usable channels
1031 * @wiphy: the wiphy to check for
1032 * @band_mask: which bands to check on
1033 * @prohibited_flags: which channels to not consider usable,
1034 * %IEEE80211_CHAN_DISABLED is always taken into account
1035 */
1036 bool cfg80211_any_usable_channels(struct wiphy *wiphy,
1037 unsigned long band_mask,
1038 u32 prohibited_flags);
1039
1040 /**
1041 * enum survey_info_flags - survey information flags
1042 *
1043 * @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in
1044 * @SURVEY_INFO_IN_USE: channel is currently being used
1045 * @SURVEY_INFO_TIME: active time (in ms) was filled in
1046 * @SURVEY_INFO_TIME_BUSY: busy time was filled in
1047 * @SURVEY_INFO_TIME_EXT_BUSY: extension channel busy time was filled in
1048 * @SURVEY_INFO_TIME_RX: receive time was filled in
1049 * @SURVEY_INFO_TIME_TX: transmit time was filled in
1050 * @SURVEY_INFO_TIME_SCAN: scan time was filled in
1051 * @SURVEY_INFO_TIME_BSS_RX: local BSS receive time was filled in
1052 *
1053 * Used by the driver to indicate which info in &struct survey_info
1054 * it has filled in during the get_survey().
1055 */
1056 enum survey_info_flags {
1057 SURVEY_INFO_NOISE_DBM = BIT(0),
1058 SURVEY_INFO_IN_USE = BIT(1),
1059 SURVEY_INFO_TIME = BIT(2),
1060 SURVEY_INFO_TIME_BUSY = BIT(3),
1061 SURVEY_INFO_TIME_EXT_BUSY = BIT(4),
1062 SURVEY_INFO_TIME_RX = BIT(5),
1063 SURVEY_INFO_TIME_TX = BIT(6),
1064 SURVEY_INFO_TIME_SCAN = BIT(7),
1065 SURVEY_INFO_TIME_BSS_RX = BIT(8),
1066 };
1067
1068 /**
1069 * struct survey_info - channel survey response
1070 *
1071 * @channel: the channel this survey record reports, may be %NULL for a single
1072 * record to report global statistics
1073 * @filled: bitflag of flags from &enum survey_info_flags
1074 * @noise: channel noise in dBm. This and all following fields are
1075 * optional
1076 * @time: amount of time in ms the radio was turn on (on the channel)
1077 * @time_busy: amount of time the primary channel was sensed busy
1078 * @time_ext_busy: amount of time the extension channel was sensed busy
1079 * @time_rx: amount of time the radio spent receiving data
1080 * @time_tx: amount of time the radio spent transmitting data
1081 * @time_scan: amount of time the radio spent for scanning
1082 * @time_bss_rx: amount of time the radio spent receiving data on a local BSS
1083 *
1084 * Used by dump_survey() to report back per-channel survey information.
1085 *
1086 * This structure can later be expanded with things like
1087 * channel duty cycle etc.
1088 */
1089 struct survey_info {
1090 struct ieee80211_channel *channel;
1091 u64 time;
1092 u64 time_busy;
1093 u64 time_ext_busy;
1094 u64 time_rx;
1095 u64 time_tx;
1096 u64 time_scan;
1097 u64 time_bss_rx;
1098 u32 filled;
1099 s8 noise;
1100 };
1101
1102 #define CFG80211_MAX_NUM_AKM_SUITES 10
1103
1104 /**
1105 * struct cfg80211_crypto_settings - Crypto settings
1106 * @wpa_versions: indicates which, if any, WPA versions are enabled
1107 * (from enum nl80211_wpa_versions)
1108 * @cipher_group: group key cipher suite (or 0 if unset)
1109 * @n_ciphers_pairwise: number of AP supported unicast ciphers
1110 * @ciphers_pairwise: unicast key cipher suites
1111 * @n_akm_suites: number of AKM suites
1112 * @akm_suites: AKM suites
1113 * @control_port: Whether user space controls IEEE 802.1X port, i.e.,
1114 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
1115 * required to assume that the port is unauthorized until authorized by
1116 * user space. Otherwise, port is marked authorized by default.
1117 * @control_port_ethertype: the control port protocol that should be
1118 * allowed through even on unauthorized ports
1119 * @control_port_no_encrypt: TRUE to prevent encryption of control port
1120 * protocol frames.
1121 * @control_port_over_nl80211: TRUE if userspace expects to exchange control
1122 * port frames over NL80211 instead of the network interface.
1123 * @control_port_no_preauth: disables pre-auth rx over the nl80211 control
1124 * port for mac80211
1125 * @psk: PSK (for devices supporting 4-way-handshake offload)
1126 * @sae_pwd: password for SAE authentication (for devices supporting SAE
1127 * offload)
1128 * @sae_pwd_len: length of SAE password (for devices supporting SAE offload)
1129 * @sae_pwe: The mechanisms allowed for SAE PWE derivation:
1130 *
1131 * NL80211_SAE_PWE_UNSPECIFIED
1132 * Not-specified, used to indicate userspace did not specify any
1133 * preference. The driver should follow its internal policy in
1134 * such a scenario.
1135 *
1136 * NL80211_SAE_PWE_HUNT_AND_PECK
1137 * Allow hunting-and-pecking loop only
1138 *
1139 * NL80211_SAE_PWE_HASH_TO_ELEMENT
1140 * Allow hash-to-element only
1141 *
1142 * NL80211_SAE_PWE_BOTH
1143 * Allow either hunting-and-pecking loop or hash-to-element
1144 */
1145 struct cfg80211_crypto_settings {
1146 u32 wpa_versions;
1147 u32 cipher_group;
1148 int n_ciphers_pairwise;
1149 u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES];
1150 int n_akm_suites;
1151 u32 akm_suites[CFG80211_MAX_NUM_AKM_SUITES];
1152 bool control_port;
1153 __be16 control_port_ethertype;
1154 bool control_port_no_encrypt;
1155 bool control_port_over_nl80211;
1156 bool control_port_no_preauth;
1157 const u8 *psk;
1158 const u8 *sae_pwd;
1159 u8 sae_pwd_len;
1160 enum nl80211_sae_pwe_mechanism sae_pwe;
1161 };
1162
1163 /**
1164 * struct cfg80211_mbssid_config - AP settings for multi bssid
1165 *
1166 * @tx_wdev: pointer to the transmitted interface in the MBSSID set
1167 * @index: index of this AP in the multi bssid group.
1168 * @ema: set to true if the beacons should be sent out in EMA mode.
1169 */
1170 struct cfg80211_mbssid_config {
1171 struct wireless_dev *tx_wdev;
1172 u8 index;
1173 bool ema;
1174 };
1175
1176 /**
1177 * struct cfg80211_mbssid_elems - Multiple BSSID elements
1178 *
1179 * @cnt: Number of elements in array %elems.
1180 *
1181 * @elem: Array of multiple BSSID element(s) to be added into Beacon frames.
1182 * @elem.data: Data for multiple BSSID elements.
1183 * @elem.len: Length of data.
1184 */
1185 struct cfg80211_mbssid_elems {
1186 u8 cnt;
1187 struct {
1188 const u8 *data;
1189 size_t len;
1190 } elem[] __counted_by(cnt);
1191 };
1192
1193 /**
1194 * struct cfg80211_rnr_elems - Reduced neighbor report (RNR) elements
1195 *
1196 * @cnt: Number of elements in array %elems.
1197 *
1198 * @elem: Array of RNR element(s) to be added into Beacon frames.
1199 * @elem.data: Data for RNR elements.
1200 * @elem.len: Length of data.
1201 */
1202 struct cfg80211_rnr_elems {
1203 u8 cnt;
1204 struct {
1205 const u8 *data;
1206 size_t len;
1207 } elem[] __counted_by(cnt);
1208 };
1209
1210 /**
1211 * struct cfg80211_beacon_data - beacon data
1212 * @link_id: the link ID for the AP MLD link sending this beacon
1213 * @head: head portion of beacon (before TIM IE)
1214 * or %NULL if not changed
1215 * @tail: tail portion of beacon (after TIM IE)
1216 * or %NULL if not changed
1217 * @head_len: length of @head
1218 * @tail_len: length of @tail
1219 * @beacon_ies: extra information element(s) to add into Beacon frames or %NULL
1220 * @beacon_ies_len: length of beacon_ies in octets
1221 * @proberesp_ies: extra information element(s) to add into Probe Response
1222 * frames or %NULL
1223 * @proberesp_ies_len: length of proberesp_ies in octets
1224 * @assocresp_ies: extra information element(s) to add into (Re)Association
1225 * Response frames or %NULL
1226 * @assocresp_ies_len: length of assocresp_ies in octets
1227 * @probe_resp_len: length of probe response template (@probe_resp)
1228 * @probe_resp: probe response template (AP mode only)
1229 * @mbssid_ies: multiple BSSID elements
1230 * @rnr_ies: reduced neighbor report elements
1231 * @ftm_responder: enable FTM responder functionality; -1 for no change
1232 * (which also implies no change in LCI/civic location data)
1233 * @lci: Measurement Report element content, starting with Measurement Token
1234 * (measurement type 8)
1235 * @civicloc: Measurement Report element content, starting with Measurement
1236 * Token (measurement type 11)
1237 * @lci_len: LCI data length
1238 * @civicloc_len: Civic location data length
1239 * @he_bss_color: BSS Color settings
1240 * @he_bss_color_valid: indicates whether bss color
1241 * attribute is present in beacon data or not.
1242 */
1243 struct cfg80211_beacon_data {
1244 unsigned int link_id;
1245
1246 const u8 *head, *tail;
1247 const u8 *beacon_ies;
1248 const u8 *proberesp_ies;
1249 const u8 *assocresp_ies;
1250 const u8 *probe_resp;
1251 const u8 *lci;
1252 const u8 *civicloc;
1253 struct cfg80211_mbssid_elems *mbssid_ies;
1254 struct cfg80211_rnr_elems *rnr_ies;
1255 s8 ftm_responder;
1256
1257 size_t head_len, tail_len;
1258 size_t beacon_ies_len;
1259 size_t proberesp_ies_len;
1260 size_t assocresp_ies_len;
1261 size_t probe_resp_len;
1262 size_t lci_len;
1263 size_t civicloc_len;
1264 struct cfg80211_he_bss_color he_bss_color;
1265 bool he_bss_color_valid;
1266 };
1267
1268 struct mac_address {
1269 u8 addr[ETH_ALEN];
1270 };
1271
1272 /**
1273 * struct cfg80211_acl_data - Access control list data
1274 *
1275 * @acl_policy: ACL policy to be applied on the station's
1276 * entry specified by mac_addr
1277 * @n_acl_entries: Number of MAC address entries passed
1278 * @mac_addrs: List of MAC addresses of stations to be used for ACL
1279 */
1280 struct cfg80211_acl_data {
1281 enum nl80211_acl_policy acl_policy;
1282 int n_acl_entries;
1283
1284 /* Keep it last */
1285 struct mac_address mac_addrs[] __counted_by(n_acl_entries);
1286 };
1287
1288 /**
1289 * struct cfg80211_fils_discovery - FILS discovery parameters from
1290 * IEEE Std 802.11ai-2016, Annex C.3 MIB detail.
1291 *
1292 * @min_interval: Minimum packet interval in TUs (0 - 10000)
1293 * @max_interval: Maximum packet interval in TUs (0 - 10000)
1294 * @tmpl_len: Template length
1295 * @tmpl: Template data for FILS discovery frame including the action
1296 * frame headers.
1297 */
1298 struct cfg80211_fils_discovery {
1299 u32 min_interval;
1300 u32 max_interval;
1301 size_t tmpl_len;
1302 const u8 *tmpl;
1303 };
1304
1305 /**
1306 * struct cfg80211_unsol_bcast_probe_resp - Unsolicited broadcast probe
1307 * response parameters in 6GHz.
1308 *
1309 * @interval: Packet interval in TUs. Maximum allowed is 20 TU, as mentioned
1310 * in IEEE P802.11ax/D6.0 26.17.2.3.2 - AP behavior for fast passive
1311 * scanning
1312 * @tmpl_len: Template length
1313 * @tmpl: Template data for probe response
1314 */
1315 struct cfg80211_unsol_bcast_probe_resp {
1316 u32 interval;
1317 size_t tmpl_len;
1318 const u8 *tmpl;
1319 };
1320
1321 /**
1322 * struct cfg80211_ap_settings - AP configuration
1323 *
1324 * Used to configure an AP interface.
1325 *
1326 * @chandef: defines the channel to use
1327 * @beacon: beacon data
1328 * @beacon_interval: beacon interval
1329 * @dtim_period: DTIM period
1330 * @ssid: SSID to be used in the BSS (note: may be %NULL if not provided from
1331 * user space)
1332 * @ssid_len: length of @ssid
1333 * @hidden_ssid: whether to hide the SSID in Beacon/Probe Response frames
1334 * @crypto: crypto settings
1335 * @privacy: the BSS uses privacy
1336 * @auth_type: Authentication type (algorithm)
1337 * @smps_mode: SMPS mode
1338 * @inactivity_timeout: time in seconds to determine station's inactivity.
1339 * @p2p_ctwindow: P2P CT Window
1340 * @p2p_opp_ps: P2P opportunistic PS
1341 * @acl: ACL configuration used by the drivers which has support for
1342 * MAC address based access control
1343 * @pbss: If set, start as a PCP instead of AP. Relevant for DMG
1344 * networks.
1345 * @beacon_rate: bitrate to be used for beacons
1346 * @ht_cap: HT capabilities (or %NULL if HT isn't enabled)
1347 * @vht_cap: VHT capabilities (or %NULL if VHT isn't enabled)
1348 * @he_cap: HE capabilities (or %NULL if HE isn't enabled)
1349 * @eht_cap: EHT capabilities (or %NULL if EHT isn't enabled)
1350 * @eht_oper: EHT operation IE (or %NULL if EHT isn't enabled)
1351 * @ht_required: stations must support HT
1352 * @vht_required: stations must support VHT
1353 * @twt_responder: Enable Target Wait Time
1354 * @he_required: stations must support HE
1355 * @sae_h2e_required: stations must support direct H2E technique in SAE
1356 * @flags: flags, as defined in &enum nl80211_ap_settings_flags
1357 * @he_obss_pd: OBSS Packet Detection settings
1358 * @he_oper: HE operation IE (or %NULL if HE isn't enabled)
1359 * @fils_discovery: FILS discovery transmission parameters
1360 * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1361 * @mbssid_config: AP settings for multiple bssid
1362 * @punct_bitmap: Preamble puncturing bitmap. Each bit represents
1363 * a 20 MHz channel, lowest bit corresponding to the lowest channel.
1364 * Bit set to 1 indicates that the channel is punctured.
1365 */
1366 struct cfg80211_ap_settings {
1367 struct cfg80211_chan_def chandef;
1368
1369 struct cfg80211_beacon_data beacon;
1370
1371 int beacon_interval, dtim_period;
1372 const u8 *ssid;
1373 size_t ssid_len;
1374 enum nl80211_hidden_ssid hidden_ssid;
1375 struct cfg80211_crypto_settings crypto;
1376 bool privacy;
1377 enum nl80211_auth_type auth_type;
1378 enum nl80211_smps_mode smps_mode;
1379 int inactivity_timeout;
1380 u8 p2p_ctwindow;
1381 bool p2p_opp_ps;
1382 const struct cfg80211_acl_data *acl;
1383 bool pbss;
1384 struct cfg80211_bitrate_mask beacon_rate;
1385
1386 const struct ieee80211_ht_cap *ht_cap;
1387 const struct ieee80211_vht_cap *vht_cap;
1388 const struct ieee80211_he_cap_elem *he_cap;
1389 const struct ieee80211_he_operation *he_oper;
1390 const struct ieee80211_eht_cap_elem *eht_cap;
1391 const struct ieee80211_eht_operation *eht_oper;
1392 bool ht_required, vht_required, he_required, sae_h2e_required;
1393 bool twt_responder;
1394 u32 flags;
1395 struct ieee80211_he_obss_pd he_obss_pd;
1396 struct cfg80211_fils_discovery fils_discovery;
1397 struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1398 struct cfg80211_mbssid_config mbssid_config;
1399 u16 punct_bitmap;
1400 };
1401
1402 /**
1403 * struct cfg80211_csa_settings - channel switch settings
1404 *
1405 * Used for channel switch
1406 *
1407 * @chandef: defines the channel to use after the switch
1408 * @beacon_csa: beacon data while performing the switch
1409 * @counter_offsets_beacon: offsets of the counters within the beacon (tail)
1410 * @counter_offsets_presp: offsets of the counters within the probe response
1411 * @n_counter_offsets_beacon: number of csa counters the beacon (tail)
1412 * @n_counter_offsets_presp: number of csa counters in the probe response
1413 * @beacon_after: beacon data to be used on the new channel
1414 * @radar_required: whether radar detection is required on the new channel
1415 * @block_tx: whether transmissions should be blocked while changing
1416 * @count: number of beacons until switch
1417 * @punct_bitmap: Preamble puncturing bitmap. Each bit represents
1418 * a 20 MHz channel, lowest bit corresponding to the lowest channel.
1419 * Bit set to 1 indicates that the channel is punctured.
1420 */
1421 struct cfg80211_csa_settings {
1422 struct cfg80211_chan_def chandef;
1423 struct cfg80211_beacon_data beacon_csa;
1424 const u16 *counter_offsets_beacon;
1425 const u16 *counter_offsets_presp;
1426 unsigned int n_counter_offsets_beacon;
1427 unsigned int n_counter_offsets_presp;
1428 struct cfg80211_beacon_data beacon_after;
1429 bool radar_required;
1430 bool block_tx;
1431 u8 count;
1432 u16 punct_bitmap;
1433 };
1434
1435 /**
1436 * struct cfg80211_color_change_settings - color change settings
1437 *
1438 * Used for bss color change
1439 *
1440 * @beacon_color_change: beacon data while performing the color countdown
1441 * @counter_offset_beacon: offsets of the counters within the beacon (tail)
1442 * @counter_offset_presp: offsets of the counters within the probe response
1443 * @beacon_next: beacon data to be used after the color change
1444 * @count: number of beacons until the color change
1445 * @color: the color used after the change
1446 */
1447 struct cfg80211_color_change_settings {
1448 struct cfg80211_beacon_data beacon_color_change;
1449 u16 counter_offset_beacon;
1450 u16 counter_offset_presp;
1451 struct cfg80211_beacon_data beacon_next;
1452 u8 count;
1453 u8 color;
1454 };
1455
1456 /**
1457 * struct iface_combination_params - input parameters for interface combinations
1458 *
1459 * Used to pass interface combination parameters
1460 *
1461 * @num_different_channels: the number of different channels we want
1462 * to use for verification
1463 * @radar_detect: a bitmap where each bit corresponds to a channel
1464 * width where radar detection is needed, as in the definition of
1465 * &struct ieee80211_iface_combination.@radar_detect_widths
1466 * @iftype_num: array with the number of interfaces of each interface
1467 * type. The index is the interface type as specified in &enum
1468 * nl80211_iftype.
1469 * @new_beacon_int: set this to the beacon interval of a new interface
1470 * that's not operating yet, if such is to be checked as part of
1471 * the verification
1472 */
1473 struct iface_combination_params {
1474 int num_different_channels;
1475 u8 radar_detect;
1476 int iftype_num[NUM_NL80211_IFTYPES];
1477 u32 new_beacon_int;
1478 };
1479
1480 /**
1481 * enum station_parameters_apply_mask - station parameter values to apply
1482 * @STATION_PARAM_APPLY_UAPSD: apply new uAPSD parameters (uapsd_queues, max_sp)
1483 * @STATION_PARAM_APPLY_CAPABILITY: apply new capability
1484 * @STATION_PARAM_APPLY_PLINK_STATE: apply new plink state
1485 *
1486 * Not all station parameters have in-band "no change" signalling,
1487 * for those that don't these flags will are used.
1488 */
1489 enum station_parameters_apply_mask {
1490 STATION_PARAM_APPLY_UAPSD = BIT(0),
1491 STATION_PARAM_APPLY_CAPABILITY = BIT(1),
1492 STATION_PARAM_APPLY_PLINK_STATE = BIT(2),
1493 };
1494
1495 /**
1496 * struct sta_txpwr - station txpower configuration
1497 *
1498 * Used to configure txpower for station.
1499 *
1500 * @power: tx power (in dBm) to be used for sending data traffic. If tx power
1501 * is not provided, the default per-interface tx power setting will be
1502 * overriding. Driver should be picking up the lowest tx power, either tx
1503 * power per-interface or per-station.
1504 * @type: In particular if TPC %type is NL80211_TX_POWER_LIMITED then tx power
1505 * will be less than or equal to specified from userspace, whereas if TPC
1506 * %type is NL80211_TX_POWER_AUTOMATIC then it indicates default tx power.
1507 * NL80211_TX_POWER_FIXED is not a valid configuration option for
1508 * per peer TPC.
1509 */
1510 struct sta_txpwr {
1511 s16 power;
1512 enum nl80211_tx_power_setting type;
1513 };
1514
1515 /**
1516 * struct link_station_parameters - link station parameters
1517 *
1518 * Used to change and create a new link station.
1519 *
1520 * @mld_mac: MAC address of the station
1521 * @link_id: the link id (-1 for non-MLD station)
1522 * @link_mac: MAC address of the link
1523 * @supported_rates: supported rates in IEEE 802.11 format
1524 * (or NULL for no change)
1525 * @supported_rates_len: number of supported rates
1526 * @ht_capa: HT capabilities of station
1527 * @vht_capa: VHT capabilities of station
1528 * @opmode_notif: operating mode field from Operating Mode Notification
1529 * @opmode_notif_used: information if operating mode field is used
1530 * @he_capa: HE capabilities of station
1531 * @he_capa_len: the length of the HE capabilities
1532 * @txpwr: transmit power for an associated station
1533 * @txpwr_set: txpwr field is set
1534 * @he_6ghz_capa: HE 6 GHz Band capabilities of station
1535 * @eht_capa: EHT capabilities of station
1536 * @eht_capa_len: the length of the EHT capabilities
1537 */
1538 struct link_station_parameters {
1539 const u8 *mld_mac;
1540 int link_id;
1541 const u8 *link_mac;
1542 const u8 *supported_rates;
1543 u8 supported_rates_len;
1544 const struct ieee80211_ht_cap *ht_capa;
1545 const struct ieee80211_vht_cap *vht_capa;
1546 u8 opmode_notif;
1547 bool opmode_notif_used;
1548 const struct ieee80211_he_cap_elem *he_capa;
1549 u8 he_capa_len;
1550 struct sta_txpwr txpwr;
1551 bool txpwr_set;
1552 const struct ieee80211_he_6ghz_capa *he_6ghz_capa;
1553 const struct ieee80211_eht_cap_elem *eht_capa;
1554 u8 eht_capa_len;
1555 };
1556
1557 /**
1558 * struct link_station_del_parameters - link station deletion parameters
1559 *
1560 * Used to delete a link station entry (or all stations).
1561 *
1562 * @mld_mac: MAC address of the station
1563 * @link_id: the link id
1564 */
1565 struct link_station_del_parameters {
1566 const u8 *mld_mac;
1567 u32 link_id;
1568 };
1569
1570 /**
1571 * struct station_parameters - station parameters
1572 *
1573 * Used to change and create a new station.
1574 *
1575 * @vlan: vlan interface station should belong to
1576 * @sta_flags_mask: station flags that changed
1577 * (bitmask of BIT(%NL80211_STA_FLAG_...))
1578 * @sta_flags_set: station flags values
1579 * (bitmask of BIT(%NL80211_STA_FLAG_...))
1580 * @listen_interval: listen interval or -1 for no change
1581 * @aid: AID or zero for no change
1582 * @vlan_id: VLAN ID for station (if nonzero)
1583 * @peer_aid: mesh peer AID or zero for no change
1584 * @plink_action: plink action to take
1585 * @plink_state: set the peer link state for a station
1586 * @uapsd_queues: bitmap of queues configured for uapsd. same format
1587 * as the AC bitmap in the QoS info field
1588 * @max_sp: max Service Period. same format as the MAX_SP in the
1589 * QoS info field (but already shifted down)
1590 * @sta_modify_mask: bitmap indicating which parameters changed
1591 * (for those that don't have a natural "no change" value),
1592 * see &enum station_parameters_apply_mask
1593 * @local_pm: local link-specific mesh power save mode (no change when set
1594 * to unknown)
1595 * @capability: station capability
1596 * @ext_capab: extended capabilities of the station
1597 * @ext_capab_len: number of extended capabilities
1598 * @supported_channels: supported channels in IEEE 802.11 format
1599 * @supported_channels_len: number of supported channels
1600 * @supported_oper_classes: supported oper classes in IEEE 802.11 format
1601 * @supported_oper_classes_len: number of supported operating classes
1602 * @support_p2p_ps: information if station supports P2P PS mechanism
1603 * @airtime_weight: airtime scheduler weight for this station
1604 * @link_sta_params: link related params.
1605 */
1606 struct station_parameters {
1607 struct net_device *vlan;
1608 u32 sta_flags_mask, sta_flags_set;
1609 u32 sta_modify_mask;
1610 int listen_interval;
1611 u16 aid;
1612 u16 vlan_id;
1613 u16 peer_aid;
1614 u8 plink_action;
1615 u8 plink_state;
1616 u8 uapsd_queues;
1617 u8 max_sp;
1618 enum nl80211_mesh_power_mode local_pm;
1619 u16 capability;
1620 const u8 *ext_capab;
1621 u8 ext_capab_len;
1622 const u8 *supported_channels;
1623 u8 supported_channels_len;
1624 const u8 *supported_oper_classes;
1625 u8 supported_oper_classes_len;
1626 int support_p2p_ps;
1627 u16 airtime_weight;
1628 struct link_station_parameters link_sta_params;
1629 };
1630
1631 /**
1632 * struct station_del_parameters - station deletion parameters
1633 *
1634 * Used to delete a station entry (or all stations).
1635 *
1636 * @mac: MAC address of the station to remove or NULL to remove all stations
1637 * @subtype: Management frame subtype to use for indicating removal
1638 * (10 = Disassociation, 12 = Deauthentication)
1639 * @reason_code: Reason code for the Disassociation/Deauthentication frame
1640 */
1641 struct station_del_parameters {
1642 const u8 *mac;
1643 u8 subtype;
1644 u16 reason_code;
1645 };
1646
1647 /**
1648 * enum cfg80211_station_type - the type of station being modified
1649 * @CFG80211_STA_AP_CLIENT: client of an AP interface
1650 * @CFG80211_STA_AP_CLIENT_UNASSOC: client of an AP interface that is still
1651 * unassociated (update properties for this type of client is permitted)
1652 * @CFG80211_STA_AP_MLME_CLIENT: client of an AP interface that has
1653 * the AP MLME in the device
1654 * @CFG80211_STA_AP_STA: AP station on managed interface
1655 * @CFG80211_STA_IBSS: IBSS station
1656 * @CFG80211_STA_TDLS_PEER_SETUP: TDLS peer on managed interface (dummy entry
1657 * while TDLS setup is in progress, it moves out of this state when
1658 * being marked authorized; use this only if TDLS with external setup is
1659 * supported/used)
1660 * @CFG80211_STA_TDLS_PEER_ACTIVE: TDLS peer on managed interface (active
1661 * entry that is operating, has been marked authorized by userspace)
1662 * @CFG80211_STA_MESH_PEER_KERNEL: peer on mesh interface (kernel managed)
1663 * @CFG80211_STA_MESH_PEER_USER: peer on mesh interface (user managed)
1664 */
1665 enum cfg80211_station_type {
1666 CFG80211_STA_AP_CLIENT,
1667 CFG80211_STA_AP_CLIENT_UNASSOC,
1668 CFG80211_STA_AP_MLME_CLIENT,
1669 CFG80211_STA_AP_STA,
1670 CFG80211_STA_IBSS,
1671 CFG80211_STA_TDLS_PEER_SETUP,
1672 CFG80211_STA_TDLS_PEER_ACTIVE,
1673 CFG80211_STA_MESH_PEER_KERNEL,
1674 CFG80211_STA_MESH_PEER_USER,
1675 };
1676
1677 /**
1678 * cfg80211_check_station_change - validate parameter changes
1679 * @wiphy: the wiphy this operates on
1680 * @params: the new parameters for a station
1681 * @statype: the type of station being modified
1682 *
1683 * Utility function for the @change_station driver method. Call this function
1684 * with the appropriate station type looking up the station (and checking that
1685 * it exists). It will verify whether the station change is acceptable, and if
1686 * not will return an error code. Note that it may modify the parameters for
1687 * backward compatibility reasons, so don't use them before calling this.
1688 */
1689 int cfg80211_check_station_change(struct wiphy *wiphy,
1690 struct station_parameters *params,
1691 enum cfg80211_station_type statype);
1692
1693 /**
1694 * enum rate_info_flags - bitrate info flags
1695 *
1696 * Used by the driver to indicate the specific rate transmission
1697 * type for 802.11n transmissions.
1698 *
1699 * @RATE_INFO_FLAGS_MCS: mcs field filled with HT MCS
1700 * @RATE_INFO_FLAGS_VHT_MCS: mcs field filled with VHT MCS
1701 * @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval
1702 * @RATE_INFO_FLAGS_DMG: 60GHz MCS
1703 * @RATE_INFO_FLAGS_HE_MCS: HE MCS information
1704 * @RATE_INFO_FLAGS_EDMG: 60GHz MCS in EDMG mode
1705 * @RATE_INFO_FLAGS_EXTENDED_SC_DMG: 60GHz extended SC MCS
1706 * @RATE_INFO_FLAGS_EHT_MCS: EHT MCS information
1707 * @RATE_INFO_FLAGS_S1G_MCS: MCS field filled with S1G MCS
1708 */
1709 enum rate_info_flags {
1710 RATE_INFO_FLAGS_MCS = BIT(0),
1711 RATE_INFO_FLAGS_VHT_MCS = BIT(1),
1712 RATE_INFO_FLAGS_SHORT_GI = BIT(2),
1713 RATE_INFO_FLAGS_DMG = BIT(3),
1714 RATE_INFO_FLAGS_HE_MCS = BIT(4),
1715 RATE_INFO_FLAGS_EDMG = BIT(5),
1716 RATE_INFO_FLAGS_EXTENDED_SC_DMG = BIT(6),
1717 RATE_INFO_FLAGS_EHT_MCS = BIT(7),
1718 RATE_INFO_FLAGS_S1G_MCS = BIT(8),
1719 };
1720
1721 /**
1722 * enum rate_info_bw - rate bandwidth information
1723 *
1724 * Used by the driver to indicate the rate bandwidth.
1725 *
1726 * @RATE_INFO_BW_5: 5 MHz bandwidth
1727 * @RATE_INFO_BW_10: 10 MHz bandwidth
1728 * @RATE_INFO_BW_20: 20 MHz bandwidth
1729 * @RATE_INFO_BW_40: 40 MHz bandwidth
1730 * @RATE_INFO_BW_80: 80 MHz bandwidth
1731 * @RATE_INFO_BW_160: 160 MHz bandwidth
1732 * @RATE_INFO_BW_HE_RU: bandwidth determined by HE RU allocation
1733 * @RATE_INFO_BW_320: 320 MHz bandwidth
1734 * @RATE_INFO_BW_EHT_RU: bandwidth determined by EHT RU allocation
1735 * @RATE_INFO_BW_1: 1 MHz bandwidth
1736 * @RATE_INFO_BW_2: 2 MHz bandwidth
1737 * @RATE_INFO_BW_4: 4 MHz bandwidth
1738 * @RATE_INFO_BW_8: 8 MHz bandwidth
1739 * @RATE_INFO_BW_16: 16 MHz bandwidth
1740 */
1741 enum rate_info_bw {
1742 RATE_INFO_BW_20 = 0,
1743 RATE_INFO_BW_5,
1744 RATE_INFO_BW_10,
1745 RATE_INFO_BW_40,
1746 RATE_INFO_BW_80,
1747 RATE_INFO_BW_160,
1748 RATE_INFO_BW_HE_RU,
1749 RATE_INFO_BW_320,
1750 RATE_INFO_BW_EHT_RU,
1751 RATE_INFO_BW_1,
1752 RATE_INFO_BW_2,
1753 RATE_INFO_BW_4,
1754 RATE_INFO_BW_8,
1755 RATE_INFO_BW_16,
1756 };
1757
1758 /**
1759 * struct rate_info - bitrate information
1760 *
1761 * Information about a receiving or transmitting bitrate
1762 *
1763 * @flags: bitflag of flags from &enum rate_info_flags
1764 * @legacy: bitrate in 100kbit/s for 802.11abg
1765 * @mcs: mcs index if struct describes an HT/VHT/HE/EHT/S1G rate
1766 * @nss: number of streams (VHT & HE only)
1767 * @bw: bandwidth (from &enum rate_info_bw)
1768 * @he_gi: HE guard interval (from &enum nl80211_he_gi)
1769 * @he_dcm: HE DCM value
1770 * @he_ru_alloc: HE RU allocation (from &enum nl80211_he_ru_alloc,
1771 * only valid if bw is %RATE_INFO_BW_HE_RU)
1772 * @n_bonded_ch: In case of EDMG the number of bonded channels (1-4)
1773 * @eht_gi: EHT guard interval (from &enum nl80211_eht_gi)
1774 * @eht_ru_alloc: EHT RU allocation (from &enum nl80211_eht_ru_alloc,
1775 * only valid if bw is %RATE_INFO_BW_EHT_RU)
1776 */
1777 struct rate_info {
1778 u16 flags;
1779 u16 legacy;
1780 u8 mcs;
1781 u8 nss;
1782 u8 bw;
1783 u8 he_gi;
1784 u8 he_dcm;
1785 u8 he_ru_alloc;
1786 u8 n_bonded_ch;
1787 u8 eht_gi;
1788 u8 eht_ru_alloc;
1789 };
1790
1791 /**
1792 * enum bss_param_flags - bitrate info flags
1793 *
1794 * Used by the driver to indicate the specific rate transmission
1795 * type for 802.11n transmissions.
1796 *
1797 * @BSS_PARAM_FLAGS_CTS_PROT: whether CTS protection is enabled
1798 * @BSS_PARAM_FLAGS_SHORT_PREAMBLE: whether short preamble is enabled
1799 * @BSS_PARAM_FLAGS_SHORT_SLOT_TIME: whether short slot time is enabled
1800 */
1801 enum bss_param_flags {
1802 BSS_PARAM_FLAGS_CTS_PROT = 1<<0,
1803 BSS_PARAM_FLAGS_SHORT_PREAMBLE = 1<<1,
1804 BSS_PARAM_FLAGS_SHORT_SLOT_TIME = 1<<2,
1805 };
1806
1807 /**
1808 * struct sta_bss_parameters - BSS parameters for the attached station
1809 *
1810 * Information about the currently associated BSS
1811 *
1812 * @flags: bitflag of flags from &enum bss_param_flags
1813 * @dtim_period: DTIM period for the BSS
1814 * @beacon_interval: beacon interval
1815 */
1816 struct sta_bss_parameters {
1817 u8 flags;
1818 u8 dtim_period;
1819 u16 beacon_interval;
1820 };
1821
1822 /**
1823 * struct cfg80211_txq_stats - TXQ statistics for this TID
1824 * @filled: bitmap of flags using the bits of &enum nl80211_txq_stats to
1825 * indicate the relevant values in this struct are filled
1826 * @backlog_bytes: total number of bytes currently backlogged
1827 * @backlog_packets: total number of packets currently backlogged
1828 * @flows: number of new flows seen
1829 * @drops: total number of packets dropped
1830 * @ecn_marks: total number of packets marked with ECN CE
1831 * @overlimit: number of drops due to queue space overflow
1832 * @overmemory: number of drops due to memory limit overflow
1833 * @collisions: number of hash collisions
1834 * @tx_bytes: total number of bytes dequeued
1835 * @tx_packets: total number of packets dequeued
1836 * @max_flows: maximum number of flows supported
1837 */
1838 struct cfg80211_txq_stats {
1839 u32 filled;
1840 u32 backlog_bytes;
1841 u32 backlog_packets;
1842 u32 flows;
1843 u32 drops;
1844 u32 ecn_marks;
1845 u32 overlimit;
1846 u32 overmemory;
1847 u32 collisions;
1848 u32 tx_bytes;
1849 u32 tx_packets;
1850 u32 max_flows;
1851 };
1852
1853 /**
1854 * struct cfg80211_tid_stats - per-TID statistics
1855 * @filled: bitmap of flags using the bits of &enum nl80211_tid_stats to
1856 * indicate the relevant values in this struct are filled
1857 * @rx_msdu: number of received MSDUs
1858 * @tx_msdu: number of (attempted) transmitted MSDUs
1859 * @tx_msdu_retries: number of retries (not counting the first) for
1860 * transmitted MSDUs
1861 * @tx_msdu_failed: number of failed transmitted MSDUs
1862 * @txq_stats: TXQ statistics
1863 */
1864 struct cfg80211_tid_stats {
1865 u32 filled;
1866 u64 rx_msdu;
1867 u64 tx_msdu;
1868 u64 tx_msdu_retries;
1869 u64 tx_msdu_failed;
1870 struct cfg80211_txq_stats txq_stats;
1871 };
1872
1873 #define IEEE80211_MAX_CHAINS 4
1874
1875 /**
1876 * struct station_info - station information
1877 *
1878 * Station information filled by driver for get_station() and dump_station.
1879 *
1880 * @filled: bitflag of flags using the bits of &enum nl80211_sta_info to
1881 * indicate the relevant values in this struct for them
1882 * @connected_time: time(in secs) since a station is last connected
1883 * @inactive_time: time since last station activity (tx/rx) in milliseconds
1884 * @assoc_at: bootime (ns) of the last association
1885 * @rx_bytes: bytes (size of MPDUs) received from this station
1886 * @tx_bytes: bytes (size of MPDUs) transmitted to this station
1887 * @llid: mesh local link id
1888 * @plid: mesh peer link id
1889 * @plink_state: mesh peer link state
1890 * @signal: The signal strength, type depends on the wiphy's signal_type.
1891 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
1892 * @signal_avg: Average signal strength, type depends on the wiphy's signal_type.
1893 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
1894 * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg
1895 * @chain_signal: per-chain signal strength of last received packet in dBm
1896 * @chain_signal_avg: per-chain signal strength average in dBm
1897 * @txrate: current unicast bitrate from this station
1898 * @rxrate: current unicast bitrate to this station
1899 * @rx_packets: packets (MSDUs & MMPDUs) received from this station
1900 * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this station
1901 * @tx_retries: cumulative retry counts (MPDUs)
1902 * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK)
1903 * @rx_dropped_misc: Dropped for un-specified reason.
1904 * @bss_param: current BSS parameters
1905 * @generation: generation number for nl80211 dumps.
1906 * This number should increase every time the list of stations
1907 * changes, i.e. when a station is added or removed, so that
1908 * userspace can tell whether it got a consistent snapshot.
1909 * @assoc_req_ies: IEs from (Re)Association Request.
1910 * This is used only when in AP mode with drivers that do not use
1911 * user space MLME/SME implementation. The information is provided for
1912 * the cfg80211_new_sta() calls to notify user space of the IEs.
1913 * @assoc_req_ies_len: Length of assoc_req_ies buffer in octets.
1914 * @sta_flags: station flags mask & values
1915 * @beacon_loss_count: Number of times beacon loss event has triggered.
1916 * @t_offset: Time offset of the station relative to this host.
1917 * @local_pm: local mesh STA power save mode
1918 * @peer_pm: peer mesh STA power save mode
1919 * @nonpeer_pm: non-peer mesh STA power save mode
1920 * @expected_throughput: expected throughput in kbps (including 802.11 headers)
1921 * towards this station.
1922 * @rx_beacon: number of beacons received from this peer
1923 * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received
1924 * from this peer
1925 * @connected_to_gate: true if mesh STA has a path to mesh gate
1926 * @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer
1927 * @tx_duration: aggregate PPDU duration(usecs) for all the frames to a peer
1928 * @airtime_weight: current airtime scheduling weight
1929 * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last
1930 * (IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs.
1931 * Note that this doesn't use the @filled bit, but is used if non-NULL.
1932 * @ack_signal: signal strength (in dBm) of the last ACK frame.
1933 * @avg_ack_signal: average rssi value of ack packet for the no of msdu's has
1934 * been sent.
1935 * @rx_mpdu_count: number of MPDUs received from this station
1936 * @fcs_err_count: number of packets (MPDUs) received from this station with
1937 * an FCS error. This counter should be incremented only when TA of the
1938 * received packet with an FCS error matches the peer MAC address.
1939 * @airtime_link_metric: mesh airtime link metric.
1940 * @connected_to_as: true if mesh STA has a path to authentication server
1941 * @mlo_params_valid: Indicates @assoc_link_id and @mld_addr fields are filled
1942 * by driver. Drivers use this only in cfg80211_new_sta() calls when AP
1943 * MLD's MLME/SME is offload to driver. Drivers won't fill this
1944 * information in cfg80211_del_sta_sinfo(), get_station() and
1945 * dump_station() callbacks.
1946 * @assoc_link_id: Indicates MLO link ID of the AP, with which the station
1947 * completed (re)association. This information filled for both MLO
1948 * and non-MLO STA connections when the AP affiliated with an MLD.
1949 * @mld_addr: For MLO STA connection, filled with MLD address of the station.
1950 * For non-MLO STA connection, filled with all zeros.
1951 * @assoc_resp_ies: IEs from (Re)Association Response.
1952 * This is used only when in AP mode with drivers that do not use user
1953 * space MLME/SME implementation. The information is provided only for the
1954 * cfg80211_new_sta() calls to notify user space of the IEs. Drivers won't
1955 * fill this information in cfg80211_del_sta_sinfo(), get_station() and
1956 * dump_station() callbacks. User space needs this information to determine
1957 * the accepted and rejected affiliated links of the connected station.
1958 * @assoc_resp_ies_len: Length of @assoc_resp_ies buffer in octets.
1959 */
1960 struct station_info {
1961 u64 filled;
1962 u32 connected_time;
1963 u32 inactive_time;
1964 u64 assoc_at;
1965 u64 rx_bytes;
1966 u64 tx_bytes;
1967 u16 llid;
1968 u16 plid;
1969 u8 plink_state;
1970 s8 signal;
1971 s8 signal_avg;
1972
1973 u8 chains;
1974 s8 chain_signal[IEEE80211_MAX_CHAINS];
1975 s8 chain_signal_avg[IEEE80211_MAX_CHAINS];
1976
1977 struct rate_info txrate;
1978 struct rate_info rxrate;
1979 u32 rx_packets;
1980 u32 tx_packets;
1981 u32 tx_retries;
1982 u32 tx_failed;
1983 u32 rx_dropped_misc;
1984 struct sta_bss_parameters bss_param;
1985 struct nl80211_sta_flag_update sta_flags;
1986
1987 int generation;
1988
1989 const u8 *assoc_req_ies;
1990 size_t assoc_req_ies_len;
1991
1992 u32 beacon_loss_count;
1993 s64 t_offset;
1994 enum nl80211_mesh_power_mode local_pm;
1995 enum nl80211_mesh_power_mode peer_pm;
1996 enum nl80211_mesh_power_mode nonpeer_pm;
1997
1998 u32 expected_throughput;
1999
2000 u64 tx_duration;
2001 u64 rx_duration;
2002 u64 rx_beacon;
2003 u8 rx_beacon_signal_avg;
2004 u8 connected_to_gate;
2005
2006 struct cfg80211_tid_stats *pertid;
2007 s8 ack_signal;
2008 s8 avg_ack_signal;
2009
2010 u16 airtime_weight;
2011
2012 u32 rx_mpdu_count;
2013 u32 fcs_err_count;
2014
2015 u32 airtime_link_metric;
2016
2017 u8 connected_to_as;
2018
2019 bool mlo_params_valid;
2020 u8 assoc_link_id;
2021 u8 mld_addr[ETH_ALEN] __aligned(2);
2022 const u8 *assoc_resp_ies;
2023 size_t assoc_resp_ies_len;
2024 };
2025
2026 /**
2027 * struct cfg80211_sar_sub_specs - sub specs limit
2028 * @power: power limitation in 0.25dbm
2029 * @freq_range_index: index the power limitation applies to
2030 */
2031 struct cfg80211_sar_sub_specs {
2032 s32 power;
2033 u32 freq_range_index;
2034 };
2035
2036 /**
2037 * struct cfg80211_sar_specs - sar limit specs
2038 * @type: it's set with power in 0.25dbm or other types
2039 * @num_sub_specs: number of sar sub specs
2040 * @sub_specs: memory to hold the sar sub specs
2041 */
2042 struct cfg80211_sar_specs {
2043 enum nl80211_sar_type type;
2044 u32 num_sub_specs;
2045 struct cfg80211_sar_sub_specs sub_specs[];
2046 };
2047
2048
2049 /**
2050 * struct cfg80211_sar_freq_ranges - sar frequency ranges
2051 * @start_freq: start range edge frequency
2052 * @end_freq: end range edge frequency
2053 */
2054 struct cfg80211_sar_freq_ranges {
2055 u32 start_freq;
2056 u32 end_freq;
2057 };
2058
2059 /**
2060 * struct cfg80211_sar_capa - sar limit capability
2061 * @type: it's set via power in 0.25dbm or other types
2062 * @num_freq_ranges: number of frequency ranges
2063 * @freq_ranges: memory to hold the freq ranges.
2064 *
2065 * Note: WLAN driver may append new ranges or split an existing
2066 * range to small ones and then append them.
2067 */
2068 struct cfg80211_sar_capa {
2069 enum nl80211_sar_type type;
2070 u32 num_freq_ranges;
2071 const struct cfg80211_sar_freq_ranges *freq_ranges;
2072 };
2073
2074 #if IS_ENABLED(CONFIG_CFG80211)
2075 /**
2076 * cfg80211_get_station - retrieve information about a given station
2077 * @dev: the device where the station is supposed to be connected to
2078 * @mac_addr: the mac address of the station of interest
2079 * @sinfo: pointer to the structure to fill with the information
2080 *
2081 * Returns 0 on success and sinfo is filled with the available information
2082 * otherwise returns a negative error code and the content of sinfo has to be
2083 * considered undefined.
2084 */
2085 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2086 struct station_info *sinfo);
2087 #else
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2088 static inline int cfg80211_get_station(struct net_device *dev,
2089 const u8 *mac_addr,
2090 struct station_info *sinfo)
2091 {
2092 return -ENOENT;
2093 }
2094 #endif
2095
2096 /**
2097 * enum monitor_flags - monitor flags
2098 *
2099 * Monitor interface configuration flags. Note that these must be the bits
2100 * according to the nl80211 flags.
2101 *
2102 * @MONITOR_FLAG_CHANGED: set if the flags were changed
2103 * @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS
2104 * @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP
2105 * @MONITOR_FLAG_CONTROL: pass control frames
2106 * @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering
2107 * @MONITOR_FLAG_COOK_FRAMES: report frames after processing
2108 * @MONITOR_FLAG_ACTIVE: active monitor, ACKs frames on its MAC address
2109 */
2110 enum monitor_flags {
2111 MONITOR_FLAG_CHANGED = 1<<__NL80211_MNTR_FLAG_INVALID,
2112 MONITOR_FLAG_FCSFAIL = 1<<NL80211_MNTR_FLAG_FCSFAIL,
2113 MONITOR_FLAG_PLCPFAIL = 1<<NL80211_MNTR_FLAG_PLCPFAIL,
2114 MONITOR_FLAG_CONTROL = 1<<NL80211_MNTR_FLAG_CONTROL,
2115 MONITOR_FLAG_OTHER_BSS = 1<<NL80211_MNTR_FLAG_OTHER_BSS,
2116 MONITOR_FLAG_COOK_FRAMES = 1<<NL80211_MNTR_FLAG_COOK_FRAMES,
2117 MONITOR_FLAG_ACTIVE = 1<<NL80211_MNTR_FLAG_ACTIVE,
2118 };
2119
2120 /**
2121 * enum mpath_info_flags - mesh path information flags
2122 *
2123 * Used by the driver to indicate which info in &struct mpath_info it has filled
2124 * in during get_station() or dump_station().
2125 *
2126 * @MPATH_INFO_FRAME_QLEN: @frame_qlen filled
2127 * @MPATH_INFO_SN: @sn filled
2128 * @MPATH_INFO_METRIC: @metric filled
2129 * @MPATH_INFO_EXPTIME: @exptime filled
2130 * @MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled
2131 * @MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled
2132 * @MPATH_INFO_FLAGS: @flags filled
2133 * @MPATH_INFO_HOP_COUNT: @hop_count filled
2134 * @MPATH_INFO_PATH_CHANGE: @path_change_count filled
2135 */
2136 enum mpath_info_flags {
2137 MPATH_INFO_FRAME_QLEN = BIT(0),
2138 MPATH_INFO_SN = BIT(1),
2139 MPATH_INFO_METRIC = BIT(2),
2140 MPATH_INFO_EXPTIME = BIT(3),
2141 MPATH_INFO_DISCOVERY_TIMEOUT = BIT(4),
2142 MPATH_INFO_DISCOVERY_RETRIES = BIT(5),
2143 MPATH_INFO_FLAGS = BIT(6),
2144 MPATH_INFO_HOP_COUNT = BIT(7),
2145 MPATH_INFO_PATH_CHANGE = BIT(8),
2146 };
2147
2148 /**
2149 * struct mpath_info - mesh path information
2150 *
2151 * Mesh path information filled by driver for get_mpath() and dump_mpath().
2152 *
2153 * @filled: bitfield of flags from &enum mpath_info_flags
2154 * @frame_qlen: number of queued frames for this destination
2155 * @sn: target sequence number
2156 * @metric: metric (cost) of this mesh path
2157 * @exptime: expiration time for the mesh path from now, in msecs
2158 * @flags: mesh path flags from &enum mesh_path_flags
2159 * @discovery_timeout: total mesh path discovery timeout, in msecs
2160 * @discovery_retries: mesh path discovery retries
2161 * @generation: generation number for nl80211 dumps.
2162 * This number should increase every time the list of mesh paths
2163 * changes, i.e. when a station is added or removed, so that
2164 * userspace can tell whether it got a consistent snapshot.
2165 * @hop_count: hops to destination
2166 * @path_change_count: total number of path changes to destination
2167 */
2168 struct mpath_info {
2169 u32 filled;
2170 u32 frame_qlen;
2171 u32 sn;
2172 u32 metric;
2173 u32 exptime;
2174 u32 discovery_timeout;
2175 u8 discovery_retries;
2176 u8 flags;
2177 u8 hop_count;
2178 u32 path_change_count;
2179
2180 int generation;
2181 };
2182
2183 /**
2184 * struct bss_parameters - BSS parameters
2185 *
2186 * Used to change BSS parameters (mainly for AP mode).
2187 *
2188 * @link_id: link_id or -1 for non-MLD
2189 * @use_cts_prot: Whether to use CTS protection
2190 * (0 = no, 1 = yes, -1 = do not change)
2191 * @use_short_preamble: Whether the use of short preambles is allowed
2192 * (0 = no, 1 = yes, -1 = do not change)
2193 * @use_short_slot_time: Whether the use of short slot time is allowed
2194 * (0 = no, 1 = yes, -1 = do not change)
2195 * @basic_rates: basic rates in IEEE 802.11 format
2196 * (or NULL for no change)
2197 * @basic_rates_len: number of basic rates
2198 * @ap_isolate: do not forward packets between connected stations
2199 * (0 = no, 1 = yes, -1 = do not change)
2200 * @ht_opmode: HT Operation mode
2201 * (u16 = opmode, -1 = do not change)
2202 * @p2p_ctwindow: P2P CT Window (-1 = no change)
2203 * @p2p_opp_ps: P2P opportunistic PS (-1 = no change)
2204 */
2205 struct bss_parameters {
2206 int link_id;
2207 int use_cts_prot;
2208 int use_short_preamble;
2209 int use_short_slot_time;
2210 const u8 *basic_rates;
2211 u8 basic_rates_len;
2212 int ap_isolate;
2213 int ht_opmode;
2214 s8 p2p_ctwindow, p2p_opp_ps;
2215 };
2216
2217 /**
2218 * struct mesh_config - 802.11s mesh configuration
2219 *
2220 * These parameters can be changed while the mesh is active.
2221 *
2222 * @dot11MeshRetryTimeout: the initial retry timeout in millisecond units used
2223 * by the Mesh Peering Open message
2224 * @dot11MeshConfirmTimeout: the initial retry timeout in millisecond units
2225 * used by the Mesh Peering Open message
2226 * @dot11MeshHoldingTimeout: the confirm timeout in millisecond units used by
2227 * the mesh peering management to close a mesh peering
2228 * @dot11MeshMaxPeerLinks: the maximum number of peer links allowed on this
2229 * mesh interface
2230 * @dot11MeshMaxRetries: the maximum number of peer link open retries that can
2231 * be sent to establish a new peer link instance in a mesh
2232 * @dot11MeshTTL: the value of TTL field set at a source mesh STA
2233 * @element_ttl: the value of TTL field set at a mesh STA for path selection
2234 * elements
2235 * @auto_open_plinks: whether we should automatically open peer links when we
2236 * detect compatible mesh peers
2237 * @dot11MeshNbrOffsetMaxNeighbor: the maximum number of neighbors to
2238 * synchronize to for 11s default synchronization method
2239 * @dot11MeshHWMPmaxPREQretries: the number of action frames containing a PREQ
2240 * that an originator mesh STA can send to a particular path target
2241 * @path_refresh_time: how frequently to refresh mesh paths in milliseconds
2242 * @min_discovery_timeout: the minimum length of time to wait until giving up on
2243 * a path discovery in milliseconds
2244 * @dot11MeshHWMPactivePathTimeout: the time (in TUs) for which mesh STAs
2245 * receiving a PREQ shall consider the forwarding information from the
2246 * root to be valid. (TU = time unit)
2247 * @dot11MeshHWMPpreqMinInterval: the minimum interval of time (in TUs) during
2248 * which a mesh STA can send only one action frame containing a PREQ
2249 * element
2250 * @dot11MeshHWMPperrMinInterval: the minimum interval of time (in TUs) during
2251 * which a mesh STA can send only one Action frame containing a PERR
2252 * element
2253 * @dot11MeshHWMPnetDiameterTraversalTime: the interval of time (in TUs) that
2254 * it takes for an HWMP information element to propagate across the mesh
2255 * @dot11MeshHWMPRootMode: the configuration of a mesh STA as root mesh STA
2256 * @dot11MeshHWMPRannInterval: the interval of time (in TUs) between root
2257 * announcements are transmitted
2258 * @dot11MeshGateAnnouncementProtocol: whether to advertise that this mesh
2259 * station has access to a broader network beyond the MBSS. (This is
2260 * missnamed in draft 12.0: dot11MeshGateAnnouncementProtocol set to true
2261 * only means that the station will announce others it's a mesh gate, but
2262 * not necessarily using the gate announcement protocol. Still keeping the
2263 * same nomenclature to be in sync with the spec)
2264 * @dot11MeshForwarding: whether the Mesh STA is forwarding or non-forwarding
2265 * entity (default is TRUE - forwarding entity)
2266 * @rssi_threshold: the threshold for average signal strength of candidate
2267 * station to establish a peer link
2268 * @ht_opmode: mesh HT protection mode
2269 *
2270 * @dot11MeshHWMPactivePathToRootTimeout: The time (in TUs) for which mesh STAs
2271 * receiving a proactive PREQ shall consider the forwarding information to
2272 * the root mesh STA to be valid.
2273 *
2274 * @dot11MeshHWMProotInterval: The interval of time (in TUs) between proactive
2275 * PREQs are transmitted.
2276 * @dot11MeshHWMPconfirmationInterval: The minimum interval of time (in TUs)
2277 * during which a mesh STA can send only one Action frame containing
2278 * a PREQ element for root path confirmation.
2279 * @power_mode: The default mesh power save mode which will be the initial
2280 * setting for new peer links.
2281 * @dot11MeshAwakeWindowDuration: The duration in TUs the STA will remain awake
2282 * after transmitting its beacon.
2283 * @plink_timeout: If no tx activity is seen from a STA we've established
2284 * peering with for longer than this time (in seconds), then remove it
2285 * from the STA's list of peers. Default is 30 minutes.
2286 * @dot11MeshConnectedToAuthServer: if set to true then this mesh STA
2287 * will advertise that it is connected to a authentication server
2288 * in the mesh formation field.
2289 * @dot11MeshConnectedToMeshGate: if set to true, advertise that this STA is
2290 * connected to a mesh gate in mesh formation info. If false, the
2291 * value in mesh formation is determined by the presence of root paths
2292 * in the mesh path table
2293 * @dot11MeshNolearn: Try to avoid multi-hop path discovery (e.g. PREQ/PREP
2294 * for HWMP) if the destination is a direct neighbor. Note that this might
2295 * not be the optimal decision as a multi-hop route might be better. So
2296 * if using this setting you will likely also want to disable
2297 * dot11MeshForwarding and use another mesh routing protocol on top.
2298 */
2299 struct mesh_config {
2300 u16 dot11MeshRetryTimeout;
2301 u16 dot11MeshConfirmTimeout;
2302 u16 dot11MeshHoldingTimeout;
2303 u16 dot11MeshMaxPeerLinks;
2304 u8 dot11MeshMaxRetries;
2305 u8 dot11MeshTTL;
2306 u8 element_ttl;
2307 bool auto_open_plinks;
2308 u32 dot11MeshNbrOffsetMaxNeighbor;
2309 u8 dot11MeshHWMPmaxPREQretries;
2310 u32 path_refresh_time;
2311 u16 min_discovery_timeout;
2312 u32 dot11MeshHWMPactivePathTimeout;
2313 u16 dot11MeshHWMPpreqMinInterval;
2314 u16 dot11MeshHWMPperrMinInterval;
2315 u16 dot11MeshHWMPnetDiameterTraversalTime;
2316 u8 dot11MeshHWMPRootMode;
2317 bool dot11MeshConnectedToMeshGate;
2318 bool dot11MeshConnectedToAuthServer;
2319 u16 dot11MeshHWMPRannInterval;
2320 bool dot11MeshGateAnnouncementProtocol;
2321 bool dot11MeshForwarding;
2322 s32 rssi_threshold;
2323 u16 ht_opmode;
2324 u32 dot11MeshHWMPactivePathToRootTimeout;
2325 u16 dot11MeshHWMProotInterval;
2326 u16 dot11MeshHWMPconfirmationInterval;
2327 enum nl80211_mesh_power_mode power_mode;
2328 u16 dot11MeshAwakeWindowDuration;
2329 u32 plink_timeout;
2330 bool dot11MeshNolearn;
2331 };
2332
2333 /**
2334 * struct mesh_setup - 802.11s mesh setup configuration
2335 * @chandef: defines the channel to use
2336 * @mesh_id: the mesh ID
2337 * @mesh_id_len: length of the mesh ID, at least 1 and at most 32 bytes
2338 * @sync_method: which synchronization method to use
2339 * @path_sel_proto: which path selection protocol to use
2340 * @path_metric: which metric to use
2341 * @auth_id: which authentication method this mesh is using
2342 * @ie: vendor information elements (optional)
2343 * @ie_len: length of vendor information elements
2344 * @is_authenticated: this mesh requires authentication
2345 * @is_secure: this mesh uses security
2346 * @user_mpm: userspace handles all MPM functions
2347 * @dtim_period: DTIM period to use
2348 * @beacon_interval: beacon interval to use
2349 * @mcast_rate: multicat rate for Mesh Node [6Mbps is the default for 802.11a]
2350 * @basic_rates: basic rates to use when creating the mesh
2351 * @beacon_rate: bitrate to be used for beacons
2352 * @userspace_handles_dfs: whether user space controls DFS operation, i.e.
2353 * changes the channel when a radar is detected. This is required
2354 * to operate on DFS channels.
2355 * @control_port_over_nl80211: TRUE if userspace expects to exchange control
2356 * port frames over NL80211 instead of the network interface.
2357 *
2358 * These parameters are fixed when the mesh is created.
2359 */
2360 struct mesh_setup {
2361 struct cfg80211_chan_def chandef;
2362 const u8 *mesh_id;
2363 u8 mesh_id_len;
2364 u8 sync_method;
2365 u8 path_sel_proto;
2366 u8 path_metric;
2367 u8 auth_id;
2368 const u8 *ie;
2369 u8 ie_len;
2370 bool is_authenticated;
2371 bool is_secure;
2372 bool user_mpm;
2373 u8 dtim_period;
2374 u16 beacon_interval;
2375 int mcast_rate[NUM_NL80211_BANDS];
2376 u32 basic_rates;
2377 struct cfg80211_bitrate_mask beacon_rate;
2378 bool userspace_handles_dfs;
2379 bool control_port_over_nl80211;
2380 };
2381
2382 /**
2383 * struct ocb_setup - 802.11p OCB mode setup configuration
2384 * @chandef: defines the channel to use
2385 *
2386 * These parameters are fixed when connecting to the network
2387 */
2388 struct ocb_setup {
2389 struct cfg80211_chan_def chandef;
2390 };
2391
2392 /**
2393 * struct ieee80211_txq_params - TX queue parameters
2394 * @ac: AC identifier
2395 * @txop: Maximum burst time in units of 32 usecs, 0 meaning disabled
2396 * @cwmin: Minimum contention window [a value of the form 2^n-1 in the range
2397 * 1..32767]
2398 * @cwmax: Maximum contention window [a value of the form 2^n-1 in the range
2399 * 1..32767]
2400 * @aifs: Arbitration interframe space [0..255]
2401 * @link_id: link_id or -1 for non-MLD
2402 */
2403 struct ieee80211_txq_params {
2404 enum nl80211_ac ac;
2405 u16 txop;
2406 u16 cwmin;
2407 u16 cwmax;
2408 u8 aifs;
2409 int link_id;
2410 };
2411
2412 /**
2413 * DOC: Scanning and BSS list handling
2414 *
2415 * The scanning process itself is fairly simple, but cfg80211 offers quite
2416 * a bit of helper functionality. To start a scan, the scan operation will
2417 * be invoked with a scan definition. This scan definition contains the
2418 * channels to scan, and the SSIDs to send probe requests for (including the
2419 * wildcard, if desired). A passive scan is indicated by having no SSIDs to
2420 * probe. Additionally, a scan request may contain extra information elements
2421 * that should be added to the probe request. The IEs are guaranteed to be
2422 * well-formed, and will not exceed the maximum length the driver advertised
2423 * in the wiphy structure.
2424 *
2425 * When scanning finds a BSS, cfg80211 needs to be notified of that, because
2426 * it is responsible for maintaining the BSS list; the driver should not
2427 * maintain a list itself. For this notification, various functions exist.
2428 *
2429 * Since drivers do not maintain a BSS list, there are also a number of
2430 * functions to search for a BSS and obtain information about it from the
2431 * BSS structure cfg80211 maintains. The BSS list is also made available
2432 * to userspace.
2433 */
2434
2435 /**
2436 * struct cfg80211_ssid - SSID description
2437 * @ssid: the SSID
2438 * @ssid_len: length of the ssid
2439 */
2440 struct cfg80211_ssid {
2441 u8 ssid[IEEE80211_MAX_SSID_LEN];
2442 u8 ssid_len;
2443 };
2444
2445 /**
2446 * struct cfg80211_scan_info - information about completed scan
2447 * @scan_start_tsf: scan start time in terms of the TSF of the BSS that the
2448 * wireless device that requested the scan is connected to. If this
2449 * information is not available, this field is left zero.
2450 * @tsf_bssid: the BSSID according to which %scan_start_tsf is set.
2451 * @aborted: set to true if the scan was aborted for any reason,
2452 * userspace will be notified of that
2453 */
2454 struct cfg80211_scan_info {
2455 u64 scan_start_tsf;
2456 u8 tsf_bssid[ETH_ALEN] __aligned(2);
2457 bool aborted;
2458 };
2459
2460 /**
2461 * struct cfg80211_scan_6ghz_params - relevant for 6 GHz only
2462 *
2463 * @short_ssid: short ssid to scan for
2464 * @bssid: bssid to scan for
2465 * @channel_idx: idx of the channel in the channel array in the scan request
2466 * which the above info relvant to
2467 * @unsolicited_probe: the AP transmits unsolicited probe response every 20 TU
2468 * @short_ssid_valid: @short_ssid is valid and can be used
2469 * @psc_no_listen: when set, and the channel is a PSC channel, no need to wait
2470 * 20 TUs before starting to send probe requests.
2471 * @psd_20: The AP's 20 MHz PSD value.
2472 */
2473 struct cfg80211_scan_6ghz_params {
2474 u32 short_ssid;
2475 u32 channel_idx;
2476 u8 bssid[ETH_ALEN];
2477 bool unsolicited_probe;
2478 bool short_ssid_valid;
2479 bool psc_no_listen;
2480 s8 psd_20;
2481 };
2482
2483 /**
2484 * struct cfg80211_scan_request - scan request description
2485 *
2486 * @ssids: SSIDs to scan for (active scan only)
2487 * @n_ssids: number of SSIDs
2488 * @channels: channels to scan on.
2489 * @n_channels: total number of channels to scan
2490 * @scan_width: channel width for scanning
2491 * @ie: optional information element(s) to add into Probe Request or %NULL
2492 * @ie_len: length of ie in octets
2493 * @duration: how long to listen on each channel, in TUs. If
2494 * %duration_mandatory is not set, this is the maximum dwell time and
2495 * the actual dwell time may be shorter.
2496 * @duration_mandatory: if set, the scan duration must be as specified by the
2497 * %duration field.
2498 * @flags: control flags from &enum nl80211_scan_flags
2499 * @rates: bitmap of rates to advertise for each band
2500 * @wiphy: the wiphy this was for
2501 * @scan_start: time (in jiffies) when the scan started
2502 * @wdev: the wireless device to scan for
2503 * @info: (internal) information about completed scan
2504 * @notified: (internal) scan request was notified as done or aborted
2505 * @no_cck: used to send probe requests at non CCK rate in 2GHz band
2506 * @mac_addr: MAC address used with randomisation
2507 * @mac_addr_mask: MAC address mask used with randomisation, bits that
2508 * are 0 in the mask should be randomised, bits that are 1 should
2509 * be taken from the @mac_addr
2510 * @scan_6ghz: relevant for split scan request only,
2511 * true if this is the second scan request
2512 * @n_6ghz_params: number of 6 GHz params
2513 * @scan_6ghz_params: 6 GHz params
2514 * @bssid: BSSID to scan for (most commonly, the wildcard BSSID)
2515 */
2516 struct cfg80211_scan_request {
2517 struct cfg80211_ssid *ssids;
2518 int n_ssids;
2519 u32 n_channels;
2520 enum nl80211_bss_scan_width scan_width;
2521 const u8 *ie;
2522 size_t ie_len;
2523 u16 duration;
2524 bool duration_mandatory;
2525 u32 flags;
2526
2527 u32 rates[NUM_NL80211_BANDS];
2528
2529 struct wireless_dev *wdev;
2530
2531 u8 mac_addr[ETH_ALEN] __aligned(2);
2532 u8 mac_addr_mask[ETH_ALEN] __aligned(2);
2533 u8 bssid[ETH_ALEN] __aligned(2);
2534
2535 /* internal */
2536 struct wiphy *wiphy;
2537 unsigned long scan_start;
2538 struct cfg80211_scan_info info;
2539 bool notified;
2540 bool no_cck;
2541 bool scan_6ghz;
2542 u32 n_6ghz_params;
2543 struct cfg80211_scan_6ghz_params *scan_6ghz_params;
2544
2545 /* keep last */
2546 struct ieee80211_channel *channels[] __counted_by(n_channels);
2547 };
2548
get_random_mask_addr(u8 * buf,const u8 * addr,const u8 * mask)2549 static inline void get_random_mask_addr(u8 *buf, const u8 *addr, const u8 *mask)
2550 {
2551 int i;
2552
2553 get_random_bytes(buf, ETH_ALEN);
2554 for (i = 0; i < ETH_ALEN; i++) {
2555 buf[i] &= ~mask[i];
2556 buf[i] |= addr[i] & mask[i];
2557 }
2558 }
2559
2560 /**
2561 * struct cfg80211_match_set - sets of attributes to match
2562 *
2563 * @ssid: SSID to be matched; may be zero-length in case of BSSID match
2564 * or no match (RSSI only)
2565 * @bssid: BSSID to be matched; may be all-zero BSSID in case of SSID match
2566 * or no match (RSSI only)
2567 * @rssi_thold: don't report scan results below this threshold (in s32 dBm)
2568 * @per_band_rssi_thold: Minimum rssi threshold for each band to be applied
2569 * for filtering out scan results received. Drivers advertize this support
2570 * of band specific rssi based filtering through the feature capability
2571 * %NL80211_EXT_FEATURE_SCHED_SCAN_BAND_SPECIFIC_RSSI_THOLD. These band
2572 * specific rssi thresholds take precedence over rssi_thold, if specified.
2573 * If not specified for any band, it will be assigned with rssi_thold of
2574 * corresponding matchset.
2575 */
2576 struct cfg80211_match_set {
2577 struct cfg80211_ssid ssid;
2578 u8 bssid[ETH_ALEN];
2579 s32 rssi_thold;
2580 s32 per_band_rssi_thold[NUM_NL80211_BANDS];
2581 };
2582
2583 /**
2584 * struct cfg80211_sched_scan_plan - scan plan for scheduled scan
2585 *
2586 * @interval: interval between scheduled scan iterations. In seconds.
2587 * @iterations: number of scan iterations in this scan plan. Zero means
2588 * infinite loop.
2589 * The last scan plan will always have this parameter set to zero,
2590 * all other scan plans will have a finite number of iterations.
2591 */
2592 struct cfg80211_sched_scan_plan {
2593 u32 interval;
2594 u32 iterations;
2595 };
2596
2597 /**
2598 * struct cfg80211_bss_select_adjust - BSS selection with RSSI adjustment.
2599 *
2600 * @band: band of BSS which should match for RSSI level adjustment.
2601 * @delta: value of RSSI level adjustment.
2602 */
2603 struct cfg80211_bss_select_adjust {
2604 enum nl80211_band band;
2605 s8 delta;
2606 };
2607
2608 /**
2609 * struct cfg80211_sched_scan_request - scheduled scan request description
2610 *
2611 * @reqid: identifies this request.
2612 * @ssids: SSIDs to scan for (passed in the probe_reqs in active scans)
2613 * @n_ssids: number of SSIDs
2614 * @n_channels: total number of channels to scan
2615 * @scan_width: channel width for scanning
2616 * @ie: optional information element(s) to add into Probe Request or %NULL
2617 * @ie_len: length of ie in octets
2618 * @flags: control flags from &enum nl80211_scan_flags
2619 * @match_sets: sets of parameters to be matched for a scan result
2620 * entry to be considered valid and to be passed to the host
2621 * (others are filtered out).
2622 * If ommited, all results are passed.
2623 * @n_match_sets: number of match sets
2624 * @report_results: indicates that results were reported for this request
2625 * @wiphy: the wiphy this was for
2626 * @dev: the interface
2627 * @scan_start: start time of the scheduled scan
2628 * @channels: channels to scan
2629 * @min_rssi_thold: for drivers only supporting a single threshold, this
2630 * contains the minimum over all matchsets
2631 * @mac_addr: MAC address used with randomisation
2632 * @mac_addr_mask: MAC address mask used with randomisation, bits that
2633 * are 0 in the mask should be randomised, bits that are 1 should
2634 * be taken from the @mac_addr
2635 * @scan_plans: scan plans to be executed in this scheduled scan. Lowest
2636 * index must be executed first.
2637 * @n_scan_plans: number of scan plans, at least 1.
2638 * @rcu_head: RCU callback used to free the struct
2639 * @owner_nlportid: netlink portid of owner (if this should is a request
2640 * owned by a particular socket)
2641 * @nl_owner_dead: netlink owner socket was closed - this request be freed
2642 * @list: for keeping list of requests.
2643 * @delay: delay in seconds to use before starting the first scan
2644 * cycle. The driver may ignore this parameter and start
2645 * immediately (or at any other time), if this feature is not
2646 * supported.
2647 * @relative_rssi_set: Indicates whether @relative_rssi is set or not.
2648 * @relative_rssi: Relative RSSI threshold in dB to restrict scan result
2649 * reporting in connected state to cases where a matching BSS is determined
2650 * to have better or slightly worse RSSI than the current connected BSS.
2651 * The relative RSSI threshold values are ignored in disconnected state.
2652 * @rssi_adjust: delta dB of RSSI preference to be given to the BSSs that belong
2653 * to the specified band while deciding whether a better BSS is reported
2654 * using @relative_rssi. If delta is a negative number, the BSSs that
2655 * belong to the specified band will be penalized by delta dB in relative
2656 * comparisions.
2657 */
2658 struct cfg80211_sched_scan_request {
2659 u64 reqid;
2660 struct cfg80211_ssid *ssids;
2661 int n_ssids;
2662 u32 n_channels;
2663 enum nl80211_bss_scan_width scan_width;
2664 const u8 *ie;
2665 size_t ie_len;
2666 u32 flags;
2667 struct cfg80211_match_set *match_sets;
2668 int n_match_sets;
2669 s32 min_rssi_thold;
2670 u32 delay;
2671 struct cfg80211_sched_scan_plan *scan_plans;
2672 int n_scan_plans;
2673
2674 u8 mac_addr[ETH_ALEN] __aligned(2);
2675 u8 mac_addr_mask[ETH_ALEN] __aligned(2);
2676
2677 bool relative_rssi_set;
2678 s8 relative_rssi;
2679 struct cfg80211_bss_select_adjust rssi_adjust;
2680
2681 /* internal */
2682 struct wiphy *wiphy;
2683 struct net_device *dev;
2684 unsigned long scan_start;
2685 bool report_results;
2686 struct rcu_head rcu_head;
2687 u32 owner_nlportid;
2688 bool nl_owner_dead;
2689 struct list_head list;
2690
2691 /* keep last */
2692 struct ieee80211_channel *channels[];
2693 };
2694
2695 /**
2696 * enum cfg80211_signal_type - signal type
2697 *
2698 * @CFG80211_SIGNAL_TYPE_NONE: no signal strength information available
2699 * @CFG80211_SIGNAL_TYPE_MBM: signal strength in mBm (100*dBm)
2700 * @CFG80211_SIGNAL_TYPE_UNSPEC: signal strength, increasing from 0 through 100
2701 */
2702 enum cfg80211_signal_type {
2703 CFG80211_SIGNAL_TYPE_NONE,
2704 CFG80211_SIGNAL_TYPE_MBM,
2705 CFG80211_SIGNAL_TYPE_UNSPEC,
2706 };
2707
2708 /**
2709 * struct cfg80211_inform_bss - BSS inform data
2710 * @chan: channel the frame was received on
2711 * @scan_width: scan width that was used
2712 * @signal: signal strength value, according to the wiphy's
2713 * signal type
2714 * @boottime_ns: timestamp (CLOCK_BOOTTIME) when the information was
2715 * received; should match the time when the frame was actually
2716 * received by the device (not just by the host, in case it was
2717 * buffered on the device) and be accurate to about 10ms.
2718 * If the frame isn't buffered, just passing the return value of
2719 * ktime_get_boottime_ns() is likely appropriate.
2720 * @parent_tsf: the time at the start of reception of the first octet of the
2721 * timestamp field of the frame. The time is the TSF of the BSS specified
2722 * by %parent_bssid.
2723 * @parent_bssid: the BSS according to which %parent_tsf is set. This is set to
2724 * the BSS that requested the scan in which the beacon/probe was received.
2725 * @chains: bitmask for filled values in @chain_signal.
2726 * @chain_signal: per-chain signal strength of last received BSS in dBm.
2727 * @drv_data: Data to be passed through to @inform_bss
2728 */
2729 struct cfg80211_inform_bss {
2730 struct ieee80211_channel *chan;
2731 enum nl80211_bss_scan_width scan_width;
2732 s32 signal;
2733 u64 boottime_ns;
2734 u64 parent_tsf;
2735 u8 parent_bssid[ETH_ALEN] __aligned(2);
2736 u8 chains;
2737 s8 chain_signal[IEEE80211_MAX_CHAINS];
2738
2739 void *drv_data;
2740 };
2741
2742 /**
2743 * struct cfg80211_bss_ies - BSS entry IE data
2744 * @tsf: TSF contained in the frame that carried these IEs
2745 * @rcu_head: internal use, for freeing
2746 * @len: length of the IEs
2747 * @from_beacon: these IEs are known to come from a beacon
2748 * @data: IE data
2749 */
2750 struct cfg80211_bss_ies {
2751 u64 tsf;
2752 struct rcu_head rcu_head;
2753 int len;
2754 bool from_beacon;
2755 u8 data[];
2756 };
2757
2758 /**
2759 * struct cfg80211_bss - BSS description
2760 *
2761 * This structure describes a BSS (which may also be a mesh network)
2762 * for use in scan results and similar.
2763 *
2764 * @channel: channel this BSS is on
2765 * @scan_width: width of the control channel
2766 * @bssid: BSSID of the BSS
2767 * @beacon_interval: the beacon interval as from the frame
2768 * @capability: the capability field in host byte order
2769 * @ies: the information elements (Note that there is no guarantee that these
2770 * are well-formed!); this is a pointer to either the beacon_ies or
2771 * proberesp_ies depending on whether Probe Response frame has been
2772 * received. It is always non-%NULL.
2773 * @beacon_ies: the information elements from the last Beacon frame
2774 * (implementation note: if @hidden_beacon_bss is set this struct doesn't
2775 * own the beacon_ies, but they're just pointers to the ones from the
2776 * @hidden_beacon_bss struct)
2777 * @proberesp_ies: the information elements from the last Probe Response frame
2778 * @hidden_beacon_bss: in case this BSS struct represents a probe response from
2779 * a BSS that hides the SSID in its beacon, this points to the BSS struct
2780 * that holds the beacon data. @beacon_ies is still valid, of course, and
2781 * points to the same data as hidden_beacon_bss->beacon_ies in that case.
2782 * @transmitted_bss: pointer to the transmitted BSS, if this is a
2783 * non-transmitted one (multi-BSSID support)
2784 * @nontrans_list: list of non-transmitted BSS, if this is a transmitted one
2785 * (multi-BSSID support)
2786 * @signal: signal strength value (type depends on the wiphy's signal_type)
2787 * @chains: bitmask for filled values in @chain_signal.
2788 * @chain_signal: per-chain signal strength of last received BSS in dBm.
2789 * @bssid_index: index in the multiple BSS set
2790 * @max_bssid_indicator: max number of members in the BSS set
2791 * @priv: private area for driver use, has at least wiphy->bss_priv_size bytes
2792 */
2793 struct cfg80211_bss {
2794 struct ieee80211_channel *channel;
2795 enum nl80211_bss_scan_width scan_width;
2796
2797 const struct cfg80211_bss_ies __rcu *ies;
2798 const struct cfg80211_bss_ies __rcu *beacon_ies;
2799 const struct cfg80211_bss_ies __rcu *proberesp_ies;
2800
2801 struct cfg80211_bss *hidden_beacon_bss;
2802 struct cfg80211_bss *transmitted_bss;
2803 struct list_head nontrans_list;
2804
2805 s32 signal;
2806
2807 u16 beacon_interval;
2808 u16 capability;
2809
2810 u8 bssid[ETH_ALEN];
2811 u8 chains;
2812 s8 chain_signal[IEEE80211_MAX_CHAINS];
2813
2814 u8 bssid_index;
2815 u8 max_bssid_indicator;
2816
2817 u8 priv[] __aligned(sizeof(void *));
2818 };
2819
2820 /**
2821 * ieee80211_bss_get_elem - find element with given ID
2822 * @bss: the bss to search
2823 * @id: the element ID
2824 *
2825 * Note that the return value is an RCU-protected pointer, so
2826 * rcu_read_lock() must be held when calling this function.
2827 * Return: %NULL if not found.
2828 */
2829 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id);
2830
2831 /**
2832 * ieee80211_bss_get_ie - find IE with given ID
2833 * @bss: the bss to search
2834 * @id: the element ID
2835 *
2836 * Note that the return value is an RCU-protected pointer, so
2837 * rcu_read_lock() must be held when calling this function.
2838 * Return: %NULL if not found.
2839 */
ieee80211_bss_get_ie(struct cfg80211_bss * bss,u8 id)2840 static inline const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 id)
2841 {
2842 return (const void *)ieee80211_bss_get_elem(bss, id);
2843 }
2844
2845
2846 /**
2847 * struct cfg80211_auth_request - Authentication request data
2848 *
2849 * This structure provides information needed to complete IEEE 802.11
2850 * authentication.
2851 *
2852 * @bss: The BSS to authenticate with, the callee must obtain a reference
2853 * to it if it needs to keep it.
2854 * @auth_type: Authentication type (algorithm)
2855 * @ie: Extra IEs to add to Authentication frame or %NULL
2856 * @ie_len: Length of ie buffer in octets
2857 * @key_len: length of WEP key for shared key authentication
2858 * @key_idx: index of WEP key for shared key authentication
2859 * @key: WEP key for shared key authentication
2860 * @auth_data: Fields and elements in Authentication frames. This contains
2861 * the authentication frame body (non-IE and IE data), excluding the
2862 * Authentication algorithm number, i.e., starting at the Authentication
2863 * transaction sequence number field.
2864 * @auth_data_len: Length of auth_data buffer in octets
2865 * @link_id: if >= 0, indicates authentication should be done as an MLD,
2866 * the interface address is included as the MLD address and the
2867 * necessary link (with the given link_id) will be created (and
2868 * given an MLD address) by the driver
2869 * @ap_mld_addr: AP MLD address in case of authentication request with
2870 * an AP MLD, valid iff @link_id >= 0
2871 */
2872 struct cfg80211_auth_request {
2873 struct cfg80211_bss *bss;
2874 const u8 *ie;
2875 size_t ie_len;
2876 enum nl80211_auth_type auth_type;
2877 const u8 *key;
2878 u8 key_len;
2879 s8 key_idx;
2880 const u8 *auth_data;
2881 size_t auth_data_len;
2882 s8 link_id;
2883 const u8 *ap_mld_addr;
2884 };
2885
2886 /**
2887 * struct cfg80211_assoc_link - per-link information for MLO association
2888 * @bss: the BSS pointer, see also &struct cfg80211_assoc_request::bss;
2889 * if this is %NULL for a link, that link is not requested
2890 * @elems: extra elements for the per-STA profile for this link
2891 * @elems_len: length of the elements
2892 * @disabled: If set this link should be included during association etc. but it
2893 * should not be used until enabled by the AP MLD.
2894 */
2895 struct cfg80211_assoc_link {
2896 struct cfg80211_bss *bss;
2897 const u8 *elems;
2898 size_t elems_len;
2899 bool disabled;
2900 };
2901
2902 /**
2903 * enum cfg80211_assoc_req_flags - Over-ride default behaviour in association.
2904 *
2905 * @ASSOC_REQ_DISABLE_HT: Disable HT (802.11n)
2906 * @ASSOC_REQ_DISABLE_VHT: Disable VHT
2907 * @ASSOC_REQ_USE_RRM: Declare RRM capability in this association
2908 * @CONNECT_REQ_EXTERNAL_AUTH_SUPPORT: User space indicates external
2909 * authentication capability. Drivers can offload authentication to
2910 * userspace if this flag is set. Only applicable for cfg80211_connect()
2911 * request (connect callback).
2912 * @ASSOC_REQ_DISABLE_HE: Disable HE
2913 * @ASSOC_REQ_DISABLE_EHT: Disable EHT
2914 * @CONNECT_REQ_MLO_SUPPORT: Userspace indicates support for handling MLD links.
2915 * Drivers shall disable MLO features for the current association if this
2916 * flag is not set.
2917 */
2918 enum cfg80211_assoc_req_flags {
2919 ASSOC_REQ_DISABLE_HT = BIT(0),
2920 ASSOC_REQ_DISABLE_VHT = BIT(1),
2921 ASSOC_REQ_USE_RRM = BIT(2),
2922 CONNECT_REQ_EXTERNAL_AUTH_SUPPORT = BIT(3),
2923 ASSOC_REQ_DISABLE_HE = BIT(4),
2924 ASSOC_REQ_DISABLE_EHT = BIT(5),
2925 CONNECT_REQ_MLO_SUPPORT = BIT(6),
2926 };
2927
2928 /**
2929 * struct cfg80211_assoc_request - (Re)Association request data
2930 *
2931 * This structure provides information needed to complete IEEE 802.11
2932 * (re)association.
2933 * @bss: The BSS to associate with. If the call is successful the driver is
2934 * given a reference that it must give back to cfg80211_send_rx_assoc()
2935 * or to cfg80211_assoc_timeout(). To ensure proper refcounting, new
2936 * association requests while already associating must be rejected.
2937 * This also applies to the @links.bss parameter, which is used instead
2938 * of this one (it is %NULL) for MLO associations.
2939 * @ie: Extra IEs to add to (Re)Association Request frame or %NULL
2940 * @ie_len: Length of ie buffer in octets
2941 * @use_mfp: Use management frame protection (IEEE 802.11w) in this association
2942 * @crypto: crypto settings
2943 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used
2944 * to indicate a request to reassociate within the ESS instead of a request
2945 * do the initial association with the ESS. When included, this is set to
2946 * the BSSID of the current association, i.e., to the value that is
2947 * included in the Current AP address field of the Reassociation Request
2948 * frame.
2949 * @flags: See &enum cfg80211_assoc_req_flags
2950 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
2951 * will be used in ht_capa. Un-supported values will be ignored.
2952 * @ht_capa_mask: The bits of ht_capa which are to be used.
2953 * @vht_capa: VHT capability override
2954 * @vht_capa_mask: VHT capability mask indicating which fields to use
2955 * @fils_kek: FILS KEK for protecting (Re)Association Request/Response frame or
2956 * %NULL if FILS is not used.
2957 * @fils_kek_len: Length of fils_kek in octets
2958 * @fils_nonces: FILS nonces (part of AAD) for protecting (Re)Association
2959 * Request/Response frame or %NULL if FILS is not used. This field starts
2960 * with 16 octets of STA Nonce followed by 16 octets of AP Nonce.
2961 * @s1g_capa: S1G capability override
2962 * @s1g_capa_mask: S1G capability override mask
2963 * @links: per-link information for MLO connections
2964 * @link_id: >= 0 for MLO connections, where links are given, and indicates
2965 * the link on which the association request should be sent
2966 * @ap_mld_addr: AP MLD address in case of MLO association request,
2967 * valid iff @link_id >= 0
2968 */
2969 struct cfg80211_assoc_request {
2970 struct cfg80211_bss *bss;
2971 const u8 *ie, *prev_bssid;
2972 size_t ie_len;
2973 struct cfg80211_crypto_settings crypto;
2974 bool use_mfp;
2975 u32 flags;
2976 struct ieee80211_ht_cap ht_capa;
2977 struct ieee80211_ht_cap ht_capa_mask;
2978 struct ieee80211_vht_cap vht_capa, vht_capa_mask;
2979 const u8 *fils_kek;
2980 size_t fils_kek_len;
2981 const u8 *fils_nonces;
2982 struct ieee80211_s1g_cap s1g_capa, s1g_capa_mask;
2983 struct cfg80211_assoc_link links[IEEE80211_MLD_MAX_NUM_LINKS];
2984 const u8 *ap_mld_addr;
2985 s8 link_id;
2986 };
2987
2988 /**
2989 * struct cfg80211_deauth_request - Deauthentication request data
2990 *
2991 * This structure provides information needed to complete IEEE 802.11
2992 * deauthentication.
2993 *
2994 * @bssid: the BSSID or AP MLD address to deauthenticate from
2995 * @ie: Extra IEs to add to Deauthentication frame or %NULL
2996 * @ie_len: Length of ie buffer in octets
2997 * @reason_code: The reason code for the deauthentication
2998 * @local_state_change: if set, change local state only and
2999 * do not set a deauth frame
3000 */
3001 struct cfg80211_deauth_request {
3002 const u8 *bssid;
3003 const u8 *ie;
3004 size_t ie_len;
3005 u16 reason_code;
3006 bool local_state_change;
3007 };
3008
3009 /**
3010 * struct cfg80211_disassoc_request - Disassociation request data
3011 *
3012 * This structure provides information needed to complete IEEE 802.11
3013 * disassociation.
3014 *
3015 * @ap_addr: the BSSID or AP MLD address to disassociate from
3016 * @ie: Extra IEs to add to Disassociation frame or %NULL
3017 * @ie_len: Length of ie buffer in octets
3018 * @reason_code: The reason code for the disassociation
3019 * @local_state_change: This is a request for a local state only, i.e., no
3020 * Disassociation frame is to be transmitted.
3021 */
3022 struct cfg80211_disassoc_request {
3023 const u8 *ap_addr;
3024 const u8 *ie;
3025 size_t ie_len;
3026 u16 reason_code;
3027 bool local_state_change;
3028 };
3029
3030 /**
3031 * struct cfg80211_ibss_params - IBSS parameters
3032 *
3033 * This structure defines the IBSS parameters for the join_ibss()
3034 * method.
3035 *
3036 * @ssid: The SSID, will always be non-null.
3037 * @ssid_len: The length of the SSID, will always be non-zero.
3038 * @bssid: Fixed BSSID requested, maybe be %NULL, if set do not
3039 * search for IBSSs with a different BSSID.
3040 * @chandef: defines the channel to use if no other IBSS to join can be found
3041 * @channel_fixed: The channel should be fixed -- do not search for
3042 * IBSSs to join on other channels.
3043 * @ie: information element(s) to include in the beacon
3044 * @ie_len: length of that
3045 * @beacon_interval: beacon interval to use
3046 * @privacy: this is a protected network, keys will be configured
3047 * after joining
3048 * @control_port: whether user space controls IEEE 802.1X port, i.e.,
3049 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
3050 * required to assume that the port is unauthorized until authorized by
3051 * user space. Otherwise, port is marked authorized by default.
3052 * @control_port_over_nl80211: TRUE if userspace expects to exchange control
3053 * port frames over NL80211 instead of the network interface.
3054 * @userspace_handles_dfs: whether user space controls DFS operation, i.e.
3055 * changes the channel when a radar is detected. This is required
3056 * to operate on DFS channels.
3057 * @basic_rates: bitmap of basic rates to use when creating the IBSS
3058 * @mcast_rate: per-band multicast rate index + 1 (0: disabled)
3059 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
3060 * will be used in ht_capa. Un-supported values will be ignored.
3061 * @ht_capa_mask: The bits of ht_capa which are to be used.
3062 * @wep_keys: static WEP keys, if not NULL points to an array of
3063 * CFG80211_MAX_WEP_KEYS WEP keys
3064 * @wep_tx_key: key index (0..3) of the default TX static WEP key
3065 */
3066 struct cfg80211_ibss_params {
3067 const u8 *ssid;
3068 const u8 *bssid;
3069 struct cfg80211_chan_def chandef;
3070 const u8 *ie;
3071 u8 ssid_len, ie_len;
3072 u16 beacon_interval;
3073 u32 basic_rates;
3074 bool channel_fixed;
3075 bool privacy;
3076 bool control_port;
3077 bool control_port_over_nl80211;
3078 bool userspace_handles_dfs;
3079 int mcast_rate[NUM_NL80211_BANDS];
3080 struct ieee80211_ht_cap ht_capa;
3081 struct ieee80211_ht_cap ht_capa_mask;
3082 struct key_params *wep_keys;
3083 int wep_tx_key;
3084 };
3085
3086 /**
3087 * struct cfg80211_bss_selection - connection parameters for BSS selection.
3088 *
3089 * @behaviour: requested BSS selection behaviour.
3090 * @param: parameters for requestion behaviour.
3091 * @band_pref: preferred band for %NL80211_BSS_SELECT_ATTR_BAND_PREF.
3092 * @adjust: parameters for %NL80211_BSS_SELECT_ATTR_RSSI_ADJUST.
3093 */
3094 struct cfg80211_bss_selection {
3095 enum nl80211_bss_select_attr behaviour;
3096 union {
3097 enum nl80211_band band_pref;
3098 struct cfg80211_bss_select_adjust adjust;
3099 } param;
3100 };
3101
3102 /**
3103 * struct cfg80211_connect_params - Connection parameters
3104 *
3105 * This structure provides information needed to complete IEEE 802.11
3106 * authentication and association.
3107 *
3108 * @channel: The channel to use or %NULL if not specified (auto-select based
3109 * on scan results)
3110 * @channel_hint: The channel of the recommended BSS for initial connection or
3111 * %NULL if not specified
3112 * @bssid: The AP BSSID or %NULL if not specified (auto-select based on scan
3113 * results)
3114 * @bssid_hint: The recommended AP BSSID for initial connection to the BSS or
3115 * %NULL if not specified. Unlike the @bssid parameter, the driver is
3116 * allowed to ignore this @bssid_hint if it has knowledge of a better BSS
3117 * to use.
3118 * @ssid: SSID
3119 * @ssid_len: Length of ssid in octets
3120 * @auth_type: Authentication type (algorithm)
3121 * @ie: IEs for association request
3122 * @ie_len: Length of assoc_ie in octets
3123 * @privacy: indicates whether privacy-enabled APs should be used
3124 * @mfp: indicate whether management frame protection is used
3125 * @crypto: crypto settings
3126 * @key_len: length of WEP key for shared key authentication
3127 * @key_idx: index of WEP key for shared key authentication
3128 * @key: WEP key for shared key authentication
3129 * @flags: See &enum cfg80211_assoc_req_flags
3130 * @bg_scan_period: Background scan period in seconds
3131 * or -1 to indicate that default value is to be used.
3132 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
3133 * will be used in ht_capa. Un-supported values will be ignored.
3134 * @ht_capa_mask: The bits of ht_capa which are to be used.
3135 * @vht_capa: VHT Capability overrides
3136 * @vht_capa_mask: The bits of vht_capa which are to be used.
3137 * @pbss: if set, connect to a PCP instead of AP. Valid for DMG
3138 * networks.
3139 * @bss_select: criteria to be used for BSS selection.
3140 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used
3141 * to indicate a request to reassociate within the ESS instead of a request
3142 * do the initial association with the ESS. When included, this is set to
3143 * the BSSID of the current association, i.e., to the value that is
3144 * included in the Current AP address field of the Reassociation Request
3145 * frame.
3146 * @fils_erp_username: EAP re-authentication protocol (ERP) username part of the
3147 * NAI or %NULL if not specified. This is used to construct FILS wrapped
3148 * data IE.
3149 * @fils_erp_username_len: Length of @fils_erp_username in octets.
3150 * @fils_erp_realm: EAP re-authentication protocol (ERP) realm part of NAI or
3151 * %NULL if not specified. This specifies the domain name of ER server and
3152 * is used to construct FILS wrapped data IE.
3153 * @fils_erp_realm_len: Length of @fils_erp_realm in octets.
3154 * @fils_erp_next_seq_num: The next sequence number to use in the FILS ERP
3155 * messages. This is also used to construct FILS wrapped data IE.
3156 * @fils_erp_rrk: ERP re-authentication Root Key (rRK) used to derive additional
3157 * keys in FILS or %NULL if not specified.
3158 * @fils_erp_rrk_len: Length of @fils_erp_rrk in octets.
3159 * @want_1x: indicates user-space supports and wants to use 802.1X driver
3160 * offload of 4-way handshake.
3161 * @edmg: define the EDMG channels.
3162 * This may specify multiple channels and bonding options for the driver
3163 * to choose from, based on BSS configuration.
3164 */
3165 struct cfg80211_connect_params {
3166 struct ieee80211_channel *channel;
3167 struct ieee80211_channel *channel_hint;
3168 const u8 *bssid;
3169 const u8 *bssid_hint;
3170 const u8 *ssid;
3171 size_t ssid_len;
3172 enum nl80211_auth_type auth_type;
3173 const u8 *ie;
3174 size_t ie_len;
3175 bool privacy;
3176 enum nl80211_mfp mfp;
3177 struct cfg80211_crypto_settings crypto;
3178 const u8 *key;
3179 u8 key_len, key_idx;
3180 u32 flags;
3181 int bg_scan_period;
3182 struct ieee80211_ht_cap ht_capa;
3183 struct ieee80211_ht_cap ht_capa_mask;
3184 struct ieee80211_vht_cap vht_capa;
3185 struct ieee80211_vht_cap vht_capa_mask;
3186 bool pbss;
3187 struct cfg80211_bss_selection bss_select;
3188 const u8 *prev_bssid;
3189 const u8 *fils_erp_username;
3190 size_t fils_erp_username_len;
3191 const u8 *fils_erp_realm;
3192 size_t fils_erp_realm_len;
3193 u16 fils_erp_next_seq_num;
3194 const u8 *fils_erp_rrk;
3195 size_t fils_erp_rrk_len;
3196 bool want_1x;
3197 struct ieee80211_edmg edmg;
3198 };
3199
3200 /**
3201 * enum cfg80211_connect_params_changed - Connection parameters being updated
3202 *
3203 * This enum provides information of all connect parameters that
3204 * have to be updated as part of update_connect_params() call.
3205 *
3206 * @UPDATE_ASSOC_IES: Indicates whether association request IEs are updated
3207 * @UPDATE_FILS_ERP_INFO: Indicates that FILS connection parameters (realm,
3208 * username, erp sequence number and rrk) are updated
3209 * @UPDATE_AUTH_TYPE: Indicates that authentication type is updated
3210 */
3211 enum cfg80211_connect_params_changed {
3212 UPDATE_ASSOC_IES = BIT(0),
3213 UPDATE_FILS_ERP_INFO = BIT(1),
3214 UPDATE_AUTH_TYPE = BIT(2),
3215 };
3216
3217 /**
3218 * enum wiphy_params_flags - set_wiphy_params bitfield values
3219 * @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed
3220 * @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed
3221 * @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed
3222 * @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed
3223 * @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed
3224 * @WIPHY_PARAM_DYN_ACK: dynack has been enabled
3225 * @WIPHY_PARAM_TXQ_LIMIT: TXQ packet limit has been changed
3226 * @WIPHY_PARAM_TXQ_MEMORY_LIMIT: TXQ memory limit has been changed
3227 * @WIPHY_PARAM_TXQ_QUANTUM: TXQ scheduler quantum
3228 */
3229 enum wiphy_params_flags {
3230 WIPHY_PARAM_RETRY_SHORT = 1 << 0,
3231 WIPHY_PARAM_RETRY_LONG = 1 << 1,
3232 WIPHY_PARAM_FRAG_THRESHOLD = 1 << 2,
3233 WIPHY_PARAM_RTS_THRESHOLD = 1 << 3,
3234 WIPHY_PARAM_COVERAGE_CLASS = 1 << 4,
3235 WIPHY_PARAM_DYN_ACK = 1 << 5,
3236 WIPHY_PARAM_TXQ_LIMIT = 1 << 6,
3237 WIPHY_PARAM_TXQ_MEMORY_LIMIT = 1 << 7,
3238 WIPHY_PARAM_TXQ_QUANTUM = 1 << 8,
3239 };
3240
3241 #define IEEE80211_DEFAULT_AIRTIME_WEIGHT 256
3242
3243 /* The per TXQ device queue limit in airtime */
3244 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_L 5000
3245 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_H 12000
3246
3247 /* The per interface airtime threshold to switch to lower queue limit */
3248 #define IEEE80211_AQL_THRESHOLD 24000
3249
3250 /**
3251 * struct cfg80211_pmksa - PMK Security Association
3252 *
3253 * This structure is passed to the set/del_pmksa() method for PMKSA
3254 * caching.
3255 *
3256 * @bssid: The AP's BSSID (may be %NULL).
3257 * @pmkid: The identifier to refer a PMKSA.
3258 * @pmk: The PMK for the PMKSA identified by @pmkid. This is used for key
3259 * derivation by a FILS STA. Otherwise, %NULL.
3260 * @pmk_len: Length of the @pmk. The length of @pmk can differ depending on
3261 * the hash algorithm used to generate this.
3262 * @ssid: SSID to specify the ESS within which a PMKSA is valid when using FILS
3263 * cache identifier (may be %NULL).
3264 * @ssid_len: Length of the @ssid in octets.
3265 * @cache_id: 2-octet cache identifier advertized by a FILS AP identifying the
3266 * scope of PMKSA. This is valid only if @ssid_len is non-zero (may be
3267 * %NULL).
3268 * @pmk_lifetime: Maximum lifetime for PMKSA in seconds
3269 * (dot11RSNAConfigPMKLifetime) or 0 if not specified.
3270 * The configured PMKSA must not be used for PMKSA caching after
3271 * expiration and any keys derived from this PMK become invalid on
3272 * expiration, i.e., the current association must be dropped if the PMK
3273 * used for it expires.
3274 * @pmk_reauth_threshold: Threshold time for reauthentication (percentage of
3275 * PMK lifetime, dot11RSNAConfigPMKReauthThreshold) or 0 if not specified.
3276 * Drivers are expected to trigger a full authentication instead of using
3277 * this PMKSA for caching when reassociating to a new BSS after this
3278 * threshold to generate a new PMK before the current one expires.
3279 */
3280 struct cfg80211_pmksa {
3281 const u8 *bssid;
3282 const u8 *pmkid;
3283 const u8 *pmk;
3284 size_t pmk_len;
3285 const u8 *ssid;
3286 size_t ssid_len;
3287 const u8 *cache_id;
3288 u32 pmk_lifetime;
3289 u8 pmk_reauth_threshold;
3290 };
3291
3292 /**
3293 * struct cfg80211_pkt_pattern - packet pattern
3294 * @mask: bitmask where to match pattern and where to ignore bytes,
3295 * one bit per byte, in same format as nl80211
3296 * @pattern: bytes to match where bitmask is 1
3297 * @pattern_len: length of pattern (in bytes)
3298 * @pkt_offset: packet offset (in bytes)
3299 *
3300 * Internal note: @mask and @pattern are allocated in one chunk of
3301 * memory, free @mask only!
3302 */
3303 struct cfg80211_pkt_pattern {
3304 const u8 *mask, *pattern;
3305 int pattern_len;
3306 int pkt_offset;
3307 };
3308
3309 /**
3310 * struct cfg80211_wowlan_tcp - TCP connection parameters
3311 *
3312 * @sock: (internal) socket for source port allocation
3313 * @src: source IP address
3314 * @dst: destination IP address
3315 * @dst_mac: destination MAC address
3316 * @src_port: source port
3317 * @dst_port: destination port
3318 * @payload_len: data payload length
3319 * @payload: data payload buffer
3320 * @payload_seq: payload sequence stamping configuration
3321 * @data_interval: interval at which to send data packets
3322 * @wake_len: wakeup payload match length
3323 * @wake_data: wakeup payload match data
3324 * @wake_mask: wakeup payload match mask
3325 * @tokens_size: length of the tokens buffer
3326 * @payload_tok: payload token usage configuration
3327 */
3328 struct cfg80211_wowlan_tcp {
3329 struct socket *sock;
3330 __be32 src, dst;
3331 u16 src_port, dst_port;
3332 u8 dst_mac[ETH_ALEN];
3333 int payload_len;
3334 const u8 *payload;
3335 struct nl80211_wowlan_tcp_data_seq payload_seq;
3336 u32 data_interval;
3337 u32 wake_len;
3338 const u8 *wake_data, *wake_mask;
3339 u32 tokens_size;
3340 /* must be last, variable member */
3341 struct nl80211_wowlan_tcp_data_token payload_tok;
3342 };
3343
3344 /**
3345 * struct cfg80211_wowlan - Wake on Wireless-LAN support info
3346 *
3347 * This structure defines the enabled WoWLAN triggers for the device.
3348 * @any: wake up on any activity -- special trigger if device continues
3349 * operating as normal during suspend
3350 * @disconnect: wake up if getting disconnected
3351 * @magic_pkt: wake up on receiving magic packet
3352 * @patterns: wake up on receiving packet matching a pattern
3353 * @n_patterns: number of patterns
3354 * @gtk_rekey_failure: wake up on GTK rekey failure
3355 * @eap_identity_req: wake up on EAP identity request packet
3356 * @four_way_handshake: wake up on 4-way handshake
3357 * @rfkill_release: wake up when rfkill is released
3358 * @tcp: TCP connection establishment/wakeup parameters, see nl80211.h.
3359 * NULL if not configured.
3360 * @nd_config: configuration for the scan to be used for net detect wake.
3361 */
3362 struct cfg80211_wowlan {
3363 bool any, disconnect, magic_pkt, gtk_rekey_failure,
3364 eap_identity_req, four_way_handshake,
3365 rfkill_release;
3366 struct cfg80211_pkt_pattern *patterns;
3367 struct cfg80211_wowlan_tcp *tcp;
3368 int n_patterns;
3369 struct cfg80211_sched_scan_request *nd_config;
3370 };
3371
3372 /**
3373 * struct cfg80211_coalesce_rules - Coalesce rule parameters
3374 *
3375 * This structure defines coalesce rule for the device.
3376 * @delay: maximum coalescing delay in msecs.
3377 * @condition: condition for packet coalescence.
3378 * see &enum nl80211_coalesce_condition.
3379 * @patterns: array of packet patterns
3380 * @n_patterns: number of patterns
3381 */
3382 struct cfg80211_coalesce_rules {
3383 int delay;
3384 enum nl80211_coalesce_condition condition;
3385 struct cfg80211_pkt_pattern *patterns;
3386 int n_patterns;
3387 };
3388
3389 /**
3390 * struct cfg80211_coalesce - Packet coalescing settings
3391 *
3392 * This structure defines coalescing settings.
3393 * @rules: array of coalesce rules
3394 * @n_rules: number of rules
3395 */
3396 struct cfg80211_coalesce {
3397 struct cfg80211_coalesce_rules *rules;
3398 int n_rules;
3399 };
3400
3401 /**
3402 * struct cfg80211_wowlan_nd_match - information about the match
3403 *
3404 * @ssid: SSID of the match that triggered the wake up
3405 * @n_channels: Number of channels where the match occurred. This
3406 * value may be zero if the driver can't report the channels.
3407 * @channels: center frequencies of the channels where a match
3408 * occurred (in MHz)
3409 */
3410 struct cfg80211_wowlan_nd_match {
3411 struct cfg80211_ssid ssid;
3412 int n_channels;
3413 u32 channels[];
3414 };
3415
3416 /**
3417 * struct cfg80211_wowlan_nd_info - net detect wake up information
3418 *
3419 * @n_matches: Number of match information instances provided in
3420 * @matches. This value may be zero if the driver can't provide
3421 * match information.
3422 * @matches: Array of pointers to matches containing information about
3423 * the matches that triggered the wake up.
3424 */
3425 struct cfg80211_wowlan_nd_info {
3426 int n_matches;
3427 struct cfg80211_wowlan_nd_match *matches[];
3428 };
3429
3430 /**
3431 * struct cfg80211_wowlan_wakeup - wakeup report
3432 * @disconnect: woke up by getting disconnected
3433 * @magic_pkt: woke up by receiving magic packet
3434 * @gtk_rekey_failure: woke up by GTK rekey failure
3435 * @eap_identity_req: woke up by EAP identity request packet
3436 * @four_way_handshake: woke up by 4-way handshake
3437 * @rfkill_release: woke up by rfkill being released
3438 * @pattern_idx: pattern that caused wakeup, -1 if not due to pattern
3439 * @packet_present_len: copied wakeup packet data
3440 * @packet_len: original wakeup packet length
3441 * @packet: The packet causing the wakeup, if any.
3442 * @packet_80211: For pattern match, magic packet and other data
3443 * frame triggers an 802.3 frame should be reported, for
3444 * disconnect due to deauth 802.11 frame. This indicates which
3445 * it is.
3446 * @tcp_match: TCP wakeup packet received
3447 * @tcp_connlost: TCP connection lost or failed to establish
3448 * @tcp_nomoretokens: TCP data ran out of tokens
3449 * @net_detect: if not %NULL, woke up because of net detect
3450 */
3451 struct cfg80211_wowlan_wakeup {
3452 bool disconnect, magic_pkt, gtk_rekey_failure,
3453 eap_identity_req, four_way_handshake,
3454 rfkill_release, packet_80211,
3455 tcp_match, tcp_connlost, tcp_nomoretokens;
3456 s32 pattern_idx;
3457 u32 packet_present_len, packet_len;
3458 const void *packet;
3459 struct cfg80211_wowlan_nd_info *net_detect;
3460 };
3461
3462 /**
3463 * struct cfg80211_gtk_rekey_data - rekey data
3464 * @kek: key encryption key (@kek_len bytes)
3465 * @kck: key confirmation key (@kck_len bytes)
3466 * @replay_ctr: replay counter (NL80211_REPLAY_CTR_LEN bytes)
3467 * @kek_len: length of kek
3468 * @kck_len: length of kck
3469 * @akm: akm (oui, id)
3470 */
3471 struct cfg80211_gtk_rekey_data {
3472 const u8 *kek, *kck, *replay_ctr;
3473 u32 akm;
3474 u8 kek_len, kck_len;
3475 };
3476
3477 /**
3478 * struct cfg80211_update_ft_ies_params - FT IE Information
3479 *
3480 * This structure provides information needed to update the fast transition IE
3481 *
3482 * @md: The Mobility Domain ID, 2 Octet value
3483 * @ie: Fast Transition IEs
3484 * @ie_len: Length of ft_ie in octets
3485 */
3486 struct cfg80211_update_ft_ies_params {
3487 u16 md;
3488 const u8 *ie;
3489 size_t ie_len;
3490 };
3491
3492 /**
3493 * struct cfg80211_mgmt_tx_params - mgmt tx parameters
3494 *
3495 * This structure provides information needed to transmit a mgmt frame
3496 *
3497 * @chan: channel to use
3498 * @offchan: indicates wether off channel operation is required
3499 * @wait: duration for ROC
3500 * @buf: buffer to transmit
3501 * @len: buffer length
3502 * @no_cck: don't use cck rates for this frame
3503 * @dont_wait_for_ack: tells the low level not to wait for an ack
3504 * @n_csa_offsets: length of csa_offsets array
3505 * @csa_offsets: array of all the csa offsets in the frame
3506 * @link_id: for MLO, the link ID to transmit on, -1 if not given; note
3507 * that the link ID isn't validated (much), it's in range but the
3508 * link might not exist (or be used by the receiver STA)
3509 */
3510 struct cfg80211_mgmt_tx_params {
3511 struct ieee80211_channel *chan;
3512 bool offchan;
3513 unsigned int wait;
3514 const u8 *buf;
3515 size_t len;
3516 bool no_cck;
3517 bool dont_wait_for_ack;
3518 int n_csa_offsets;
3519 const u16 *csa_offsets;
3520 int link_id;
3521 };
3522
3523 /**
3524 * struct cfg80211_dscp_exception - DSCP exception
3525 *
3526 * @dscp: DSCP value that does not adhere to the user priority range definition
3527 * @up: user priority value to which the corresponding DSCP value belongs
3528 */
3529 struct cfg80211_dscp_exception {
3530 u8 dscp;
3531 u8 up;
3532 };
3533
3534 /**
3535 * struct cfg80211_dscp_range - DSCP range definition for user priority
3536 *
3537 * @low: lowest DSCP value of this user priority range, inclusive
3538 * @high: highest DSCP value of this user priority range, inclusive
3539 */
3540 struct cfg80211_dscp_range {
3541 u8 low;
3542 u8 high;
3543 };
3544
3545 /* QoS Map Set element length defined in IEEE Std 802.11-2012, 8.4.2.97 */
3546 #define IEEE80211_QOS_MAP_MAX_EX 21
3547 #define IEEE80211_QOS_MAP_LEN_MIN 16
3548 #define IEEE80211_QOS_MAP_LEN_MAX \
3549 (IEEE80211_QOS_MAP_LEN_MIN + 2 * IEEE80211_QOS_MAP_MAX_EX)
3550
3551 /**
3552 * struct cfg80211_qos_map - QoS Map Information
3553 *
3554 * This struct defines the Interworking QoS map setting for DSCP values
3555 *
3556 * @num_des: number of DSCP exceptions (0..21)
3557 * @dscp_exception: optionally up to maximum of 21 DSCP exceptions from
3558 * the user priority DSCP range definition
3559 * @up: DSCP range definition for a particular user priority
3560 */
3561 struct cfg80211_qos_map {
3562 u8 num_des;
3563 struct cfg80211_dscp_exception dscp_exception[IEEE80211_QOS_MAP_MAX_EX];
3564 struct cfg80211_dscp_range up[8];
3565 };
3566
3567 /**
3568 * struct cfg80211_nan_conf - NAN configuration
3569 *
3570 * This struct defines NAN configuration parameters
3571 *
3572 * @master_pref: master preference (1 - 255)
3573 * @bands: operating bands, a bitmap of &enum nl80211_band values.
3574 * For instance, for NL80211_BAND_2GHZ, bit 0 would be set
3575 * (i.e. BIT(NL80211_BAND_2GHZ)).
3576 */
3577 struct cfg80211_nan_conf {
3578 u8 master_pref;
3579 u8 bands;
3580 };
3581
3582 /**
3583 * enum cfg80211_nan_conf_changes - indicates changed fields in NAN
3584 * configuration
3585 *
3586 * @CFG80211_NAN_CONF_CHANGED_PREF: master preference
3587 * @CFG80211_NAN_CONF_CHANGED_BANDS: operating bands
3588 */
3589 enum cfg80211_nan_conf_changes {
3590 CFG80211_NAN_CONF_CHANGED_PREF = BIT(0),
3591 CFG80211_NAN_CONF_CHANGED_BANDS = BIT(1),
3592 };
3593
3594 /**
3595 * struct cfg80211_nan_func_filter - a NAN function Rx / Tx filter
3596 *
3597 * @filter: the content of the filter
3598 * @len: the length of the filter
3599 */
3600 struct cfg80211_nan_func_filter {
3601 const u8 *filter;
3602 u8 len;
3603 };
3604
3605 /**
3606 * struct cfg80211_nan_func - a NAN function
3607 *
3608 * @type: &enum nl80211_nan_function_type
3609 * @service_id: the service ID of the function
3610 * @publish_type: &nl80211_nan_publish_type
3611 * @close_range: if true, the range should be limited. Threshold is
3612 * implementation specific.
3613 * @publish_bcast: if true, the solicited publish should be broadcasted
3614 * @subscribe_active: if true, the subscribe is active
3615 * @followup_id: the instance ID for follow up
3616 * @followup_reqid: the requestor instance ID for follow up
3617 * @followup_dest: MAC address of the recipient of the follow up
3618 * @ttl: time to live counter in DW.
3619 * @serv_spec_info: Service Specific Info
3620 * @serv_spec_info_len: Service Specific Info length
3621 * @srf_include: if true, SRF is inclusive
3622 * @srf_bf: Bloom Filter
3623 * @srf_bf_len: Bloom Filter length
3624 * @srf_bf_idx: Bloom Filter index
3625 * @srf_macs: SRF MAC addresses
3626 * @srf_num_macs: number of MAC addresses in SRF
3627 * @rx_filters: rx filters that are matched with corresponding peer's tx_filter
3628 * @tx_filters: filters that should be transmitted in the SDF.
3629 * @num_rx_filters: length of &rx_filters.
3630 * @num_tx_filters: length of &tx_filters.
3631 * @instance_id: driver allocated id of the function.
3632 * @cookie: unique NAN function identifier.
3633 */
3634 struct cfg80211_nan_func {
3635 enum nl80211_nan_function_type type;
3636 u8 service_id[NL80211_NAN_FUNC_SERVICE_ID_LEN];
3637 u8 publish_type;
3638 bool close_range;
3639 bool publish_bcast;
3640 bool subscribe_active;
3641 u8 followup_id;
3642 u8 followup_reqid;
3643 struct mac_address followup_dest;
3644 u32 ttl;
3645 const u8 *serv_spec_info;
3646 u8 serv_spec_info_len;
3647 bool srf_include;
3648 const u8 *srf_bf;
3649 u8 srf_bf_len;
3650 u8 srf_bf_idx;
3651 struct mac_address *srf_macs;
3652 int srf_num_macs;
3653 struct cfg80211_nan_func_filter *rx_filters;
3654 struct cfg80211_nan_func_filter *tx_filters;
3655 u8 num_tx_filters;
3656 u8 num_rx_filters;
3657 u8 instance_id;
3658 u64 cookie;
3659 };
3660
3661 /**
3662 * struct cfg80211_pmk_conf - PMK configuration
3663 *
3664 * @aa: authenticator address
3665 * @pmk_len: PMK length in bytes.
3666 * @pmk: the PMK material
3667 * @pmk_r0_name: PMK-R0 Name. NULL if not applicable (i.e., the PMK
3668 * is not PMK-R0). When pmk_r0_name is not NULL, the pmk field
3669 * holds PMK-R0.
3670 */
3671 struct cfg80211_pmk_conf {
3672 const u8 *aa;
3673 u8 pmk_len;
3674 const u8 *pmk;
3675 const u8 *pmk_r0_name;
3676 };
3677
3678 /**
3679 * struct cfg80211_external_auth_params - Trigger External authentication.
3680 *
3681 * Commonly used across the external auth request and event interfaces.
3682 *
3683 * @action: action type / trigger for external authentication. Only significant
3684 * for the authentication request event interface (driver to user space).
3685 * @bssid: BSSID of the peer with which the authentication has
3686 * to happen. Used by both the authentication request event and
3687 * authentication response command interface.
3688 * @ssid: SSID of the AP. Used by both the authentication request event and
3689 * authentication response command interface.
3690 * @key_mgmt_suite: AKM suite of the respective authentication. Used by the
3691 * authentication request event interface.
3692 * @status: status code, %WLAN_STATUS_SUCCESS for successful authentication,
3693 * use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space cannot give you
3694 * the real status code for failures. Used only for the authentication
3695 * response command interface (user space to driver).
3696 * @pmkid: The identifier to refer a PMKSA.
3697 * @mld_addr: MLD address of the peer. Used by the authentication request event
3698 * interface. Driver indicates this to enable MLO during the authentication
3699 * offload to user space. Driver shall look at %NL80211_ATTR_MLO_SUPPORT
3700 * flag capability in NL80211_CMD_CONNECT to know whether the user space
3701 * supports enabling MLO during the authentication offload.
3702 * User space should use the address of the interface (on which the
3703 * authentication request event reported) as self MLD address. User space
3704 * and driver should use MLD addresses in RA, TA and BSSID fields of
3705 * authentication frames sent or received via cfg80211. The driver
3706 * translates the MLD addresses to/from link addresses based on the link
3707 * chosen for the authentication.
3708 */
3709 struct cfg80211_external_auth_params {
3710 enum nl80211_external_auth_action action;
3711 u8 bssid[ETH_ALEN] __aligned(2);
3712 struct cfg80211_ssid ssid;
3713 unsigned int key_mgmt_suite;
3714 u16 status;
3715 const u8 *pmkid;
3716 u8 mld_addr[ETH_ALEN] __aligned(2);
3717 };
3718
3719 /**
3720 * struct cfg80211_ftm_responder_stats - FTM responder statistics
3721 *
3722 * @filled: bitflag of flags using the bits of &enum nl80211_ftm_stats to
3723 * indicate the relevant values in this struct for them
3724 * @success_num: number of FTM sessions in which all frames were successfully
3725 * answered
3726 * @partial_num: number of FTM sessions in which part of frames were
3727 * successfully answered
3728 * @failed_num: number of failed FTM sessions
3729 * @asap_num: number of ASAP FTM sessions
3730 * @non_asap_num: number of non-ASAP FTM sessions
3731 * @total_duration_ms: total sessions durations - gives an indication
3732 * of how much time the responder was busy
3733 * @unknown_triggers_num: number of unknown FTM triggers - triggers from
3734 * initiators that didn't finish successfully the negotiation phase with
3735 * the responder
3736 * @reschedule_requests_num: number of FTM reschedule requests - initiator asks
3737 * for a new scheduling although it already has scheduled FTM slot
3738 * @out_of_window_triggers_num: total FTM triggers out of scheduled window
3739 */
3740 struct cfg80211_ftm_responder_stats {
3741 u32 filled;
3742 u32 success_num;
3743 u32 partial_num;
3744 u32 failed_num;
3745 u32 asap_num;
3746 u32 non_asap_num;
3747 u64 total_duration_ms;
3748 u32 unknown_triggers_num;
3749 u32 reschedule_requests_num;
3750 u32 out_of_window_triggers_num;
3751 };
3752
3753 /**
3754 * struct cfg80211_pmsr_ftm_result - FTM result
3755 * @failure_reason: if this measurement failed (PMSR status is
3756 * %NL80211_PMSR_STATUS_FAILURE), this gives a more precise
3757 * reason than just "failure"
3758 * @burst_index: if reporting partial results, this is the index
3759 * in [0 .. num_bursts-1] of the burst that's being reported
3760 * @num_ftmr_attempts: number of FTM request frames transmitted
3761 * @num_ftmr_successes: number of FTM request frames acked
3762 * @busy_retry_time: if failure_reason is %NL80211_PMSR_FTM_FAILURE_PEER_BUSY,
3763 * fill this to indicate in how many seconds a retry is deemed possible
3764 * by the responder
3765 * @num_bursts_exp: actual number of bursts exponent negotiated
3766 * @burst_duration: actual burst duration negotiated
3767 * @ftms_per_burst: actual FTMs per burst negotiated
3768 * @lci_len: length of LCI information (if present)
3769 * @civicloc_len: length of civic location information (if present)
3770 * @lci: LCI data (may be %NULL)
3771 * @civicloc: civic location data (may be %NULL)
3772 * @rssi_avg: average RSSI over FTM action frames reported
3773 * @rssi_spread: spread of the RSSI over FTM action frames reported
3774 * @tx_rate: bitrate for transmitted FTM action frame response
3775 * @rx_rate: bitrate of received FTM action frame
3776 * @rtt_avg: average of RTTs measured (must have either this or @dist_avg)
3777 * @rtt_variance: variance of RTTs measured (note that standard deviation is
3778 * the square root of the variance)
3779 * @rtt_spread: spread of the RTTs measured
3780 * @dist_avg: average of distances (mm) measured
3781 * (must have either this or @rtt_avg)
3782 * @dist_variance: variance of distances measured (see also @rtt_variance)
3783 * @dist_spread: spread of distances measured (see also @rtt_spread)
3784 * @num_ftmr_attempts_valid: @num_ftmr_attempts is valid
3785 * @num_ftmr_successes_valid: @num_ftmr_successes is valid
3786 * @rssi_avg_valid: @rssi_avg is valid
3787 * @rssi_spread_valid: @rssi_spread is valid
3788 * @tx_rate_valid: @tx_rate is valid
3789 * @rx_rate_valid: @rx_rate is valid
3790 * @rtt_avg_valid: @rtt_avg is valid
3791 * @rtt_variance_valid: @rtt_variance is valid
3792 * @rtt_spread_valid: @rtt_spread is valid
3793 * @dist_avg_valid: @dist_avg is valid
3794 * @dist_variance_valid: @dist_variance is valid
3795 * @dist_spread_valid: @dist_spread is valid
3796 */
3797 struct cfg80211_pmsr_ftm_result {
3798 const u8 *lci;
3799 const u8 *civicloc;
3800 unsigned int lci_len;
3801 unsigned int civicloc_len;
3802 enum nl80211_peer_measurement_ftm_failure_reasons failure_reason;
3803 u32 num_ftmr_attempts, num_ftmr_successes;
3804 s16 burst_index;
3805 u8 busy_retry_time;
3806 u8 num_bursts_exp;
3807 u8 burst_duration;
3808 u8 ftms_per_burst;
3809 s32 rssi_avg;
3810 s32 rssi_spread;
3811 struct rate_info tx_rate, rx_rate;
3812 s64 rtt_avg;
3813 s64 rtt_variance;
3814 s64 rtt_spread;
3815 s64 dist_avg;
3816 s64 dist_variance;
3817 s64 dist_spread;
3818
3819 u16 num_ftmr_attempts_valid:1,
3820 num_ftmr_successes_valid:1,
3821 rssi_avg_valid:1,
3822 rssi_spread_valid:1,
3823 tx_rate_valid:1,
3824 rx_rate_valid:1,
3825 rtt_avg_valid:1,
3826 rtt_variance_valid:1,
3827 rtt_spread_valid:1,
3828 dist_avg_valid:1,
3829 dist_variance_valid:1,
3830 dist_spread_valid:1;
3831 };
3832
3833 /**
3834 * struct cfg80211_pmsr_result - peer measurement result
3835 * @addr: address of the peer
3836 * @host_time: host time (use ktime_get_boottime() adjust to the time when the
3837 * measurement was made)
3838 * @ap_tsf: AP's TSF at measurement time
3839 * @status: status of the measurement
3840 * @final: if reporting partial results, mark this as the last one; if not
3841 * reporting partial results always set this flag
3842 * @ap_tsf_valid: indicates the @ap_tsf value is valid
3843 * @type: type of the measurement reported, note that we only support reporting
3844 * one type at a time, but you can report multiple results separately and
3845 * they're all aggregated for userspace.
3846 * @ftm: FTM result
3847 */
3848 struct cfg80211_pmsr_result {
3849 u64 host_time, ap_tsf;
3850 enum nl80211_peer_measurement_status status;
3851
3852 u8 addr[ETH_ALEN];
3853
3854 u8 final:1,
3855 ap_tsf_valid:1;
3856
3857 enum nl80211_peer_measurement_type type;
3858
3859 union {
3860 struct cfg80211_pmsr_ftm_result ftm;
3861 };
3862 };
3863
3864 /**
3865 * struct cfg80211_pmsr_ftm_request_peer - FTM request data
3866 * @requested: indicates FTM is requested
3867 * @preamble: frame preamble to use
3868 * @burst_period: burst period to use
3869 * @asap: indicates to use ASAP mode
3870 * @num_bursts_exp: number of bursts exponent
3871 * @burst_duration: burst duration
3872 * @ftms_per_burst: number of FTMs per burst
3873 * @ftmr_retries: number of retries for FTM request
3874 * @request_lci: request LCI information
3875 * @request_civicloc: request civic location information
3876 * @trigger_based: use trigger based ranging for the measurement
3877 * If neither @trigger_based nor @non_trigger_based is set,
3878 * EDCA based ranging will be used.
3879 * @non_trigger_based: use non trigger based ranging for the measurement
3880 * If neither @trigger_based nor @non_trigger_based is set,
3881 * EDCA based ranging will be used.
3882 * @lmr_feedback: negotiate for I2R LMR feedback. Only valid if either
3883 * @trigger_based or @non_trigger_based is set.
3884 * @bss_color: the bss color of the responder. Optional. Set to zero to
3885 * indicate the driver should set the BSS color. Only valid if
3886 * @non_trigger_based or @trigger_based is set.
3887 *
3888 * See also nl80211 for the respective attribute documentation.
3889 */
3890 struct cfg80211_pmsr_ftm_request_peer {
3891 enum nl80211_preamble preamble;
3892 u16 burst_period;
3893 u8 requested:1,
3894 asap:1,
3895 request_lci:1,
3896 request_civicloc:1,
3897 trigger_based:1,
3898 non_trigger_based:1,
3899 lmr_feedback:1;
3900 u8 num_bursts_exp;
3901 u8 burst_duration;
3902 u8 ftms_per_burst;
3903 u8 ftmr_retries;
3904 u8 bss_color;
3905 };
3906
3907 /**
3908 * struct cfg80211_pmsr_request_peer - peer data for a peer measurement request
3909 * @addr: MAC address
3910 * @chandef: channel to use
3911 * @report_ap_tsf: report the associated AP's TSF
3912 * @ftm: FTM data, see &struct cfg80211_pmsr_ftm_request_peer
3913 */
3914 struct cfg80211_pmsr_request_peer {
3915 u8 addr[ETH_ALEN];
3916 struct cfg80211_chan_def chandef;
3917 u8 report_ap_tsf:1;
3918 struct cfg80211_pmsr_ftm_request_peer ftm;
3919 };
3920
3921 /**
3922 * struct cfg80211_pmsr_request - peer measurement request
3923 * @cookie: cookie, set by cfg80211
3924 * @nl_portid: netlink portid - used by cfg80211
3925 * @drv_data: driver data for this request, if required for aborting,
3926 * not otherwise freed or anything by cfg80211
3927 * @mac_addr: MAC address used for (randomised) request
3928 * @mac_addr_mask: MAC address mask used for randomisation, bits that
3929 * are 0 in the mask should be randomised, bits that are 1 should
3930 * be taken from the @mac_addr
3931 * @list: used by cfg80211 to hold on to the request
3932 * @timeout: timeout (in milliseconds) for the whole operation, if
3933 * zero it means there's no timeout
3934 * @n_peers: number of peers to do measurements with
3935 * @peers: per-peer measurement request data
3936 */
3937 struct cfg80211_pmsr_request {
3938 u64 cookie;
3939 void *drv_data;
3940 u32 n_peers;
3941 u32 nl_portid;
3942
3943 u32 timeout;
3944
3945 u8 mac_addr[ETH_ALEN] __aligned(2);
3946 u8 mac_addr_mask[ETH_ALEN] __aligned(2);
3947
3948 struct list_head list;
3949
3950 struct cfg80211_pmsr_request_peer peers[] __counted_by(n_peers);
3951 };
3952
3953 /**
3954 * struct cfg80211_update_owe_info - OWE Information
3955 *
3956 * This structure provides information needed for the drivers to offload OWE
3957 * (Opportunistic Wireless Encryption) processing to the user space.
3958 *
3959 * Commonly used across update_owe_info request and event interfaces.
3960 *
3961 * @peer: MAC address of the peer device for which the OWE processing
3962 * has to be done.
3963 * @status: status code, %WLAN_STATUS_SUCCESS for successful OWE info
3964 * processing, use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space
3965 * cannot give you the real status code for failures. Used only for
3966 * OWE update request command interface (user space to driver).
3967 * @ie: IEs obtained from the peer or constructed by the user space. These are
3968 * the IEs of the remote peer in the event from the host driver and
3969 * the constructed IEs by the user space in the request interface.
3970 * @ie_len: Length of IEs in octets.
3971 * @assoc_link_id: MLO link ID of the AP, with which (re)association requested
3972 * by peer. This will be filled by driver for both MLO and non-MLO station
3973 * connections when the AP affiliated with an MLD. For non-MLD AP mode, it
3974 * will be -1. Used only with OWE update event (driver to user space).
3975 * @peer_mld_addr: For MLO connection, MLD address of the peer. For non-MLO
3976 * connection, it will be all zeros. This is applicable only when
3977 * @assoc_link_id is not -1, i.e., the AP affiliated with an MLD. Used only
3978 * with OWE update event (driver to user space).
3979 */
3980 struct cfg80211_update_owe_info {
3981 u8 peer[ETH_ALEN] __aligned(2);
3982 u16 status;
3983 const u8 *ie;
3984 size_t ie_len;
3985 int assoc_link_id;
3986 u8 peer_mld_addr[ETH_ALEN] __aligned(2);
3987 };
3988
3989 /**
3990 * struct mgmt_frame_regs - management frame registrations data
3991 * @global_stypes: bitmap of management frame subtypes registered
3992 * for the entire device
3993 * @interface_stypes: bitmap of management frame subtypes registered
3994 * for the given interface
3995 * @global_mcast_stypes: mcast RX is needed globally for these subtypes
3996 * @interface_mcast_stypes: mcast RX is needed on this interface
3997 * for these subtypes
3998 */
3999 struct mgmt_frame_regs {
4000 u32 global_stypes, interface_stypes;
4001 u32 global_mcast_stypes, interface_mcast_stypes;
4002 };
4003
4004 /**
4005 * struct cfg80211_ops - backend description for wireless configuration
4006 *
4007 * This struct is registered by fullmac card drivers and/or wireless stacks
4008 * in order to handle configuration requests on their interfaces.
4009 *
4010 * All callbacks except where otherwise noted should return 0
4011 * on success or a negative error code.
4012 *
4013 * All operations are invoked with the wiphy mutex held. The RTNL may be
4014 * held in addition (due to wireless extensions) but this cannot be relied
4015 * upon except in cases where documented below. Note that due to ordering,
4016 * the RTNL also cannot be acquired in any handlers.
4017 *
4018 * @suspend: wiphy device needs to be suspended. The variable @wow will
4019 * be %NULL or contain the enabled Wake-on-Wireless triggers that are
4020 * configured for the device.
4021 * @resume: wiphy device needs to be resumed
4022 * @set_wakeup: Called when WoWLAN is enabled/disabled, use this callback
4023 * to call device_set_wakeup_enable() to enable/disable wakeup from
4024 * the device.
4025 *
4026 * @add_virtual_intf: create a new virtual interface with the given name,
4027 * must set the struct wireless_dev's iftype. Beware: You must create
4028 * the new netdev in the wiphy's network namespace! Returns the struct
4029 * wireless_dev, or an ERR_PTR. For P2P device wdevs, the driver must
4030 * also set the address member in the wdev.
4031 * This additionally holds the RTNL to be able to do netdev changes.
4032 *
4033 * @del_virtual_intf: remove the virtual interface
4034 * This additionally holds the RTNL to be able to do netdev changes.
4035 *
4036 * @change_virtual_intf: change type/configuration of virtual interface,
4037 * keep the struct wireless_dev's iftype updated.
4038 * This additionally holds the RTNL to be able to do netdev changes.
4039 *
4040 * @add_intf_link: Add a new MLO link to the given interface. Note that
4041 * the wdev->link[] data structure has been updated, so the new link
4042 * address is available.
4043 * @del_intf_link: Remove an MLO link from the given interface.
4044 *
4045 * @add_key: add a key with the given parameters. @mac_addr will be %NULL
4046 * when adding a group key. @link_id will be -1 for non-MLO connection.
4047 * For MLO connection, @link_id will be >= 0 for group key and -1 for
4048 * pairwise key, @mac_addr will be peer's MLD address for MLO pairwise key.
4049 *
4050 * @get_key: get information about the key with the given parameters.
4051 * @mac_addr will be %NULL when requesting information for a group
4052 * key. All pointers given to the @callback function need not be valid
4053 * after it returns. This function should return an error if it is
4054 * not possible to retrieve the key, -ENOENT if it doesn't exist.
4055 * @link_id will be -1 for non-MLO connection. For MLO connection,
4056 * @link_id will be >= 0 for group key and -1 for pairwise key, @mac_addr
4057 * will be peer's MLD address for MLO pairwise key.
4058 *
4059 * @del_key: remove a key given the @mac_addr (%NULL for a group key)
4060 * and @key_index, return -ENOENT if the key doesn't exist. @link_id will
4061 * be -1 for non-MLO connection. For MLO connection, @link_id will be >= 0
4062 * for group key and -1 for pairwise key, @mac_addr will be peer's MLD
4063 * address for MLO pairwise key.
4064 *
4065 * @set_default_key: set the default key on an interface. @link_id will be >= 0
4066 * for MLO connection and -1 for non-MLO connection.
4067 *
4068 * @set_default_mgmt_key: set the default management frame key on an interface.
4069 * @link_id will be >= 0 for MLO connection and -1 for non-MLO connection.
4070 *
4071 * @set_default_beacon_key: set the default Beacon frame key on an interface.
4072 * @link_id will be >= 0 for MLO connection and -1 for non-MLO connection.
4073 *
4074 * @set_rekey_data: give the data necessary for GTK rekeying to the driver
4075 *
4076 * @start_ap: Start acting in AP mode defined by the parameters.
4077 * @change_beacon: Change the beacon parameters for an access point mode
4078 * interface. This should reject the call when AP mode wasn't started.
4079 * @stop_ap: Stop being an AP, including stopping beaconing.
4080 *
4081 * @add_station: Add a new station.
4082 * @del_station: Remove a station
4083 * @change_station: Modify a given station. Note that flags changes are not much
4084 * validated in cfg80211, in particular the auth/assoc/authorized flags
4085 * might come to the driver in invalid combinations -- make sure to check
4086 * them, also against the existing state! Drivers must call
4087 * cfg80211_check_station_change() to validate the information.
4088 * @get_station: get station information for the station identified by @mac
4089 * @dump_station: dump station callback -- resume dump at index @idx
4090 *
4091 * @add_mpath: add a fixed mesh path
4092 * @del_mpath: delete a given mesh path
4093 * @change_mpath: change a given mesh path
4094 * @get_mpath: get a mesh path for the given parameters
4095 * @dump_mpath: dump mesh path callback -- resume dump at index @idx
4096 * @get_mpp: get a mesh proxy path for the given parameters
4097 * @dump_mpp: dump mesh proxy path callback -- resume dump at index @idx
4098 * @join_mesh: join the mesh network with the specified parameters
4099 * (invoked with the wireless_dev mutex held)
4100 * @leave_mesh: leave the current mesh network
4101 * (invoked with the wireless_dev mutex held)
4102 *
4103 * @get_mesh_config: Get the current mesh configuration
4104 *
4105 * @update_mesh_config: Update mesh parameters on a running mesh.
4106 * The mask is a bitfield which tells us which parameters to
4107 * set, and which to leave alone.
4108 *
4109 * @change_bss: Modify parameters for a given BSS.
4110 *
4111 * @inform_bss: Called by cfg80211 while being informed about new BSS data
4112 * for every BSS found within the reported data or frame. This is called
4113 * from within the cfg8011 inform_bss handlers while holding the bss_lock.
4114 * The data parameter is passed through from drv_data inside
4115 * struct cfg80211_inform_bss.
4116 * The new IE data for the BSS is explicitly passed.
4117 *
4118 * @set_txq_params: Set TX queue parameters
4119 *
4120 * @libertas_set_mesh_channel: Only for backward compatibility for libertas,
4121 * as it doesn't implement join_mesh and needs to set the channel to
4122 * join the mesh instead.
4123 *
4124 * @set_monitor_channel: Set the monitor mode channel for the device. If other
4125 * interfaces are active this callback should reject the configuration.
4126 * If no interfaces are active or the device is down, the channel should
4127 * be stored for when a monitor interface becomes active.
4128 *
4129 * @scan: Request to do a scan. If returning zero, the scan request is given
4130 * the driver, and will be valid until passed to cfg80211_scan_done().
4131 * For scan results, call cfg80211_inform_bss(); you can call this outside
4132 * the scan/scan_done bracket too.
4133 * @abort_scan: Tell the driver to abort an ongoing scan. The driver shall
4134 * indicate the status of the scan through cfg80211_scan_done().
4135 *
4136 * @auth: Request to authenticate with the specified peer
4137 * (invoked with the wireless_dev mutex held)
4138 * @assoc: Request to (re)associate with the specified peer
4139 * (invoked with the wireless_dev mutex held)
4140 * @deauth: Request to deauthenticate from the specified peer
4141 * (invoked with the wireless_dev mutex held)
4142 * @disassoc: Request to disassociate from the specified peer
4143 * (invoked with the wireless_dev mutex held)
4144 *
4145 * @connect: Connect to the ESS with the specified parameters. When connected,
4146 * call cfg80211_connect_result()/cfg80211_connect_bss() with status code
4147 * %WLAN_STATUS_SUCCESS. If the connection fails for some reason, call
4148 * cfg80211_connect_result()/cfg80211_connect_bss() with the status code
4149 * from the AP or cfg80211_connect_timeout() if no frame with status code
4150 * was received.
4151 * The driver is allowed to roam to other BSSes within the ESS when the
4152 * other BSS matches the connect parameters. When such roaming is initiated
4153 * by the driver, the driver is expected to verify that the target matches
4154 * the configured security parameters and to use Reassociation Request
4155 * frame instead of Association Request frame.
4156 * The connect function can also be used to request the driver to perform a
4157 * specific roam when connected to an ESS. In that case, the prev_bssid
4158 * parameter is set to the BSSID of the currently associated BSS as an
4159 * indication of requesting reassociation.
4160 * In both the driver-initiated and new connect() call initiated roaming
4161 * cases, the result of roaming is indicated with a call to
4162 * cfg80211_roamed(). (invoked with the wireless_dev mutex held)
4163 * @update_connect_params: Update the connect parameters while connected to a
4164 * BSS. The updated parameters can be used by driver/firmware for
4165 * subsequent BSS selection (roaming) decisions and to form the
4166 * Authentication/(Re)Association Request frames. This call does not
4167 * request an immediate disassociation or reassociation with the current
4168 * BSS, i.e., this impacts only subsequent (re)associations. The bits in
4169 * changed are defined in &enum cfg80211_connect_params_changed.
4170 * (invoked with the wireless_dev mutex held)
4171 * @disconnect: Disconnect from the BSS/ESS or stop connection attempts if
4172 * connection is in progress. Once done, call cfg80211_disconnected() in
4173 * case connection was already established (invoked with the
4174 * wireless_dev mutex held), otherwise call cfg80211_connect_timeout().
4175 *
4176 * @join_ibss: Join the specified IBSS (or create if necessary). Once done, call
4177 * cfg80211_ibss_joined(), also call that function when changing BSSID due
4178 * to a merge.
4179 * (invoked with the wireless_dev mutex held)
4180 * @leave_ibss: Leave the IBSS.
4181 * (invoked with the wireless_dev mutex held)
4182 *
4183 * @set_mcast_rate: Set the specified multicast rate (only if vif is in ADHOC or
4184 * MESH mode)
4185 *
4186 * @set_wiphy_params: Notify that wiphy parameters have changed;
4187 * @changed bitfield (see &enum wiphy_params_flags) describes which values
4188 * have changed. The actual parameter values are available in
4189 * struct wiphy. If returning an error, no value should be changed.
4190 *
4191 * @set_tx_power: set the transmit power according to the parameters,
4192 * the power passed is in mBm, to get dBm use MBM_TO_DBM(). The
4193 * wdev may be %NULL if power was set for the wiphy, and will
4194 * always be %NULL unless the driver supports per-vif TX power
4195 * (as advertised by the nl80211 feature flag.)
4196 * @get_tx_power: store the current TX power into the dbm variable;
4197 * return 0 if successful
4198 *
4199 * @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting
4200 * functions to adjust rfkill hw state
4201 *
4202 * @dump_survey: get site survey information.
4203 *
4204 * @remain_on_channel: Request the driver to remain awake on the specified
4205 * channel for the specified duration to complete an off-channel
4206 * operation (e.g., public action frame exchange). When the driver is
4207 * ready on the requested channel, it must indicate this with an event
4208 * notification by calling cfg80211_ready_on_channel().
4209 * @cancel_remain_on_channel: Cancel an on-going remain-on-channel operation.
4210 * This allows the operation to be terminated prior to timeout based on
4211 * the duration value.
4212 * @mgmt_tx: Transmit a management frame.
4213 * @mgmt_tx_cancel_wait: Cancel the wait time from transmitting a management
4214 * frame on another channel
4215 *
4216 * @testmode_cmd: run a test mode command; @wdev may be %NULL
4217 * @testmode_dump: Implement a test mode dump. The cb->args[2] and up may be
4218 * used by the function, but 0 and 1 must not be touched. Additionally,
4219 * return error codes other than -ENOBUFS and -ENOENT will terminate the
4220 * dump and return to userspace with an error, so be careful. If any data
4221 * was passed in from userspace then the data/len arguments will be present
4222 * and point to the data contained in %NL80211_ATTR_TESTDATA.
4223 *
4224 * @set_bitrate_mask: set the bitrate mask configuration
4225 *
4226 * @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac
4227 * devices running firmwares capable of generating the (re) association
4228 * RSN IE. It allows for faster roaming between WPA2 BSSIDs.
4229 * @del_pmksa: Delete a cached PMKID.
4230 * @flush_pmksa: Flush all cached PMKIDs.
4231 * @set_power_mgmt: Configure WLAN power management. A timeout value of -1
4232 * allows the driver to adjust the dynamic ps timeout value.
4233 * @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold.
4234 * After configuration, the driver should (soon) send an event indicating
4235 * the current level is above/below the configured threshold; this may
4236 * need some care when the configuration is changed (without first being
4237 * disabled.)
4238 * @set_cqm_rssi_range_config: Configure two RSSI thresholds in the
4239 * connection quality monitor. An event is to be sent only when the
4240 * signal level is found to be outside the two values. The driver should
4241 * set %NL80211_EXT_FEATURE_CQM_RSSI_LIST if this method is implemented.
4242 * If it is provided then there's no point providing @set_cqm_rssi_config.
4243 * @set_cqm_txe_config: Configure connection quality monitor TX error
4244 * thresholds.
4245 * @sched_scan_start: Tell the driver to start a scheduled scan.
4246 * @sched_scan_stop: Tell the driver to stop an ongoing scheduled scan with
4247 * given request id. This call must stop the scheduled scan and be ready
4248 * for starting a new one before it returns, i.e. @sched_scan_start may be
4249 * called immediately after that again and should not fail in that case.
4250 * The driver should not call cfg80211_sched_scan_stopped() for a requested
4251 * stop (when this method returns 0).
4252 *
4253 * @update_mgmt_frame_registrations: Notify the driver that management frame
4254 * registrations were updated. The callback is allowed to sleep.
4255 *
4256 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device.
4257 * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may
4258 * reject TX/RX mask combinations they cannot support by returning -EINVAL
4259 * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX).
4260 *
4261 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant).
4262 *
4263 * @tdls_mgmt: Transmit a TDLS management frame.
4264 * @tdls_oper: Perform a high-level TDLS operation (e.g. TDLS link setup).
4265 *
4266 * @probe_client: probe an associated client, must return a cookie that it
4267 * later passes to cfg80211_probe_status().
4268 *
4269 * @set_noack_map: Set the NoAck Map for the TIDs.
4270 *
4271 * @get_channel: Get the current operating channel for the virtual interface.
4272 * For monitor interfaces, it should return %NULL unless there's a single
4273 * current monitoring channel.
4274 *
4275 * @start_p2p_device: Start the given P2P device.
4276 * @stop_p2p_device: Stop the given P2P device.
4277 *
4278 * @set_mac_acl: Sets MAC address control list in AP and P2P GO mode.
4279 * Parameters include ACL policy, an array of MAC address of stations
4280 * and the number of MAC addresses. If there is already a list in driver
4281 * this new list replaces the existing one. Driver has to clear its ACL
4282 * when number of MAC addresses entries is passed as 0. Drivers which
4283 * advertise the support for MAC based ACL have to implement this callback.
4284 *
4285 * @start_radar_detection: Start radar detection in the driver.
4286 *
4287 * @end_cac: End running CAC, probably because a related CAC
4288 * was finished on another phy.
4289 *
4290 * @update_ft_ies: Provide updated Fast BSS Transition information to the
4291 * driver. If the SME is in the driver/firmware, this information can be
4292 * used in building Authentication and Reassociation Request frames.
4293 *
4294 * @crit_proto_start: Indicates a critical protocol needs more link reliability
4295 * for a given duration (milliseconds). The protocol is provided so the
4296 * driver can take the most appropriate actions.
4297 * @crit_proto_stop: Indicates critical protocol no longer needs increased link
4298 * reliability. This operation can not fail.
4299 * @set_coalesce: Set coalesce parameters.
4300 *
4301 * @channel_switch: initiate channel-switch procedure (with CSA). Driver is
4302 * responsible for veryfing if the switch is possible. Since this is
4303 * inherently tricky driver may decide to disconnect an interface later
4304 * with cfg80211_stop_iface(). This doesn't mean driver can accept
4305 * everything. It should do it's best to verify requests and reject them
4306 * as soon as possible.
4307 *
4308 * @set_qos_map: Set QoS mapping information to the driver
4309 *
4310 * @set_ap_chanwidth: Set the AP (including P2P GO) mode channel width for the
4311 * given interface This is used e.g. for dynamic HT 20/40 MHz channel width
4312 * changes during the lifetime of the BSS.
4313 *
4314 * @add_tx_ts: validate (if admitted_time is 0) or add a TX TS to the device
4315 * with the given parameters; action frame exchange has been handled by
4316 * userspace so this just has to modify the TX path to take the TS into
4317 * account.
4318 * If the admitted time is 0 just validate the parameters to make sure
4319 * the session can be created at all; it is valid to just always return
4320 * success for that but that may result in inefficient behaviour (handshake
4321 * with the peer followed by immediate teardown when the addition is later
4322 * rejected)
4323 * @del_tx_ts: remove an existing TX TS
4324 *
4325 * @join_ocb: join the OCB network with the specified parameters
4326 * (invoked with the wireless_dev mutex held)
4327 * @leave_ocb: leave the current OCB network
4328 * (invoked with the wireless_dev mutex held)
4329 *
4330 * @tdls_channel_switch: Start channel-switching with a TDLS peer. The driver
4331 * is responsible for continually initiating channel-switching operations
4332 * and returning to the base channel for communication with the AP.
4333 * @tdls_cancel_channel_switch: Stop channel-switching with a TDLS peer. Both
4334 * peers must be on the base channel when the call completes.
4335 * @start_nan: Start the NAN interface.
4336 * @stop_nan: Stop the NAN interface.
4337 * @add_nan_func: Add a NAN function. Returns negative value on failure.
4338 * On success @nan_func ownership is transferred to the driver and
4339 * it may access it outside of the scope of this function. The driver
4340 * should free the @nan_func when no longer needed by calling
4341 * cfg80211_free_nan_func().
4342 * On success the driver should assign an instance_id in the
4343 * provided @nan_func.
4344 * @del_nan_func: Delete a NAN function.
4345 * @nan_change_conf: changes NAN configuration. The changed parameters must
4346 * be specified in @changes (using &enum cfg80211_nan_conf_changes);
4347 * All other parameters must be ignored.
4348 *
4349 * @set_multicast_to_unicast: configure multicast to unicast conversion for BSS
4350 *
4351 * @get_txq_stats: Get TXQ stats for interface or phy. If wdev is %NULL, this
4352 * function should return phy stats, and interface stats otherwise.
4353 *
4354 * @set_pmk: configure the PMK to be used for offloaded 802.1X 4-Way handshake.
4355 * If not deleted through @del_pmk the PMK remains valid until disconnect
4356 * upon which the driver should clear it.
4357 * (invoked with the wireless_dev mutex held)
4358 * @del_pmk: delete the previously configured PMK for the given authenticator.
4359 * (invoked with the wireless_dev mutex held)
4360 *
4361 * @external_auth: indicates result of offloaded authentication processing from
4362 * user space
4363 *
4364 * @tx_control_port: TX a control port frame (EAPoL). The noencrypt parameter
4365 * tells the driver that the frame should not be encrypted.
4366 *
4367 * @get_ftm_responder_stats: Retrieve FTM responder statistics, if available.
4368 * Statistics should be cumulative, currently no way to reset is provided.
4369 * @start_pmsr: start peer measurement (e.g. FTM)
4370 * @abort_pmsr: abort peer measurement
4371 *
4372 * @update_owe_info: Provide updated OWE info to driver. Driver implementing SME
4373 * but offloading OWE processing to the user space will get the updated
4374 * DH IE through this interface.
4375 *
4376 * @probe_mesh_link: Probe direct Mesh peer's link quality by sending data frame
4377 * and overrule HWMP path selection algorithm.
4378 * @set_tid_config: TID specific configuration, this can be peer or BSS specific
4379 * This callback may sleep.
4380 * @reset_tid_config: Reset TID specific configuration for the peer, for the
4381 * given TIDs. This callback may sleep.
4382 *
4383 * @set_sar_specs: Update the SAR (TX power) settings.
4384 *
4385 * @color_change: Initiate a color change.
4386 *
4387 * @set_fils_aad: Set FILS AAD data to the AP driver so that the driver can use
4388 * those to decrypt (Re)Association Request and encrypt (Re)Association
4389 * Response frame.
4390 *
4391 * @set_radar_background: Configure dedicated offchannel chain available for
4392 * radar/CAC detection on some hw. This chain can't be used to transmit
4393 * or receive frames and it is bounded to a running wdev.
4394 * Background radar/CAC detection allows to avoid the CAC downtime
4395 * switching to a different channel during CAC detection on the selected
4396 * radar channel.
4397 * The caller is expected to set chandef pointer to NULL in order to
4398 * disable background CAC/radar detection.
4399 * @add_link_station: Add a link to a station.
4400 * @mod_link_station: Modify a link of a station.
4401 * @del_link_station: Remove a link of a station.
4402 *
4403 * @set_hw_timestamp: Enable/disable HW timestamping of TM/FTM frames.
4404 */
4405 struct cfg80211_ops {
4406 int (*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow);
4407 int (*resume)(struct wiphy *wiphy);
4408 void (*set_wakeup)(struct wiphy *wiphy, bool enabled);
4409
4410 struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy,
4411 const char *name,
4412 unsigned char name_assign_type,
4413 enum nl80211_iftype type,
4414 struct vif_params *params);
4415 int (*del_virtual_intf)(struct wiphy *wiphy,
4416 struct wireless_dev *wdev);
4417 int (*change_virtual_intf)(struct wiphy *wiphy,
4418 struct net_device *dev,
4419 enum nl80211_iftype type,
4420 struct vif_params *params);
4421
4422 int (*add_intf_link)(struct wiphy *wiphy,
4423 struct wireless_dev *wdev,
4424 unsigned int link_id);
4425 void (*del_intf_link)(struct wiphy *wiphy,
4426 struct wireless_dev *wdev,
4427 unsigned int link_id);
4428
4429 int (*add_key)(struct wiphy *wiphy, struct net_device *netdev,
4430 int link_id, u8 key_index, bool pairwise,
4431 const u8 *mac_addr, struct key_params *params);
4432 int (*get_key)(struct wiphy *wiphy, struct net_device *netdev,
4433 int link_id, u8 key_index, bool pairwise,
4434 const u8 *mac_addr, void *cookie,
4435 void (*callback)(void *cookie, struct key_params*));
4436 int (*del_key)(struct wiphy *wiphy, struct net_device *netdev,
4437 int link_id, u8 key_index, bool pairwise,
4438 const u8 *mac_addr);
4439 int (*set_default_key)(struct wiphy *wiphy,
4440 struct net_device *netdev, int link_id,
4441 u8 key_index, bool unicast, bool multicast);
4442 int (*set_default_mgmt_key)(struct wiphy *wiphy,
4443 struct net_device *netdev, int link_id,
4444 u8 key_index);
4445 int (*set_default_beacon_key)(struct wiphy *wiphy,
4446 struct net_device *netdev,
4447 int link_id,
4448 u8 key_index);
4449
4450 int (*start_ap)(struct wiphy *wiphy, struct net_device *dev,
4451 struct cfg80211_ap_settings *settings);
4452 int (*change_beacon)(struct wiphy *wiphy, struct net_device *dev,
4453 struct cfg80211_beacon_data *info);
4454 int (*stop_ap)(struct wiphy *wiphy, struct net_device *dev,
4455 unsigned int link_id);
4456
4457
4458 int (*add_station)(struct wiphy *wiphy, struct net_device *dev,
4459 const u8 *mac,
4460 struct station_parameters *params);
4461 int (*del_station)(struct wiphy *wiphy, struct net_device *dev,
4462 struct station_del_parameters *params);
4463 int (*change_station)(struct wiphy *wiphy, struct net_device *dev,
4464 const u8 *mac,
4465 struct station_parameters *params);
4466 int (*get_station)(struct wiphy *wiphy, struct net_device *dev,
4467 const u8 *mac, struct station_info *sinfo);
4468 int (*dump_station)(struct wiphy *wiphy, struct net_device *dev,
4469 int idx, u8 *mac, struct station_info *sinfo);
4470
4471 int (*add_mpath)(struct wiphy *wiphy, struct net_device *dev,
4472 const u8 *dst, const u8 *next_hop);
4473 int (*del_mpath)(struct wiphy *wiphy, struct net_device *dev,
4474 const u8 *dst);
4475 int (*change_mpath)(struct wiphy *wiphy, struct net_device *dev,
4476 const u8 *dst, const u8 *next_hop);
4477 int (*get_mpath)(struct wiphy *wiphy, struct net_device *dev,
4478 u8 *dst, u8 *next_hop, struct mpath_info *pinfo);
4479 int (*dump_mpath)(struct wiphy *wiphy, struct net_device *dev,
4480 int idx, u8 *dst, u8 *next_hop,
4481 struct mpath_info *pinfo);
4482 int (*get_mpp)(struct wiphy *wiphy, struct net_device *dev,
4483 u8 *dst, u8 *mpp, struct mpath_info *pinfo);
4484 int (*dump_mpp)(struct wiphy *wiphy, struct net_device *dev,
4485 int idx, u8 *dst, u8 *mpp,
4486 struct mpath_info *pinfo);
4487 int (*get_mesh_config)(struct wiphy *wiphy,
4488 struct net_device *dev,
4489 struct mesh_config *conf);
4490 int (*update_mesh_config)(struct wiphy *wiphy,
4491 struct net_device *dev, u32 mask,
4492 const struct mesh_config *nconf);
4493 int (*join_mesh)(struct wiphy *wiphy, struct net_device *dev,
4494 const struct mesh_config *conf,
4495 const struct mesh_setup *setup);
4496 int (*leave_mesh)(struct wiphy *wiphy, struct net_device *dev);
4497
4498 int (*join_ocb)(struct wiphy *wiphy, struct net_device *dev,
4499 struct ocb_setup *setup);
4500 int (*leave_ocb)(struct wiphy *wiphy, struct net_device *dev);
4501
4502 int (*change_bss)(struct wiphy *wiphy, struct net_device *dev,
4503 struct bss_parameters *params);
4504
4505 void (*inform_bss)(struct wiphy *wiphy, struct cfg80211_bss *bss,
4506 const struct cfg80211_bss_ies *ies, void *data);
4507
4508 int (*set_txq_params)(struct wiphy *wiphy, struct net_device *dev,
4509 struct ieee80211_txq_params *params);
4510
4511 int (*libertas_set_mesh_channel)(struct wiphy *wiphy,
4512 struct net_device *dev,
4513 struct ieee80211_channel *chan);
4514
4515 int (*set_monitor_channel)(struct wiphy *wiphy,
4516 struct cfg80211_chan_def *chandef);
4517
4518 int (*scan)(struct wiphy *wiphy,
4519 struct cfg80211_scan_request *request);
4520 void (*abort_scan)(struct wiphy *wiphy, struct wireless_dev *wdev);
4521
4522 int (*auth)(struct wiphy *wiphy, struct net_device *dev,
4523 struct cfg80211_auth_request *req);
4524 int (*assoc)(struct wiphy *wiphy, struct net_device *dev,
4525 struct cfg80211_assoc_request *req);
4526 int (*deauth)(struct wiphy *wiphy, struct net_device *dev,
4527 struct cfg80211_deauth_request *req);
4528 int (*disassoc)(struct wiphy *wiphy, struct net_device *dev,
4529 struct cfg80211_disassoc_request *req);
4530
4531 int (*connect)(struct wiphy *wiphy, struct net_device *dev,
4532 struct cfg80211_connect_params *sme);
4533 int (*update_connect_params)(struct wiphy *wiphy,
4534 struct net_device *dev,
4535 struct cfg80211_connect_params *sme,
4536 u32 changed);
4537 int (*disconnect)(struct wiphy *wiphy, struct net_device *dev,
4538 u16 reason_code);
4539
4540 int (*join_ibss)(struct wiphy *wiphy, struct net_device *dev,
4541 struct cfg80211_ibss_params *params);
4542 int (*leave_ibss)(struct wiphy *wiphy, struct net_device *dev);
4543
4544 int (*set_mcast_rate)(struct wiphy *wiphy, struct net_device *dev,
4545 int rate[NUM_NL80211_BANDS]);
4546
4547 int (*set_wiphy_params)(struct wiphy *wiphy, u32 changed);
4548
4549 int (*set_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
4550 enum nl80211_tx_power_setting type, int mbm);
4551 int (*get_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
4552 int *dbm);
4553
4554 void (*rfkill_poll)(struct wiphy *wiphy);
4555
4556 #ifdef CONFIG_NL80211_TESTMODE
4557 int (*testmode_cmd)(struct wiphy *wiphy, struct wireless_dev *wdev,
4558 void *data, int len);
4559 int (*testmode_dump)(struct wiphy *wiphy, struct sk_buff *skb,
4560 struct netlink_callback *cb,
4561 void *data, int len);
4562 #endif
4563
4564 int (*set_bitrate_mask)(struct wiphy *wiphy,
4565 struct net_device *dev,
4566 unsigned int link_id,
4567 const u8 *peer,
4568 const struct cfg80211_bitrate_mask *mask);
4569
4570 int (*dump_survey)(struct wiphy *wiphy, struct net_device *netdev,
4571 int idx, struct survey_info *info);
4572
4573 int (*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
4574 struct cfg80211_pmksa *pmksa);
4575 int (*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
4576 struct cfg80211_pmksa *pmksa);
4577 int (*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev);
4578
4579 int (*remain_on_channel)(struct wiphy *wiphy,
4580 struct wireless_dev *wdev,
4581 struct ieee80211_channel *chan,
4582 unsigned int duration,
4583 u64 *cookie);
4584 int (*cancel_remain_on_channel)(struct wiphy *wiphy,
4585 struct wireless_dev *wdev,
4586 u64 cookie);
4587
4588 int (*mgmt_tx)(struct wiphy *wiphy, struct wireless_dev *wdev,
4589 struct cfg80211_mgmt_tx_params *params,
4590 u64 *cookie);
4591 int (*mgmt_tx_cancel_wait)(struct wiphy *wiphy,
4592 struct wireless_dev *wdev,
4593 u64 cookie);
4594
4595 int (*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev,
4596 bool enabled, int timeout);
4597
4598 int (*set_cqm_rssi_config)(struct wiphy *wiphy,
4599 struct net_device *dev,
4600 s32 rssi_thold, u32 rssi_hyst);
4601
4602 int (*set_cqm_rssi_range_config)(struct wiphy *wiphy,
4603 struct net_device *dev,
4604 s32 rssi_low, s32 rssi_high);
4605
4606 int (*set_cqm_txe_config)(struct wiphy *wiphy,
4607 struct net_device *dev,
4608 u32 rate, u32 pkts, u32 intvl);
4609
4610 void (*update_mgmt_frame_registrations)(struct wiphy *wiphy,
4611 struct wireless_dev *wdev,
4612 struct mgmt_frame_regs *upd);
4613
4614 int (*set_antenna)(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant);
4615 int (*get_antenna)(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant);
4616
4617 int (*sched_scan_start)(struct wiphy *wiphy,
4618 struct net_device *dev,
4619 struct cfg80211_sched_scan_request *request);
4620 int (*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev,
4621 u64 reqid);
4622
4623 int (*set_rekey_data)(struct wiphy *wiphy, struct net_device *dev,
4624 struct cfg80211_gtk_rekey_data *data);
4625
4626 int (*tdls_mgmt)(struct wiphy *wiphy, struct net_device *dev,
4627 const u8 *peer, int link_id,
4628 u8 action_code, u8 dialog_token, u16 status_code,
4629 u32 peer_capability, bool initiator,
4630 const u8 *buf, size_t len);
4631 int (*tdls_oper)(struct wiphy *wiphy, struct net_device *dev,
4632 const u8 *peer, enum nl80211_tdls_operation oper);
4633
4634 int (*probe_client)(struct wiphy *wiphy, struct net_device *dev,
4635 const u8 *peer, u64 *cookie);
4636
4637 int (*set_noack_map)(struct wiphy *wiphy,
4638 struct net_device *dev,
4639 u16 noack_map);
4640
4641 int (*get_channel)(struct wiphy *wiphy,
4642 struct wireless_dev *wdev,
4643 unsigned int link_id,
4644 struct cfg80211_chan_def *chandef);
4645
4646 int (*start_p2p_device)(struct wiphy *wiphy,
4647 struct wireless_dev *wdev);
4648 void (*stop_p2p_device)(struct wiphy *wiphy,
4649 struct wireless_dev *wdev);
4650
4651 int (*set_mac_acl)(struct wiphy *wiphy, struct net_device *dev,
4652 const struct cfg80211_acl_data *params);
4653
4654 int (*start_radar_detection)(struct wiphy *wiphy,
4655 struct net_device *dev,
4656 struct cfg80211_chan_def *chandef,
4657 u32 cac_time_ms);
4658 void (*end_cac)(struct wiphy *wiphy,
4659 struct net_device *dev);
4660 int (*update_ft_ies)(struct wiphy *wiphy, struct net_device *dev,
4661 struct cfg80211_update_ft_ies_params *ftie);
4662 int (*crit_proto_start)(struct wiphy *wiphy,
4663 struct wireless_dev *wdev,
4664 enum nl80211_crit_proto_id protocol,
4665 u16 duration);
4666 void (*crit_proto_stop)(struct wiphy *wiphy,
4667 struct wireless_dev *wdev);
4668 int (*set_coalesce)(struct wiphy *wiphy,
4669 struct cfg80211_coalesce *coalesce);
4670
4671 int (*channel_switch)(struct wiphy *wiphy,
4672 struct net_device *dev,
4673 struct cfg80211_csa_settings *params);
4674
4675 int (*set_qos_map)(struct wiphy *wiphy,
4676 struct net_device *dev,
4677 struct cfg80211_qos_map *qos_map);
4678
4679 int (*set_ap_chanwidth)(struct wiphy *wiphy, struct net_device *dev,
4680 unsigned int link_id,
4681 struct cfg80211_chan_def *chandef);
4682
4683 int (*add_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
4684 u8 tsid, const u8 *peer, u8 user_prio,
4685 u16 admitted_time);
4686 int (*del_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
4687 u8 tsid, const u8 *peer);
4688
4689 int (*tdls_channel_switch)(struct wiphy *wiphy,
4690 struct net_device *dev,
4691 const u8 *addr, u8 oper_class,
4692 struct cfg80211_chan_def *chandef);
4693 void (*tdls_cancel_channel_switch)(struct wiphy *wiphy,
4694 struct net_device *dev,
4695 const u8 *addr);
4696 int (*start_nan)(struct wiphy *wiphy, struct wireless_dev *wdev,
4697 struct cfg80211_nan_conf *conf);
4698 void (*stop_nan)(struct wiphy *wiphy, struct wireless_dev *wdev);
4699 int (*add_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,
4700 struct cfg80211_nan_func *nan_func);
4701 void (*del_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,
4702 u64 cookie);
4703 int (*nan_change_conf)(struct wiphy *wiphy,
4704 struct wireless_dev *wdev,
4705 struct cfg80211_nan_conf *conf,
4706 u32 changes);
4707
4708 int (*set_multicast_to_unicast)(struct wiphy *wiphy,
4709 struct net_device *dev,
4710 const bool enabled);
4711
4712 int (*get_txq_stats)(struct wiphy *wiphy,
4713 struct wireless_dev *wdev,
4714 struct cfg80211_txq_stats *txqstats);
4715
4716 int (*set_pmk)(struct wiphy *wiphy, struct net_device *dev,
4717 const struct cfg80211_pmk_conf *conf);
4718 int (*del_pmk)(struct wiphy *wiphy, struct net_device *dev,
4719 const u8 *aa);
4720 int (*external_auth)(struct wiphy *wiphy, struct net_device *dev,
4721 struct cfg80211_external_auth_params *params);
4722
4723 int (*tx_control_port)(struct wiphy *wiphy,
4724 struct net_device *dev,
4725 const u8 *buf, size_t len,
4726 const u8 *dest, const __be16 proto,
4727 const bool noencrypt, int link_id,
4728 u64 *cookie);
4729
4730 int (*get_ftm_responder_stats)(struct wiphy *wiphy,
4731 struct net_device *dev,
4732 struct cfg80211_ftm_responder_stats *ftm_stats);
4733
4734 int (*start_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,
4735 struct cfg80211_pmsr_request *request);
4736 void (*abort_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,
4737 struct cfg80211_pmsr_request *request);
4738 int (*update_owe_info)(struct wiphy *wiphy, struct net_device *dev,
4739 struct cfg80211_update_owe_info *owe_info);
4740 int (*probe_mesh_link)(struct wiphy *wiphy, struct net_device *dev,
4741 const u8 *buf, size_t len);
4742 int (*set_tid_config)(struct wiphy *wiphy, struct net_device *dev,
4743 struct cfg80211_tid_config *tid_conf);
4744 int (*reset_tid_config)(struct wiphy *wiphy, struct net_device *dev,
4745 const u8 *peer, u8 tids);
4746 int (*set_sar_specs)(struct wiphy *wiphy,
4747 struct cfg80211_sar_specs *sar);
4748 int (*color_change)(struct wiphy *wiphy,
4749 struct net_device *dev,
4750 struct cfg80211_color_change_settings *params);
4751 int (*set_fils_aad)(struct wiphy *wiphy, struct net_device *dev,
4752 struct cfg80211_fils_aad *fils_aad);
4753 int (*set_radar_background)(struct wiphy *wiphy,
4754 struct cfg80211_chan_def *chandef);
4755 int (*add_link_station)(struct wiphy *wiphy, struct net_device *dev,
4756 struct link_station_parameters *params);
4757 int (*mod_link_station)(struct wiphy *wiphy, struct net_device *dev,
4758 struct link_station_parameters *params);
4759 int (*del_link_station)(struct wiphy *wiphy, struct net_device *dev,
4760 struct link_station_del_parameters *params);
4761 int (*set_hw_timestamp)(struct wiphy *wiphy, struct net_device *dev,
4762 struct cfg80211_set_hw_timestamp *hwts);
4763 };
4764
4765 /*
4766 * wireless hardware and networking interfaces structures
4767 * and registration/helper functions
4768 */
4769
4770 /**
4771 * enum wiphy_flags - wiphy capability flags
4772 *
4773 * @WIPHY_FLAG_SPLIT_SCAN_6GHZ: if set to true, the scan request will be split
4774 * into two, first for legacy bands and second for UHB.
4775 * @WIPHY_FLAG_NETNS_OK: if not set, do not allow changing the netns of this
4776 * wiphy at all
4777 * @WIPHY_FLAG_PS_ON_BY_DEFAULT: if set to true, powersave will be enabled
4778 * by default -- this flag will be set depending on the kernel's default
4779 * on wiphy_new(), but can be changed by the driver if it has a good
4780 * reason to override the default
4781 * @WIPHY_FLAG_4ADDR_AP: supports 4addr mode even on AP (with a single station
4782 * on a VLAN interface). This flag also serves an extra purpose of
4783 * supporting 4ADDR AP mode on devices which do not support AP/VLAN iftype.
4784 * @WIPHY_FLAG_4ADDR_STATION: supports 4addr mode even as a station
4785 * @WIPHY_FLAG_CONTROL_PORT_PROTOCOL: This device supports setting the
4786 * control port protocol ethertype. The device also honours the
4787 * control_port_no_encrypt flag.
4788 * @WIPHY_FLAG_IBSS_RSN: The device supports IBSS RSN.
4789 * @WIPHY_FLAG_MESH_AUTH: The device supports mesh authentication by routing
4790 * auth frames to userspace. See @NL80211_MESH_SETUP_USERSPACE_AUTH.
4791 * @WIPHY_FLAG_SUPPORTS_FW_ROAM: The device supports roaming feature in the
4792 * firmware.
4793 * @WIPHY_FLAG_AP_UAPSD: The device supports uapsd on AP.
4794 * @WIPHY_FLAG_SUPPORTS_TDLS: The device supports TDLS (802.11z) operation.
4795 * @WIPHY_FLAG_TDLS_EXTERNAL_SETUP: The device does not handle TDLS (802.11z)
4796 * link setup/discovery operations internally. Setup, discovery and
4797 * teardown packets should be sent through the @NL80211_CMD_TDLS_MGMT
4798 * command. When this flag is not set, @NL80211_CMD_TDLS_OPER should be
4799 * used for asking the driver/firmware to perform a TDLS operation.
4800 * @WIPHY_FLAG_HAVE_AP_SME: device integrates AP SME
4801 * @WIPHY_FLAG_REPORTS_OBSS: the device will report beacons from other BSSes
4802 * when there are virtual interfaces in AP mode by calling
4803 * cfg80211_report_obss_beacon().
4804 * @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD: When operating as an AP, the device
4805 * responds to probe-requests in hardware.
4806 * @WIPHY_FLAG_OFFCHAN_TX: Device supports direct off-channel TX.
4807 * @WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL: Device supports remain-on-channel call.
4808 * @WIPHY_FLAG_SUPPORTS_5_10_MHZ: Device supports 5 MHz and 10 MHz channels.
4809 * @WIPHY_FLAG_HAS_CHANNEL_SWITCH: Device supports channel switch in
4810 * beaconing mode (AP, IBSS, Mesh, ...).
4811 * @WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK: The device supports bigger kek and kck keys
4812 * @WIPHY_FLAG_SUPPORTS_MLO: This is a temporary flag gating the MLO APIs,
4813 * in order to not have them reachable in normal drivers, until we have
4814 * complete feature/interface combinations/etc. advertisement. No driver
4815 * should set this flag for now.
4816 * @WIPHY_FLAG_SUPPORTS_EXT_KCK_32: The device supports 32-byte KCK keys.
4817 * @WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER: The device could handle reg notify for
4818 * NL80211_REGDOM_SET_BY_DRIVER.
4819 * @WIPHY_FLAG_DISABLE_WEXT: disable wireless extensions for this device
4820 */
4821 enum wiphy_flags {
4822 WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK = BIT(0),
4823 WIPHY_FLAG_SUPPORTS_MLO = BIT(1),
4824 WIPHY_FLAG_SPLIT_SCAN_6GHZ = BIT(2),
4825 WIPHY_FLAG_NETNS_OK = BIT(3),
4826 WIPHY_FLAG_PS_ON_BY_DEFAULT = BIT(4),
4827 WIPHY_FLAG_4ADDR_AP = BIT(5),
4828 WIPHY_FLAG_4ADDR_STATION = BIT(6),
4829 WIPHY_FLAG_CONTROL_PORT_PROTOCOL = BIT(7),
4830 WIPHY_FLAG_IBSS_RSN = BIT(8),
4831 WIPHY_FLAG_DISABLE_WEXT = BIT(9),
4832 WIPHY_FLAG_MESH_AUTH = BIT(10),
4833 WIPHY_FLAG_SUPPORTS_EXT_KCK_32 = BIT(11),
4834 /* use hole at 12 */
4835 WIPHY_FLAG_SUPPORTS_FW_ROAM = BIT(13),
4836 WIPHY_FLAG_AP_UAPSD = BIT(14),
4837 WIPHY_FLAG_SUPPORTS_TDLS = BIT(15),
4838 WIPHY_FLAG_TDLS_EXTERNAL_SETUP = BIT(16),
4839 WIPHY_FLAG_HAVE_AP_SME = BIT(17),
4840 WIPHY_FLAG_REPORTS_OBSS = BIT(18),
4841 WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD = BIT(19),
4842 WIPHY_FLAG_OFFCHAN_TX = BIT(20),
4843 WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL = BIT(21),
4844 WIPHY_FLAG_SUPPORTS_5_10_MHZ = BIT(22),
4845 WIPHY_FLAG_HAS_CHANNEL_SWITCH = BIT(23),
4846 WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER = BIT(24),
4847 };
4848
4849 /**
4850 * struct ieee80211_iface_limit - limit on certain interface types
4851 * @max: maximum number of interfaces of these types
4852 * @types: interface types (bits)
4853 */
4854 struct ieee80211_iface_limit {
4855 u16 max;
4856 u16 types;
4857 };
4858
4859 /**
4860 * struct ieee80211_iface_combination - possible interface combination
4861 *
4862 * With this structure the driver can describe which interface
4863 * combinations it supports concurrently.
4864 *
4865 * Examples:
4866 *
4867 * 1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total:
4868 *
4869 * .. code-block:: c
4870 *
4871 * struct ieee80211_iface_limit limits1[] = {
4872 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
4873 * { .max = 1, .types = BIT(NL80211_IFTYPE_AP), },
4874 * };
4875 * struct ieee80211_iface_combination combination1 = {
4876 * .limits = limits1,
4877 * .n_limits = ARRAY_SIZE(limits1),
4878 * .max_interfaces = 2,
4879 * .beacon_int_infra_match = true,
4880 * };
4881 *
4882 *
4883 * 2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total:
4884 *
4885 * .. code-block:: c
4886 *
4887 * struct ieee80211_iface_limit limits2[] = {
4888 * { .max = 8, .types = BIT(NL80211_IFTYPE_AP) |
4889 * BIT(NL80211_IFTYPE_P2P_GO), },
4890 * };
4891 * struct ieee80211_iface_combination combination2 = {
4892 * .limits = limits2,
4893 * .n_limits = ARRAY_SIZE(limits2),
4894 * .max_interfaces = 8,
4895 * .num_different_channels = 1,
4896 * };
4897 *
4898 *
4899 * 3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total.
4900 *
4901 * This allows for an infrastructure connection and three P2P connections.
4902 *
4903 * .. code-block:: c
4904 *
4905 * struct ieee80211_iface_limit limits3[] = {
4906 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
4907 * { .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) |
4908 * BIT(NL80211_IFTYPE_P2P_CLIENT), },
4909 * };
4910 * struct ieee80211_iface_combination combination3 = {
4911 * .limits = limits3,
4912 * .n_limits = ARRAY_SIZE(limits3),
4913 * .max_interfaces = 4,
4914 * .num_different_channels = 2,
4915 * };
4916 *
4917 */
4918 struct ieee80211_iface_combination {
4919 /**
4920 * @limits:
4921 * limits for the given interface types
4922 */
4923 const struct ieee80211_iface_limit *limits;
4924
4925 /**
4926 * @num_different_channels:
4927 * can use up to this many different channels
4928 */
4929 u32 num_different_channels;
4930
4931 /**
4932 * @max_interfaces:
4933 * maximum number of interfaces in total allowed in this group
4934 */
4935 u16 max_interfaces;
4936
4937 /**
4938 * @n_limits:
4939 * number of limitations
4940 */
4941 u8 n_limits;
4942
4943 /**
4944 * @beacon_int_infra_match:
4945 * In this combination, the beacon intervals between infrastructure
4946 * and AP types must match. This is required only in special cases.
4947 */
4948 bool beacon_int_infra_match;
4949
4950 /**
4951 * @radar_detect_widths:
4952 * bitmap of channel widths supported for radar detection
4953 */
4954 u8 radar_detect_widths;
4955
4956 /**
4957 * @radar_detect_regions:
4958 * bitmap of regions supported for radar detection
4959 */
4960 u8 radar_detect_regions;
4961
4962 /**
4963 * @beacon_int_min_gcd:
4964 * This interface combination supports different beacon intervals.
4965 *
4966 * = 0
4967 * all beacon intervals for different interface must be same.
4968 * > 0
4969 * any beacon interval for the interface part of this combination AND
4970 * GCD of all beacon intervals from beaconing interfaces of this
4971 * combination must be greater or equal to this value.
4972 */
4973 u32 beacon_int_min_gcd;
4974 };
4975
4976 struct ieee80211_txrx_stypes {
4977 u16 tx, rx;
4978 };
4979
4980 /**
4981 * enum wiphy_wowlan_support_flags - WoWLAN support flags
4982 * @WIPHY_WOWLAN_ANY: supports wakeup for the special "any"
4983 * trigger that keeps the device operating as-is and
4984 * wakes up the host on any activity, for example a
4985 * received packet that passed filtering; note that the
4986 * packet should be preserved in that case
4987 * @WIPHY_WOWLAN_MAGIC_PKT: supports wakeup on magic packet
4988 * (see nl80211.h)
4989 * @WIPHY_WOWLAN_DISCONNECT: supports wakeup on disconnect
4990 * @WIPHY_WOWLAN_SUPPORTS_GTK_REKEY: supports GTK rekeying while asleep
4991 * @WIPHY_WOWLAN_GTK_REKEY_FAILURE: supports wakeup on GTK rekey failure
4992 * @WIPHY_WOWLAN_EAP_IDENTITY_REQ: supports wakeup on EAP identity request
4993 * @WIPHY_WOWLAN_4WAY_HANDSHAKE: supports wakeup on 4-way handshake failure
4994 * @WIPHY_WOWLAN_RFKILL_RELEASE: supports wakeup on RF-kill release
4995 * @WIPHY_WOWLAN_NET_DETECT: supports wakeup on network detection
4996 */
4997 enum wiphy_wowlan_support_flags {
4998 WIPHY_WOWLAN_ANY = BIT(0),
4999 WIPHY_WOWLAN_MAGIC_PKT = BIT(1),
5000 WIPHY_WOWLAN_DISCONNECT = BIT(2),
5001 WIPHY_WOWLAN_SUPPORTS_GTK_REKEY = BIT(3),
5002 WIPHY_WOWLAN_GTK_REKEY_FAILURE = BIT(4),
5003 WIPHY_WOWLAN_EAP_IDENTITY_REQ = BIT(5),
5004 WIPHY_WOWLAN_4WAY_HANDSHAKE = BIT(6),
5005 WIPHY_WOWLAN_RFKILL_RELEASE = BIT(7),
5006 WIPHY_WOWLAN_NET_DETECT = BIT(8),
5007 };
5008
5009 struct wiphy_wowlan_tcp_support {
5010 const struct nl80211_wowlan_tcp_data_token_feature *tok;
5011 u32 data_payload_max;
5012 u32 data_interval_max;
5013 u32 wake_payload_max;
5014 bool seq;
5015 };
5016
5017 /**
5018 * struct wiphy_wowlan_support - WoWLAN support data
5019 * @flags: see &enum wiphy_wowlan_support_flags
5020 * @n_patterns: number of supported wakeup patterns
5021 * (see nl80211.h for the pattern definition)
5022 * @pattern_max_len: maximum length of each pattern
5023 * @pattern_min_len: minimum length of each pattern
5024 * @max_pkt_offset: maximum Rx packet offset
5025 * @max_nd_match_sets: maximum number of matchsets for net-detect,
5026 * similar, but not necessarily identical, to max_match_sets for
5027 * scheduled scans.
5028 * See &struct cfg80211_sched_scan_request.@match_sets for more
5029 * details.
5030 * @tcp: TCP wakeup support information
5031 */
5032 struct wiphy_wowlan_support {
5033 u32 flags;
5034 int n_patterns;
5035 int pattern_max_len;
5036 int pattern_min_len;
5037 int max_pkt_offset;
5038 int max_nd_match_sets;
5039 const struct wiphy_wowlan_tcp_support *tcp;
5040 };
5041
5042 /**
5043 * struct wiphy_coalesce_support - coalesce support data
5044 * @n_rules: maximum number of coalesce rules
5045 * @max_delay: maximum supported coalescing delay in msecs
5046 * @n_patterns: number of supported patterns in a rule
5047 * (see nl80211.h for the pattern definition)
5048 * @pattern_max_len: maximum length of each pattern
5049 * @pattern_min_len: minimum length of each pattern
5050 * @max_pkt_offset: maximum Rx packet offset
5051 */
5052 struct wiphy_coalesce_support {
5053 int n_rules;
5054 int max_delay;
5055 int n_patterns;
5056 int pattern_max_len;
5057 int pattern_min_len;
5058 int max_pkt_offset;
5059 };
5060
5061 /**
5062 * enum wiphy_vendor_command_flags - validation flags for vendor commands
5063 * @WIPHY_VENDOR_CMD_NEED_WDEV: vendor command requires wdev
5064 * @WIPHY_VENDOR_CMD_NEED_NETDEV: vendor command requires netdev
5065 * @WIPHY_VENDOR_CMD_NEED_RUNNING: interface/wdev must be up & running
5066 * (must be combined with %_WDEV or %_NETDEV)
5067 */
5068 enum wiphy_vendor_command_flags {
5069 WIPHY_VENDOR_CMD_NEED_WDEV = BIT(0),
5070 WIPHY_VENDOR_CMD_NEED_NETDEV = BIT(1),
5071 WIPHY_VENDOR_CMD_NEED_RUNNING = BIT(2),
5072 };
5073
5074 /**
5075 * enum wiphy_opmode_flag - Station's ht/vht operation mode information flags
5076 *
5077 * @STA_OPMODE_MAX_BW_CHANGED: Max Bandwidth changed
5078 * @STA_OPMODE_SMPS_MODE_CHANGED: SMPS mode changed
5079 * @STA_OPMODE_N_SS_CHANGED: max N_SS (number of spatial streams) changed
5080 *
5081 */
5082 enum wiphy_opmode_flag {
5083 STA_OPMODE_MAX_BW_CHANGED = BIT(0),
5084 STA_OPMODE_SMPS_MODE_CHANGED = BIT(1),
5085 STA_OPMODE_N_SS_CHANGED = BIT(2),
5086 };
5087
5088 /**
5089 * struct sta_opmode_info - Station's ht/vht operation mode information
5090 * @changed: contains value from &enum wiphy_opmode_flag
5091 * @smps_mode: New SMPS mode value from &enum nl80211_smps_mode of a station
5092 * @bw: new max bandwidth value from &enum nl80211_chan_width of a station
5093 * @rx_nss: new rx_nss value of a station
5094 */
5095
5096 struct sta_opmode_info {
5097 u32 changed;
5098 enum nl80211_smps_mode smps_mode;
5099 enum nl80211_chan_width bw;
5100 u8 rx_nss;
5101 };
5102
5103 #define VENDOR_CMD_RAW_DATA ((const struct nla_policy *)(long)(-ENODATA))
5104
5105 /**
5106 * struct wiphy_vendor_command - vendor command definition
5107 * @info: vendor command identifying information, as used in nl80211
5108 * @flags: flags, see &enum wiphy_vendor_command_flags
5109 * @doit: callback for the operation, note that wdev is %NULL if the
5110 * flags didn't ask for a wdev and non-%NULL otherwise; the data
5111 * pointer may be %NULL if userspace provided no data at all
5112 * @dumpit: dump callback, for transferring bigger/multiple items. The
5113 * @storage points to cb->args[5], ie. is preserved over the multiple
5114 * dumpit calls.
5115 * @policy: policy pointer for attributes within %NL80211_ATTR_VENDOR_DATA.
5116 * Set this to %VENDOR_CMD_RAW_DATA if no policy can be given and the
5117 * attribute is just raw data (e.g. a firmware command).
5118 * @maxattr: highest attribute number in policy
5119 * It's recommended to not have the same sub command with both @doit and
5120 * @dumpit, so that userspace can assume certain ones are get and others
5121 * are used with dump requests.
5122 */
5123 struct wiphy_vendor_command {
5124 struct nl80211_vendor_cmd_info info;
5125 u32 flags;
5126 int (*doit)(struct wiphy *wiphy, struct wireless_dev *wdev,
5127 const void *data, int data_len);
5128 int (*dumpit)(struct wiphy *wiphy, struct wireless_dev *wdev,
5129 struct sk_buff *skb, const void *data, int data_len,
5130 unsigned long *storage);
5131 const struct nla_policy *policy;
5132 unsigned int maxattr;
5133 };
5134
5135 /**
5136 * struct wiphy_iftype_ext_capab - extended capabilities per interface type
5137 * @iftype: interface type
5138 * @extended_capabilities: extended capabilities supported by the driver,
5139 * additional capabilities might be supported by userspace; these are the
5140 * 802.11 extended capabilities ("Extended Capabilities element") and are
5141 * in the same format as in the information element. See IEEE Std
5142 * 802.11-2012 8.4.2.29 for the defined fields.
5143 * @extended_capabilities_mask: mask of the valid values
5144 * @extended_capabilities_len: length of the extended capabilities
5145 * @eml_capabilities: EML capabilities (for MLO)
5146 * @mld_capa_and_ops: MLD capabilities and operations (for MLO)
5147 */
5148 struct wiphy_iftype_ext_capab {
5149 enum nl80211_iftype iftype;
5150 const u8 *extended_capabilities;
5151 const u8 *extended_capabilities_mask;
5152 u8 extended_capabilities_len;
5153 u16 eml_capabilities;
5154 u16 mld_capa_and_ops;
5155 };
5156
5157 /**
5158 * cfg80211_get_iftype_ext_capa - lookup interface type extended capability
5159 * @wiphy: the wiphy to look up from
5160 * @type: the interface type to look up
5161 */
5162 const struct wiphy_iftype_ext_capab *
5163 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type);
5164
5165 /**
5166 * struct cfg80211_pmsr_capabilities - cfg80211 peer measurement capabilities
5167 * @max_peers: maximum number of peers in a single measurement
5168 * @report_ap_tsf: can report assoc AP's TSF for radio resource measurement
5169 * @randomize_mac_addr: can randomize MAC address for measurement
5170 * @ftm: FTM measurement data
5171 * @ftm.supported: FTM measurement is supported
5172 * @ftm.asap: ASAP-mode is supported
5173 * @ftm.non_asap: non-ASAP-mode is supported
5174 * @ftm.request_lci: can request LCI data
5175 * @ftm.request_civicloc: can request civic location data
5176 * @ftm.preambles: bitmap of preambles supported (&enum nl80211_preamble)
5177 * @ftm.bandwidths: bitmap of bandwidths supported (&enum nl80211_chan_width)
5178 * @ftm.max_bursts_exponent: maximum burst exponent supported
5179 * (set to -1 if not limited; note that setting this will necessarily
5180 * forbid using the value 15 to let the responder pick)
5181 * @ftm.max_ftms_per_burst: maximum FTMs per burst supported (set to 0 if
5182 * not limited)
5183 * @ftm.trigger_based: trigger based ranging measurement is supported
5184 * @ftm.non_trigger_based: non trigger based ranging measurement is supported
5185 */
5186 struct cfg80211_pmsr_capabilities {
5187 unsigned int max_peers;
5188 u8 report_ap_tsf:1,
5189 randomize_mac_addr:1;
5190
5191 struct {
5192 u32 preambles;
5193 u32 bandwidths;
5194 s8 max_bursts_exponent;
5195 u8 max_ftms_per_burst;
5196 u8 supported:1,
5197 asap:1,
5198 non_asap:1,
5199 request_lci:1,
5200 request_civicloc:1,
5201 trigger_based:1,
5202 non_trigger_based:1;
5203 } ftm;
5204 };
5205
5206 /**
5207 * struct wiphy_iftype_akm_suites - This structure encapsulates supported akm
5208 * suites for interface types defined in @iftypes_mask. Each type in the
5209 * @iftypes_mask must be unique across all instances of iftype_akm_suites.
5210 *
5211 * @iftypes_mask: bitmask of interfaces types
5212 * @akm_suites: points to an array of supported akm suites
5213 * @n_akm_suites: number of supported AKM suites
5214 */
5215 struct wiphy_iftype_akm_suites {
5216 u16 iftypes_mask;
5217 const u32 *akm_suites;
5218 int n_akm_suites;
5219 };
5220
5221 #define CFG80211_HW_TIMESTAMP_ALL_PEERS 0xffff
5222
5223 /**
5224 * struct wiphy - wireless hardware description
5225 * @mtx: mutex for the data (structures) of this device
5226 * @reg_notifier: the driver's regulatory notification callback,
5227 * note that if your driver uses wiphy_apply_custom_regulatory()
5228 * the reg_notifier's request can be passed as NULL
5229 * @regd: the driver's regulatory domain, if one was requested via
5230 * the regulatory_hint() API. This can be used by the driver
5231 * on the reg_notifier() if it chooses to ignore future
5232 * regulatory domain changes caused by other drivers.
5233 * @signal_type: signal type reported in &struct cfg80211_bss.
5234 * @cipher_suites: supported cipher suites
5235 * @n_cipher_suites: number of supported cipher suites
5236 * @akm_suites: supported AKM suites. These are the default AKMs supported if
5237 * the supported AKMs not advertized for a specific interface type in
5238 * iftype_akm_suites.
5239 * @n_akm_suites: number of supported AKM suites
5240 * @iftype_akm_suites: array of supported akm suites info per interface type.
5241 * Note that the bits in @iftypes_mask inside this structure cannot
5242 * overlap (i.e. only one occurrence of each type is allowed across all
5243 * instances of iftype_akm_suites).
5244 * @num_iftype_akm_suites: number of interface types for which supported akm
5245 * suites are specified separately.
5246 * @retry_short: Retry limit for short frames (dot11ShortRetryLimit)
5247 * @retry_long: Retry limit for long frames (dot11LongRetryLimit)
5248 * @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold);
5249 * -1 = fragmentation disabled, only odd values >= 256 used
5250 * @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled
5251 * @_net: the network namespace this wiphy currently lives in
5252 * @perm_addr: permanent MAC address of this device
5253 * @addr_mask: If the device supports multiple MAC addresses by masking,
5254 * set this to a mask with variable bits set to 1, e.g. if the last
5255 * four bits are variable then set it to 00-00-00-00-00-0f. The actual
5256 * variable bits shall be determined by the interfaces added, with
5257 * interfaces not matching the mask being rejected to be brought up.
5258 * @n_addresses: number of addresses in @addresses.
5259 * @addresses: If the device has more than one address, set this pointer
5260 * to a list of addresses (6 bytes each). The first one will be used
5261 * by default for perm_addr. In this case, the mask should be set to
5262 * all-zeroes. In this case it is assumed that the device can handle
5263 * the same number of arbitrary MAC addresses.
5264 * @registered: protects ->resume and ->suspend sysfs callbacks against
5265 * unregister hardware
5266 * @debugfsdir: debugfs directory used for this wiphy (ieee80211/<wiphyname>).
5267 * It will be renamed automatically on wiphy renames
5268 * @dev: (virtual) struct device for this wiphy. The item in
5269 * /sys/class/ieee80211/ points to this. You need use set_wiphy_dev()
5270 * (see below).
5271 * @wext: wireless extension handlers
5272 * @priv: driver private data (sized according to wiphy_new() parameter)
5273 * @interface_modes: bitmask of interfaces types valid for this wiphy,
5274 * must be set by driver
5275 * @iface_combinations: Valid interface combinations array, should not
5276 * list single interface types.
5277 * @n_iface_combinations: number of entries in @iface_combinations array.
5278 * @software_iftypes: bitmask of software interface types, these are not
5279 * subject to any restrictions since they are purely managed in SW.
5280 * @flags: wiphy flags, see &enum wiphy_flags
5281 * @regulatory_flags: wiphy regulatory flags, see
5282 * &enum ieee80211_regulatory_flags
5283 * @features: features advertised to nl80211, see &enum nl80211_feature_flags.
5284 * @ext_features: extended features advertised to nl80211, see
5285 * &enum nl80211_ext_feature_index.
5286 * @bss_priv_size: each BSS struct has private data allocated with it,
5287 * this variable determines its size
5288 * @max_scan_ssids: maximum number of SSIDs the device can scan for in
5289 * any given scan
5290 * @max_sched_scan_reqs: maximum number of scheduled scan requests that
5291 * the device can run concurrently.
5292 * @max_sched_scan_ssids: maximum number of SSIDs the device can scan
5293 * for in any given scheduled scan
5294 * @max_match_sets: maximum number of match sets the device can handle
5295 * when performing a scheduled scan, 0 if filtering is not
5296 * supported.
5297 * @max_scan_ie_len: maximum length of user-controlled IEs device can
5298 * add to probe request frames transmitted during a scan, must not
5299 * include fixed IEs like supported rates
5300 * @max_sched_scan_ie_len: same as max_scan_ie_len, but for scheduled
5301 * scans
5302 * @max_sched_scan_plans: maximum number of scan plans (scan interval and number
5303 * of iterations) for scheduled scan supported by the device.
5304 * @max_sched_scan_plan_interval: maximum interval (in seconds) for a
5305 * single scan plan supported by the device.
5306 * @max_sched_scan_plan_iterations: maximum number of iterations for a single
5307 * scan plan supported by the device.
5308 * @coverage_class: current coverage class
5309 * @fw_version: firmware version for ethtool reporting
5310 * @hw_version: hardware version for ethtool reporting
5311 * @max_num_pmkids: maximum number of PMKIDs supported by device
5312 * @privid: a pointer that drivers can use to identify if an arbitrary
5313 * wiphy is theirs, e.g. in global notifiers
5314 * @bands: information about bands/channels supported by this device
5315 *
5316 * @mgmt_stypes: bitmasks of frame subtypes that can be subscribed to or
5317 * transmitted through nl80211, points to an array indexed by interface
5318 * type
5319 *
5320 * @available_antennas_tx: bitmap of antennas which are available to be
5321 * configured as TX antennas. Antenna configuration commands will be
5322 * rejected unless this or @available_antennas_rx is set.
5323 *
5324 * @available_antennas_rx: bitmap of antennas which are available to be
5325 * configured as RX antennas. Antenna configuration commands will be
5326 * rejected unless this or @available_antennas_tx is set.
5327 *
5328 * @probe_resp_offload:
5329 * Bitmap of supported protocols for probe response offloading.
5330 * See &enum nl80211_probe_resp_offload_support_attr. Only valid
5331 * when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set.
5332 *
5333 * @max_remain_on_channel_duration: Maximum time a remain-on-channel operation
5334 * may request, if implemented.
5335 *
5336 * @wowlan: WoWLAN support information
5337 * @wowlan_config: current WoWLAN configuration; this should usually not be
5338 * used since access to it is necessarily racy, use the parameter passed
5339 * to the suspend() operation instead.
5340 *
5341 * @ap_sme_capa: AP SME capabilities, flags from &enum nl80211_ap_sme_features.
5342 * @ht_capa_mod_mask: Specify what ht_cap values can be over-ridden.
5343 * If null, then none can be over-ridden.
5344 * @vht_capa_mod_mask: Specify what VHT capabilities can be over-ridden.
5345 * If null, then none can be over-ridden.
5346 *
5347 * @wdev_list: the list of associated (virtual) interfaces; this list must
5348 * not be modified by the driver, but can be read with RTNL/RCU protection.
5349 *
5350 * @max_acl_mac_addrs: Maximum number of MAC addresses that the device
5351 * supports for ACL.
5352 *
5353 * @extended_capabilities: extended capabilities supported by the driver,
5354 * additional capabilities might be supported by userspace; these are
5355 * the 802.11 extended capabilities ("Extended Capabilities element")
5356 * and are in the same format as in the information element. See
5357 * 802.11-2012 8.4.2.29 for the defined fields. These are the default
5358 * extended capabilities to be used if the capabilities are not specified
5359 * for a specific interface type in iftype_ext_capab.
5360 * @extended_capabilities_mask: mask of the valid values
5361 * @extended_capabilities_len: length of the extended capabilities
5362 * @iftype_ext_capab: array of extended capabilities per interface type
5363 * @num_iftype_ext_capab: number of interface types for which extended
5364 * capabilities are specified separately.
5365 * @coalesce: packet coalescing support information
5366 *
5367 * @vendor_commands: array of vendor commands supported by the hardware
5368 * @n_vendor_commands: number of vendor commands
5369 * @vendor_events: array of vendor events supported by the hardware
5370 * @n_vendor_events: number of vendor events
5371 *
5372 * @max_ap_assoc_sta: maximum number of associated stations supported in AP mode
5373 * (including P2P GO) or 0 to indicate no such limit is advertised. The
5374 * driver is allowed to advertise a theoretical limit that it can reach in
5375 * some cases, but may not always reach.
5376 *
5377 * @max_num_csa_counters: Number of supported csa_counters in beacons
5378 * and probe responses. This value should be set if the driver
5379 * wishes to limit the number of csa counters. Default (0) means
5380 * infinite.
5381 * @bss_select_support: bitmask indicating the BSS selection criteria supported
5382 * by the driver in the .connect() callback. The bit position maps to the
5383 * attribute indices defined in &enum nl80211_bss_select_attr.
5384 *
5385 * @nan_supported_bands: bands supported by the device in NAN mode, a
5386 * bitmap of &enum nl80211_band values. For instance, for
5387 * NL80211_BAND_2GHZ, bit 0 would be set
5388 * (i.e. BIT(NL80211_BAND_2GHZ)).
5389 *
5390 * @txq_limit: configuration of internal TX queue frame limit
5391 * @txq_memory_limit: configuration internal TX queue memory limit
5392 * @txq_quantum: configuration of internal TX queue scheduler quantum
5393 *
5394 * @tx_queue_len: allow setting transmit queue len for drivers not using
5395 * wake_tx_queue
5396 *
5397 * @support_mbssid: can HW support association with nontransmitted AP
5398 * @support_only_he_mbssid: don't parse MBSSID elements if it is not
5399 * HE AP, in order to avoid compatibility issues.
5400 * @support_mbssid must be set for this to have any effect.
5401 *
5402 * @pmsr_capa: peer measurement capabilities
5403 *
5404 * @tid_config_support: describes the per-TID config support that the
5405 * device has
5406 * @tid_config_support.vif: bitmap of attributes (configurations)
5407 * supported by the driver for each vif
5408 * @tid_config_support.peer: bitmap of attributes (configurations)
5409 * supported by the driver for each peer
5410 * @tid_config_support.max_retry: maximum supported retry count for
5411 * long/short retry configuration
5412 *
5413 * @max_data_retry_count: maximum supported per TID retry count for
5414 * configuration through the %NL80211_TID_CONFIG_ATTR_RETRY_SHORT and
5415 * %NL80211_TID_CONFIG_ATTR_RETRY_LONG attributes
5416 * @sar_capa: SAR control capabilities
5417 * @rfkill: a pointer to the rfkill structure
5418 *
5419 * @mbssid_max_interfaces: maximum number of interfaces supported by the driver
5420 * in a multiple BSSID set. This field must be set to a non-zero value
5421 * by the driver to advertise MBSSID support.
5422 * @ema_max_profile_periodicity: maximum profile periodicity supported by
5423 * the driver. Setting this field to a non-zero value indicates that the
5424 * driver supports enhanced multi-BSSID advertisements (EMA AP).
5425 * @max_num_akm_suites: maximum number of AKM suites allowed for
5426 * configuration through %NL80211_CMD_CONNECT, %NL80211_CMD_ASSOCIATE and
5427 * %NL80211_CMD_START_AP. Set to NL80211_MAX_NR_AKM_SUITES if not set by
5428 * driver. If set by driver minimum allowed value is
5429 * NL80211_MAX_NR_AKM_SUITES in order to avoid compatibility issues with
5430 * legacy userspace and maximum allowed value is
5431 * CFG80211_MAX_NUM_AKM_SUITES.
5432 *
5433 * @hw_timestamp_max_peers: maximum number of peers that the driver supports
5434 * enabling HW timestamping for concurrently. Setting this field to a
5435 * non-zero value indicates that the driver supports HW timestamping.
5436 * A value of %CFG80211_HW_TIMESTAMP_ALL_PEERS indicates the driver
5437 * supports enabling HW timestamping for all peers (i.e. no need to
5438 * specify a mac address).
5439 */
5440 struct wiphy {
5441 struct mutex mtx;
5442
5443 /* assign these fields before you register the wiphy */
5444
5445 u8 perm_addr[ETH_ALEN];
5446 u8 addr_mask[ETH_ALEN];
5447
5448 struct mac_address *addresses;
5449
5450 const struct ieee80211_txrx_stypes *mgmt_stypes;
5451
5452 const struct ieee80211_iface_combination *iface_combinations;
5453 int n_iface_combinations;
5454 u16 software_iftypes;
5455
5456 u16 n_addresses;
5457
5458 /* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */
5459 u16 interface_modes;
5460
5461 u16 max_acl_mac_addrs;
5462
5463 u32 flags, regulatory_flags, features;
5464 u8 ext_features[DIV_ROUND_UP(NUM_NL80211_EXT_FEATURES, 8)];
5465
5466 u32 ap_sme_capa;
5467
5468 enum cfg80211_signal_type signal_type;
5469
5470 int bss_priv_size;
5471 u8 max_scan_ssids;
5472 u8 max_sched_scan_reqs;
5473 u8 max_sched_scan_ssids;
5474 u8 max_match_sets;
5475 u16 max_scan_ie_len;
5476 u16 max_sched_scan_ie_len;
5477 u32 max_sched_scan_plans;
5478 u32 max_sched_scan_plan_interval;
5479 u32 max_sched_scan_plan_iterations;
5480
5481 int n_cipher_suites;
5482 const u32 *cipher_suites;
5483
5484 int n_akm_suites;
5485 const u32 *akm_suites;
5486
5487 const struct wiphy_iftype_akm_suites *iftype_akm_suites;
5488 unsigned int num_iftype_akm_suites;
5489
5490 u8 retry_short;
5491 u8 retry_long;
5492 u32 frag_threshold;
5493 u32 rts_threshold;
5494 u8 coverage_class;
5495
5496 char fw_version[ETHTOOL_FWVERS_LEN];
5497 u32 hw_version;
5498
5499 #ifdef CONFIG_PM
5500 const struct wiphy_wowlan_support *wowlan;
5501 struct cfg80211_wowlan *wowlan_config;
5502 #endif
5503
5504 u16 max_remain_on_channel_duration;
5505
5506 u8 max_num_pmkids;
5507
5508 u32 available_antennas_tx;
5509 u32 available_antennas_rx;
5510
5511 u32 probe_resp_offload;
5512
5513 const u8 *extended_capabilities, *extended_capabilities_mask;
5514 u8 extended_capabilities_len;
5515
5516 const struct wiphy_iftype_ext_capab *iftype_ext_capab;
5517 unsigned int num_iftype_ext_capab;
5518
5519 const void *privid;
5520
5521 struct ieee80211_supported_band *bands[NUM_NL80211_BANDS];
5522
5523 void (*reg_notifier)(struct wiphy *wiphy,
5524 struct regulatory_request *request);
5525
5526 /* fields below are read-only, assigned by cfg80211 */
5527
5528 const struct ieee80211_regdomain __rcu *regd;
5529
5530 struct device dev;
5531
5532 bool registered;
5533
5534 struct dentry *debugfsdir;
5535
5536 const struct ieee80211_ht_cap *ht_capa_mod_mask;
5537 const struct ieee80211_vht_cap *vht_capa_mod_mask;
5538
5539 struct list_head wdev_list;
5540
5541 possible_net_t _net;
5542
5543 #ifdef CONFIG_CFG80211_WEXT
5544 const struct iw_handler_def *wext;
5545 #endif
5546
5547 const struct wiphy_coalesce_support *coalesce;
5548
5549 const struct wiphy_vendor_command *vendor_commands;
5550 const struct nl80211_vendor_cmd_info *vendor_events;
5551 int n_vendor_commands, n_vendor_events;
5552
5553 u16 max_ap_assoc_sta;
5554
5555 u8 max_num_csa_counters;
5556
5557 u32 bss_select_support;
5558
5559 u8 nan_supported_bands;
5560
5561 u32 txq_limit;
5562 u32 txq_memory_limit;
5563 u32 txq_quantum;
5564
5565 unsigned long tx_queue_len;
5566
5567 u8 support_mbssid:1,
5568 support_only_he_mbssid:1;
5569
5570 const struct cfg80211_pmsr_capabilities *pmsr_capa;
5571
5572 struct {
5573 u64 peer, vif;
5574 u8 max_retry;
5575 } tid_config_support;
5576
5577 u8 max_data_retry_count;
5578
5579 const struct cfg80211_sar_capa *sar_capa;
5580
5581 struct rfkill *rfkill;
5582
5583 u8 mbssid_max_interfaces;
5584 u8 ema_max_profile_periodicity;
5585 u16 max_num_akm_suites;
5586
5587 u16 hw_timestamp_max_peers;
5588
5589 char priv[] __aligned(NETDEV_ALIGN);
5590 };
5591
wiphy_net(struct wiphy * wiphy)5592 static inline struct net *wiphy_net(struct wiphy *wiphy)
5593 {
5594 return read_pnet(&wiphy->_net);
5595 }
5596
wiphy_net_set(struct wiphy * wiphy,struct net * net)5597 static inline void wiphy_net_set(struct wiphy *wiphy, struct net *net)
5598 {
5599 write_pnet(&wiphy->_net, net);
5600 }
5601
5602 /**
5603 * wiphy_priv - return priv from wiphy
5604 *
5605 * @wiphy: the wiphy whose priv pointer to return
5606 * Return: The priv of @wiphy.
5607 */
wiphy_priv(struct wiphy * wiphy)5608 static inline void *wiphy_priv(struct wiphy *wiphy)
5609 {
5610 BUG_ON(!wiphy);
5611 return &wiphy->priv;
5612 }
5613
5614 /**
5615 * priv_to_wiphy - return the wiphy containing the priv
5616 *
5617 * @priv: a pointer previously returned by wiphy_priv
5618 * Return: The wiphy of @priv.
5619 */
priv_to_wiphy(void * priv)5620 static inline struct wiphy *priv_to_wiphy(void *priv)
5621 {
5622 BUG_ON(!priv);
5623 return container_of(priv, struct wiphy, priv);
5624 }
5625
5626 /**
5627 * set_wiphy_dev - set device pointer for wiphy
5628 *
5629 * @wiphy: The wiphy whose device to bind
5630 * @dev: The device to parent it to
5631 */
set_wiphy_dev(struct wiphy * wiphy,struct device * dev)5632 static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev)
5633 {
5634 wiphy->dev.parent = dev;
5635 }
5636
5637 /**
5638 * wiphy_dev - get wiphy dev pointer
5639 *
5640 * @wiphy: The wiphy whose device struct to look up
5641 * Return: The dev of @wiphy.
5642 */
wiphy_dev(struct wiphy * wiphy)5643 static inline struct device *wiphy_dev(struct wiphy *wiphy)
5644 {
5645 return wiphy->dev.parent;
5646 }
5647
5648 /**
5649 * wiphy_name - get wiphy name
5650 *
5651 * @wiphy: The wiphy whose name to return
5652 * Return: The name of @wiphy.
5653 */
wiphy_name(const struct wiphy * wiphy)5654 static inline const char *wiphy_name(const struct wiphy *wiphy)
5655 {
5656 return dev_name(&wiphy->dev);
5657 }
5658
5659 /**
5660 * wiphy_new_nm - create a new wiphy for use with cfg80211
5661 *
5662 * @ops: The configuration operations for this device
5663 * @sizeof_priv: The size of the private area to allocate
5664 * @requested_name: Request a particular name.
5665 * NULL is valid value, and means use the default phy%d naming.
5666 *
5667 * Create a new wiphy and associate the given operations with it.
5668 * @sizeof_priv bytes are allocated for private use.
5669 *
5670 * Return: A pointer to the new wiphy. This pointer must be
5671 * assigned to each netdev's ieee80211_ptr for proper operation.
5672 */
5673 struct wiphy *wiphy_new_nm(const struct cfg80211_ops *ops, int sizeof_priv,
5674 const char *requested_name);
5675
5676 /**
5677 * wiphy_new - create a new wiphy for use with cfg80211
5678 *
5679 * @ops: The configuration operations for this device
5680 * @sizeof_priv: The size of the private area to allocate
5681 *
5682 * Create a new wiphy and associate the given operations with it.
5683 * @sizeof_priv bytes are allocated for private use.
5684 *
5685 * Return: A pointer to the new wiphy. This pointer must be
5686 * assigned to each netdev's ieee80211_ptr for proper operation.
5687 */
wiphy_new(const struct cfg80211_ops * ops,int sizeof_priv)5688 static inline struct wiphy *wiphy_new(const struct cfg80211_ops *ops,
5689 int sizeof_priv)
5690 {
5691 return wiphy_new_nm(ops, sizeof_priv, NULL);
5692 }
5693
5694 /**
5695 * wiphy_register - register a wiphy with cfg80211
5696 *
5697 * @wiphy: The wiphy to register.
5698 *
5699 * Return: A non-negative wiphy index or a negative error code.
5700 */
5701 int wiphy_register(struct wiphy *wiphy);
5702
5703 /* this is a define for better error reporting (file/line) */
5704 #define lockdep_assert_wiphy(wiphy) lockdep_assert_held(&(wiphy)->mtx)
5705
5706 /**
5707 * rcu_dereference_wiphy - rcu_dereference with debug checking
5708 * @wiphy: the wiphy to check the locking on
5709 * @p: The pointer to read, prior to dereferencing
5710 *
5711 * Do an rcu_dereference(p), but check caller either holds rcu_read_lock()
5712 * or RTNL. Note: Please prefer wiphy_dereference() or rcu_dereference().
5713 */
5714 #define rcu_dereference_wiphy(wiphy, p) \
5715 rcu_dereference_check(p, lockdep_is_held(&wiphy->mtx))
5716
5717 /**
5718 * wiphy_dereference - fetch RCU pointer when updates are prevented by wiphy mtx
5719 * @wiphy: the wiphy to check the locking on
5720 * @p: The pointer to read, prior to dereferencing
5721 *
5722 * Return the value of the specified RCU-protected pointer, but omit the
5723 * READ_ONCE(), because caller holds the wiphy mutex used for updates.
5724 */
5725 #define wiphy_dereference(wiphy, p) \
5726 rcu_dereference_protected(p, lockdep_is_held(&wiphy->mtx))
5727
5728 /**
5729 * get_wiphy_regdom - get custom regdomain for the given wiphy
5730 * @wiphy: the wiphy to get the regdomain from
5731 */
5732 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy);
5733
5734 /**
5735 * wiphy_unregister - deregister a wiphy from cfg80211
5736 *
5737 * @wiphy: The wiphy to unregister.
5738 *
5739 * After this call, no more requests can be made with this priv
5740 * pointer, but the call may sleep to wait for an outstanding
5741 * request that is being handled.
5742 */
5743 void wiphy_unregister(struct wiphy *wiphy);
5744
5745 /**
5746 * wiphy_free - free wiphy
5747 *
5748 * @wiphy: The wiphy to free
5749 */
5750 void wiphy_free(struct wiphy *wiphy);
5751
5752 /* internal structs */
5753 struct cfg80211_conn;
5754 struct cfg80211_internal_bss;
5755 struct cfg80211_cached_keys;
5756 struct cfg80211_cqm_config;
5757
5758 /**
5759 * wiphy_lock - lock the wiphy
5760 * @wiphy: the wiphy to lock
5761 *
5762 * This is needed around registering and unregistering netdevs that
5763 * aren't created through cfg80211 calls, since that requires locking
5764 * in cfg80211 when the notifiers is called, but that cannot
5765 * differentiate which way it's called.
5766 *
5767 * It can also be used by drivers for their own purposes.
5768 *
5769 * When cfg80211 ops are called, the wiphy is already locked.
5770 *
5771 * Note that this makes sure that no workers that have been queued
5772 * with wiphy_queue_work() are running.
5773 */
wiphy_lock(struct wiphy * wiphy)5774 static inline void wiphy_lock(struct wiphy *wiphy)
5775 __acquires(&wiphy->mtx)
5776 {
5777 mutex_lock(&wiphy->mtx);
5778 __acquire(&wiphy->mtx);
5779 }
5780
5781 /**
5782 * wiphy_unlock - unlock the wiphy again
5783 * @wiphy: the wiphy to unlock
5784 */
wiphy_unlock(struct wiphy * wiphy)5785 static inline void wiphy_unlock(struct wiphy *wiphy)
5786 __releases(&wiphy->mtx)
5787 {
5788 __release(&wiphy->mtx);
5789 mutex_unlock(&wiphy->mtx);
5790 }
5791
5792 struct wiphy_work;
5793 typedef void (*wiphy_work_func_t)(struct wiphy *, struct wiphy_work *);
5794
5795 struct wiphy_work {
5796 struct list_head entry;
5797 wiphy_work_func_t func;
5798 };
5799
wiphy_work_init(struct wiphy_work * work,wiphy_work_func_t func)5800 static inline void wiphy_work_init(struct wiphy_work *work,
5801 wiphy_work_func_t func)
5802 {
5803 INIT_LIST_HEAD(&work->entry);
5804 work->func = func;
5805 }
5806
5807 /**
5808 * wiphy_work_queue - queue work for the wiphy
5809 * @wiphy: the wiphy to queue for
5810 * @work: the work item
5811 *
5812 * This is useful for work that must be done asynchronously, and work
5813 * queued here has the special property that the wiphy mutex will be
5814 * held as if wiphy_lock() was called, and that it cannot be running
5815 * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can
5816 * use just cancel_work() instead of cancel_work_sync(), it requires
5817 * being in a section protected by wiphy_lock().
5818 */
5819 void wiphy_work_queue(struct wiphy *wiphy, struct wiphy_work *work);
5820
5821 /**
5822 * wiphy_work_cancel - cancel previously queued work
5823 * @wiphy: the wiphy, for debug purposes
5824 * @work: the work to cancel
5825 *
5826 * Cancel the work *without* waiting for it, this assumes being
5827 * called under the wiphy mutex acquired by wiphy_lock().
5828 */
5829 void wiphy_work_cancel(struct wiphy *wiphy, struct wiphy_work *work);
5830
5831 /**
5832 * wiphy_work_flush - flush previously queued work
5833 * @wiphy: the wiphy, for debug purposes
5834 * @work: the work to flush, this can be %NULL to flush all work
5835 *
5836 * Flush the work (i.e. run it if pending). This must be called
5837 * under the wiphy mutex acquired by wiphy_lock().
5838 */
5839 void wiphy_work_flush(struct wiphy *wiphy, struct wiphy_work *work);
5840
5841 struct wiphy_delayed_work {
5842 struct wiphy_work work;
5843 struct wiphy *wiphy;
5844 struct timer_list timer;
5845 };
5846
5847 void wiphy_delayed_work_timer(struct timer_list *t);
5848
wiphy_delayed_work_init(struct wiphy_delayed_work * dwork,wiphy_work_func_t func)5849 static inline void wiphy_delayed_work_init(struct wiphy_delayed_work *dwork,
5850 wiphy_work_func_t func)
5851 {
5852 timer_setup(&dwork->timer, wiphy_delayed_work_timer, 0);
5853 wiphy_work_init(&dwork->work, func);
5854 }
5855
5856 /**
5857 * wiphy_delayed_work_queue - queue delayed work for the wiphy
5858 * @wiphy: the wiphy to queue for
5859 * @dwork: the delayable worker
5860 * @delay: number of jiffies to wait before queueing
5861 *
5862 * This is useful for work that must be done asynchronously, and work
5863 * queued here has the special property that the wiphy mutex will be
5864 * held as if wiphy_lock() was called, and that it cannot be running
5865 * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can
5866 * use just cancel_work() instead of cancel_work_sync(), it requires
5867 * being in a section protected by wiphy_lock().
5868 */
5869 void wiphy_delayed_work_queue(struct wiphy *wiphy,
5870 struct wiphy_delayed_work *dwork,
5871 unsigned long delay);
5872
5873 /**
5874 * wiphy_delayed_work_cancel - cancel previously queued delayed work
5875 * @wiphy: the wiphy, for debug purposes
5876 * @dwork: the delayed work to cancel
5877 *
5878 * Cancel the work *without* waiting for it, this assumes being
5879 * called under the wiphy mutex acquired by wiphy_lock().
5880 */
5881 void wiphy_delayed_work_cancel(struct wiphy *wiphy,
5882 struct wiphy_delayed_work *dwork);
5883
5884 /**
5885 * wiphy_delayed_work_flush - flush previously queued delayed work
5886 * @wiphy: the wiphy, for debug purposes
5887 * @work: the work to flush
5888 *
5889 * Flush the work (i.e. run it if pending). This must be called
5890 * under the wiphy mutex acquired by wiphy_lock().
5891 */
5892 void wiphy_delayed_work_flush(struct wiphy *wiphy,
5893 struct wiphy_delayed_work *dwork);
5894
5895 /**
5896 * struct wireless_dev - wireless device state
5897 *
5898 * For netdevs, this structure must be allocated by the driver
5899 * that uses the ieee80211_ptr field in struct net_device (this
5900 * is intentional so it can be allocated along with the netdev.)
5901 * It need not be registered then as netdev registration will
5902 * be intercepted by cfg80211 to see the new wireless device,
5903 * however, drivers must lock the wiphy before registering or
5904 * unregistering netdevs if they pre-create any netdevs (in ops
5905 * called from cfg80211, the wiphy is already locked.)
5906 *
5907 * For non-netdev uses, it must also be allocated by the driver
5908 * in response to the cfg80211 callbacks that require it, as
5909 * there's no netdev registration in that case it may not be
5910 * allocated outside of callback operations that return it.
5911 *
5912 * @wiphy: pointer to hardware description
5913 * @iftype: interface type
5914 * @registered: is this wdev already registered with cfg80211
5915 * @registering: indicates we're doing registration under wiphy lock
5916 * for the notifier
5917 * @list: (private) Used to collect the interfaces
5918 * @netdev: (private) Used to reference back to the netdev, may be %NULL
5919 * @identifier: (private) Identifier used in nl80211 to identify this
5920 * wireless device if it has no netdev
5921 * @u: union containing data specific to @iftype
5922 * @connected: indicates if connected or not (STA mode)
5923 * @bssid: (private) Used by the internal configuration code
5924 * @wext: (private) Used by the internal wireless extensions compat code
5925 * @wext.ibss: (private) IBSS data part of wext handling
5926 * @wext.connect: (private) connection handling data
5927 * @wext.keys: (private) (WEP) key data
5928 * @wext.ie: (private) extra elements for association
5929 * @wext.ie_len: (private) length of extra elements
5930 * @wext.bssid: (private) selected network BSSID
5931 * @wext.ssid: (private) selected network SSID
5932 * @wext.default_key: (private) selected default key index
5933 * @wext.default_mgmt_key: (private) selected default management key index
5934 * @wext.prev_bssid: (private) previous BSSID for reassociation
5935 * @wext.prev_bssid_valid: (private) previous BSSID validity
5936 * @use_4addr: indicates 4addr mode is used on this interface, must be
5937 * set by driver (if supported) on add_interface BEFORE registering the
5938 * netdev and may otherwise be used by driver read-only, will be update
5939 * by cfg80211 on change_interface
5940 * @mgmt_registrations: list of registrations for management frames
5941 * @mgmt_registrations_need_update: mgmt registrations were updated,
5942 * need to propagate the update to the driver
5943 * @mtx: mutex used to lock data in this struct, may be used by drivers
5944 * and some API functions require it held
5945 * @beacon_interval: beacon interval used on this device for transmitting
5946 * beacons, 0 when not valid
5947 * @address: The address for this device, valid only if @netdev is %NULL
5948 * @is_running: true if this is a non-netdev device that has been started, e.g.
5949 * the P2P Device.
5950 * @cac_started: true if DFS channel availability check has been started
5951 * @cac_start_time: timestamp (jiffies) when the dfs state was entered.
5952 * @cac_time_ms: CAC time in ms
5953 * @ps: powersave mode is enabled
5954 * @ps_timeout: dynamic powersave timeout
5955 * @ap_unexpected_nlportid: (private) netlink port ID of application
5956 * registered for unexpected class 3 frames (AP mode)
5957 * @conn: (private) cfg80211 software SME connection state machine data
5958 * @connect_keys: (private) keys to set after connection is established
5959 * @conn_bss_type: connecting/connected BSS type
5960 * @conn_owner_nlportid: (private) connection owner socket port ID
5961 * @disconnect_wk: (private) auto-disconnect work
5962 * @disconnect_bssid: (private) the BSSID to use for auto-disconnect
5963 * @event_list: (private) list for internal event processing
5964 * @event_lock: (private) lock for event list
5965 * @owner_nlportid: (private) owner socket port ID
5966 * @nl_owner_dead: (private) owner socket went away
5967 * @cqm_rssi_work: (private) CQM RSSI reporting work
5968 * @cqm_config: (private) nl80211 RSSI monitor state
5969 * @pmsr_list: (private) peer measurement requests
5970 * @pmsr_lock: (private) peer measurements requests/results lock
5971 * @pmsr_free_wk: (private) peer measurements cleanup work
5972 * @unprot_beacon_reported: (private) timestamp of last
5973 * unprotected beacon report
5974 * @links: array of %IEEE80211_MLD_MAX_NUM_LINKS elements containing @addr
5975 * @ap and @client for each link
5976 * @valid_links: bitmap describing what elements of @links are valid
5977 */
5978 struct wireless_dev {
5979 struct wiphy *wiphy;
5980 enum nl80211_iftype iftype;
5981
5982 /* the remainder of this struct should be private to cfg80211 */
5983 struct list_head list;
5984 struct net_device *netdev;
5985
5986 u32 identifier;
5987
5988 struct list_head mgmt_registrations;
5989 u8 mgmt_registrations_need_update:1;
5990
5991 struct mutex mtx;
5992
5993 bool use_4addr, is_running, registered, registering;
5994
5995 u8 address[ETH_ALEN] __aligned(sizeof(u16));
5996
5997 /* currently used for IBSS and SME - might be rearranged later */
5998 struct cfg80211_conn *conn;
5999 struct cfg80211_cached_keys *connect_keys;
6000 enum ieee80211_bss_type conn_bss_type;
6001 u32 conn_owner_nlportid;
6002
6003 struct work_struct disconnect_wk;
6004 u8 disconnect_bssid[ETH_ALEN];
6005
6006 struct list_head event_list;
6007 spinlock_t event_lock;
6008
6009 u8 connected:1;
6010
6011 bool ps;
6012 int ps_timeout;
6013
6014 u32 ap_unexpected_nlportid;
6015
6016 u32 owner_nlportid;
6017 bool nl_owner_dead;
6018
6019 /* FIXME: need to rework radar detection for MLO */
6020 bool cac_started;
6021 unsigned long cac_start_time;
6022 unsigned int cac_time_ms;
6023
6024 #ifdef CONFIG_CFG80211_WEXT
6025 /* wext data */
6026 struct {
6027 struct cfg80211_ibss_params ibss;
6028 struct cfg80211_connect_params connect;
6029 struct cfg80211_cached_keys *keys;
6030 const u8 *ie;
6031 size_t ie_len;
6032 u8 bssid[ETH_ALEN];
6033 u8 prev_bssid[ETH_ALEN];
6034 u8 ssid[IEEE80211_MAX_SSID_LEN];
6035 s8 default_key, default_mgmt_key;
6036 bool prev_bssid_valid;
6037 } wext;
6038 #endif
6039
6040 struct wiphy_work cqm_rssi_work;
6041 struct cfg80211_cqm_config __rcu *cqm_config;
6042
6043 struct list_head pmsr_list;
6044 spinlock_t pmsr_lock;
6045 struct work_struct pmsr_free_wk;
6046
6047 unsigned long unprot_beacon_reported;
6048
6049 union {
6050 struct {
6051 u8 connected_addr[ETH_ALEN] __aligned(2);
6052 u8 ssid[IEEE80211_MAX_SSID_LEN];
6053 u8 ssid_len;
6054 } client;
6055 struct {
6056 int beacon_interval;
6057 struct cfg80211_chan_def preset_chandef;
6058 struct cfg80211_chan_def chandef;
6059 u8 id[IEEE80211_MAX_SSID_LEN];
6060 u8 id_len, id_up_len;
6061 } mesh;
6062 struct {
6063 struct cfg80211_chan_def preset_chandef;
6064 u8 ssid[IEEE80211_MAX_SSID_LEN];
6065 u8 ssid_len;
6066 } ap;
6067 struct {
6068 struct cfg80211_internal_bss *current_bss;
6069 struct cfg80211_chan_def chandef;
6070 int beacon_interval;
6071 u8 ssid[IEEE80211_MAX_SSID_LEN];
6072 u8 ssid_len;
6073 } ibss;
6074 struct {
6075 struct cfg80211_chan_def chandef;
6076 } ocb;
6077 } u;
6078
6079 struct {
6080 u8 addr[ETH_ALEN] __aligned(2);
6081 union {
6082 struct {
6083 unsigned int beacon_interval;
6084 struct cfg80211_chan_def chandef;
6085 } ap;
6086 struct {
6087 struct cfg80211_internal_bss *current_bss;
6088 } client;
6089 };
6090 } links[IEEE80211_MLD_MAX_NUM_LINKS];
6091 u16 valid_links;
6092 };
6093
wdev_address(struct wireless_dev * wdev)6094 static inline const u8 *wdev_address(struct wireless_dev *wdev)
6095 {
6096 if (wdev->netdev)
6097 return wdev->netdev->dev_addr;
6098 return wdev->address;
6099 }
6100
wdev_running(struct wireless_dev * wdev)6101 static inline bool wdev_running(struct wireless_dev *wdev)
6102 {
6103 if (wdev->netdev)
6104 return netif_running(wdev->netdev);
6105 return wdev->is_running;
6106 }
6107
6108 /**
6109 * wdev_priv - return wiphy priv from wireless_dev
6110 *
6111 * @wdev: The wireless device whose wiphy's priv pointer to return
6112 * Return: The wiphy priv of @wdev.
6113 */
wdev_priv(struct wireless_dev * wdev)6114 static inline void *wdev_priv(struct wireless_dev *wdev)
6115 {
6116 BUG_ON(!wdev);
6117 return wiphy_priv(wdev->wiphy);
6118 }
6119
6120 /**
6121 * wdev_chandef - return chandef pointer from wireless_dev
6122 * @wdev: the wdev
6123 * @link_id: the link ID for MLO
6124 *
6125 * Return: The chandef depending on the mode, or %NULL.
6126 */
6127 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev,
6128 unsigned int link_id);
6129
WARN_INVALID_LINK_ID(struct wireless_dev * wdev,unsigned int link_id)6130 static inline void WARN_INVALID_LINK_ID(struct wireless_dev *wdev,
6131 unsigned int link_id)
6132 {
6133 WARN_ON(link_id && !wdev->valid_links);
6134 WARN_ON(wdev->valid_links &&
6135 !(wdev->valid_links & BIT(link_id)));
6136 }
6137
6138 #define for_each_valid_link(link_info, link_id) \
6139 for (link_id = 0; \
6140 link_id < ((link_info)->valid_links ? \
6141 ARRAY_SIZE((link_info)->links) : 1); \
6142 link_id++) \
6143 if (!(link_info)->valid_links || \
6144 ((link_info)->valid_links & BIT(link_id)))
6145
6146 /**
6147 * DOC: Utility functions
6148 *
6149 * cfg80211 offers a number of utility functions that can be useful.
6150 */
6151
6152 /**
6153 * ieee80211_channel_equal - compare two struct ieee80211_channel
6154 *
6155 * @a: 1st struct ieee80211_channel
6156 * @b: 2nd struct ieee80211_channel
6157 * Return: true if center frequency of @a == @b
6158 */
6159 static inline bool
ieee80211_channel_equal(struct ieee80211_channel * a,struct ieee80211_channel * b)6160 ieee80211_channel_equal(struct ieee80211_channel *a,
6161 struct ieee80211_channel *b)
6162 {
6163 return (a->center_freq == b->center_freq &&
6164 a->freq_offset == b->freq_offset);
6165 }
6166
6167 /**
6168 * ieee80211_channel_to_khz - convert ieee80211_channel to frequency in KHz
6169 * @chan: struct ieee80211_channel to convert
6170 * Return: The corresponding frequency (in KHz)
6171 */
6172 static inline u32
ieee80211_channel_to_khz(const struct ieee80211_channel * chan)6173 ieee80211_channel_to_khz(const struct ieee80211_channel *chan)
6174 {
6175 return MHZ_TO_KHZ(chan->center_freq) + chan->freq_offset;
6176 }
6177
6178 /**
6179 * ieee80211_s1g_channel_width - get allowed channel width from @chan
6180 *
6181 * Only allowed for band NL80211_BAND_S1GHZ
6182 * @chan: channel
6183 * Return: The allowed channel width for this center_freq
6184 */
6185 enum nl80211_chan_width
6186 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan);
6187
6188 /**
6189 * ieee80211_channel_to_freq_khz - convert channel number to frequency
6190 * @chan: channel number
6191 * @band: band, necessary due to channel number overlap
6192 * Return: The corresponding frequency (in KHz), or 0 if the conversion failed.
6193 */
6194 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band);
6195
6196 /**
6197 * ieee80211_channel_to_frequency - convert channel number to frequency
6198 * @chan: channel number
6199 * @band: band, necessary due to channel number overlap
6200 * Return: The corresponding frequency (in MHz), or 0 if the conversion failed.
6201 */
6202 static inline int
ieee80211_channel_to_frequency(int chan,enum nl80211_band band)6203 ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
6204 {
6205 return KHZ_TO_MHZ(ieee80211_channel_to_freq_khz(chan, band));
6206 }
6207
6208 /**
6209 * ieee80211_freq_khz_to_channel - convert frequency to channel number
6210 * @freq: center frequency in KHz
6211 * Return: The corresponding channel, or 0 if the conversion failed.
6212 */
6213 int ieee80211_freq_khz_to_channel(u32 freq);
6214
6215 /**
6216 * ieee80211_frequency_to_channel - convert frequency to channel number
6217 * @freq: center frequency in MHz
6218 * Return: The corresponding channel, or 0 if the conversion failed.
6219 */
6220 static inline int
ieee80211_frequency_to_channel(int freq)6221 ieee80211_frequency_to_channel(int freq)
6222 {
6223 return ieee80211_freq_khz_to_channel(MHZ_TO_KHZ(freq));
6224 }
6225
6226 /**
6227 * ieee80211_get_channel_khz - get channel struct from wiphy for specified
6228 * frequency
6229 * @wiphy: the struct wiphy to get the channel for
6230 * @freq: the center frequency (in KHz) of the channel
6231 * Return: The channel struct from @wiphy at @freq.
6232 */
6233 struct ieee80211_channel *
6234 ieee80211_get_channel_khz(struct wiphy *wiphy, u32 freq);
6235
6236 /**
6237 * ieee80211_get_channel - get channel struct from wiphy for specified frequency
6238 *
6239 * @wiphy: the struct wiphy to get the channel for
6240 * @freq: the center frequency (in MHz) of the channel
6241 * Return: The channel struct from @wiphy at @freq.
6242 */
6243 static inline struct ieee80211_channel *
ieee80211_get_channel(struct wiphy * wiphy,int freq)6244 ieee80211_get_channel(struct wiphy *wiphy, int freq)
6245 {
6246 return ieee80211_get_channel_khz(wiphy, MHZ_TO_KHZ(freq));
6247 }
6248
6249 /**
6250 * cfg80211_channel_is_psc - Check if the channel is a 6 GHz PSC
6251 * @chan: control channel to check
6252 *
6253 * The Preferred Scanning Channels (PSC) are defined in
6254 * Draft IEEE P802.11ax/D5.0, 26.17.2.3.3
6255 */
cfg80211_channel_is_psc(struct ieee80211_channel * chan)6256 static inline bool cfg80211_channel_is_psc(struct ieee80211_channel *chan)
6257 {
6258 if (chan->band != NL80211_BAND_6GHZ)
6259 return false;
6260
6261 return ieee80211_frequency_to_channel(chan->center_freq) % 16 == 5;
6262 }
6263
6264 /**
6265 * ieee80211_get_response_rate - get basic rate for a given rate
6266 *
6267 * @sband: the band to look for rates in
6268 * @basic_rates: bitmap of basic rates
6269 * @bitrate: the bitrate for which to find the basic rate
6270 *
6271 * Return: The basic rate corresponding to a given bitrate, that
6272 * is the next lower bitrate contained in the basic rate map,
6273 * which is, for this function, given as a bitmap of indices of
6274 * rates in the band's bitrate table.
6275 */
6276 const struct ieee80211_rate *
6277 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
6278 u32 basic_rates, int bitrate);
6279
6280 /**
6281 * ieee80211_mandatory_rates - get mandatory rates for a given band
6282 * @sband: the band to look for rates in
6283 * @scan_width: width of the control channel
6284 *
6285 * This function returns a bitmap of the mandatory rates for the given
6286 * band, bits are set according to the rate position in the bitrates array.
6287 */
6288 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
6289 enum nl80211_bss_scan_width scan_width);
6290
6291 /*
6292 * Radiotap parsing functions -- for controlled injection support
6293 *
6294 * Implemented in net/wireless/radiotap.c
6295 * Documentation in Documentation/networking/radiotap-headers.rst
6296 */
6297
6298 struct radiotap_align_size {
6299 uint8_t align:4, size:4;
6300 };
6301
6302 struct ieee80211_radiotap_namespace {
6303 const struct radiotap_align_size *align_size;
6304 int n_bits;
6305 uint32_t oui;
6306 uint8_t subns;
6307 };
6308
6309 struct ieee80211_radiotap_vendor_namespaces {
6310 const struct ieee80211_radiotap_namespace *ns;
6311 int n_ns;
6312 };
6313
6314 /**
6315 * struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args
6316 * @this_arg_index: index of current arg, valid after each successful call
6317 * to ieee80211_radiotap_iterator_next()
6318 * @this_arg: pointer to current radiotap arg; it is valid after each
6319 * call to ieee80211_radiotap_iterator_next() but also after
6320 * ieee80211_radiotap_iterator_init() where it will point to
6321 * the beginning of the actual data portion
6322 * @this_arg_size: length of the current arg, for convenience
6323 * @current_namespace: pointer to the current namespace definition
6324 * (or internally %NULL if the current namespace is unknown)
6325 * @is_radiotap_ns: indicates whether the current namespace is the default
6326 * radiotap namespace or not
6327 *
6328 * @_rtheader: pointer to the radiotap header we are walking through
6329 * @_max_length: length of radiotap header in cpu byte ordering
6330 * @_arg_index: next argument index
6331 * @_arg: next argument pointer
6332 * @_next_bitmap: internal pointer to next present u32
6333 * @_bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present
6334 * @_vns: vendor namespace definitions
6335 * @_next_ns_data: beginning of the next namespace's data
6336 * @_reset_on_ext: internal; reset the arg index to 0 when going to the
6337 * next bitmap word
6338 *
6339 * Describes the radiotap parser state. Fields prefixed with an underscore
6340 * must not be used by users of the parser, only by the parser internally.
6341 */
6342
6343 struct ieee80211_radiotap_iterator {
6344 struct ieee80211_radiotap_header *_rtheader;
6345 const struct ieee80211_radiotap_vendor_namespaces *_vns;
6346 const struct ieee80211_radiotap_namespace *current_namespace;
6347
6348 unsigned char *_arg, *_next_ns_data;
6349 __le32 *_next_bitmap;
6350
6351 unsigned char *this_arg;
6352 int this_arg_index;
6353 int this_arg_size;
6354
6355 int is_radiotap_ns;
6356
6357 int _max_length;
6358 int _arg_index;
6359 uint32_t _bitmap_shifter;
6360 int _reset_on_ext;
6361 };
6362
6363 int
6364 ieee80211_radiotap_iterator_init(struct ieee80211_radiotap_iterator *iterator,
6365 struct ieee80211_radiotap_header *radiotap_header,
6366 int max_length,
6367 const struct ieee80211_radiotap_vendor_namespaces *vns);
6368
6369 int
6370 ieee80211_radiotap_iterator_next(struct ieee80211_radiotap_iterator *iterator);
6371
6372
6373 extern const unsigned char rfc1042_header[6];
6374 extern const unsigned char bridge_tunnel_header[6];
6375
6376 /**
6377 * ieee80211_get_hdrlen_from_skb - get header length from data
6378 *
6379 * @skb: the frame
6380 *
6381 * Given an skb with a raw 802.11 header at the data pointer this function
6382 * returns the 802.11 header length.
6383 *
6384 * Return: The 802.11 header length in bytes (not including encryption
6385 * headers). Or 0 if the data in the sk_buff is too short to contain a valid
6386 * 802.11 header.
6387 */
6388 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
6389
6390 /**
6391 * ieee80211_hdrlen - get header length in bytes from frame control
6392 * @fc: frame control field in little-endian format
6393 * Return: The header length in bytes.
6394 */
6395 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc);
6396
6397 /**
6398 * ieee80211_get_mesh_hdrlen - get mesh extension header length
6399 * @meshhdr: the mesh extension header, only the flags field
6400 * (first byte) will be accessed
6401 * Return: The length of the extension header, which is always at
6402 * least 6 bytes and at most 18 if address 5 and 6 are present.
6403 */
6404 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr);
6405
6406 /**
6407 * DOC: Data path helpers
6408 *
6409 * In addition to generic utilities, cfg80211 also offers
6410 * functions that help implement the data path for devices
6411 * that do not do the 802.11/802.3 conversion on the device.
6412 */
6413
6414 /**
6415 * ieee80211_data_to_8023_exthdr - convert an 802.11 data frame to 802.3
6416 * @skb: the 802.11 data frame
6417 * @ehdr: pointer to a &struct ethhdr that will get the header, instead
6418 * of it being pushed into the SKB
6419 * @addr: the device MAC address
6420 * @iftype: the virtual interface type
6421 * @data_offset: offset of payload after the 802.11 header
6422 * @is_amsdu: true if the 802.11 header is A-MSDU
6423 * Return: 0 on success. Non-zero on error.
6424 */
6425 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
6426 const u8 *addr, enum nl80211_iftype iftype,
6427 u8 data_offset, bool is_amsdu);
6428
6429 /**
6430 * ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3
6431 * @skb: the 802.11 data frame
6432 * @addr: the device MAC address
6433 * @iftype: the virtual interface type
6434 * Return: 0 on success. Non-zero on error.
6435 */
ieee80211_data_to_8023(struct sk_buff * skb,const u8 * addr,enum nl80211_iftype iftype)6436 static inline int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
6437 enum nl80211_iftype iftype)
6438 {
6439 return ieee80211_data_to_8023_exthdr(skb, NULL, addr, iftype, 0, false);
6440 }
6441
6442 /**
6443 * ieee80211_is_valid_amsdu - check if subframe lengths of an A-MSDU are valid
6444 *
6445 * This is used to detect non-standard A-MSDU frames, e.g. the ones generated
6446 * by ath10k and ath11k, where the subframe length includes the length of the
6447 * mesh control field.
6448 *
6449 * @skb: The input A-MSDU frame without any headers.
6450 * @mesh_hdr: the type of mesh header to test
6451 * 0: non-mesh A-MSDU length field
6452 * 1: big-endian mesh A-MSDU length field
6453 * 2: little-endian mesh A-MSDU length field
6454 * Returns: true if subframe header lengths are valid for the @mesh_hdr mode
6455 */
6456 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr);
6457
6458 /**
6459 * ieee80211_amsdu_to_8023s - decode an IEEE 802.11n A-MSDU frame
6460 *
6461 * Decode an IEEE 802.11 A-MSDU and convert it to a list of 802.3 frames.
6462 * The @list will be empty if the decode fails. The @skb must be fully
6463 * header-less before being passed in here; it is freed in this function.
6464 *
6465 * @skb: The input A-MSDU frame without any headers.
6466 * @list: The output list of 802.3 frames. It must be allocated and
6467 * initialized by the caller.
6468 * @addr: The device MAC address.
6469 * @iftype: The device interface type.
6470 * @extra_headroom: The hardware extra headroom for SKBs in the @list.
6471 * @check_da: DA to check in the inner ethernet header, or NULL
6472 * @check_sa: SA to check in the inner ethernet header, or NULL
6473 * @mesh_control: see mesh_hdr in ieee80211_is_valid_amsdu
6474 */
6475 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
6476 const u8 *addr, enum nl80211_iftype iftype,
6477 const unsigned int extra_headroom,
6478 const u8 *check_da, const u8 *check_sa,
6479 u8 mesh_control);
6480
6481 /**
6482 * ieee80211_get_8023_tunnel_proto - get RFC1042 or bridge tunnel encap protocol
6483 *
6484 * Check for RFC1042 or bridge tunnel header and fetch the encapsulated
6485 * protocol.
6486 *
6487 * @hdr: pointer to the MSDU payload
6488 * @proto: destination pointer to store the protocol
6489 * Return: true if encapsulation was found
6490 */
6491 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto);
6492
6493 /**
6494 * ieee80211_strip_8023_mesh_hdr - strip mesh header from converted 802.3 frames
6495 *
6496 * Strip the mesh header, which was left in by ieee80211_data_to_8023 as part
6497 * of the MSDU data. Also move any source/destination addresses from the mesh
6498 * header to the ethernet header (if present).
6499 *
6500 * @skb: The 802.3 frame with embedded mesh header
6501 */
6502 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb);
6503
6504 /**
6505 * cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame
6506 * @skb: the data frame
6507 * @qos_map: Interworking QoS mapping or %NULL if not in use
6508 * Return: The 802.1p/1d tag.
6509 */
6510 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
6511 struct cfg80211_qos_map *qos_map);
6512
6513 /**
6514 * cfg80211_find_elem_match - match information element and byte array in data
6515 *
6516 * @eid: element ID
6517 * @ies: data consisting of IEs
6518 * @len: length of data
6519 * @match: byte array to match
6520 * @match_len: number of bytes in the match array
6521 * @match_offset: offset in the IE data where the byte array should match.
6522 * Note the difference to cfg80211_find_ie_match() which considers
6523 * the offset to start from the element ID byte, but here we take
6524 * the data portion instead.
6525 *
6526 * Return: %NULL if the element ID could not be found or if
6527 * the element is invalid (claims to be longer than the given
6528 * data) or if the byte array doesn't match; otherwise return the
6529 * requested element struct.
6530 *
6531 * Note: There are no checks on the element length other than
6532 * having to fit into the given data and being large enough for the
6533 * byte array to match.
6534 */
6535 const struct element *
6536 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
6537 const u8 *match, unsigned int match_len,
6538 unsigned int match_offset);
6539
6540 /**
6541 * cfg80211_find_ie_match - match information element and byte array in data
6542 *
6543 * @eid: element ID
6544 * @ies: data consisting of IEs
6545 * @len: length of data
6546 * @match: byte array to match
6547 * @match_len: number of bytes in the match array
6548 * @match_offset: offset in the IE where the byte array should match.
6549 * If match_len is zero, this must also be set to zero.
6550 * Otherwise this must be set to 2 or more, because the first
6551 * byte is the element id, which is already compared to eid, and
6552 * the second byte is the IE length.
6553 *
6554 * Return: %NULL if the element ID could not be found or if
6555 * the element is invalid (claims to be longer than the given
6556 * data) or if the byte array doesn't match, or a pointer to the first
6557 * byte of the requested element, that is the byte containing the
6558 * element ID.
6559 *
6560 * Note: There are no checks on the element length other than
6561 * having to fit into the given data and being large enough for the
6562 * byte array to match.
6563 */
6564 static inline const u8 *
cfg80211_find_ie_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)6565 cfg80211_find_ie_match(u8 eid, const u8 *ies, unsigned int len,
6566 const u8 *match, unsigned int match_len,
6567 unsigned int match_offset)
6568 {
6569 /* match_offset can't be smaller than 2, unless match_len is
6570 * zero, in which case match_offset must be zero as well.
6571 */
6572 if (WARN_ON((match_len && match_offset < 2) ||
6573 (!match_len && match_offset)))
6574 return NULL;
6575
6576 return (const void *)cfg80211_find_elem_match(eid, ies, len,
6577 match, match_len,
6578 match_offset ?
6579 match_offset - 2 : 0);
6580 }
6581
6582 /**
6583 * cfg80211_find_elem - find information element in data
6584 *
6585 * @eid: element ID
6586 * @ies: data consisting of IEs
6587 * @len: length of data
6588 *
6589 * Return: %NULL if the element ID could not be found or if
6590 * the element is invalid (claims to be longer than the given
6591 * data) or if the byte array doesn't match; otherwise return the
6592 * requested element struct.
6593 *
6594 * Note: There are no checks on the element length other than
6595 * having to fit into the given data.
6596 */
6597 static inline const struct element *
cfg80211_find_elem(u8 eid,const u8 * ies,int len)6598 cfg80211_find_elem(u8 eid, const u8 *ies, int len)
6599 {
6600 return cfg80211_find_elem_match(eid, ies, len, NULL, 0, 0);
6601 }
6602
6603 /**
6604 * cfg80211_find_ie - find information element in data
6605 *
6606 * @eid: element ID
6607 * @ies: data consisting of IEs
6608 * @len: length of data
6609 *
6610 * Return: %NULL if the element ID could not be found or if
6611 * the element is invalid (claims to be longer than the given
6612 * data), or a pointer to the first byte of the requested
6613 * element, that is the byte containing the element ID.
6614 *
6615 * Note: There are no checks on the element length other than
6616 * having to fit into the given data.
6617 */
cfg80211_find_ie(u8 eid,const u8 * ies,int len)6618 static inline const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len)
6619 {
6620 return cfg80211_find_ie_match(eid, ies, len, NULL, 0, 0);
6621 }
6622
6623 /**
6624 * cfg80211_find_ext_elem - find information element with EID Extension in data
6625 *
6626 * @ext_eid: element ID Extension
6627 * @ies: data consisting of IEs
6628 * @len: length of data
6629 *
6630 * Return: %NULL if the etended element could not be found or if
6631 * the element is invalid (claims to be longer than the given
6632 * data) or if the byte array doesn't match; otherwise return the
6633 * requested element struct.
6634 *
6635 * Note: There are no checks on the element length other than
6636 * having to fit into the given data.
6637 */
6638 static inline const struct element *
cfg80211_find_ext_elem(u8 ext_eid,const u8 * ies,int len)6639 cfg80211_find_ext_elem(u8 ext_eid, const u8 *ies, int len)
6640 {
6641 return cfg80211_find_elem_match(WLAN_EID_EXTENSION, ies, len,
6642 &ext_eid, 1, 0);
6643 }
6644
6645 /**
6646 * cfg80211_find_ext_ie - find information element with EID Extension in data
6647 *
6648 * @ext_eid: element ID Extension
6649 * @ies: data consisting of IEs
6650 * @len: length of data
6651 *
6652 * Return: %NULL if the extended element ID could not be found or if
6653 * the element is invalid (claims to be longer than the given
6654 * data), or a pointer to the first byte of the requested
6655 * element, that is the byte containing the element ID.
6656 *
6657 * Note: There are no checks on the element length other than
6658 * having to fit into the given data.
6659 */
cfg80211_find_ext_ie(u8 ext_eid,const u8 * ies,int len)6660 static inline const u8 *cfg80211_find_ext_ie(u8 ext_eid, const u8 *ies, int len)
6661 {
6662 return cfg80211_find_ie_match(WLAN_EID_EXTENSION, ies, len,
6663 &ext_eid, 1, 2);
6664 }
6665
6666 /**
6667 * cfg80211_find_vendor_elem - find vendor specific information element in data
6668 *
6669 * @oui: vendor OUI
6670 * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any
6671 * @ies: data consisting of IEs
6672 * @len: length of data
6673 *
6674 * Return: %NULL if the vendor specific element ID could not be found or if the
6675 * element is invalid (claims to be longer than the given data); otherwise
6676 * return the element structure for the requested element.
6677 *
6678 * Note: There are no checks on the element length other than having to fit into
6679 * the given data.
6680 */
6681 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
6682 const u8 *ies,
6683 unsigned int len);
6684
6685 /**
6686 * cfg80211_find_vendor_ie - find vendor specific information element in data
6687 *
6688 * @oui: vendor OUI
6689 * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any
6690 * @ies: data consisting of IEs
6691 * @len: length of data
6692 *
6693 * Return: %NULL if the vendor specific element ID could not be found or if the
6694 * element is invalid (claims to be longer than the given data), or a pointer to
6695 * the first byte of the requested element, that is the byte containing the
6696 * element ID.
6697 *
6698 * Note: There are no checks on the element length other than having to fit into
6699 * the given data.
6700 */
6701 static inline const u8 *
cfg80211_find_vendor_ie(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)6702 cfg80211_find_vendor_ie(unsigned int oui, int oui_type,
6703 const u8 *ies, unsigned int len)
6704 {
6705 return (const void *)cfg80211_find_vendor_elem(oui, oui_type, ies, len);
6706 }
6707
6708 /**
6709 * cfg80211_defragment_element - Defrag the given element data into a buffer
6710 *
6711 * @elem: the element to defragment
6712 * @ies: elements where @elem is contained
6713 * @ieslen: length of @ies
6714 * @data: buffer to store element data
6715 * @data_len: length of @data
6716 * @frag_id: the element ID of fragments
6717 *
6718 * Return: length of @data, or -EINVAL on error
6719 *
6720 * Copy out all data from an element that may be fragmented into @data, while
6721 * skipping all headers.
6722 *
6723 * The function uses memmove() internally. It is acceptable to defragment an
6724 * element in-place.
6725 */
6726 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
6727 size_t ieslen, u8 *data, size_t data_len,
6728 u8 frag_id);
6729
6730 /**
6731 * cfg80211_send_layer2_update - send layer 2 update frame
6732 *
6733 * @dev: network device
6734 * @addr: STA MAC address
6735 *
6736 * Wireless drivers can use this function to update forwarding tables in bridge
6737 * devices upon STA association.
6738 */
6739 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr);
6740
6741 /**
6742 * DOC: Regulatory enforcement infrastructure
6743 *
6744 * TODO
6745 */
6746
6747 /**
6748 * regulatory_hint - driver hint to the wireless core a regulatory domain
6749 * @wiphy: the wireless device giving the hint (used only for reporting
6750 * conflicts)
6751 * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain
6752 * should be in. If @rd is set this should be NULL. Note that if you
6753 * set this to NULL you should still set rd->alpha2 to some accepted
6754 * alpha2.
6755 *
6756 * Wireless drivers can use this function to hint to the wireless core
6757 * what it believes should be the current regulatory domain by
6758 * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory
6759 * domain should be in or by providing a completely build regulatory domain.
6760 * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried
6761 * for a regulatory domain structure for the respective country.
6762 *
6763 * The wiphy must have been registered to cfg80211 prior to this call.
6764 * For cfg80211 drivers this means you must first use wiphy_register(),
6765 * for mac80211 drivers you must first use ieee80211_register_hw().
6766 *
6767 * Drivers should check the return value, its possible you can get
6768 * an -ENOMEM.
6769 *
6770 * Return: 0 on success. -ENOMEM.
6771 */
6772 int regulatory_hint(struct wiphy *wiphy, const char *alpha2);
6773
6774 /**
6775 * regulatory_set_wiphy_regd - set regdom info for self managed drivers
6776 * @wiphy: the wireless device we want to process the regulatory domain on
6777 * @rd: the regulatory domain informatoin to use for this wiphy
6778 *
6779 * Set the regulatory domain information for self-managed wiphys, only they
6780 * may use this function. See %REGULATORY_WIPHY_SELF_MANAGED for more
6781 * information.
6782 *
6783 * Return: 0 on success. -EINVAL, -EPERM
6784 */
6785 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
6786 struct ieee80211_regdomain *rd);
6787
6788 /**
6789 * regulatory_set_wiphy_regd_sync - set regdom for self-managed drivers
6790 * @wiphy: the wireless device we want to process the regulatory domain on
6791 * @rd: the regulatory domain information to use for this wiphy
6792 *
6793 * This functions requires the RTNL and the wiphy mutex to be held and
6794 * applies the new regdomain synchronously to this wiphy. For more details
6795 * see regulatory_set_wiphy_regd().
6796 *
6797 * Return: 0 on success. -EINVAL, -EPERM
6798 */
6799 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
6800 struct ieee80211_regdomain *rd);
6801
6802 /**
6803 * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain
6804 * @wiphy: the wireless device we want to process the regulatory domain on
6805 * @regd: the custom regulatory domain to use for this wiphy
6806 *
6807 * Drivers can sometimes have custom regulatory domains which do not apply
6808 * to a specific country. Drivers can use this to apply such custom regulatory
6809 * domains. This routine must be called prior to wiphy registration. The
6810 * custom regulatory domain will be trusted completely and as such previous
6811 * default channel settings will be disregarded. If no rule is found for a
6812 * channel on the regulatory domain the channel will be disabled.
6813 * Drivers using this for a wiphy should also set the wiphy flag
6814 * REGULATORY_CUSTOM_REG or cfg80211 will set it for the wiphy
6815 * that called this helper.
6816 */
6817 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
6818 const struct ieee80211_regdomain *regd);
6819
6820 /**
6821 * freq_reg_info - get regulatory information for the given frequency
6822 * @wiphy: the wiphy for which we want to process this rule for
6823 * @center_freq: Frequency in KHz for which we want regulatory information for
6824 *
6825 * Use this function to get the regulatory rule for a specific frequency on
6826 * a given wireless device. If the device has a specific regulatory domain
6827 * it wants to follow we respect that unless a country IE has been received
6828 * and processed already.
6829 *
6830 * Return: A valid pointer, or, when an error occurs, for example if no rule
6831 * can be found, the return value is encoded using ERR_PTR(). Use IS_ERR() to
6832 * check and PTR_ERR() to obtain the numeric return value. The numeric return
6833 * value will be -ERANGE if we determine the given center_freq does not even
6834 * have a regulatory rule for a frequency range in the center_freq's band.
6835 * See freq_in_rule_band() for our current definition of a band -- this is
6836 * purely subjective and right now it's 802.11 specific.
6837 */
6838 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
6839 u32 center_freq);
6840
6841 /**
6842 * reg_initiator_name - map regulatory request initiator enum to name
6843 * @initiator: the regulatory request initiator
6844 *
6845 * You can use this to map the regulatory request initiator enum to a
6846 * proper string representation.
6847 */
6848 const char *reg_initiator_name(enum nl80211_reg_initiator initiator);
6849
6850 /**
6851 * regulatory_pre_cac_allowed - check if pre-CAC allowed in the current regdom
6852 * @wiphy: wiphy for which pre-CAC capability is checked.
6853 *
6854 * Pre-CAC is allowed only in some regdomains (notable ETSI).
6855 */
6856 bool regulatory_pre_cac_allowed(struct wiphy *wiphy);
6857
6858 /**
6859 * DOC: Internal regulatory db functions
6860 *
6861 */
6862
6863 /**
6864 * reg_query_regdb_wmm - Query internal regulatory db for wmm rule
6865 * Regulatory self-managed driver can use it to proactively
6866 *
6867 * @alpha2: the ISO/IEC 3166 alpha2 wmm rule to be queried.
6868 * @freq: the freqency(in MHz) to be queried.
6869 * @rule: pointer to store the wmm rule from the regulatory db.
6870 *
6871 * Self-managed wireless drivers can use this function to query
6872 * the internal regulatory database to check whether the given
6873 * ISO/IEC 3166 alpha2 country and freq have wmm rule limitations.
6874 *
6875 * Drivers should check the return value, its possible you can get
6876 * an -ENODATA.
6877 *
6878 * Return: 0 on success. -ENODATA.
6879 */
6880 int reg_query_regdb_wmm(char *alpha2, int freq,
6881 struct ieee80211_reg_rule *rule);
6882
6883 /*
6884 * callbacks for asynchronous cfg80211 methods, notification
6885 * functions and BSS handling helpers
6886 */
6887
6888 /**
6889 * cfg80211_scan_done - notify that scan finished
6890 *
6891 * @request: the corresponding scan request
6892 * @info: information about the completed scan
6893 */
6894 void cfg80211_scan_done(struct cfg80211_scan_request *request,
6895 struct cfg80211_scan_info *info);
6896
6897 /**
6898 * cfg80211_sched_scan_results - notify that new scan results are available
6899 *
6900 * @wiphy: the wiphy which got scheduled scan results
6901 * @reqid: identifier for the related scheduled scan request
6902 */
6903 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid);
6904
6905 /**
6906 * cfg80211_sched_scan_stopped - notify that the scheduled scan has stopped
6907 *
6908 * @wiphy: the wiphy on which the scheduled scan stopped
6909 * @reqid: identifier for the related scheduled scan request
6910 *
6911 * The driver can call this function to inform cfg80211 that the
6912 * scheduled scan had to be stopped, for whatever reason. The driver
6913 * is then called back via the sched_scan_stop operation when done.
6914 */
6915 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid);
6916
6917 /**
6918 * cfg80211_sched_scan_stopped_locked - notify that the scheduled scan has stopped
6919 *
6920 * @wiphy: the wiphy on which the scheduled scan stopped
6921 * @reqid: identifier for the related scheduled scan request
6922 *
6923 * The driver can call this function to inform cfg80211 that the
6924 * scheduled scan had to be stopped, for whatever reason. The driver
6925 * is then called back via the sched_scan_stop operation when done.
6926 * This function should be called with the wiphy mutex held.
6927 */
6928 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid);
6929
6930 /**
6931 * cfg80211_inform_bss_frame_data - inform cfg80211 of a received BSS frame
6932 * @wiphy: the wiphy reporting the BSS
6933 * @data: the BSS metadata
6934 * @mgmt: the management frame (probe response or beacon)
6935 * @len: length of the management frame
6936 * @gfp: context flags
6937 *
6938 * This informs cfg80211 that BSS information was found and
6939 * the BSS should be updated/added.
6940 *
6941 * Return: A referenced struct, must be released with cfg80211_put_bss()!
6942 * Or %NULL on error.
6943 */
6944 struct cfg80211_bss * __must_check
6945 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
6946 struct cfg80211_inform_bss *data,
6947 struct ieee80211_mgmt *mgmt, size_t len,
6948 gfp_t gfp);
6949
6950 static inline struct cfg80211_bss * __must_check
cfg80211_inform_bss_width_frame(struct wiphy * wiphy,struct ieee80211_channel * rx_channel,enum nl80211_bss_scan_width scan_width,struct ieee80211_mgmt * mgmt,size_t len,s32 signal,gfp_t gfp)6951 cfg80211_inform_bss_width_frame(struct wiphy *wiphy,
6952 struct ieee80211_channel *rx_channel,
6953 enum nl80211_bss_scan_width scan_width,
6954 struct ieee80211_mgmt *mgmt, size_t len,
6955 s32 signal, gfp_t gfp)
6956 {
6957 struct cfg80211_inform_bss data = {
6958 .chan = rx_channel,
6959 .scan_width = scan_width,
6960 .signal = signal,
6961 };
6962
6963 return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp);
6964 }
6965
6966 static inline struct cfg80211_bss * __must_check
cfg80211_inform_bss_frame(struct wiphy * wiphy,struct ieee80211_channel * rx_channel,struct ieee80211_mgmt * mgmt,size_t len,s32 signal,gfp_t gfp)6967 cfg80211_inform_bss_frame(struct wiphy *wiphy,
6968 struct ieee80211_channel *rx_channel,
6969 struct ieee80211_mgmt *mgmt, size_t len,
6970 s32 signal, gfp_t gfp)
6971 {
6972 struct cfg80211_inform_bss data = {
6973 .chan = rx_channel,
6974 .scan_width = NL80211_BSS_CHAN_WIDTH_20,
6975 .signal = signal,
6976 };
6977
6978 return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp);
6979 }
6980
6981 /**
6982 * cfg80211_gen_new_bssid - generate a nontransmitted BSSID for multi-BSSID
6983 * @bssid: transmitter BSSID
6984 * @max_bssid: max BSSID indicator, taken from Multiple BSSID element
6985 * @mbssid_index: BSSID index, taken from Multiple BSSID index element
6986 * @new_bssid: calculated nontransmitted BSSID
6987 */
cfg80211_gen_new_bssid(const u8 * bssid,u8 max_bssid,u8 mbssid_index,u8 * new_bssid)6988 static inline void cfg80211_gen_new_bssid(const u8 *bssid, u8 max_bssid,
6989 u8 mbssid_index, u8 *new_bssid)
6990 {
6991 u64 bssid_u64 = ether_addr_to_u64(bssid);
6992 u64 mask = GENMASK_ULL(max_bssid - 1, 0);
6993 u64 new_bssid_u64;
6994
6995 new_bssid_u64 = bssid_u64 & ~mask;
6996
6997 new_bssid_u64 |= ((bssid_u64 & mask) + mbssid_index) & mask;
6998
6999 u64_to_ether_addr(new_bssid_u64, new_bssid);
7000 }
7001
7002 /**
7003 * cfg80211_is_element_inherited - returns if element ID should be inherited
7004 * @element: element to check
7005 * @non_inherit_element: non inheritance element
7006 */
7007 bool cfg80211_is_element_inherited(const struct element *element,
7008 const struct element *non_inherit_element);
7009
7010 /**
7011 * cfg80211_merge_profile - merges a MBSSID profile if it is split between IEs
7012 * @ie: ies
7013 * @ielen: length of IEs
7014 * @mbssid_elem: current MBSSID element
7015 * @sub_elem: current MBSSID subelement (profile)
7016 * @merged_ie: location of the merged profile
7017 * @max_copy_len: max merged profile length
7018 */
7019 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
7020 const struct element *mbssid_elem,
7021 const struct element *sub_elem,
7022 u8 *merged_ie, size_t max_copy_len);
7023
7024 /**
7025 * enum cfg80211_bss_frame_type - frame type that the BSS data came from
7026 * @CFG80211_BSS_FTYPE_UNKNOWN: driver doesn't know whether the data is
7027 * from a beacon or probe response
7028 * @CFG80211_BSS_FTYPE_BEACON: data comes from a beacon
7029 * @CFG80211_BSS_FTYPE_PRESP: data comes from a probe response
7030 */
7031 enum cfg80211_bss_frame_type {
7032 CFG80211_BSS_FTYPE_UNKNOWN,
7033 CFG80211_BSS_FTYPE_BEACON,
7034 CFG80211_BSS_FTYPE_PRESP,
7035 };
7036
7037 /**
7038 * cfg80211_get_ies_channel_number - returns the channel number from ies
7039 * @ie: IEs
7040 * @ielen: length of IEs
7041 * @band: enum nl80211_band of the channel
7042 *
7043 * Returns the channel number, or -1 if none could be determined.
7044 */
7045 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
7046 enum nl80211_band band);
7047
7048 /**
7049 * cfg80211_inform_bss_data - inform cfg80211 of a new BSS
7050 *
7051 * @wiphy: the wiphy reporting the BSS
7052 * @data: the BSS metadata
7053 * @ftype: frame type (if known)
7054 * @bssid: the BSSID of the BSS
7055 * @tsf: the TSF sent by the peer in the beacon/probe response (or 0)
7056 * @capability: the capability field sent by the peer
7057 * @beacon_interval: the beacon interval announced by the peer
7058 * @ie: additional IEs sent by the peer
7059 * @ielen: length of the additional IEs
7060 * @gfp: context flags
7061 *
7062 * This informs cfg80211 that BSS information was found and
7063 * the BSS should be updated/added.
7064 *
7065 * Return: A referenced struct, must be released with cfg80211_put_bss()!
7066 * Or %NULL on error.
7067 */
7068 struct cfg80211_bss * __must_check
7069 cfg80211_inform_bss_data(struct wiphy *wiphy,
7070 struct cfg80211_inform_bss *data,
7071 enum cfg80211_bss_frame_type ftype,
7072 const u8 *bssid, u64 tsf, u16 capability,
7073 u16 beacon_interval, const u8 *ie, size_t ielen,
7074 gfp_t gfp);
7075
7076 static inline struct cfg80211_bss * __must_check
cfg80211_inform_bss_width(struct wiphy * wiphy,struct ieee80211_channel * rx_channel,enum nl80211_bss_scan_width scan_width,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,s32 signal,gfp_t gfp)7077 cfg80211_inform_bss_width(struct wiphy *wiphy,
7078 struct ieee80211_channel *rx_channel,
7079 enum nl80211_bss_scan_width scan_width,
7080 enum cfg80211_bss_frame_type ftype,
7081 const u8 *bssid, u64 tsf, u16 capability,
7082 u16 beacon_interval, const u8 *ie, size_t ielen,
7083 s32 signal, gfp_t gfp)
7084 {
7085 struct cfg80211_inform_bss data = {
7086 .chan = rx_channel,
7087 .scan_width = scan_width,
7088 .signal = signal,
7089 };
7090
7091 return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf,
7092 capability, beacon_interval, ie, ielen,
7093 gfp);
7094 }
7095
7096 static inline struct cfg80211_bss * __must_check
cfg80211_inform_bss(struct wiphy * wiphy,struct ieee80211_channel * rx_channel,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,s32 signal,gfp_t gfp)7097 cfg80211_inform_bss(struct wiphy *wiphy,
7098 struct ieee80211_channel *rx_channel,
7099 enum cfg80211_bss_frame_type ftype,
7100 const u8 *bssid, u64 tsf, u16 capability,
7101 u16 beacon_interval, const u8 *ie, size_t ielen,
7102 s32 signal, gfp_t gfp)
7103 {
7104 struct cfg80211_inform_bss data = {
7105 .chan = rx_channel,
7106 .scan_width = NL80211_BSS_CHAN_WIDTH_20,
7107 .signal = signal,
7108 };
7109
7110 return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf,
7111 capability, beacon_interval, ie, ielen,
7112 gfp);
7113 }
7114
7115 /**
7116 * cfg80211_get_bss - get a BSS reference
7117 * @wiphy: the wiphy this BSS struct belongs to
7118 * @channel: the channel to search on (or %NULL)
7119 * @bssid: the desired BSSID (or %NULL)
7120 * @ssid: the desired SSID (or %NULL)
7121 * @ssid_len: length of the SSID (or 0)
7122 * @bss_type: type of BSS, see &enum ieee80211_bss_type
7123 * @privacy: privacy filter, see &enum ieee80211_privacy
7124 */
7125 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
7126 struct ieee80211_channel *channel,
7127 const u8 *bssid,
7128 const u8 *ssid, size_t ssid_len,
7129 enum ieee80211_bss_type bss_type,
7130 enum ieee80211_privacy privacy);
7131 static inline struct cfg80211_bss *
cfg80211_get_ibss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * ssid,size_t ssid_len)7132 cfg80211_get_ibss(struct wiphy *wiphy,
7133 struct ieee80211_channel *channel,
7134 const u8 *ssid, size_t ssid_len)
7135 {
7136 return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len,
7137 IEEE80211_BSS_TYPE_IBSS,
7138 IEEE80211_PRIVACY_ANY);
7139 }
7140
7141 /**
7142 * cfg80211_ref_bss - reference BSS struct
7143 * @wiphy: the wiphy this BSS struct belongs to
7144 * @bss: the BSS struct to reference
7145 *
7146 * Increments the refcount of the given BSS struct.
7147 */
7148 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7149
7150 /**
7151 * cfg80211_put_bss - unref BSS struct
7152 * @wiphy: the wiphy this BSS struct belongs to
7153 * @bss: the BSS struct
7154 *
7155 * Decrements the refcount of the given BSS struct.
7156 */
7157 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7158
7159 /**
7160 * cfg80211_unlink_bss - unlink BSS from internal data structures
7161 * @wiphy: the wiphy
7162 * @bss: the bss to remove
7163 *
7164 * This function removes the given BSS from the internal data structures
7165 * thereby making it no longer show up in scan results etc. Use this
7166 * function when you detect a BSS is gone. Normally BSSes will also time
7167 * out, so it is not necessary to use this function at all.
7168 */
7169 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7170
7171 /**
7172 * cfg80211_bss_iter - iterate all BSS entries
7173 *
7174 * This function iterates over the BSS entries associated with the given wiphy
7175 * and calls the callback for the iterated BSS. The iterator function is not
7176 * allowed to call functions that might modify the internal state of the BSS DB.
7177 *
7178 * @wiphy: the wiphy
7179 * @chandef: if given, the iterator function will be called only if the channel
7180 * of the currently iterated BSS is a subset of the given channel.
7181 * @iter: the iterator function to call
7182 * @iter_data: an argument to the iterator function
7183 */
7184 void cfg80211_bss_iter(struct wiphy *wiphy,
7185 struct cfg80211_chan_def *chandef,
7186 void (*iter)(struct wiphy *wiphy,
7187 struct cfg80211_bss *bss,
7188 void *data),
7189 void *iter_data);
7190
7191 static inline enum nl80211_bss_scan_width
cfg80211_chandef_to_scan_width(const struct cfg80211_chan_def * chandef)7192 cfg80211_chandef_to_scan_width(const struct cfg80211_chan_def *chandef)
7193 {
7194 switch (chandef->width) {
7195 case NL80211_CHAN_WIDTH_5:
7196 return NL80211_BSS_CHAN_WIDTH_5;
7197 case NL80211_CHAN_WIDTH_10:
7198 return NL80211_BSS_CHAN_WIDTH_10;
7199 default:
7200 return NL80211_BSS_CHAN_WIDTH_20;
7201 }
7202 }
7203
7204 /**
7205 * cfg80211_rx_mlme_mgmt - notification of processed MLME management frame
7206 * @dev: network device
7207 * @buf: authentication frame (header + body)
7208 * @len: length of the frame data
7209 *
7210 * This function is called whenever an authentication, disassociation or
7211 * deauthentication frame has been received and processed in station mode.
7212 * After being asked to authenticate via cfg80211_ops::auth() the driver must
7213 * call either this function or cfg80211_auth_timeout().
7214 * After being asked to associate via cfg80211_ops::assoc() the driver must
7215 * call either this function or cfg80211_auth_timeout().
7216 * While connected, the driver must calls this for received and processed
7217 * disassociation and deauthentication frames. If the frame couldn't be used
7218 * because it was unprotected, the driver must call the function
7219 * cfg80211_rx_unprot_mlme_mgmt() instead.
7220 *
7221 * This function may sleep. The caller must hold the corresponding wdev's mutex.
7222 */
7223 void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len);
7224
7225 /**
7226 * cfg80211_auth_timeout - notification of timed out authentication
7227 * @dev: network device
7228 * @addr: The MAC address of the device with which the authentication timed out
7229 *
7230 * This function may sleep. The caller must hold the corresponding wdev's
7231 * mutex.
7232 */
7233 void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr);
7234
7235 /**
7236 * struct cfg80211_rx_assoc_resp - association response data
7237 * @bss: the BSS that association was requested with, ownership of the pointer
7238 * moves to cfg80211 in the call to cfg80211_rx_assoc_resp()
7239 * @buf: (Re)Association Response frame (header + body)
7240 * @len: length of the frame data
7241 * @uapsd_queues: bitmap of queues configured for uapsd. Same format
7242 * as the AC bitmap in the QoS info field
7243 * @req_ies: information elements from the (Re)Association Request frame
7244 * @req_ies_len: length of req_ies data
7245 * @ap_mld_addr: AP MLD address (in case of MLO)
7246 * @links: per-link information indexed by link ID, use links[0] for
7247 * non-MLO connections
7248 * @links.status: Set this (along with a BSS pointer) for links that
7249 * were rejected by the AP.
7250 */
7251 struct cfg80211_rx_assoc_resp {
7252 const u8 *buf;
7253 size_t len;
7254 const u8 *req_ies;
7255 size_t req_ies_len;
7256 int uapsd_queues;
7257 const u8 *ap_mld_addr;
7258 struct {
7259 u8 addr[ETH_ALEN] __aligned(2);
7260 struct cfg80211_bss *bss;
7261 u16 status;
7262 } links[IEEE80211_MLD_MAX_NUM_LINKS];
7263 };
7264
7265 /**
7266 * cfg80211_rx_assoc_resp - notification of processed association response
7267 * @dev: network device
7268 * @data: association response data, &struct cfg80211_rx_assoc_resp
7269 *
7270 * After being asked to associate via cfg80211_ops::assoc() the driver must
7271 * call either this function or cfg80211_auth_timeout().
7272 *
7273 * This function may sleep. The caller must hold the corresponding wdev's mutex.
7274 */
7275 void cfg80211_rx_assoc_resp(struct net_device *dev,
7276 struct cfg80211_rx_assoc_resp *data);
7277
7278 /**
7279 * struct cfg80211_assoc_failure - association failure data
7280 * @ap_mld_addr: AP MLD address, or %NULL
7281 * @bss: list of BSSes, must use entry 0 for non-MLO connections
7282 * (@ap_mld_addr is %NULL)
7283 * @timeout: indicates the association failed due to timeout, otherwise
7284 * the association was abandoned for a reason reported through some
7285 * other API (e.g. deauth RX)
7286 */
7287 struct cfg80211_assoc_failure {
7288 const u8 *ap_mld_addr;
7289 struct cfg80211_bss *bss[IEEE80211_MLD_MAX_NUM_LINKS];
7290 bool timeout;
7291 };
7292
7293 /**
7294 * cfg80211_assoc_failure - notification of association failure
7295 * @dev: network device
7296 * @data: data describing the association failure
7297 *
7298 * This function may sleep. The caller must hold the corresponding wdev's mutex.
7299 */
7300 void cfg80211_assoc_failure(struct net_device *dev,
7301 struct cfg80211_assoc_failure *data);
7302
7303 /**
7304 * cfg80211_tx_mlme_mgmt - notification of transmitted deauth/disassoc frame
7305 * @dev: network device
7306 * @buf: 802.11 frame (header + body)
7307 * @len: length of the frame data
7308 * @reconnect: immediate reconnect is desired (include the nl80211 attribute)
7309 *
7310 * This function is called whenever deauthentication has been processed in
7311 * station mode. This includes both received deauthentication frames and
7312 * locally generated ones. This function may sleep. The caller must hold the
7313 * corresponding wdev's mutex.
7314 */
7315 void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len,
7316 bool reconnect);
7317
7318 /**
7319 * cfg80211_rx_unprot_mlme_mgmt - notification of unprotected mlme mgmt frame
7320 * @dev: network device
7321 * @buf: received management frame (header + body)
7322 * @len: length of the frame data
7323 *
7324 * This function is called whenever a received deauthentication or dissassoc
7325 * frame has been dropped in station mode because of MFP being used but the
7326 * frame was not protected. This is also used to notify reception of a Beacon
7327 * frame that was dropped because it did not include a valid MME MIC while
7328 * beacon protection was enabled (BIGTK configured in station mode).
7329 *
7330 * This function may sleep.
7331 */
7332 void cfg80211_rx_unprot_mlme_mgmt(struct net_device *dev,
7333 const u8 *buf, size_t len);
7334
7335 /**
7336 * cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP)
7337 * @dev: network device
7338 * @addr: The source MAC address of the frame
7339 * @key_type: The key type that the received frame used
7340 * @key_id: Key identifier (0..3). Can be -1 if missing.
7341 * @tsc: The TSC value of the frame that generated the MIC failure (6 octets)
7342 * @gfp: allocation flags
7343 *
7344 * This function is called whenever the local MAC detects a MIC failure in a
7345 * received frame. This matches with MLME-MICHAELMICFAILURE.indication()
7346 * primitive.
7347 */
7348 void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr,
7349 enum nl80211_key_type key_type, int key_id,
7350 const u8 *tsc, gfp_t gfp);
7351
7352 /**
7353 * cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS
7354 *
7355 * @dev: network device
7356 * @bssid: the BSSID of the IBSS joined
7357 * @channel: the channel of the IBSS joined
7358 * @gfp: allocation flags
7359 *
7360 * This function notifies cfg80211 that the device joined an IBSS or
7361 * switched to a different BSSID. Before this function can be called,
7362 * either a beacon has to have been received from the IBSS, or one of
7363 * the cfg80211_inform_bss{,_frame} functions must have been called
7364 * with the locally generated beacon -- this guarantees that there is
7365 * always a scan result for this IBSS. cfg80211 will handle the rest.
7366 */
7367 void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid,
7368 struct ieee80211_channel *channel, gfp_t gfp);
7369
7370 /**
7371 * cfg80211_notify_new_peer_candidate - notify cfg80211 of a new mesh peer
7372 * candidate
7373 *
7374 * @dev: network device
7375 * @macaddr: the MAC address of the new candidate
7376 * @ie: information elements advertised by the peer candidate
7377 * @ie_len: length of the information elements buffer
7378 * @sig_dbm: signal level in dBm
7379 * @gfp: allocation flags
7380 *
7381 * This function notifies cfg80211 that the mesh peer candidate has been
7382 * detected, most likely via a beacon or, less likely, via a probe response.
7383 * cfg80211 then sends a notification to userspace.
7384 */
7385 void cfg80211_notify_new_peer_candidate(struct net_device *dev,
7386 const u8 *macaddr, const u8 *ie, u8 ie_len,
7387 int sig_dbm, gfp_t gfp);
7388
7389 /**
7390 * DOC: RFkill integration
7391 *
7392 * RFkill integration in cfg80211 is almost invisible to drivers,
7393 * as cfg80211 automatically registers an rfkill instance for each
7394 * wireless device it knows about. Soft kill is also translated
7395 * into disconnecting and turning all interfaces off, drivers are
7396 * expected to turn off the device when all interfaces are down.
7397 *
7398 * However, devices may have a hard RFkill line, in which case they
7399 * also need to interact with the rfkill subsystem, via cfg80211.
7400 * They can do this with a few helper functions documented here.
7401 */
7402
7403 /**
7404 * wiphy_rfkill_set_hw_state_reason - notify cfg80211 about hw block state
7405 * @wiphy: the wiphy
7406 * @blocked: block status
7407 * @reason: one of reasons in &enum rfkill_hard_block_reasons
7408 */
7409 void wiphy_rfkill_set_hw_state_reason(struct wiphy *wiphy, bool blocked,
7410 enum rfkill_hard_block_reasons reason);
7411
wiphy_rfkill_set_hw_state(struct wiphy * wiphy,bool blocked)7412 static inline void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked)
7413 {
7414 wiphy_rfkill_set_hw_state_reason(wiphy, blocked,
7415 RFKILL_HARD_BLOCK_SIGNAL);
7416 }
7417
7418 /**
7419 * wiphy_rfkill_start_polling - start polling rfkill
7420 * @wiphy: the wiphy
7421 */
7422 void wiphy_rfkill_start_polling(struct wiphy *wiphy);
7423
7424 /**
7425 * wiphy_rfkill_stop_polling - stop polling rfkill
7426 * @wiphy: the wiphy
7427 */
wiphy_rfkill_stop_polling(struct wiphy * wiphy)7428 static inline void wiphy_rfkill_stop_polling(struct wiphy *wiphy)
7429 {
7430 rfkill_pause_polling(wiphy->rfkill);
7431 }
7432
7433 /**
7434 * DOC: Vendor commands
7435 *
7436 * Occasionally, there are special protocol or firmware features that
7437 * can't be implemented very openly. For this and similar cases, the
7438 * vendor command functionality allows implementing the features with
7439 * (typically closed-source) userspace and firmware, using nl80211 as
7440 * the configuration mechanism.
7441 *
7442 * A driver supporting vendor commands must register them as an array
7443 * in struct wiphy, with handlers for each one, each command has an
7444 * OUI and sub command ID to identify it.
7445 *
7446 * Note that this feature should not be (ab)used to implement protocol
7447 * features that could openly be shared across drivers. In particular,
7448 * it must never be required to use vendor commands to implement any
7449 * "normal" functionality that higher-level userspace like connection
7450 * managers etc. need.
7451 */
7452
7453 struct sk_buff *__cfg80211_alloc_reply_skb(struct wiphy *wiphy,
7454 enum nl80211_commands cmd,
7455 enum nl80211_attrs attr,
7456 int approxlen);
7457
7458 struct sk_buff *__cfg80211_alloc_event_skb(struct wiphy *wiphy,
7459 struct wireless_dev *wdev,
7460 enum nl80211_commands cmd,
7461 enum nl80211_attrs attr,
7462 unsigned int portid,
7463 int vendor_event_idx,
7464 int approxlen, gfp_t gfp);
7465
7466 void __cfg80211_send_event_skb(struct sk_buff *skb, gfp_t gfp);
7467
7468 /**
7469 * cfg80211_vendor_cmd_alloc_reply_skb - allocate vendor command reply
7470 * @wiphy: the wiphy
7471 * @approxlen: an upper bound of the length of the data that will
7472 * be put into the skb
7473 *
7474 * This function allocates and pre-fills an skb for a reply to
7475 * a vendor command. Since it is intended for a reply, calling
7476 * it outside of a vendor command's doit() operation is invalid.
7477 *
7478 * The returned skb is pre-filled with some identifying data in
7479 * a way that any data that is put into the skb (with skb_put(),
7480 * nla_put() or similar) will end up being within the
7481 * %NL80211_ATTR_VENDOR_DATA attribute, so all that needs to be done
7482 * with the skb is adding data for the corresponding userspace tool
7483 * which can then read that data out of the vendor data attribute.
7484 * You must not modify the skb in any other way.
7485 *
7486 * When done, call cfg80211_vendor_cmd_reply() with the skb and return
7487 * its error code as the result of the doit() operation.
7488 *
7489 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
7490 */
7491 static inline struct sk_buff *
cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy * wiphy,int approxlen)7492 cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
7493 {
7494 return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_VENDOR,
7495 NL80211_ATTR_VENDOR_DATA, approxlen);
7496 }
7497
7498 /**
7499 * cfg80211_vendor_cmd_reply - send the reply skb
7500 * @skb: The skb, must have been allocated with
7501 * cfg80211_vendor_cmd_alloc_reply_skb()
7502 *
7503 * Since calling this function will usually be the last thing
7504 * before returning from the vendor command doit() you should
7505 * return the error code. Note that this function consumes the
7506 * skb regardless of the return value.
7507 *
7508 * Return: An error code or 0 on success.
7509 */
7510 int cfg80211_vendor_cmd_reply(struct sk_buff *skb);
7511
7512 /**
7513 * cfg80211_vendor_cmd_get_sender - get the current sender netlink ID
7514 * @wiphy: the wiphy
7515 *
7516 * Return the current netlink port ID in a vendor command handler.
7517 * Valid to call only there.
7518 */
7519 unsigned int cfg80211_vendor_cmd_get_sender(struct wiphy *wiphy);
7520
7521 /**
7522 * cfg80211_vendor_event_alloc - allocate vendor-specific event skb
7523 * @wiphy: the wiphy
7524 * @wdev: the wireless device
7525 * @event_idx: index of the vendor event in the wiphy's vendor_events
7526 * @approxlen: an upper bound of the length of the data that will
7527 * be put into the skb
7528 * @gfp: allocation flags
7529 *
7530 * This function allocates and pre-fills an skb for an event on the
7531 * vendor-specific multicast group.
7532 *
7533 * If wdev != NULL, both the ifindex and identifier of the specified
7534 * wireless device are added to the event message before the vendor data
7535 * attribute.
7536 *
7537 * When done filling the skb, call cfg80211_vendor_event() with the
7538 * skb to send the event.
7539 *
7540 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
7541 */
7542 static inline struct sk_buff *
cfg80211_vendor_event_alloc(struct wiphy * wiphy,struct wireless_dev * wdev,int approxlen,int event_idx,gfp_t gfp)7543 cfg80211_vendor_event_alloc(struct wiphy *wiphy, struct wireless_dev *wdev,
7544 int approxlen, int event_idx, gfp_t gfp)
7545 {
7546 return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR,
7547 NL80211_ATTR_VENDOR_DATA,
7548 0, event_idx, approxlen, gfp);
7549 }
7550
7551 /**
7552 * cfg80211_vendor_event_alloc_ucast - alloc unicast vendor-specific event skb
7553 * @wiphy: the wiphy
7554 * @wdev: the wireless device
7555 * @event_idx: index of the vendor event in the wiphy's vendor_events
7556 * @portid: port ID of the receiver
7557 * @approxlen: an upper bound of the length of the data that will
7558 * be put into the skb
7559 * @gfp: allocation flags
7560 *
7561 * This function allocates and pre-fills an skb for an event to send to
7562 * a specific (userland) socket. This socket would previously have been
7563 * obtained by cfg80211_vendor_cmd_get_sender(), and the caller MUST take
7564 * care to register a netlink notifier to see when the socket closes.
7565 *
7566 * If wdev != NULL, both the ifindex and identifier of the specified
7567 * wireless device are added to the event message before the vendor data
7568 * attribute.
7569 *
7570 * When done filling the skb, call cfg80211_vendor_event() with the
7571 * skb to send the event.
7572 *
7573 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
7574 */
7575 static inline struct sk_buff *
cfg80211_vendor_event_alloc_ucast(struct wiphy * wiphy,struct wireless_dev * wdev,unsigned int portid,int approxlen,int event_idx,gfp_t gfp)7576 cfg80211_vendor_event_alloc_ucast(struct wiphy *wiphy,
7577 struct wireless_dev *wdev,
7578 unsigned int portid, int approxlen,
7579 int event_idx, gfp_t gfp)
7580 {
7581 return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR,
7582 NL80211_ATTR_VENDOR_DATA,
7583 portid, event_idx, approxlen, gfp);
7584 }
7585
7586 /**
7587 * cfg80211_vendor_event - send the event
7588 * @skb: The skb, must have been allocated with cfg80211_vendor_event_alloc()
7589 * @gfp: allocation flags
7590 *
7591 * This function sends the given @skb, which must have been allocated
7592 * by cfg80211_vendor_event_alloc(), as an event. It always consumes it.
7593 */
cfg80211_vendor_event(struct sk_buff * skb,gfp_t gfp)7594 static inline void cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp)
7595 {
7596 __cfg80211_send_event_skb(skb, gfp);
7597 }
7598
7599 #ifdef CONFIG_NL80211_TESTMODE
7600 /**
7601 * DOC: Test mode
7602 *
7603 * Test mode is a set of utility functions to allow drivers to
7604 * interact with driver-specific tools to aid, for instance,
7605 * factory programming.
7606 *
7607 * This chapter describes how drivers interact with it, for more
7608 * information see the nl80211 book's chapter on it.
7609 */
7610
7611 /**
7612 * cfg80211_testmode_alloc_reply_skb - allocate testmode reply
7613 * @wiphy: the wiphy
7614 * @approxlen: an upper bound of the length of the data that will
7615 * be put into the skb
7616 *
7617 * This function allocates and pre-fills an skb for a reply to
7618 * the testmode command. Since it is intended for a reply, calling
7619 * it outside of the @testmode_cmd operation is invalid.
7620 *
7621 * The returned skb is pre-filled with the wiphy index and set up in
7622 * a way that any data that is put into the skb (with skb_put(),
7623 * nla_put() or similar) will end up being within the
7624 * %NL80211_ATTR_TESTDATA attribute, so all that needs to be done
7625 * with the skb is adding data for the corresponding userspace tool
7626 * which can then read that data out of the testdata attribute. You
7627 * must not modify the skb in any other way.
7628 *
7629 * When done, call cfg80211_testmode_reply() with the skb and return
7630 * its error code as the result of the @testmode_cmd operation.
7631 *
7632 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
7633 */
7634 static inline struct sk_buff *
cfg80211_testmode_alloc_reply_skb(struct wiphy * wiphy,int approxlen)7635 cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
7636 {
7637 return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_TESTMODE,
7638 NL80211_ATTR_TESTDATA, approxlen);
7639 }
7640
7641 /**
7642 * cfg80211_testmode_reply - send the reply skb
7643 * @skb: The skb, must have been allocated with
7644 * cfg80211_testmode_alloc_reply_skb()
7645 *
7646 * Since calling this function will usually be the last thing
7647 * before returning from the @testmode_cmd you should return
7648 * the error code. Note that this function consumes the skb
7649 * regardless of the return value.
7650 *
7651 * Return: An error code or 0 on success.
7652 */
cfg80211_testmode_reply(struct sk_buff * skb)7653 static inline int cfg80211_testmode_reply(struct sk_buff *skb)
7654 {
7655 return cfg80211_vendor_cmd_reply(skb);
7656 }
7657
7658 /**
7659 * cfg80211_testmode_alloc_event_skb - allocate testmode event
7660 * @wiphy: the wiphy
7661 * @approxlen: an upper bound of the length of the data that will
7662 * be put into the skb
7663 * @gfp: allocation flags
7664 *
7665 * This function allocates and pre-fills an skb for an event on the
7666 * testmode multicast group.
7667 *
7668 * The returned skb is set up in the same way as with
7669 * cfg80211_testmode_alloc_reply_skb() but prepared for an event. As
7670 * there, you should simply add data to it that will then end up in the
7671 * %NL80211_ATTR_TESTDATA attribute. Again, you must not modify the skb
7672 * in any other way.
7673 *
7674 * When done filling the skb, call cfg80211_testmode_event() with the
7675 * skb to send the event.
7676 *
7677 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
7678 */
7679 static inline struct sk_buff *
cfg80211_testmode_alloc_event_skb(struct wiphy * wiphy,int approxlen,gfp_t gfp)7680 cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp)
7681 {
7682 return __cfg80211_alloc_event_skb(wiphy, NULL, NL80211_CMD_TESTMODE,
7683 NL80211_ATTR_TESTDATA, 0, -1,
7684 approxlen, gfp);
7685 }
7686
7687 /**
7688 * cfg80211_testmode_event - send the event
7689 * @skb: The skb, must have been allocated with
7690 * cfg80211_testmode_alloc_event_skb()
7691 * @gfp: allocation flags
7692 *
7693 * This function sends the given @skb, which must have been allocated
7694 * by cfg80211_testmode_alloc_event_skb(), as an event. It always
7695 * consumes it.
7696 */
cfg80211_testmode_event(struct sk_buff * skb,gfp_t gfp)7697 static inline void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp)
7698 {
7699 __cfg80211_send_event_skb(skb, gfp);
7700 }
7701
7702 #define CFG80211_TESTMODE_CMD(cmd) .testmode_cmd = (cmd),
7703 #define CFG80211_TESTMODE_DUMP(cmd) .testmode_dump = (cmd),
7704 #else
7705 #define CFG80211_TESTMODE_CMD(cmd)
7706 #define CFG80211_TESTMODE_DUMP(cmd)
7707 #endif
7708
7709 /**
7710 * struct cfg80211_fils_resp_params - FILS connection response params
7711 * @kek: KEK derived from a successful FILS connection (may be %NULL)
7712 * @kek_len: Length of @fils_kek in octets
7713 * @update_erp_next_seq_num: Boolean value to specify whether the value in
7714 * @erp_next_seq_num is valid.
7715 * @erp_next_seq_num: The next sequence number to use in ERP message in
7716 * FILS Authentication. This value should be specified irrespective of the
7717 * status for a FILS connection.
7718 * @pmk: A new PMK if derived from a successful FILS connection (may be %NULL).
7719 * @pmk_len: Length of @pmk in octets
7720 * @pmkid: A new PMKID if derived from a successful FILS connection or the PMKID
7721 * used for this FILS connection (may be %NULL).
7722 */
7723 struct cfg80211_fils_resp_params {
7724 const u8 *kek;
7725 size_t kek_len;
7726 bool update_erp_next_seq_num;
7727 u16 erp_next_seq_num;
7728 const u8 *pmk;
7729 size_t pmk_len;
7730 const u8 *pmkid;
7731 };
7732
7733 /**
7734 * struct cfg80211_connect_resp_params - Connection response params
7735 * @status: Status code, %WLAN_STATUS_SUCCESS for successful connection, use
7736 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
7737 * the real status code for failures. If this call is used to report a
7738 * failure due to a timeout (e.g., not receiving an Authentication frame
7739 * from the AP) instead of an explicit rejection by the AP, -1 is used to
7740 * indicate that this is a failure, but without a status code.
7741 * @timeout_reason is used to report the reason for the timeout in that
7742 * case.
7743 * @req_ie: Association request IEs (may be %NULL)
7744 * @req_ie_len: Association request IEs length
7745 * @resp_ie: Association response IEs (may be %NULL)
7746 * @resp_ie_len: Association response IEs length
7747 * @fils: FILS connection response parameters.
7748 * @timeout_reason: Reason for connection timeout. This is used when the
7749 * connection fails due to a timeout instead of an explicit rejection from
7750 * the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is
7751 * not known. This value is used only if @status < 0 to indicate that the
7752 * failure is due to a timeout and not due to explicit rejection by the AP.
7753 * This value is ignored in other cases (@status >= 0).
7754 * @valid_links: For MLO connection, BIT mask of the valid link ids. Otherwise
7755 * zero.
7756 * @ap_mld_addr: For MLO connection, MLD address of the AP. Otherwise %NULL.
7757 * @links : For MLO connection, contains link info for the valid links indicated
7758 * using @valid_links. For non-MLO connection, links[0] contains the
7759 * connected AP info.
7760 * @links.addr: For MLO connection, MAC address of the STA link. Otherwise
7761 * %NULL.
7762 * @links.bssid: For MLO connection, MAC address of the AP link. For non-MLO
7763 * connection, links[0].bssid points to the BSSID of the AP (may be %NULL).
7764 * @links.bss: For MLO connection, entry of bss to which STA link is connected.
7765 * For non-MLO connection, links[0].bss points to entry of bss to which STA
7766 * is connected. It can be obtained through cfg80211_get_bss() (may be
7767 * %NULL). It is recommended to store the bss from the connect_request and
7768 * hold a reference to it and return through this param to avoid a warning
7769 * if the bss is expired during the connection, esp. for those drivers
7770 * implementing connect op. Only one parameter among @bssid and @bss needs
7771 * to be specified.
7772 * @links.status: per-link status code, to report a status code that's not
7773 * %WLAN_STATUS_SUCCESS for a given link, it must also be in the
7774 * @valid_links bitmap and may have a BSS pointer (which is then released)
7775 */
7776 struct cfg80211_connect_resp_params {
7777 int status;
7778 const u8 *req_ie;
7779 size_t req_ie_len;
7780 const u8 *resp_ie;
7781 size_t resp_ie_len;
7782 struct cfg80211_fils_resp_params fils;
7783 enum nl80211_timeout_reason timeout_reason;
7784
7785 const u8 *ap_mld_addr;
7786 u16 valid_links;
7787 struct {
7788 const u8 *addr;
7789 const u8 *bssid;
7790 struct cfg80211_bss *bss;
7791 u16 status;
7792 } links[IEEE80211_MLD_MAX_NUM_LINKS];
7793 };
7794
7795 /**
7796 * cfg80211_connect_done - notify cfg80211 of connection result
7797 *
7798 * @dev: network device
7799 * @params: connection response parameters
7800 * @gfp: allocation flags
7801 *
7802 * It should be called by the underlying driver once execution of the connection
7803 * request from connect() has been completed. This is similar to
7804 * cfg80211_connect_bss(), but takes a structure pointer for connection response
7805 * parameters. Only one of the functions among cfg80211_connect_bss(),
7806 * cfg80211_connect_result(), cfg80211_connect_timeout(),
7807 * and cfg80211_connect_done() should be called.
7808 */
7809 void cfg80211_connect_done(struct net_device *dev,
7810 struct cfg80211_connect_resp_params *params,
7811 gfp_t gfp);
7812
7813 /**
7814 * cfg80211_connect_bss - notify cfg80211 of connection result
7815 *
7816 * @dev: network device
7817 * @bssid: the BSSID of the AP
7818 * @bss: Entry of bss to which STA got connected to, can be obtained through
7819 * cfg80211_get_bss() (may be %NULL). But it is recommended to store the
7820 * bss from the connect_request and hold a reference to it and return
7821 * through this param to avoid a warning if the bss is expired during the
7822 * connection, esp. for those drivers implementing connect op.
7823 * Only one parameter among @bssid and @bss needs to be specified.
7824 * @req_ie: association request IEs (maybe be %NULL)
7825 * @req_ie_len: association request IEs length
7826 * @resp_ie: association response IEs (may be %NULL)
7827 * @resp_ie_len: assoc response IEs length
7828 * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use
7829 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
7830 * the real status code for failures. If this call is used to report a
7831 * failure due to a timeout (e.g., not receiving an Authentication frame
7832 * from the AP) instead of an explicit rejection by the AP, -1 is used to
7833 * indicate that this is a failure, but without a status code.
7834 * @timeout_reason is used to report the reason for the timeout in that
7835 * case.
7836 * @gfp: allocation flags
7837 * @timeout_reason: reason for connection timeout. This is used when the
7838 * connection fails due to a timeout instead of an explicit rejection from
7839 * the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is
7840 * not known. This value is used only if @status < 0 to indicate that the
7841 * failure is due to a timeout and not due to explicit rejection by the AP.
7842 * This value is ignored in other cases (@status >= 0).
7843 *
7844 * It should be called by the underlying driver once execution of the connection
7845 * request from connect() has been completed. This is similar to
7846 * cfg80211_connect_result(), but with the option of identifying the exact bss
7847 * entry for the connection. Only one of the functions among
7848 * cfg80211_connect_bss(), cfg80211_connect_result(),
7849 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
7850 */
7851 static inline void
cfg80211_connect_bss(struct net_device * dev,const u8 * bssid,struct cfg80211_bss * bss,const u8 * req_ie,size_t req_ie_len,const u8 * resp_ie,size_t resp_ie_len,int status,gfp_t gfp,enum nl80211_timeout_reason timeout_reason)7852 cfg80211_connect_bss(struct net_device *dev, const u8 *bssid,
7853 struct cfg80211_bss *bss, const u8 *req_ie,
7854 size_t req_ie_len, const u8 *resp_ie,
7855 size_t resp_ie_len, int status, gfp_t gfp,
7856 enum nl80211_timeout_reason timeout_reason)
7857 {
7858 struct cfg80211_connect_resp_params params;
7859
7860 memset(¶ms, 0, sizeof(params));
7861 params.status = status;
7862 params.links[0].bssid = bssid;
7863 params.links[0].bss = bss;
7864 params.req_ie = req_ie;
7865 params.req_ie_len = req_ie_len;
7866 params.resp_ie = resp_ie;
7867 params.resp_ie_len = resp_ie_len;
7868 params.timeout_reason = timeout_reason;
7869
7870 cfg80211_connect_done(dev, ¶ms, gfp);
7871 }
7872
7873 /**
7874 * cfg80211_connect_result - notify cfg80211 of connection result
7875 *
7876 * @dev: network device
7877 * @bssid: the BSSID of the AP
7878 * @req_ie: association request IEs (maybe be %NULL)
7879 * @req_ie_len: association request IEs length
7880 * @resp_ie: association response IEs (may be %NULL)
7881 * @resp_ie_len: assoc response IEs length
7882 * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use
7883 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
7884 * the real status code for failures.
7885 * @gfp: allocation flags
7886 *
7887 * It should be called by the underlying driver once execution of the connection
7888 * request from connect() has been completed. This is similar to
7889 * cfg80211_connect_bss() which allows the exact bss entry to be specified. Only
7890 * one of the functions among cfg80211_connect_bss(), cfg80211_connect_result(),
7891 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
7892 */
7893 static inline void
cfg80211_connect_result(struct net_device * dev,const u8 * bssid,const u8 * req_ie,size_t req_ie_len,const u8 * resp_ie,size_t resp_ie_len,u16 status,gfp_t gfp)7894 cfg80211_connect_result(struct net_device *dev, const u8 *bssid,
7895 const u8 *req_ie, size_t req_ie_len,
7896 const u8 *resp_ie, size_t resp_ie_len,
7897 u16 status, gfp_t gfp)
7898 {
7899 cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, resp_ie,
7900 resp_ie_len, status, gfp,
7901 NL80211_TIMEOUT_UNSPECIFIED);
7902 }
7903
7904 /**
7905 * cfg80211_connect_timeout - notify cfg80211 of connection timeout
7906 *
7907 * @dev: network device
7908 * @bssid: the BSSID of the AP
7909 * @req_ie: association request IEs (maybe be %NULL)
7910 * @req_ie_len: association request IEs length
7911 * @gfp: allocation flags
7912 * @timeout_reason: reason for connection timeout.
7913 *
7914 * It should be called by the underlying driver whenever connect() has failed
7915 * in a sequence where no explicit authentication/association rejection was
7916 * received from the AP. This could happen, e.g., due to not being able to send
7917 * out the Authentication or Association Request frame or timing out while
7918 * waiting for the response. Only one of the functions among
7919 * cfg80211_connect_bss(), cfg80211_connect_result(),
7920 * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
7921 */
7922 static inline void
cfg80211_connect_timeout(struct net_device * dev,const u8 * bssid,const u8 * req_ie,size_t req_ie_len,gfp_t gfp,enum nl80211_timeout_reason timeout_reason)7923 cfg80211_connect_timeout(struct net_device *dev, const u8 *bssid,
7924 const u8 *req_ie, size_t req_ie_len, gfp_t gfp,
7925 enum nl80211_timeout_reason timeout_reason)
7926 {
7927 cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, NULL, 0, -1,
7928 gfp, timeout_reason);
7929 }
7930
7931 /**
7932 * struct cfg80211_roam_info - driver initiated roaming information
7933 *
7934 * @req_ie: association request IEs (maybe be %NULL)
7935 * @req_ie_len: association request IEs length
7936 * @resp_ie: association response IEs (may be %NULL)
7937 * @resp_ie_len: assoc response IEs length
7938 * @fils: FILS related roaming information.
7939 * @valid_links: For MLO roaming, BIT mask of the new valid links is set.
7940 * Otherwise zero.
7941 * @ap_mld_addr: For MLO roaming, MLD address of the new AP. Otherwise %NULL.
7942 * @links : For MLO roaming, contains new link info for the valid links set in
7943 * @valid_links. For non-MLO roaming, links[0] contains the new AP info.
7944 * @links.addr: For MLO roaming, MAC address of the STA link. Otherwise %NULL.
7945 * @links.bssid: For MLO roaming, MAC address of the new AP link. For non-MLO
7946 * roaming, links[0].bssid points to the BSSID of the new AP. May be
7947 * %NULL if %links.bss is set.
7948 * @links.channel: the channel of the new AP.
7949 * @links.bss: For MLO roaming, entry of new bss to which STA link got
7950 * roamed. For non-MLO roaming, links[0].bss points to entry of bss to
7951 * which STA got roamed (may be %NULL if %links.bssid is set)
7952 */
7953 struct cfg80211_roam_info {
7954 const u8 *req_ie;
7955 size_t req_ie_len;
7956 const u8 *resp_ie;
7957 size_t resp_ie_len;
7958 struct cfg80211_fils_resp_params fils;
7959
7960 const u8 *ap_mld_addr;
7961 u16 valid_links;
7962 struct {
7963 const u8 *addr;
7964 const u8 *bssid;
7965 struct ieee80211_channel *channel;
7966 struct cfg80211_bss *bss;
7967 } links[IEEE80211_MLD_MAX_NUM_LINKS];
7968 };
7969
7970 /**
7971 * cfg80211_roamed - notify cfg80211 of roaming
7972 *
7973 * @dev: network device
7974 * @info: information about the new BSS. struct &cfg80211_roam_info.
7975 * @gfp: allocation flags
7976 *
7977 * This function may be called with the driver passing either the BSSID of the
7978 * new AP or passing the bss entry to avoid a race in timeout of the bss entry.
7979 * It should be called by the underlying driver whenever it roamed from one AP
7980 * to another while connected. Drivers which have roaming implemented in
7981 * firmware should pass the bss entry to avoid a race in bss entry timeout where
7982 * the bss entry of the new AP is seen in the driver, but gets timed out by the
7983 * time it is accessed in __cfg80211_roamed() due to delay in scheduling
7984 * rdev->event_work. In case of any failures, the reference is released
7985 * either in cfg80211_roamed() or in __cfg80211_romed(), Otherwise, it will be
7986 * released while disconnecting from the current bss.
7987 */
7988 void cfg80211_roamed(struct net_device *dev, struct cfg80211_roam_info *info,
7989 gfp_t gfp);
7990
7991 /**
7992 * cfg80211_port_authorized - notify cfg80211 of successful security association
7993 *
7994 * @dev: network device
7995 * @bssid: the BSSID of the AP
7996 * @td_bitmap: transition disable policy
7997 * @td_bitmap_len: Length of transition disable policy
7998 * @gfp: allocation flags
7999 *
8000 * This function should be called by a driver that supports 4 way handshake
8001 * offload after a security association was successfully established (i.e.,
8002 * the 4 way handshake was completed successfully). The call to this function
8003 * should be preceded with a call to cfg80211_connect_result(),
8004 * cfg80211_connect_done(), cfg80211_connect_bss() or cfg80211_roamed() to
8005 * indicate the 802.11 association.
8006 */
8007 void cfg80211_port_authorized(struct net_device *dev, const u8 *bssid,
8008 const u8* td_bitmap, u8 td_bitmap_len, gfp_t gfp);
8009
8010 /**
8011 * cfg80211_disconnected - notify cfg80211 that connection was dropped
8012 *
8013 * @dev: network device
8014 * @ie: information elements of the deauth/disassoc frame (may be %NULL)
8015 * @ie_len: length of IEs
8016 * @reason: reason code for the disconnection, set it to 0 if unknown
8017 * @locally_generated: disconnection was requested locally
8018 * @gfp: allocation flags
8019 *
8020 * After it calls this function, the driver should enter an idle state
8021 * and not try to connect to any AP any more.
8022 */
8023 void cfg80211_disconnected(struct net_device *dev, u16 reason,
8024 const u8 *ie, size_t ie_len,
8025 bool locally_generated, gfp_t gfp);
8026
8027 /**
8028 * cfg80211_ready_on_channel - notification of remain_on_channel start
8029 * @wdev: wireless device
8030 * @cookie: the request cookie
8031 * @chan: The current channel (from remain_on_channel request)
8032 * @duration: Duration in milliseconds that the driver intents to remain on the
8033 * channel
8034 * @gfp: allocation flags
8035 */
8036 void cfg80211_ready_on_channel(struct wireless_dev *wdev, u64 cookie,
8037 struct ieee80211_channel *chan,
8038 unsigned int duration, gfp_t gfp);
8039
8040 /**
8041 * cfg80211_remain_on_channel_expired - remain_on_channel duration expired
8042 * @wdev: wireless device
8043 * @cookie: the request cookie
8044 * @chan: The current channel (from remain_on_channel request)
8045 * @gfp: allocation flags
8046 */
8047 void cfg80211_remain_on_channel_expired(struct wireless_dev *wdev, u64 cookie,
8048 struct ieee80211_channel *chan,
8049 gfp_t gfp);
8050
8051 /**
8052 * cfg80211_tx_mgmt_expired - tx_mgmt duration expired
8053 * @wdev: wireless device
8054 * @cookie: the requested cookie
8055 * @chan: The current channel (from tx_mgmt request)
8056 * @gfp: allocation flags
8057 */
8058 void cfg80211_tx_mgmt_expired(struct wireless_dev *wdev, u64 cookie,
8059 struct ieee80211_channel *chan, gfp_t gfp);
8060
8061 /**
8062 * cfg80211_sinfo_alloc_tid_stats - allocate per-tid statistics.
8063 *
8064 * @sinfo: the station information
8065 * @gfp: allocation flags
8066 */
8067 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp);
8068
8069 /**
8070 * cfg80211_sinfo_release_content - release contents of station info
8071 * @sinfo: the station information
8072 *
8073 * Releases any potentially allocated sub-information of the station
8074 * information, but not the struct itself (since it's typically on
8075 * the stack.)
8076 */
cfg80211_sinfo_release_content(struct station_info * sinfo)8077 static inline void cfg80211_sinfo_release_content(struct station_info *sinfo)
8078 {
8079 kfree(sinfo->pertid);
8080 }
8081
8082 /**
8083 * cfg80211_new_sta - notify userspace about station
8084 *
8085 * @dev: the netdev
8086 * @mac_addr: the station's address
8087 * @sinfo: the station information
8088 * @gfp: allocation flags
8089 */
8090 void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr,
8091 struct station_info *sinfo, gfp_t gfp);
8092
8093 /**
8094 * cfg80211_del_sta_sinfo - notify userspace about deletion of a station
8095 * @dev: the netdev
8096 * @mac_addr: the station's address. For MLD station, MLD address is used.
8097 * @sinfo: the station information/statistics
8098 * @gfp: allocation flags
8099 */
8100 void cfg80211_del_sta_sinfo(struct net_device *dev, const u8 *mac_addr,
8101 struct station_info *sinfo, gfp_t gfp);
8102
8103 /**
8104 * cfg80211_del_sta - notify userspace about deletion of a station
8105 *
8106 * @dev: the netdev
8107 * @mac_addr: the station's address. For MLD station, MLD address is used.
8108 * @gfp: allocation flags
8109 */
cfg80211_del_sta(struct net_device * dev,const u8 * mac_addr,gfp_t gfp)8110 static inline void cfg80211_del_sta(struct net_device *dev,
8111 const u8 *mac_addr, gfp_t gfp)
8112 {
8113 cfg80211_del_sta_sinfo(dev, mac_addr, NULL, gfp);
8114 }
8115
8116 /**
8117 * cfg80211_conn_failed - connection request failed notification
8118 *
8119 * @dev: the netdev
8120 * @mac_addr: the station's address
8121 * @reason: the reason for connection failure
8122 * @gfp: allocation flags
8123 *
8124 * Whenever a station tries to connect to an AP and if the station
8125 * could not connect to the AP as the AP has rejected the connection
8126 * for some reasons, this function is called.
8127 *
8128 * The reason for connection failure can be any of the value from
8129 * nl80211_connect_failed_reason enum
8130 */
8131 void cfg80211_conn_failed(struct net_device *dev, const u8 *mac_addr,
8132 enum nl80211_connect_failed_reason reason,
8133 gfp_t gfp);
8134
8135 /**
8136 * struct cfg80211_rx_info - received management frame info
8137 *
8138 * @freq: Frequency on which the frame was received in kHz
8139 * @sig_dbm: signal strength in dBm, or 0 if unknown
8140 * @have_link_id: indicates the frame was received on a link of
8141 * an MLD, i.e. the @link_id field is valid
8142 * @link_id: the ID of the link the frame was received on
8143 * @buf: Management frame (header + body)
8144 * @len: length of the frame data
8145 * @flags: flags, as defined in &enum nl80211_rxmgmt_flags
8146 * @rx_tstamp: Hardware timestamp of frame RX in nanoseconds
8147 * @ack_tstamp: Hardware timestamp of ack TX in nanoseconds
8148 */
8149 struct cfg80211_rx_info {
8150 int freq;
8151 int sig_dbm;
8152 bool have_link_id;
8153 u8 link_id;
8154 const u8 *buf;
8155 size_t len;
8156 u32 flags;
8157 u64 rx_tstamp;
8158 u64 ack_tstamp;
8159 };
8160
8161 /**
8162 * cfg80211_rx_mgmt_ext - management frame notification with extended info
8163 * @wdev: wireless device receiving the frame
8164 * @info: RX info as defined in struct cfg80211_rx_info
8165 *
8166 * This function is called whenever an Action frame is received for a station
8167 * mode interface, but is not processed in kernel.
8168 *
8169 * Return: %true if a user space application has registered for this frame.
8170 * For action frames, that makes it responsible for rejecting unrecognized
8171 * action frames; %false otherwise, in which case for action frames the
8172 * driver is responsible for rejecting the frame.
8173 */
8174 bool cfg80211_rx_mgmt_ext(struct wireless_dev *wdev,
8175 struct cfg80211_rx_info *info);
8176
8177 /**
8178 * cfg80211_rx_mgmt_khz - notification of received, unprocessed management frame
8179 * @wdev: wireless device receiving the frame
8180 * @freq: Frequency on which the frame was received in KHz
8181 * @sig_dbm: signal strength in dBm, or 0 if unknown
8182 * @buf: Management frame (header + body)
8183 * @len: length of the frame data
8184 * @flags: flags, as defined in enum nl80211_rxmgmt_flags
8185 *
8186 * This function is called whenever an Action frame is received for a station
8187 * mode interface, but is not processed in kernel.
8188 *
8189 * Return: %true if a user space application has registered for this frame.
8190 * For action frames, that makes it responsible for rejecting unrecognized
8191 * action frames; %false otherwise, in which case for action frames the
8192 * driver is responsible for rejecting the frame.
8193 */
cfg80211_rx_mgmt_khz(struct wireless_dev * wdev,int freq,int sig_dbm,const u8 * buf,size_t len,u32 flags)8194 static inline bool cfg80211_rx_mgmt_khz(struct wireless_dev *wdev, int freq,
8195 int sig_dbm, const u8 *buf, size_t len,
8196 u32 flags)
8197 {
8198 struct cfg80211_rx_info info = {
8199 .freq = freq,
8200 .sig_dbm = sig_dbm,
8201 .buf = buf,
8202 .len = len,
8203 .flags = flags
8204 };
8205
8206 return cfg80211_rx_mgmt_ext(wdev, &info);
8207 }
8208
8209 /**
8210 * cfg80211_rx_mgmt - notification of received, unprocessed management frame
8211 * @wdev: wireless device receiving the frame
8212 * @freq: Frequency on which the frame was received in MHz
8213 * @sig_dbm: signal strength in dBm, or 0 if unknown
8214 * @buf: Management frame (header + body)
8215 * @len: length of the frame data
8216 * @flags: flags, as defined in enum nl80211_rxmgmt_flags
8217 *
8218 * This function is called whenever an Action frame is received for a station
8219 * mode interface, but is not processed in kernel.
8220 *
8221 * Return: %true if a user space application has registered for this frame.
8222 * For action frames, that makes it responsible for rejecting unrecognized
8223 * action frames; %false otherwise, in which case for action frames the
8224 * driver is responsible for rejecting the frame.
8225 */
cfg80211_rx_mgmt(struct wireless_dev * wdev,int freq,int sig_dbm,const u8 * buf,size_t len,u32 flags)8226 static inline bool cfg80211_rx_mgmt(struct wireless_dev *wdev, int freq,
8227 int sig_dbm, const u8 *buf, size_t len,
8228 u32 flags)
8229 {
8230 struct cfg80211_rx_info info = {
8231 .freq = MHZ_TO_KHZ(freq),
8232 .sig_dbm = sig_dbm,
8233 .buf = buf,
8234 .len = len,
8235 .flags = flags
8236 };
8237
8238 return cfg80211_rx_mgmt_ext(wdev, &info);
8239 }
8240
8241 /**
8242 * struct cfg80211_tx_status - TX status for management frame information
8243 *
8244 * @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
8245 * @tx_tstamp: hardware TX timestamp in nanoseconds
8246 * @ack_tstamp: hardware ack RX timestamp in nanoseconds
8247 * @buf: Management frame (header + body)
8248 * @len: length of the frame data
8249 * @ack: Whether frame was acknowledged
8250 */
8251 struct cfg80211_tx_status {
8252 u64 cookie;
8253 u64 tx_tstamp;
8254 u64 ack_tstamp;
8255 const u8 *buf;
8256 size_t len;
8257 bool ack;
8258 };
8259
8260 /**
8261 * cfg80211_mgmt_tx_status_ext - TX status notification with extended info
8262 * @wdev: wireless device receiving the frame
8263 * @status: TX status data
8264 * @gfp: context flags
8265 *
8266 * This function is called whenever a management frame was requested to be
8267 * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
8268 * transmission attempt with extended info.
8269 */
8270 void cfg80211_mgmt_tx_status_ext(struct wireless_dev *wdev,
8271 struct cfg80211_tx_status *status, gfp_t gfp);
8272
8273 /**
8274 * cfg80211_mgmt_tx_status - notification of TX status for management frame
8275 * @wdev: wireless device receiving the frame
8276 * @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
8277 * @buf: Management frame (header + body)
8278 * @len: length of the frame data
8279 * @ack: Whether frame was acknowledged
8280 * @gfp: context flags
8281 *
8282 * This function is called whenever a management frame was requested to be
8283 * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
8284 * transmission attempt.
8285 */
cfg80211_mgmt_tx_status(struct wireless_dev * wdev,u64 cookie,const u8 * buf,size_t len,bool ack,gfp_t gfp)8286 static inline void cfg80211_mgmt_tx_status(struct wireless_dev *wdev,
8287 u64 cookie, const u8 *buf,
8288 size_t len, bool ack, gfp_t gfp)
8289 {
8290 struct cfg80211_tx_status status = {
8291 .cookie = cookie,
8292 .buf = buf,
8293 .len = len,
8294 .ack = ack
8295 };
8296
8297 cfg80211_mgmt_tx_status_ext(wdev, &status, gfp);
8298 }
8299
8300 /**
8301 * cfg80211_control_port_tx_status - notification of TX status for control
8302 * port frames
8303 * @wdev: wireless device receiving the frame
8304 * @cookie: Cookie returned by cfg80211_ops::tx_control_port()
8305 * @buf: Data frame (header + body)
8306 * @len: length of the frame data
8307 * @ack: Whether frame was acknowledged
8308 * @gfp: context flags
8309 *
8310 * This function is called whenever a control port frame was requested to be
8311 * transmitted with cfg80211_ops::tx_control_port() to report the TX status of
8312 * the transmission attempt.
8313 */
8314 void cfg80211_control_port_tx_status(struct wireless_dev *wdev, u64 cookie,
8315 const u8 *buf, size_t len, bool ack,
8316 gfp_t gfp);
8317
8318 /**
8319 * cfg80211_rx_control_port - notification about a received control port frame
8320 * @dev: The device the frame matched to
8321 * @skb: The skbuf with the control port frame. It is assumed that the skbuf
8322 * is 802.3 formatted (with 802.3 header). The skb can be non-linear.
8323 * This function does not take ownership of the skb, so the caller is
8324 * responsible for any cleanup. The caller must also ensure that
8325 * skb->protocol is set appropriately.
8326 * @unencrypted: Whether the frame was received unencrypted
8327 * @link_id: the link the frame was received on, -1 if not applicable or unknown
8328 *
8329 * This function is used to inform userspace about a received control port
8330 * frame. It should only be used if userspace indicated it wants to receive
8331 * control port frames over nl80211.
8332 *
8333 * The frame is the data portion of the 802.3 or 802.11 data frame with all
8334 * network layer headers removed (e.g. the raw EAPoL frame).
8335 *
8336 * Return: %true if the frame was passed to userspace
8337 */
8338 bool cfg80211_rx_control_port(struct net_device *dev, struct sk_buff *skb,
8339 bool unencrypted, int link_id);
8340
8341 /**
8342 * cfg80211_cqm_rssi_notify - connection quality monitoring rssi event
8343 * @dev: network device
8344 * @rssi_event: the triggered RSSI event
8345 * @rssi_level: new RSSI level value or 0 if not available
8346 * @gfp: context flags
8347 *
8348 * This function is called when a configured connection quality monitoring
8349 * rssi threshold reached event occurs.
8350 */
8351 void cfg80211_cqm_rssi_notify(struct net_device *dev,
8352 enum nl80211_cqm_rssi_threshold_event rssi_event,
8353 s32 rssi_level, gfp_t gfp);
8354
8355 /**
8356 * cfg80211_cqm_pktloss_notify - notify userspace about packetloss to peer
8357 * @dev: network device
8358 * @peer: peer's MAC address
8359 * @num_packets: how many packets were lost -- should be a fixed threshold
8360 * but probably no less than maybe 50, or maybe a throughput dependent
8361 * threshold (to account for temporary interference)
8362 * @gfp: context flags
8363 */
8364 void cfg80211_cqm_pktloss_notify(struct net_device *dev,
8365 const u8 *peer, u32 num_packets, gfp_t gfp);
8366
8367 /**
8368 * cfg80211_cqm_txe_notify - TX error rate event
8369 * @dev: network device
8370 * @peer: peer's MAC address
8371 * @num_packets: how many packets were lost
8372 * @rate: % of packets which failed transmission
8373 * @intvl: interval (in s) over which the TX failure threshold was breached.
8374 * @gfp: context flags
8375 *
8376 * Notify userspace when configured % TX failures over number of packets in a
8377 * given interval is exceeded.
8378 */
8379 void cfg80211_cqm_txe_notify(struct net_device *dev, const u8 *peer,
8380 u32 num_packets, u32 rate, u32 intvl, gfp_t gfp);
8381
8382 /**
8383 * cfg80211_cqm_beacon_loss_notify - beacon loss event
8384 * @dev: network device
8385 * @gfp: context flags
8386 *
8387 * Notify userspace about beacon loss from the connected AP.
8388 */
8389 void cfg80211_cqm_beacon_loss_notify(struct net_device *dev, gfp_t gfp);
8390
8391 /**
8392 * __cfg80211_radar_event - radar detection event
8393 * @wiphy: the wiphy
8394 * @chandef: chandef for the current channel
8395 * @offchan: the radar has been detected on the offchannel chain
8396 * @gfp: context flags
8397 *
8398 * This function is called when a radar is detected on the current chanenl.
8399 */
8400 void __cfg80211_radar_event(struct wiphy *wiphy,
8401 struct cfg80211_chan_def *chandef,
8402 bool offchan, gfp_t gfp);
8403
8404 static inline void
cfg80211_radar_event(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,gfp_t gfp)8405 cfg80211_radar_event(struct wiphy *wiphy,
8406 struct cfg80211_chan_def *chandef,
8407 gfp_t gfp)
8408 {
8409 __cfg80211_radar_event(wiphy, chandef, false, gfp);
8410 }
8411
8412 static inline void
cfg80211_background_radar_event(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,gfp_t gfp)8413 cfg80211_background_radar_event(struct wiphy *wiphy,
8414 struct cfg80211_chan_def *chandef,
8415 gfp_t gfp)
8416 {
8417 __cfg80211_radar_event(wiphy, chandef, true, gfp);
8418 }
8419
8420 /**
8421 * cfg80211_sta_opmode_change_notify - STA's ht/vht operation mode change event
8422 * @dev: network device
8423 * @mac: MAC address of a station which opmode got modified
8424 * @sta_opmode: station's current opmode value
8425 * @gfp: context flags
8426 *
8427 * Driver should call this function when station's opmode modified via action
8428 * frame.
8429 */
8430 void cfg80211_sta_opmode_change_notify(struct net_device *dev, const u8 *mac,
8431 struct sta_opmode_info *sta_opmode,
8432 gfp_t gfp);
8433
8434 /**
8435 * cfg80211_cac_event - Channel availability check (CAC) event
8436 * @netdev: network device
8437 * @chandef: chandef for the current channel
8438 * @event: type of event
8439 * @gfp: context flags
8440 *
8441 * This function is called when a Channel availability check (CAC) is finished
8442 * or aborted. This must be called to notify the completion of a CAC process,
8443 * also by full-MAC drivers.
8444 */
8445 void cfg80211_cac_event(struct net_device *netdev,
8446 const struct cfg80211_chan_def *chandef,
8447 enum nl80211_radar_event event, gfp_t gfp);
8448
8449 /**
8450 * cfg80211_background_cac_abort - Channel Availability Check offchan abort event
8451 * @wiphy: the wiphy
8452 *
8453 * This function is called by the driver when a Channel Availability Check
8454 * (CAC) is aborted by a offchannel dedicated chain.
8455 */
8456 void cfg80211_background_cac_abort(struct wiphy *wiphy);
8457
8458 /**
8459 * cfg80211_gtk_rekey_notify - notify userspace about driver rekeying
8460 * @dev: network device
8461 * @bssid: BSSID of AP (to avoid races)
8462 * @replay_ctr: new replay counter
8463 * @gfp: allocation flags
8464 */
8465 void cfg80211_gtk_rekey_notify(struct net_device *dev, const u8 *bssid,
8466 const u8 *replay_ctr, gfp_t gfp);
8467
8468 /**
8469 * cfg80211_pmksa_candidate_notify - notify about PMKSA caching candidate
8470 * @dev: network device
8471 * @index: candidate index (the smaller the index, the higher the priority)
8472 * @bssid: BSSID of AP
8473 * @preauth: Whether AP advertises support for RSN pre-authentication
8474 * @gfp: allocation flags
8475 */
8476 void cfg80211_pmksa_candidate_notify(struct net_device *dev, int index,
8477 const u8 *bssid, bool preauth, gfp_t gfp);
8478
8479 /**
8480 * cfg80211_rx_spurious_frame - inform userspace about a spurious frame
8481 * @dev: The device the frame matched to
8482 * @addr: the transmitter address
8483 * @gfp: context flags
8484 *
8485 * This function is used in AP mode (only!) to inform userspace that
8486 * a spurious class 3 frame was received, to be able to deauth the
8487 * sender.
8488 * Return: %true if the frame was passed to userspace (or this failed
8489 * for a reason other than not having a subscription.)
8490 */
8491 bool cfg80211_rx_spurious_frame(struct net_device *dev,
8492 const u8 *addr, gfp_t gfp);
8493
8494 /**
8495 * cfg80211_rx_unexpected_4addr_frame - inform about unexpected WDS frame
8496 * @dev: The device the frame matched to
8497 * @addr: the transmitter address
8498 * @gfp: context flags
8499 *
8500 * This function is used in AP mode (only!) to inform userspace that
8501 * an associated station sent a 4addr frame but that wasn't expected.
8502 * It is allowed and desirable to send this event only once for each
8503 * station to avoid event flooding.
8504 * Return: %true if the frame was passed to userspace (or this failed
8505 * for a reason other than not having a subscription.)
8506 */
8507 bool cfg80211_rx_unexpected_4addr_frame(struct net_device *dev,
8508 const u8 *addr, gfp_t gfp);
8509
8510 /**
8511 * cfg80211_probe_status - notify userspace about probe status
8512 * @dev: the device the probe was sent on
8513 * @addr: the address of the peer
8514 * @cookie: the cookie filled in @probe_client previously
8515 * @acked: indicates whether probe was acked or not
8516 * @ack_signal: signal strength (in dBm) of the ACK frame.
8517 * @is_valid_ack_signal: indicates the ack_signal is valid or not.
8518 * @gfp: allocation flags
8519 */
8520 void cfg80211_probe_status(struct net_device *dev, const u8 *addr,
8521 u64 cookie, bool acked, s32 ack_signal,
8522 bool is_valid_ack_signal, gfp_t gfp);
8523
8524 /**
8525 * cfg80211_report_obss_beacon_khz - report beacon from other APs
8526 * @wiphy: The wiphy that received the beacon
8527 * @frame: the frame
8528 * @len: length of the frame
8529 * @freq: frequency the frame was received on in KHz
8530 * @sig_dbm: signal strength in dBm, or 0 if unknown
8531 *
8532 * Use this function to report to userspace when a beacon was
8533 * received. It is not useful to call this when there is no
8534 * netdev that is in AP/GO mode.
8535 */
8536 void cfg80211_report_obss_beacon_khz(struct wiphy *wiphy, const u8 *frame,
8537 size_t len, int freq, int sig_dbm);
8538
8539 /**
8540 * cfg80211_report_obss_beacon - report beacon from other APs
8541 * @wiphy: The wiphy that received the beacon
8542 * @frame: the frame
8543 * @len: length of the frame
8544 * @freq: frequency the frame was received on
8545 * @sig_dbm: signal strength in dBm, or 0 if unknown
8546 *
8547 * Use this function to report to userspace when a beacon was
8548 * received. It is not useful to call this when there is no
8549 * netdev that is in AP/GO mode.
8550 */
cfg80211_report_obss_beacon(struct wiphy * wiphy,const u8 * frame,size_t len,int freq,int sig_dbm)8551 static inline void cfg80211_report_obss_beacon(struct wiphy *wiphy,
8552 const u8 *frame, size_t len,
8553 int freq, int sig_dbm)
8554 {
8555 cfg80211_report_obss_beacon_khz(wiphy, frame, len, MHZ_TO_KHZ(freq),
8556 sig_dbm);
8557 }
8558
8559 /**
8560 * cfg80211_reg_can_beacon - check if beaconing is allowed
8561 * @wiphy: the wiphy
8562 * @chandef: the channel definition
8563 * @iftype: interface type
8564 *
8565 * Return: %true if there is no secondary channel or the secondary channel(s)
8566 * can be used for beaconing (i.e. is not a radar channel etc.)
8567 */
8568 bool cfg80211_reg_can_beacon(struct wiphy *wiphy,
8569 struct cfg80211_chan_def *chandef,
8570 enum nl80211_iftype iftype);
8571
8572 /**
8573 * cfg80211_reg_can_beacon_relax - check if beaconing is allowed with relaxation
8574 * @wiphy: the wiphy
8575 * @chandef: the channel definition
8576 * @iftype: interface type
8577 *
8578 * Return: %true if there is no secondary channel or the secondary channel(s)
8579 * can be used for beaconing (i.e. is not a radar channel etc.). This version
8580 * also checks if IR-relaxation conditions apply, to allow beaconing under
8581 * more permissive conditions.
8582 *
8583 * Requires the wiphy mutex to be held.
8584 */
8585 bool cfg80211_reg_can_beacon_relax(struct wiphy *wiphy,
8586 struct cfg80211_chan_def *chandef,
8587 enum nl80211_iftype iftype);
8588
8589 /*
8590 * cfg80211_ch_switch_notify - update wdev channel and notify userspace
8591 * @dev: the device which switched channels
8592 * @chandef: the new channel definition
8593 * @link_id: the link ID for MLO, must be 0 for non-MLO
8594 * @punct_bitmap: the new puncturing bitmap
8595 *
8596 * Caller must acquire wdev_lock, therefore must only be called from sleepable
8597 * driver context!
8598 */
8599 void cfg80211_ch_switch_notify(struct net_device *dev,
8600 struct cfg80211_chan_def *chandef,
8601 unsigned int link_id, u16 punct_bitmap);
8602
8603 /*
8604 * cfg80211_ch_switch_started_notify - notify channel switch start
8605 * @dev: the device on which the channel switch started
8606 * @chandef: the future channel definition
8607 * @link_id: the link ID for MLO, must be 0 for non-MLO
8608 * @count: the number of TBTTs until the channel switch happens
8609 * @quiet: whether or not immediate quiet was requested by the AP
8610 * @punct_bitmap: the future puncturing bitmap
8611 *
8612 * Inform the userspace about the channel switch that has just
8613 * started, so that it can take appropriate actions (eg. starting
8614 * channel switch on other vifs), if necessary.
8615 */
8616 void cfg80211_ch_switch_started_notify(struct net_device *dev,
8617 struct cfg80211_chan_def *chandef,
8618 unsigned int link_id, u8 count,
8619 bool quiet, u16 punct_bitmap);
8620
8621 /**
8622 * ieee80211_operating_class_to_band - convert operating class to band
8623 *
8624 * @operating_class: the operating class to convert
8625 * @band: band pointer to fill
8626 *
8627 * Returns %true if the conversion was successful, %false otherwise.
8628 */
8629 bool ieee80211_operating_class_to_band(u8 operating_class,
8630 enum nl80211_band *band);
8631
8632 /**
8633 * ieee80211_chandef_to_operating_class - convert chandef to operation class
8634 *
8635 * @chandef: the chandef to convert
8636 * @op_class: a pointer to the resulting operating class
8637 *
8638 * Returns %true if the conversion was successful, %false otherwise.
8639 */
8640 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
8641 u8 *op_class);
8642
8643 /**
8644 * ieee80211_chandef_to_khz - convert chandef to frequency in KHz
8645 *
8646 * @chandef: the chandef to convert
8647 *
8648 * Returns the center frequency of chandef (1st segment) in KHz.
8649 */
8650 static inline u32
ieee80211_chandef_to_khz(const struct cfg80211_chan_def * chandef)8651 ieee80211_chandef_to_khz(const struct cfg80211_chan_def *chandef)
8652 {
8653 return MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset;
8654 }
8655
8656 /*
8657 * cfg80211_tdls_oper_request - request userspace to perform TDLS operation
8658 * @dev: the device on which the operation is requested
8659 * @peer: the MAC address of the peer device
8660 * @oper: the requested TDLS operation (NL80211_TDLS_SETUP or
8661 * NL80211_TDLS_TEARDOWN)
8662 * @reason_code: the reason code for teardown request
8663 * @gfp: allocation flags
8664 *
8665 * This function is used to request userspace to perform TDLS operation that
8666 * requires knowledge of keys, i.e., link setup or teardown when the AP
8667 * connection uses encryption. This is optional mechanism for the driver to use
8668 * if it can automatically determine when a TDLS link could be useful (e.g.,
8669 * based on traffic and signal strength for a peer).
8670 */
8671 void cfg80211_tdls_oper_request(struct net_device *dev, const u8 *peer,
8672 enum nl80211_tdls_operation oper,
8673 u16 reason_code, gfp_t gfp);
8674
8675 /*
8676 * cfg80211_calculate_bitrate - calculate actual bitrate (in 100Kbps units)
8677 * @rate: given rate_info to calculate bitrate from
8678 *
8679 * return 0 if MCS index >= 32
8680 */
8681 u32 cfg80211_calculate_bitrate(struct rate_info *rate);
8682
8683 /**
8684 * cfg80211_unregister_wdev - remove the given wdev
8685 * @wdev: struct wireless_dev to remove
8686 *
8687 * This function removes the device so it can no longer be used. It is necessary
8688 * to call this function even when cfg80211 requests the removal of the device
8689 * by calling the del_virtual_intf() callback. The function must also be called
8690 * when the driver wishes to unregister the wdev, e.g. when the hardware device
8691 * is unbound from the driver.
8692 *
8693 * Requires the RTNL and wiphy mutex to be held.
8694 */
8695 void cfg80211_unregister_wdev(struct wireless_dev *wdev);
8696
8697 /**
8698 * cfg80211_register_netdevice - register the given netdev
8699 * @dev: the netdev to register
8700 *
8701 * Note: In contexts coming from cfg80211 callbacks, you must call this rather
8702 * than register_netdevice(), unregister_netdev() is impossible as the RTNL is
8703 * held. Otherwise, both register_netdevice() and register_netdev() are usable
8704 * instead as well.
8705 *
8706 * Requires the RTNL and wiphy mutex to be held.
8707 */
8708 int cfg80211_register_netdevice(struct net_device *dev);
8709
8710 /**
8711 * cfg80211_unregister_netdevice - unregister the given netdev
8712 * @dev: the netdev to register
8713 *
8714 * Note: In contexts coming from cfg80211 callbacks, you must call this rather
8715 * than unregister_netdevice(), unregister_netdev() is impossible as the RTNL
8716 * is held. Otherwise, both unregister_netdevice() and unregister_netdev() are
8717 * usable instead as well.
8718 *
8719 * Requires the RTNL and wiphy mutex to be held.
8720 */
cfg80211_unregister_netdevice(struct net_device * dev)8721 static inline void cfg80211_unregister_netdevice(struct net_device *dev)
8722 {
8723 #if IS_ENABLED(CONFIG_CFG80211)
8724 cfg80211_unregister_wdev(dev->ieee80211_ptr);
8725 #endif
8726 }
8727
8728 /**
8729 * struct cfg80211_ft_event_params - FT Information Elements
8730 * @ies: FT IEs
8731 * @ies_len: length of the FT IE in bytes
8732 * @target_ap: target AP's MAC address
8733 * @ric_ies: RIC IE
8734 * @ric_ies_len: length of the RIC IE in bytes
8735 */
8736 struct cfg80211_ft_event_params {
8737 const u8 *ies;
8738 size_t ies_len;
8739 const u8 *target_ap;
8740 const u8 *ric_ies;
8741 size_t ric_ies_len;
8742 };
8743
8744 /**
8745 * cfg80211_ft_event - notify userspace about FT IE and RIC IE
8746 * @netdev: network device
8747 * @ft_event: IE information
8748 */
8749 void cfg80211_ft_event(struct net_device *netdev,
8750 struct cfg80211_ft_event_params *ft_event);
8751
8752 /**
8753 * cfg80211_get_p2p_attr - find and copy a P2P attribute from IE buffer
8754 * @ies: the input IE buffer
8755 * @len: the input length
8756 * @attr: the attribute ID to find
8757 * @buf: output buffer, can be %NULL if the data isn't needed, e.g.
8758 * if the function is only called to get the needed buffer size
8759 * @bufsize: size of the output buffer
8760 *
8761 * The function finds a given P2P attribute in the (vendor) IEs and
8762 * copies its contents to the given buffer.
8763 *
8764 * Return: A negative error code (-%EILSEQ or -%ENOENT) if the data is
8765 * malformed or the attribute can't be found (respectively), or the
8766 * length of the found attribute (which can be zero).
8767 */
8768 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
8769 enum ieee80211_p2p_attr_id attr,
8770 u8 *buf, unsigned int bufsize);
8771
8772 /**
8773 * ieee80211_ie_split_ric - split an IE buffer according to ordering (with RIC)
8774 * @ies: the IE buffer
8775 * @ielen: the length of the IE buffer
8776 * @ids: an array with element IDs that are allowed before
8777 * the split. A WLAN_EID_EXTENSION value means that the next
8778 * EID in the list is a sub-element of the EXTENSION IE.
8779 * @n_ids: the size of the element ID array
8780 * @after_ric: array IE types that come after the RIC element
8781 * @n_after_ric: size of the @after_ric array
8782 * @offset: offset where to start splitting in the buffer
8783 *
8784 * This function splits an IE buffer by updating the @offset
8785 * variable to point to the location where the buffer should be
8786 * split.
8787 *
8788 * It assumes that the given IE buffer is well-formed, this
8789 * has to be guaranteed by the caller!
8790 *
8791 * It also assumes that the IEs in the buffer are ordered
8792 * correctly, if not the result of using this function will not
8793 * be ordered correctly either, i.e. it does no reordering.
8794 *
8795 * The function returns the offset where the next part of the
8796 * buffer starts, which may be @ielen if the entire (remainder)
8797 * of the buffer should be used.
8798 */
8799 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
8800 const u8 *ids, int n_ids,
8801 const u8 *after_ric, int n_after_ric,
8802 size_t offset);
8803
8804 /**
8805 * ieee80211_ie_split - split an IE buffer according to ordering
8806 * @ies: the IE buffer
8807 * @ielen: the length of the IE buffer
8808 * @ids: an array with element IDs that are allowed before
8809 * the split. A WLAN_EID_EXTENSION value means that the next
8810 * EID in the list is a sub-element of the EXTENSION IE.
8811 * @n_ids: the size of the element ID array
8812 * @offset: offset where to start splitting in the buffer
8813 *
8814 * This function splits an IE buffer by updating the @offset
8815 * variable to point to the location where the buffer should be
8816 * split.
8817 *
8818 * It assumes that the given IE buffer is well-formed, this
8819 * has to be guaranteed by the caller!
8820 *
8821 * It also assumes that the IEs in the buffer are ordered
8822 * correctly, if not the result of using this function will not
8823 * be ordered correctly either, i.e. it does no reordering.
8824 *
8825 * The function returns the offset where the next part of the
8826 * buffer starts, which may be @ielen if the entire (remainder)
8827 * of the buffer should be used.
8828 */
ieee80211_ie_split(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,size_t offset)8829 static inline size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
8830 const u8 *ids, int n_ids, size_t offset)
8831 {
8832 return ieee80211_ie_split_ric(ies, ielen, ids, n_ids, NULL, 0, offset);
8833 }
8834
8835 /**
8836 * cfg80211_report_wowlan_wakeup - report wakeup from WoWLAN
8837 * @wdev: the wireless device reporting the wakeup
8838 * @wakeup: the wakeup report
8839 * @gfp: allocation flags
8840 *
8841 * This function reports that the given device woke up. If it
8842 * caused the wakeup, report the reason(s), otherwise you may
8843 * pass %NULL as the @wakeup parameter to advertise that something
8844 * else caused the wakeup.
8845 */
8846 void cfg80211_report_wowlan_wakeup(struct wireless_dev *wdev,
8847 struct cfg80211_wowlan_wakeup *wakeup,
8848 gfp_t gfp);
8849
8850 /**
8851 * cfg80211_crit_proto_stopped() - indicate critical protocol stopped by driver.
8852 *
8853 * @wdev: the wireless device for which critical protocol is stopped.
8854 * @gfp: allocation flags
8855 *
8856 * This function can be called by the driver to indicate it has reverted
8857 * operation back to normal. One reason could be that the duration given
8858 * by .crit_proto_start() has expired.
8859 */
8860 void cfg80211_crit_proto_stopped(struct wireless_dev *wdev, gfp_t gfp);
8861
8862 /**
8863 * ieee80211_get_num_supported_channels - get number of channels device has
8864 * @wiphy: the wiphy
8865 *
8866 * Return: the number of channels supported by the device.
8867 */
8868 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy);
8869
8870 /**
8871 * cfg80211_check_combinations - check interface combinations
8872 *
8873 * @wiphy: the wiphy
8874 * @params: the interface combinations parameter
8875 *
8876 * This function can be called by the driver to check whether a
8877 * combination of interfaces and their types are allowed according to
8878 * the interface combinations.
8879 */
8880 int cfg80211_check_combinations(struct wiphy *wiphy,
8881 struct iface_combination_params *params);
8882
8883 /**
8884 * cfg80211_iter_combinations - iterate over matching combinations
8885 *
8886 * @wiphy: the wiphy
8887 * @params: the interface combinations parameter
8888 * @iter: function to call for each matching combination
8889 * @data: pointer to pass to iter function
8890 *
8891 * This function can be called by the driver to check what possible
8892 * combinations it fits in at a given moment, e.g. for channel switching
8893 * purposes.
8894 */
8895 int cfg80211_iter_combinations(struct wiphy *wiphy,
8896 struct iface_combination_params *params,
8897 void (*iter)(const struct ieee80211_iface_combination *c,
8898 void *data),
8899 void *data);
8900
8901 /*
8902 * cfg80211_stop_iface - trigger interface disconnection
8903 *
8904 * @wiphy: the wiphy
8905 * @wdev: wireless device
8906 * @gfp: context flags
8907 *
8908 * Trigger interface to be stopped as if AP was stopped, IBSS/mesh left, STA
8909 * disconnected.
8910 *
8911 * Note: This doesn't need any locks and is asynchronous.
8912 */
8913 void cfg80211_stop_iface(struct wiphy *wiphy, struct wireless_dev *wdev,
8914 gfp_t gfp);
8915
8916 /**
8917 * cfg80211_shutdown_all_interfaces - shut down all interfaces for a wiphy
8918 * @wiphy: the wiphy to shut down
8919 *
8920 * This function shuts down all interfaces belonging to this wiphy by
8921 * calling dev_close() (and treating non-netdev interfaces as needed).
8922 * It shouldn't really be used unless there are some fatal device errors
8923 * that really can't be recovered in any other way.
8924 *
8925 * Callers must hold the RTNL and be able to deal with callbacks into
8926 * the driver while the function is running.
8927 */
8928 void cfg80211_shutdown_all_interfaces(struct wiphy *wiphy);
8929
8930 /**
8931 * wiphy_ext_feature_set - set the extended feature flag
8932 *
8933 * @wiphy: the wiphy to modify.
8934 * @ftidx: extended feature bit index.
8935 *
8936 * The extended features are flagged in multiple bytes (see
8937 * &struct wiphy.@ext_features)
8938 */
wiphy_ext_feature_set(struct wiphy * wiphy,enum nl80211_ext_feature_index ftidx)8939 static inline void wiphy_ext_feature_set(struct wiphy *wiphy,
8940 enum nl80211_ext_feature_index ftidx)
8941 {
8942 u8 *ft_byte;
8943
8944 ft_byte = &wiphy->ext_features[ftidx / 8];
8945 *ft_byte |= BIT(ftidx % 8);
8946 }
8947
8948 /**
8949 * wiphy_ext_feature_isset - check the extended feature flag
8950 *
8951 * @wiphy: the wiphy to modify.
8952 * @ftidx: extended feature bit index.
8953 *
8954 * The extended features are flagged in multiple bytes (see
8955 * &struct wiphy.@ext_features)
8956 */
8957 static inline bool
wiphy_ext_feature_isset(struct wiphy * wiphy,enum nl80211_ext_feature_index ftidx)8958 wiphy_ext_feature_isset(struct wiphy *wiphy,
8959 enum nl80211_ext_feature_index ftidx)
8960 {
8961 u8 ft_byte;
8962
8963 ft_byte = wiphy->ext_features[ftidx / 8];
8964 return (ft_byte & BIT(ftidx % 8)) != 0;
8965 }
8966
8967 /**
8968 * cfg80211_free_nan_func - free NAN function
8969 * @f: NAN function that should be freed
8970 *
8971 * Frees all the NAN function and all it's allocated members.
8972 */
8973 void cfg80211_free_nan_func(struct cfg80211_nan_func *f);
8974
8975 /**
8976 * struct cfg80211_nan_match_params - NAN match parameters
8977 * @type: the type of the function that triggered a match. If it is
8978 * %NL80211_NAN_FUNC_SUBSCRIBE it means that we replied to a subscriber.
8979 * If it is %NL80211_NAN_FUNC_PUBLISH, it means that we got a discovery
8980 * result.
8981 * If it is %NL80211_NAN_FUNC_FOLLOW_UP, we received a follow up.
8982 * @inst_id: the local instance id
8983 * @peer_inst_id: the instance id of the peer's function
8984 * @addr: the MAC address of the peer
8985 * @info_len: the length of the &info
8986 * @info: the Service Specific Info from the peer (if any)
8987 * @cookie: unique identifier of the corresponding function
8988 */
8989 struct cfg80211_nan_match_params {
8990 enum nl80211_nan_function_type type;
8991 u8 inst_id;
8992 u8 peer_inst_id;
8993 const u8 *addr;
8994 u8 info_len;
8995 const u8 *info;
8996 u64 cookie;
8997 };
8998
8999 /**
9000 * cfg80211_nan_match - report a match for a NAN function.
9001 * @wdev: the wireless device reporting the match
9002 * @match: match notification parameters
9003 * @gfp: allocation flags
9004 *
9005 * This function reports that the a NAN function had a match. This
9006 * can be a subscribe that had a match or a solicited publish that
9007 * was sent. It can also be a follow up that was received.
9008 */
9009 void cfg80211_nan_match(struct wireless_dev *wdev,
9010 struct cfg80211_nan_match_params *match, gfp_t gfp);
9011
9012 /**
9013 * cfg80211_nan_func_terminated - notify about NAN function termination.
9014 *
9015 * @wdev: the wireless device reporting the match
9016 * @inst_id: the local instance id
9017 * @reason: termination reason (one of the NL80211_NAN_FUNC_TERM_REASON_*)
9018 * @cookie: unique NAN function identifier
9019 * @gfp: allocation flags
9020 *
9021 * This function reports that the a NAN function is terminated.
9022 */
9023 void cfg80211_nan_func_terminated(struct wireless_dev *wdev,
9024 u8 inst_id,
9025 enum nl80211_nan_func_term_reason reason,
9026 u64 cookie, gfp_t gfp);
9027
9028 /* ethtool helper */
9029 void cfg80211_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info);
9030
9031 /**
9032 * cfg80211_external_auth_request - userspace request for authentication
9033 * @netdev: network device
9034 * @params: External authentication parameters
9035 * @gfp: allocation flags
9036 * Returns: 0 on success, < 0 on error
9037 */
9038 int cfg80211_external_auth_request(struct net_device *netdev,
9039 struct cfg80211_external_auth_params *params,
9040 gfp_t gfp);
9041
9042 /**
9043 * cfg80211_pmsr_report - report peer measurement result data
9044 * @wdev: the wireless device reporting the measurement
9045 * @req: the original measurement request
9046 * @result: the result data
9047 * @gfp: allocation flags
9048 */
9049 void cfg80211_pmsr_report(struct wireless_dev *wdev,
9050 struct cfg80211_pmsr_request *req,
9051 struct cfg80211_pmsr_result *result,
9052 gfp_t gfp);
9053
9054 /**
9055 * cfg80211_pmsr_complete - report peer measurement completed
9056 * @wdev: the wireless device reporting the measurement
9057 * @req: the original measurement request
9058 * @gfp: allocation flags
9059 *
9060 * Report that the entire measurement completed, after this
9061 * the request pointer will no longer be valid.
9062 */
9063 void cfg80211_pmsr_complete(struct wireless_dev *wdev,
9064 struct cfg80211_pmsr_request *req,
9065 gfp_t gfp);
9066
9067 /**
9068 * cfg80211_iftype_allowed - check whether the interface can be allowed
9069 * @wiphy: the wiphy
9070 * @iftype: interface type
9071 * @is_4addr: use_4addr flag, must be '0' when check_swif is '1'
9072 * @check_swif: check iftype against software interfaces
9073 *
9074 * Check whether the interface is allowed to operate; additionally, this API
9075 * can be used to check iftype against the software interfaces when
9076 * check_swif is '1'.
9077 */
9078 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
9079 bool is_4addr, u8 check_swif);
9080
9081
9082 /**
9083 * cfg80211_assoc_comeback - notification of association that was
9084 * temporarly rejected with a comeback
9085 * @netdev: network device
9086 * @ap_addr: AP (MLD) address that rejected the assocation
9087 * @timeout: timeout interval value TUs.
9088 *
9089 * this function may sleep. the caller must hold the corresponding wdev's mutex.
9090 */
9091 void cfg80211_assoc_comeback(struct net_device *netdev,
9092 const u8 *ap_addr, u32 timeout);
9093
9094 /* Logging, debugging and troubleshooting/diagnostic helpers. */
9095
9096 /* wiphy_printk helpers, similar to dev_printk */
9097
9098 #define wiphy_printk(level, wiphy, format, args...) \
9099 dev_printk(level, &(wiphy)->dev, format, ##args)
9100 #define wiphy_emerg(wiphy, format, args...) \
9101 dev_emerg(&(wiphy)->dev, format, ##args)
9102 #define wiphy_alert(wiphy, format, args...) \
9103 dev_alert(&(wiphy)->dev, format, ##args)
9104 #define wiphy_crit(wiphy, format, args...) \
9105 dev_crit(&(wiphy)->dev, format, ##args)
9106 #define wiphy_err(wiphy, format, args...) \
9107 dev_err(&(wiphy)->dev, format, ##args)
9108 #define wiphy_warn(wiphy, format, args...) \
9109 dev_warn(&(wiphy)->dev, format, ##args)
9110 #define wiphy_notice(wiphy, format, args...) \
9111 dev_notice(&(wiphy)->dev, format, ##args)
9112 #define wiphy_info(wiphy, format, args...) \
9113 dev_info(&(wiphy)->dev, format, ##args)
9114 #define wiphy_info_once(wiphy, format, args...) \
9115 dev_info_once(&(wiphy)->dev, format, ##args)
9116
9117 #define wiphy_err_ratelimited(wiphy, format, args...) \
9118 dev_err_ratelimited(&(wiphy)->dev, format, ##args)
9119 #define wiphy_warn_ratelimited(wiphy, format, args...) \
9120 dev_warn_ratelimited(&(wiphy)->dev, format, ##args)
9121
9122 #define wiphy_debug(wiphy, format, args...) \
9123 wiphy_printk(KERN_DEBUG, wiphy, format, ##args)
9124
9125 #define wiphy_dbg(wiphy, format, args...) \
9126 dev_dbg(&(wiphy)->dev, format, ##args)
9127
9128 #if defined(VERBOSE_DEBUG)
9129 #define wiphy_vdbg wiphy_dbg
9130 #else
9131 #define wiphy_vdbg(wiphy, format, args...) \
9132 ({ \
9133 if (0) \
9134 wiphy_printk(KERN_DEBUG, wiphy, format, ##args); \
9135 0; \
9136 })
9137 #endif
9138
9139 /*
9140 * wiphy_WARN() acts like wiphy_printk(), but with the key difference
9141 * of using a WARN/WARN_ON to get the message out, including the
9142 * file/line information and a backtrace.
9143 */
9144 #define wiphy_WARN(wiphy, format, args...) \
9145 WARN(1, "wiphy: %s\n" format, wiphy_name(wiphy), ##args);
9146
9147 /**
9148 * cfg80211_update_owe_info_event - Notify the peer's OWE info to user space
9149 * @netdev: network device
9150 * @owe_info: peer's owe info
9151 * @gfp: allocation flags
9152 */
9153 void cfg80211_update_owe_info_event(struct net_device *netdev,
9154 struct cfg80211_update_owe_info *owe_info,
9155 gfp_t gfp);
9156
9157 /**
9158 * cfg80211_bss_flush - resets all the scan entries
9159 * @wiphy: the wiphy
9160 */
9161 void cfg80211_bss_flush(struct wiphy *wiphy);
9162
9163 /**
9164 * cfg80211_bss_color_notify - notify about bss color event
9165 * @dev: network device
9166 * @cmd: the actual event we want to notify
9167 * @count: the number of TBTTs until the color change happens
9168 * @color_bitmap: representations of the colors that the local BSS is aware of
9169 */
9170 int cfg80211_bss_color_notify(struct net_device *dev,
9171 enum nl80211_commands cmd, u8 count,
9172 u64 color_bitmap);
9173
9174 /**
9175 * cfg80211_obss_color_collision_notify - notify about bss color collision
9176 * @dev: network device
9177 * @color_bitmap: representations of the colors that the local BSS is aware of
9178 */
cfg80211_obss_color_collision_notify(struct net_device * dev,u64 color_bitmap)9179 static inline int cfg80211_obss_color_collision_notify(struct net_device *dev,
9180 u64 color_bitmap)
9181 {
9182 return cfg80211_bss_color_notify(dev, NL80211_CMD_OBSS_COLOR_COLLISION,
9183 0, color_bitmap);
9184 }
9185
9186 /**
9187 * cfg80211_color_change_started_notify - notify color change start
9188 * @dev: the device on which the color is switched
9189 * @count: the number of TBTTs until the color change happens
9190 *
9191 * Inform the userspace about the color change that has started.
9192 */
cfg80211_color_change_started_notify(struct net_device * dev,u8 count)9193 static inline int cfg80211_color_change_started_notify(struct net_device *dev,
9194 u8 count)
9195 {
9196 return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_STARTED,
9197 count, 0);
9198 }
9199
9200 /**
9201 * cfg80211_color_change_aborted_notify - notify color change abort
9202 * @dev: the device on which the color is switched
9203 *
9204 * Inform the userspace about the color change that has aborted.
9205 */
cfg80211_color_change_aborted_notify(struct net_device * dev)9206 static inline int cfg80211_color_change_aborted_notify(struct net_device *dev)
9207 {
9208 return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_ABORTED,
9209 0, 0);
9210 }
9211
9212 /**
9213 * cfg80211_color_change_notify - notify color change completion
9214 * @dev: the device on which the color was switched
9215 *
9216 * Inform the userspace about the color change that has completed.
9217 */
cfg80211_color_change_notify(struct net_device * dev)9218 static inline int cfg80211_color_change_notify(struct net_device *dev)
9219 {
9220 return cfg80211_bss_color_notify(dev,
9221 NL80211_CMD_COLOR_CHANGE_COMPLETED,
9222 0, 0);
9223 }
9224
9225 /**
9226 * cfg80211_valid_disable_subchannel_bitmap - validate puncturing bitmap
9227 * @bitmap: bitmap to be validated
9228 * @chandef: channel definition
9229 *
9230 * Validate the puncturing bitmap.
9231 *
9232 * Return: %true if the bitmap is valid. %false otherwise.
9233 */
9234 bool cfg80211_valid_disable_subchannel_bitmap(u16 *bitmap,
9235 const struct cfg80211_chan_def *chandef);
9236
9237 /**
9238 * cfg80211_links_removed - Notify about removed STA MLD setup links.
9239 * @dev: network device.
9240 * @link_mask: BIT mask of removed STA MLD setup link IDs.
9241 *
9242 * Inform cfg80211 and the userspace about removed STA MLD setup links due to
9243 * AP MLD removing the corresponding affiliated APs with Multi-Link
9244 * reconfiguration. Note that it's not valid to remove all links, in this
9245 * case disconnect instead.
9246 * Also note that the wdev mutex must be held.
9247 */
9248 void cfg80211_links_removed(struct net_device *dev, u16 link_mask);
9249
9250 #endif /* __NET_CFG80211_H */
9251