1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 #ifndef __HCI_CORE_H 26 #define __HCI_CORE_H 27 28 #include <linux/idr.h> 29 #include <linux/leds.h> 30 #include <linux/rculist.h> 31 32 #include <net/bluetooth/hci.h> 33 #include <net/bluetooth/hci_sock.h> 34 35 /* HCI priority */ 36 #define HCI_PRIO_MAX 7 37 38 /* HCI Core structures */ 39 struct inquiry_data { 40 bdaddr_t bdaddr; 41 __u8 pscan_rep_mode; 42 __u8 pscan_period_mode; 43 __u8 pscan_mode; 44 __u8 dev_class[3]; 45 __le16 clock_offset; 46 __s8 rssi; 47 __u8 ssp_mode; 48 }; 49 50 struct inquiry_entry { 51 struct list_head all; /* inq_cache.all */ 52 struct list_head list; /* unknown or resolve */ 53 enum { 54 NAME_NOT_KNOWN, 55 NAME_NEEDED, 56 NAME_PENDING, 57 NAME_KNOWN, 58 } name_state; 59 __u32 timestamp; 60 struct inquiry_data data; 61 }; 62 63 struct discovery_state { 64 int type; 65 enum { 66 DISCOVERY_STOPPED, 67 DISCOVERY_STARTING, 68 DISCOVERY_FINDING, 69 DISCOVERY_RESOLVING, 70 DISCOVERY_STOPPING, 71 } state; 72 struct list_head all; /* All devices found during inquiry */ 73 struct list_head unknown; /* Name state not known */ 74 struct list_head resolve; /* Name needs to be resolved */ 75 __u32 timestamp; 76 bdaddr_t last_adv_addr; 77 u8 last_adv_addr_type; 78 s8 last_adv_rssi; 79 u32 last_adv_flags; 80 u8 last_adv_data[HCI_MAX_AD_LENGTH]; 81 u8 last_adv_data_len; 82 bool report_invalid_rssi; 83 bool result_filtering; 84 bool limited; 85 s8 rssi; 86 u16 uuid_count; 87 u8 (*uuids)[16]; 88 unsigned long scan_start; 89 unsigned long scan_duration; 90 }; 91 92 #define SUSPEND_NOTIFIER_TIMEOUT msecs_to_jiffies(2000) /* 2 seconds */ 93 94 enum suspend_tasks { 95 SUSPEND_PAUSE_DISCOVERY, 96 SUSPEND_UNPAUSE_DISCOVERY, 97 98 SUSPEND_PAUSE_ADVERTISING, 99 SUSPEND_UNPAUSE_ADVERTISING, 100 101 SUSPEND_SCAN_DISABLE, 102 SUSPEND_SCAN_ENABLE, 103 SUSPEND_DISCONNECTING, 104 105 SUSPEND_POWERING_DOWN, 106 107 SUSPEND_PREPARE_NOTIFIER, 108 109 SUSPEND_SET_ADV_FILTER, 110 __SUSPEND_NUM_TASKS 111 }; 112 113 enum suspended_state { 114 BT_RUNNING = 0, 115 BT_SUSPEND_DISCONNECT, 116 BT_SUSPEND_CONFIGURE_WAKE, 117 }; 118 119 struct hci_conn_hash { 120 struct list_head list; 121 unsigned int acl_num; 122 unsigned int amp_num; 123 unsigned int sco_num; 124 unsigned int le_num; 125 unsigned int le_num_peripheral; 126 }; 127 128 struct bdaddr_list { 129 struct list_head list; 130 bdaddr_t bdaddr; 131 u8 bdaddr_type; 132 }; 133 134 struct bdaddr_list_with_irk { 135 struct list_head list; 136 bdaddr_t bdaddr; 137 u8 bdaddr_type; 138 u8 peer_irk[16]; 139 u8 local_irk[16]; 140 }; 141 142 struct bdaddr_list_with_flags { 143 struct list_head list; 144 bdaddr_t bdaddr; 145 u8 bdaddr_type; 146 u32 current_flags; 147 }; 148 149 enum hci_conn_flags { 150 HCI_CONN_FLAG_REMOTE_WAKEUP, 151 HCI_CONN_FLAG_MAX 152 }; 153 154 #define hci_conn_test_flag(nr, flags) ((flags) & (1U << nr)) 155 156 /* Make sure number of flags doesn't exceed sizeof(current_flags) */ 157 static_assert(HCI_CONN_FLAG_MAX < 32); 158 159 struct bt_uuid { 160 struct list_head list; 161 u8 uuid[16]; 162 u8 size; 163 u8 svc_hint; 164 }; 165 166 struct blocked_key { 167 struct list_head list; 168 struct rcu_head rcu; 169 u8 type; 170 u8 val[16]; 171 }; 172 173 struct smp_csrk { 174 bdaddr_t bdaddr; 175 u8 bdaddr_type; 176 u8 type; 177 u8 val[16]; 178 }; 179 180 struct smp_ltk { 181 struct list_head list; 182 struct rcu_head rcu; 183 bdaddr_t bdaddr; 184 u8 bdaddr_type; 185 u8 authenticated; 186 u8 type; 187 u8 enc_size; 188 __le16 ediv; 189 __le64 rand; 190 u8 val[16]; 191 }; 192 193 struct smp_irk { 194 struct list_head list; 195 struct rcu_head rcu; 196 bdaddr_t rpa; 197 bdaddr_t bdaddr; 198 u8 addr_type; 199 u8 val[16]; 200 }; 201 202 struct link_key { 203 struct list_head list; 204 struct rcu_head rcu; 205 bdaddr_t bdaddr; 206 u8 type; 207 u8 val[HCI_LINK_KEY_SIZE]; 208 u8 pin_len; 209 }; 210 211 struct oob_data { 212 struct list_head list; 213 bdaddr_t bdaddr; 214 u8 bdaddr_type; 215 u8 present; 216 u8 hash192[16]; 217 u8 rand192[16]; 218 u8 hash256[16]; 219 u8 rand256[16]; 220 }; 221 222 struct adv_info { 223 struct list_head list; 224 bool enabled; 225 bool pending; 226 __u8 instance; 227 __u32 flags; 228 __u16 timeout; 229 __u16 remaining_time; 230 __u16 duration; 231 __u16 adv_data_len; 232 __u8 adv_data[HCI_MAX_EXT_AD_LENGTH]; 233 __u16 scan_rsp_len; 234 __u8 scan_rsp_data[HCI_MAX_EXT_AD_LENGTH]; 235 __s8 tx_power; 236 __u32 min_interval; 237 __u32 max_interval; 238 bdaddr_t random_addr; 239 bool rpa_expired; 240 struct delayed_work rpa_expired_cb; 241 }; 242 243 #define HCI_MAX_ADV_INSTANCES 5 244 #define HCI_DEFAULT_ADV_DURATION 2 245 246 #define HCI_ADV_TX_POWER_NO_PREFERENCE 0x7F 247 248 struct adv_pattern { 249 struct list_head list; 250 __u8 ad_type; 251 __u8 offset; 252 __u8 length; 253 __u8 value[HCI_MAX_AD_LENGTH]; 254 }; 255 256 struct adv_rssi_thresholds { 257 __s8 low_threshold; 258 __s8 high_threshold; 259 __u16 low_threshold_timeout; 260 __u16 high_threshold_timeout; 261 __u8 sampling_period; 262 }; 263 264 struct adv_monitor { 265 struct list_head patterns; 266 struct adv_rssi_thresholds rssi; 267 __u16 handle; 268 269 enum { 270 ADV_MONITOR_STATE_NOT_REGISTERED, 271 ADV_MONITOR_STATE_REGISTERED, 272 ADV_MONITOR_STATE_OFFLOADED 273 } state; 274 }; 275 276 #define HCI_MIN_ADV_MONITOR_HANDLE 1 277 #define HCI_MAX_ADV_MONITOR_NUM_HANDLES 32 278 #define HCI_MAX_ADV_MONITOR_NUM_PATTERNS 16 279 #define HCI_ADV_MONITOR_EXT_NONE 1 280 #define HCI_ADV_MONITOR_EXT_MSFT 2 281 282 #define HCI_MAX_SHORT_NAME_LENGTH 10 283 284 /* Min encryption key size to match with SMP */ 285 #define HCI_MIN_ENC_KEY_SIZE 7 286 287 /* Default LE RPA expiry time, 15 minutes */ 288 #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60) 289 290 /* Default min/max age of connection information (1s/3s) */ 291 #define DEFAULT_CONN_INFO_MIN_AGE 1000 292 #define DEFAULT_CONN_INFO_MAX_AGE 3000 293 /* Default authenticated payload timeout 30s */ 294 #define DEFAULT_AUTH_PAYLOAD_TIMEOUT 0x0bb8 295 296 struct amp_assoc { 297 __u16 len; 298 __u16 offset; 299 __u16 rem_len; 300 __u16 len_so_far; 301 __u8 data[HCI_MAX_AMP_ASSOC_SIZE]; 302 }; 303 304 #define HCI_MAX_PAGES 3 305 306 struct hci_dev { 307 struct list_head list; 308 struct mutex lock; 309 310 char name[8]; 311 unsigned long flags; 312 __u16 id; 313 __u8 bus; 314 __u8 dev_type; 315 bdaddr_t bdaddr; 316 bdaddr_t setup_addr; 317 bdaddr_t public_addr; 318 bdaddr_t random_addr; 319 bdaddr_t static_addr; 320 __u8 adv_addr_type; 321 __u8 dev_name[HCI_MAX_NAME_LENGTH]; 322 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH]; 323 __u8 eir[HCI_MAX_EIR_LENGTH]; 324 __u16 appearance; 325 __u8 dev_class[3]; 326 __u8 major_class; 327 __u8 minor_class; 328 __u8 max_page; 329 __u8 features[HCI_MAX_PAGES][8]; 330 __u8 le_features[8]; 331 __u8 le_accept_list_size; 332 __u8 le_resolv_list_size; 333 __u8 le_num_of_adv_sets; 334 __u8 le_states[8]; 335 __u8 commands[64]; 336 __u8 hci_ver; 337 __u16 hci_rev; 338 __u8 lmp_ver; 339 __u16 manufacturer; 340 __u16 lmp_subver; 341 __u16 voice_setting; 342 __u8 num_iac; 343 __u8 stored_max_keys; 344 __u8 stored_num_keys; 345 __u8 io_capability; 346 __s8 inq_tx_power; 347 __u8 err_data_reporting; 348 __u16 page_scan_interval; 349 __u16 page_scan_window; 350 __u8 page_scan_type; 351 __u8 le_adv_channel_map; 352 __u16 le_adv_min_interval; 353 __u16 le_adv_max_interval; 354 __u8 le_scan_type; 355 __u16 le_scan_interval; 356 __u16 le_scan_window; 357 __u16 le_scan_int_suspend; 358 __u16 le_scan_window_suspend; 359 __u16 le_scan_int_discovery; 360 __u16 le_scan_window_discovery; 361 __u16 le_scan_int_adv_monitor; 362 __u16 le_scan_window_adv_monitor; 363 __u16 le_scan_int_connect; 364 __u16 le_scan_window_connect; 365 __u16 le_conn_min_interval; 366 __u16 le_conn_max_interval; 367 __u16 le_conn_latency; 368 __u16 le_supv_timeout; 369 __u16 le_def_tx_len; 370 __u16 le_def_tx_time; 371 __u16 le_max_tx_len; 372 __u16 le_max_tx_time; 373 __u16 le_max_rx_len; 374 __u16 le_max_rx_time; 375 __u8 le_max_key_size; 376 __u8 le_min_key_size; 377 __u16 discov_interleaved_timeout; 378 __u16 conn_info_min_age; 379 __u16 conn_info_max_age; 380 __u16 auth_payload_timeout; 381 __u8 min_enc_key_size; 382 __u8 max_enc_key_size; 383 __u8 pairing_opts; 384 __u8 ssp_debug_mode; 385 __u8 hw_error_code; 386 __u32 clock; 387 __u16 advmon_allowlist_duration; 388 __u16 advmon_no_filter_duration; 389 __u8 enable_advmon_interleave_scan; 390 391 __u16 devid_source; 392 __u16 devid_vendor; 393 __u16 devid_product; 394 __u16 devid_version; 395 396 __u8 def_page_scan_type; 397 __u16 def_page_scan_int; 398 __u16 def_page_scan_window; 399 __u8 def_inq_scan_type; 400 __u16 def_inq_scan_int; 401 __u16 def_inq_scan_window; 402 __u16 def_br_lsto; 403 __u16 def_page_timeout; 404 __u16 def_multi_adv_rotation_duration; 405 __u16 def_le_autoconnect_timeout; 406 __s8 min_le_tx_power; 407 __s8 max_le_tx_power; 408 409 __u16 pkt_type; 410 __u16 esco_type; 411 __u16 link_policy; 412 __u16 link_mode; 413 414 __u32 idle_timeout; 415 __u16 sniff_min_interval; 416 __u16 sniff_max_interval; 417 418 __u8 amp_status; 419 __u32 amp_total_bw; 420 __u32 amp_max_bw; 421 __u32 amp_min_latency; 422 __u32 amp_max_pdu; 423 __u8 amp_type; 424 __u16 amp_pal_cap; 425 __u16 amp_assoc_size; 426 __u32 amp_max_flush_to; 427 __u32 amp_be_flush_to; 428 429 struct amp_assoc loc_assoc; 430 431 __u8 flow_ctl_mode; 432 433 unsigned int auto_accept_delay; 434 435 unsigned long quirks; 436 437 atomic_t cmd_cnt; 438 unsigned int acl_cnt; 439 unsigned int sco_cnt; 440 unsigned int le_cnt; 441 442 unsigned int acl_mtu; 443 unsigned int sco_mtu; 444 unsigned int le_mtu; 445 unsigned int acl_pkts; 446 unsigned int sco_pkts; 447 unsigned int le_pkts; 448 449 __u16 block_len; 450 __u16 block_mtu; 451 __u16 num_blocks; 452 __u16 block_cnt; 453 454 unsigned long acl_last_tx; 455 unsigned long sco_last_tx; 456 unsigned long le_last_tx; 457 458 __u8 le_tx_def_phys; 459 __u8 le_rx_def_phys; 460 461 struct workqueue_struct *workqueue; 462 struct workqueue_struct *req_workqueue; 463 464 struct work_struct power_on; 465 struct delayed_work power_off; 466 struct work_struct error_reset; 467 468 __u16 discov_timeout; 469 struct delayed_work discov_off; 470 471 struct delayed_work service_cache; 472 473 struct delayed_work cmd_timer; 474 struct delayed_work ncmd_timer; 475 476 struct work_struct rx_work; 477 struct work_struct cmd_work; 478 struct work_struct tx_work; 479 480 struct work_struct discov_update; 481 struct work_struct bg_scan_update; 482 struct work_struct scan_update; 483 struct work_struct connectable_update; 484 struct work_struct discoverable_update; 485 struct delayed_work le_scan_disable; 486 struct delayed_work le_scan_restart; 487 488 struct sk_buff_head rx_q; 489 struct sk_buff_head raw_q; 490 struct sk_buff_head cmd_q; 491 492 struct sk_buff *sent_cmd; 493 494 struct mutex req_lock; 495 wait_queue_head_t req_wait_q; 496 __u32 req_status; 497 __u32 req_result; 498 struct sk_buff *req_skb; 499 500 void *smp_data; 501 void *smp_bredr_data; 502 503 struct discovery_state discovery; 504 505 int discovery_old_state; 506 bool discovery_paused; 507 int advertising_old_state; 508 bool advertising_paused; 509 510 struct notifier_block suspend_notifier; 511 struct work_struct suspend_prepare; 512 enum suspended_state suspend_state_next; 513 enum suspended_state suspend_state; 514 bool scanning_paused; 515 bool suspended; 516 u8 wake_reason; 517 bdaddr_t wake_addr; 518 u8 wake_addr_type; 519 520 wait_queue_head_t suspend_wait_q; 521 DECLARE_BITMAP(suspend_tasks, __SUSPEND_NUM_TASKS); 522 523 struct hci_conn_hash conn_hash; 524 525 struct list_head mgmt_pending; 526 struct list_head reject_list; 527 struct list_head accept_list; 528 struct list_head uuids; 529 struct list_head link_keys; 530 struct list_head long_term_keys; 531 struct list_head identity_resolving_keys; 532 struct list_head remote_oob_data; 533 struct list_head le_accept_list; 534 struct list_head le_resolv_list; 535 struct list_head le_conn_params; 536 struct list_head pend_le_conns; 537 struct list_head pend_le_reports; 538 struct list_head blocked_keys; 539 540 struct hci_dev_stats stat; 541 542 atomic_t promisc; 543 544 const char *hw_info; 545 const char *fw_info; 546 struct dentry *debugfs; 547 548 struct device dev; 549 550 struct rfkill *rfkill; 551 552 DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS); 553 554 __s8 adv_tx_power; 555 __u8 adv_data[HCI_MAX_EXT_AD_LENGTH]; 556 __u8 adv_data_len; 557 __u8 scan_rsp_data[HCI_MAX_EXT_AD_LENGTH]; 558 __u8 scan_rsp_data_len; 559 560 struct list_head adv_instances; 561 unsigned int adv_instance_cnt; 562 __u8 cur_adv_instance; 563 __u16 adv_instance_timeout; 564 struct delayed_work adv_instance_expire; 565 566 struct idr adv_monitors_idr; 567 unsigned int adv_monitors_cnt; 568 569 __u8 irk[16]; 570 __u32 rpa_timeout; 571 struct delayed_work rpa_expired; 572 bdaddr_t rpa; 573 574 enum { 575 INTERLEAVE_SCAN_NONE, 576 INTERLEAVE_SCAN_NO_FILTER, 577 INTERLEAVE_SCAN_ALLOWLIST 578 } interleave_scan_state; 579 580 struct delayed_work interleave_scan; 581 582 #if IS_ENABLED(CONFIG_BT_LEDS) 583 struct led_trigger *power_led; 584 #endif 585 586 #if IS_ENABLED(CONFIG_BT_MSFTEXT) 587 __u16 msft_opcode; 588 void *msft_data; 589 bool msft_curve_validity; 590 #endif 591 592 #if IS_ENABLED(CONFIG_BT_AOSPEXT) 593 bool aosp_capable; 594 #endif 595 596 int (*open)(struct hci_dev *hdev); 597 int (*close)(struct hci_dev *hdev); 598 int (*flush)(struct hci_dev *hdev); 599 int (*setup)(struct hci_dev *hdev); 600 int (*shutdown)(struct hci_dev *hdev); 601 int (*send)(struct hci_dev *hdev, struct sk_buff *skb); 602 void (*notify)(struct hci_dev *hdev, unsigned int evt); 603 void (*hw_error)(struct hci_dev *hdev, u8 code); 604 int (*post_init)(struct hci_dev *hdev); 605 int (*set_diag)(struct hci_dev *hdev, bool enable); 606 int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr); 607 void (*cmd_timeout)(struct hci_dev *hdev); 608 bool (*prevent_wake)(struct hci_dev *hdev); 609 }; 610 611 #define HCI_PHY_HANDLE(handle) (handle & 0xff) 612 613 enum conn_reasons { 614 CONN_REASON_PAIR_DEVICE, 615 CONN_REASON_L2CAP_CHAN, 616 CONN_REASON_SCO_CONNECT, 617 }; 618 619 struct hci_conn { 620 struct list_head list; 621 622 atomic_t refcnt; 623 624 bdaddr_t dst; 625 __u8 dst_type; 626 bdaddr_t src; 627 __u8 src_type; 628 bdaddr_t init_addr; 629 __u8 init_addr_type; 630 bdaddr_t resp_addr; 631 __u8 resp_addr_type; 632 __u8 adv_instance; 633 __u16 handle; 634 __u16 state; 635 __u8 mode; 636 __u8 type; 637 __u8 role; 638 bool out; 639 __u8 attempt; 640 __u8 dev_class[3]; 641 __u8 features[HCI_MAX_PAGES][8]; 642 __u16 pkt_type; 643 __u16 link_policy; 644 __u8 key_type; 645 __u8 auth_type; 646 __u8 sec_level; 647 __u8 pending_sec_level; 648 __u8 pin_length; 649 __u8 enc_key_size; 650 __u8 io_capability; 651 __u32 passkey_notify; 652 __u8 passkey_entered; 653 __u16 disc_timeout; 654 __u16 conn_timeout; 655 __u16 setting; 656 __u16 auth_payload_timeout; 657 __u16 le_conn_min_interval; 658 __u16 le_conn_max_interval; 659 __u16 le_conn_interval; 660 __u16 le_conn_latency; 661 __u16 le_supv_timeout; 662 __u8 le_adv_data[HCI_MAX_AD_LENGTH]; 663 __u8 le_adv_data_len; 664 __u8 le_tx_phy; 665 __u8 le_rx_phy; 666 __s8 rssi; 667 __s8 tx_power; 668 __s8 max_tx_power; 669 unsigned long flags; 670 671 enum conn_reasons conn_reason; 672 673 __u32 clock; 674 __u16 clock_accuracy; 675 676 unsigned long conn_info_timestamp; 677 678 __u8 remote_cap; 679 __u8 remote_auth; 680 __u8 remote_id; 681 682 unsigned int sent; 683 684 struct sk_buff_head data_q; 685 struct list_head chan_list; 686 687 struct delayed_work disc_work; 688 struct delayed_work auto_accept_work; 689 struct delayed_work idle_work; 690 struct delayed_work le_conn_timeout; 691 struct work_struct le_scan_cleanup; 692 693 struct device dev; 694 struct dentry *debugfs; 695 696 struct hci_dev *hdev; 697 void *l2cap_data; 698 void *sco_data; 699 struct amp_mgr *amp_mgr; 700 701 struct hci_conn *link; 702 703 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status); 704 void (*security_cfm_cb) (struct hci_conn *conn, u8 status); 705 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason); 706 }; 707 708 struct hci_chan { 709 struct list_head list; 710 __u16 handle; 711 struct hci_conn *conn; 712 struct sk_buff_head data_q; 713 unsigned int sent; 714 __u8 state; 715 bool amp; 716 }; 717 718 struct hci_conn_params { 719 struct list_head list; 720 struct list_head action; 721 722 bdaddr_t addr; 723 u8 addr_type; 724 725 u16 conn_min_interval; 726 u16 conn_max_interval; 727 u16 conn_latency; 728 u16 supervision_timeout; 729 730 enum { 731 HCI_AUTO_CONN_DISABLED, 732 HCI_AUTO_CONN_REPORT, 733 HCI_AUTO_CONN_DIRECT, 734 HCI_AUTO_CONN_ALWAYS, 735 HCI_AUTO_CONN_LINK_LOSS, 736 HCI_AUTO_CONN_EXPLICIT, 737 } auto_connect; 738 739 struct hci_conn *conn; 740 bool explicit_connect; 741 u32 current_flags; 742 }; 743 744 extern struct list_head hci_dev_list; 745 extern struct list_head hci_cb_list; 746 extern rwlock_t hci_dev_list_lock; 747 extern struct mutex hci_cb_list_lock; 748 749 #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags) 750 #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags) 751 #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags) 752 #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags) 753 #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags) 754 #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags) 755 #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags) 756 757 #define hci_dev_clear_volatile_flags(hdev) \ 758 do { \ 759 hci_dev_clear_flag(hdev, HCI_LE_SCAN); \ 760 hci_dev_clear_flag(hdev, HCI_LE_ADV); \ 761 hci_dev_clear_flag(hdev, HCI_LL_RPA_RESOLUTION);\ 762 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \ 763 } while (0) 764 765 /* ----- HCI interface to upper protocols ----- */ 766 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr); 767 int l2cap_disconn_ind(struct hci_conn *hcon); 768 void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags); 769 770 #if IS_ENABLED(CONFIG_BT_BREDR) 771 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); 772 void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb); 773 #else 774 static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 775 __u8 *flags) 776 { 777 return 0; 778 } 779 780 static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb) 781 { 782 } 783 #endif 784 785 /* ----- Inquiry cache ----- */ 786 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */ 787 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */ 788 789 static inline void discovery_init(struct hci_dev *hdev) 790 { 791 hdev->discovery.state = DISCOVERY_STOPPED; 792 INIT_LIST_HEAD(&hdev->discovery.all); 793 INIT_LIST_HEAD(&hdev->discovery.unknown); 794 INIT_LIST_HEAD(&hdev->discovery.resolve); 795 hdev->discovery.report_invalid_rssi = true; 796 hdev->discovery.rssi = HCI_RSSI_INVALID; 797 } 798 799 static inline void hci_discovery_filter_clear(struct hci_dev *hdev) 800 { 801 hdev->discovery.result_filtering = false; 802 hdev->discovery.report_invalid_rssi = true; 803 hdev->discovery.rssi = HCI_RSSI_INVALID; 804 hdev->discovery.uuid_count = 0; 805 kfree(hdev->discovery.uuids); 806 hdev->discovery.uuids = NULL; 807 hdev->discovery.scan_start = 0; 808 hdev->discovery.scan_duration = 0; 809 } 810 811 bool hci_discovery_active(struct hci_dev *hdev); 812 813 void hci_discovery_set_state(struct hci_dev *hdev, int state); 814 815 static inline int inquiry_cache_empty(struct hci_dev *hdev) 816 { 817 return list_empty(&hdev->discovery.all); 818 } 819 820 static inline long inquiry_cache_age(struct hci_dev *hdev) 821 { 822 struct discovery_state *c = &hdev->discovery; 823 return jiffies - c->timestamp; 824 } 825 826 static inline long inquiry_entry_age(struct inquiry_entry *e) 827 { 828 return jiffies - e->timestamp; 829 } 830 831 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 832 bdaddr_t *bdaddr); 833 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 834 bdaddr_t *bdaddr); 835 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 836 bdaddr_t *bdaddr, 837 int state); 838 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 839 struct inquiry_entry *ie); 840 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 841 bool name_known); 842 void hci_inquiry_cache_flush(struct hci_dev *hdev); 843 844 /* ----- HCI Connections ----- */ 845 enum { 846 HCI_CONN_AUTH_PEND, 847 HCI_CONN_REAUTH_PEND, 848 HCI_CONN_ENCRYPT_PEND, 849 HCI_CONN_RSWITCH_PEND, 850 HCI_CONN_MODE_CHANGE_PEND, 851 HCI_CONN_SCO_SETUP_PEND, 852 HCI_CONN_MGMT_CONNECTED, 853 HCI_CONN_SSP_ENABLED, 854 HCI_CONN_SC_ENABLED, 855 HCI_CONN_AES_CCM, 856 HCI_CONN_POWER_SAVE, 857 HCI_CONN_FLUSH_KEY, 858 HCI_CONN_ENCRYPT, 859 HCI_CONN_AUTH, 860 HCI_CONN_SECURE, 861 HCI_CONN_FIPS, 862 HCI_CONN_STK_ENCRYPT, 863 HCI_CONN_AUTH_INITIATOR, 864 HCI_CONN_DROP, 865 HCI_CONN_PARAM_REMOVAL_PEND, 866 HCI_CONN_NEW_LINK_KEY, 867 HCI_CONN_SCANNING, 868 HCI_CONN_AUTH_FAILURE, 869 }; 870 871 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn) 872 { 873 struct hci_dev *hdev = conn->hdev; 874 return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 875 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 876 } 877 878 static inline bool hci_conn_sc_enabled(struct hci_conn *conn) 879 { 880 struct hci_dev *hdev = conn->hdev; 881 return hci_dev_test_flag(hdev, HCI_SC_ENABLED) && 882 test_bit(HCI_CONN_SC_ENABLED, &conn->flags); 883 } 884 885 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c) 886 { 887 struct hci_conn_hash *h = &hdev->conn_hash; 888 list_add_rcu(&c->list, &h->list); 889 switch (c->type) { 890 case ACL_LINK: 891 h->acl_num++; 892 break; 893 case AMP_LINK: 894 h->amp_num++; 895 break; 896 case LE_LINK: 897 h->le_num++; 898 if (c->role == HCI_ROLE_SLAVE) 899 h->le_num_peripheral++; 900 break; 901 case SCO_LINK: 902 case ESCO_LINK: 903 h->sco_num++; 904 break; 905 } 906 } 907 908 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c) 909 { 910 struct hci_conn_hash *h = &hdev->conn_hash; 911 912 list_del_rcu(&c->list); 913 synchronize_rcu(); 914 915 switch (c->type) { 916 case ACL_LINK: 917 h->acl_num--; 918 break; 919 case AMP_LINK: 920 h->amp_num--; 921 break; 922 case LE_LINK: 923 h->le_num--; 924 if (c->role == HCI_ROLE_SLAVE) 925 h->le_num_peripheral--; 926 break; 927 case SCO_LINK: 928 case ESCO_LINK: 929 h->sco_num--; 930 break; 931 } 932 } 933 934 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type) 935 { 936 struct hci_conn_hash *h = &hdev->conn_hash; 937 switch (type) { 938 case ACL_LINK: 939 return h->acl_num; 940 case AMP_LINK: 941 return h->amp_num; 942 case LE_LINK: 943 return h->le_num; 944 case SCO_LINK: 945 case ESCO_LINK: 946 return h->sco_num; 947 default: 948 return 0; 949 } 950 } 951 952 static inline unsigned int hci_conn_count(struct hci_dev *hdev) 953 { 954 struct hci_conn_hash *c = &hdev->conn_hash; 955 956 return c->acl_num + c->amp_num + c->sco_num + c->le_num; 957 } 958 959 static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle) 960 { 961 struct hci_conn_hash *h = &hdev->conn_hash; 962 struct hci_conn *c; 963 __u8 type = INVALID_LINK; 964 965 rcu_read_lock(); 966 967 list_for_each_entry_rcu(c, &h->list, list) { 968 if (c->handle == handle) { 969 type = c->type; 970 break; 971 } 972 } 973 974 rcu_read_unlock(); 975 976 return type; 977 } 978 979 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev, 980 __u16 handle) 981 { 982 struct hci_conn_hash *h = &hdev->conn_hash; 983 struct hci_conn *c; 984 985 rcu_read_lock(); 986 987 list_for_each_entry_rcu(c, &h->list, list) { 988 if (c->handle == handle) { 989 rcu_read_unlock(); 990 return c; 991 } 992 } 993 rcu_read_unlock(); 994 995 return NULL; 996 } 997 998 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev, 999 __u8 type, bdaddr_t *ba) 1000 { 1001 struct hci_conn_hash *h = &hdev->conn_hash; 1002 struct hci_conn *c; 1003 1004 rcu_read_lock(); 1005 1006 list_for_each_entry_rcu(c, &h->list, list) { 1007 if (c->type == type && !bacmp(&c->dst, ba)) { 1008 rcu_read_unlock(); 1009 return c; 1010 } 1011 } 1012 1013 rcu_read_unlock(); 1014 1015 return NULL; 1016 } 1017 1018 static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev, 1019 bdaddr_t *ba, 1020 __u8 ba_type) 1021 { 1022 struct hci_conn_hash *h = &hdev->conn_hash; 1023 struct hci_conn *c; 1024 1025 rcu_read_lock(); 1026 1027 list_for_each_entry_rcu(c, &h->list, list) { 1028 if (c->type != LE_LINK) 1029 continue; 1030 1031 if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) { 1032 rcu_read_unlock(); 1033 return c; 1034 } 1035 } 1036 1037 rcu_read_unlock(); 1038 1039 return NULL; 1040 } 1041 1042 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev, 1043 __u8 type, __u16 state) 1044 { 1045 struct hci_conn_hash *h = &hdev->conn_hash; 1046 struct hci_conn *c; 1047 1048 rcu_read_lock(); 1049 1050 list_for_each_entry_rcu(c, &h->list, list) { 1051 if (c->type == type && c->state == state) { 1052 rcu_read_unlock(); 1053 return c; 1054 } 1055 } 1056 1057 rcu_read_unlock(); 1058 1059 return NULL; 1060 } 1061 1062 static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev) 1063 { 1064 struct hci_conn_hash *h = &hdev->conn_hash; 1065 struct hci_conn *c; 1066 1067 rcu_read_lock(); 1068 1069 list_for_each_entry_rcu(c, &h->list, list) { 1070 if (c->type == LE_LINK && c->state == BT_CONNECT && 1071 !test_bit(HCI_CONN_SCANNING, &c->flags)) { 1072 rcu_read_unlock(); 1073 return c; 1074 } 1075 } 1076 1077 rcu_read_unlock(); 1078 1079 return NULL; 1080 } 1081 1082 int hci_disconnect(struct hci_conn *conn, __u8 reason); 1083 bool hci_setup_sync(struct hci_conn *conn, __u16 handle); 1084 void hci_sco_setup(struct hci_conn *conn, __u8 status); 1085 1086 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 1087 u8 role); 1088 int hci_conn_del(struct hci_conn *conn); 1089 void hci_conn_hash_flush(struct hci_dev *hdev); 1090 void hci_conn_check_pending(struct hci_dev *hdev); 1091 1092 struct hci_chan *hci_chan_create(struct hci_conn *conn); 1093 void hci_chan_del(struct hci_chan *chan); 1094 void hci_chan_list_flush(struct hci_conn *conn); 1095 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle); 1096 1097 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1098 u8 dst_type, u8 sec_level, 1099 u16 conn_timeout, 1100 enum conn_reasons conn_reason); 1101 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 1102 u8 dst_type, u8 sec_level, u16 conn_timeout, 1103 u8 role, bdaddr_t *direct_rpa); 1104 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1105 u8 sec_level, u8 auth_type, 1106 enum conn_reasons conn_reason); 1107 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1108 __u16 setting); 1109 int hci_conn_check_link_mode(struct hci_conn *conn); 1110 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level); 1111 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 1112 bool initiator); 1113 int hci_conn_switch_role(struct hci_conn *conn, __u8 role); 1114 1115 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active); 1116 1117 void hci_le_conn_failed(struct hci_conn *conn, u8 status); 1118 1119 /* 1120 * hci_conn_get() and hci_conn_put() are used to control the life-time of an 1121 * "hci_conn" object. They do not guarantee that the hci_conn object is running, 1122 * working or anything else. They just guarantee that the object is available 1123 * and can be dereferenced. So you can use its locks, local variables and any 1124 * other constant data. 1125 * Before accessing runtime data, you _must_ lock the object and then check that 1126 * it is still running. As soon as you release the locks, the connection might 1127 * get dropped, though. 1128 * 1129 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control 1130 * how long the underlying connection is held. So every channel that runs on the 1131 * hci_conn object calls this to prevent the connection from disappearing. As 1132 * long as you hold a device, you must also guarantee that you have a valid 1133 * reference to the device via hci_conn_get() (or the initial reference from 1134 * hci_conn_add()). 1135 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't 1136 * break because nobody cares for that. But this means, we cannot use 1137 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME). 1138 */ 1139 1140 static inline struct hci_conn *hci_conn_get(struct hci_conn *conn) 1141 { 1142 get_device(&conn->dev); 1143 return conn; 1144 } 1145 1146 static inline void hci_conn_put(struct hci_conn *conn) 1147 { 1148 put_device(&conn->dev); 1149 } 1150 1151 static inline void hci_conn_hold(struct hci_conn *conn) 1152 { 1153 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 1154 1155 atomic_inc(&conn->refcnt); 1156 cancel_delayed_work(&conn->disc_work); 1157 } 1158 1159 static inline void hci_conn_drop(struct hci_conn *conn) 1160 { 1161 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 1162 1163 if (atomic_dec_and_test(&conn->refcnt)) { 1164 unsigned long timeo; 1165 1166 switch (conn->type) { 1167 case ACL_LINK: 1168 case LE_LINK: 1169 cancel_delayed_work(&conn->idle_work); 1170 if (conn->state == BT_CONNECTED) { 1171 timeo = conn->disc_timeout; 1172 if (!conn->out) 1173 timeo *= 2; 1174 } else { 1175 timeo = 0; 1176 } 1177 break; 1178 1179 case AMP_LINK: 1180 timeo = conn->disc_timeout; 1181 break; 1182 1183 default: 1184 timeo = 0; 1185 break; 1186 } 1187 1188 cancel_delayed_work(&conn->disc_work); 1189 queue_delayed_work(conn->hdev->workqueue, 1190 &conn->disc_work, timeo); 1191 } 1192 } 1193 1194 /* ----- HCI Devices ----- */ 1195 static inline void hci_dev_put(struct hci_dev *d) 1196 { 1197 BT_DBG("%s orig refcnt %d", d->name, 1198 kref_read(&d->dev.kobj.kref)); 1199 1200 put_device(&d->dev); 1201 } 1202 1203 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d) 1204 { 1205 BT_DBG("%s orig refcnt %d", d->name, 1206 kref_read(&d->dev.kobj.kref)); 1207 1208 get_device(&d->dev); 1209 return d; 1210 } 1211 1212 #define hci_dev_lock(d) mutex_lock(&d->lock) 1213 #define hci_dev_unlock(d) mutex_unlock(&d->lock) 1214 1215 #define to_hci_dev(d) container_of(d, struct hci_dev, dev) 1216 #define to_hci_conn(c) container_of(c, struct hci_conn, dev) 1217 1218 static inline void *hci_get_drvdata(struct hci_dev *hdev) 1219 { 1220 return dev_get_drvdata(&hdev->dev); 1221 } 1222 1223 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data) 1224 { 1225 dev_set_drvdata(&hdev->dev, data); 1226 } 1227 1228 static inline void *hci_get_priv(struct hci_dev *hdev) 1229 { 1230 return (char *)hdev + sizeof(*hdev); 1231 } 1232 1233 struct hci_dev *hci_dev_get(int index); 1234 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, u8 src_type); 1235 1236 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv); 1237 1238 static inline struct hci_dev *hci_alloc_dev(void) 1239 { 1240 return hci_alloc_dev_priv(0); 1241 } 1242 1243 void hci_free_dev(struct hci_dev *hdev); 1244 int hci_register_dev(struct hci_dev *hdev); 1245 void hci_unregister_dev(struct hci_dev *hdev); 1246 void hci_release_dev(struct hci_dev *hdev); 1247 int hci_suspend_dev(struct hci_dev *hdev); 1248 int hci_resume_dev(struct hci_dev *hdev); 1249 int hci_reset_dev(struct hci_dev *hdev); 1250 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb); 1251 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb); 1252 __printf(2, 3) void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...); 1253 __printf(2, 3) void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...); 1254 1255 static inline void hci_set_msft_opcode(struct hci_dev *hdev, __u16 opcode) 1256 { 1257 #if IS_ENABLED(CONFIG_BT_MSFTEXT) 1258 hdev->msft_opcode = opcode; 1259 #endif 1260 } 1261 1262 static inline void hci_set_aosp_capable(struct hci_dev *hdev) 1263 { 1264 #if IS_ENABLED(CONFIG_BT_AOSPEXT) 1265 hdev->aosp_capable = true; 1266 #endif 1267 } 1268 1269 int hci_dev_open(__u16 dev); 1270 int hci_dev_close(__u16 dev); 1271 int hci_dev_do_close(struct hci_dev *hdev); 1272 int hci_dev_reset(__u16 dev); 1273 int hci_dev_reset_stat(__u16 dev); 1274 int hci_dev_cmd(unsigned int cmd, void __user *arg); 1275 int hci_get_dev_list(void __user *arg); 1276 int hci_get_dev_info(void __user *arg); 1277 int hci_get_conn_list(void __user *arg); 1278 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg); 1279 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg); 1280 int hci_inquiry(void __user *arg); 1281 1282 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list, 1283 bdaddr_t *bdaddr, u8 type); 1284 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 1285 struct list_head *list, bdaddr_t *bdaddr, 1286 u8 type); 1287 struct bdaddr_list_with_flags * 1288 hci_bdaddr_list_lookup_with_flags(struct list_head *list, bdaddr_t *bdaddr, 1289 u8 type); 1290 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1291 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 1292 u8 type, u8 *peer_irk, u8 *local_irk); 1293 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, 1294 u8 type, u32 flags); 1295 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1296 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 1297 u8 type); 1298 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, 1299 u8 type); 1300 void hci_bdaddr_list_clear(struct list_head *list); 1301 1302 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 1303 bdaddr_t *addr, u8 addr_type); 1304 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 1305 bdaddr_t *addr, u8 addr_type); 1306 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); 1307 void hci_conn_params_clear_disabled(struct hci_dev *hdev); 1308 1309 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 1310 bdaddr_t *addr, 1311 u8 addr_type); 1312 1313 void hci_uuids_clear(struct hci_dev *hdev); 1314 1315 void hci_link_keys_clear(struct hci_dev *hdev); 1316 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1317 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1318 bdaddr_t *bdaddr, u8 *val, u8 type, 1319 u8 pin_len, bool *persistent); 1320 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1321 u8 addr_type, u8 type, u8 authenticated, 1322 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand); 1323 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1324 u8 addr_type, u8 role); 1325 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); 1326 void hci_smp_ltks_clear(struct hci_dev *hdev); 1327 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1328 1329 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa); 1330 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1331 u8 addr_type); 1332 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1333 u8 addr_type, u8 val[16], bdaddr_t *rpa); 1334 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); 1335 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]); 1336 void hci_blocked_keys_clear(struct hci_dev *hdev); 1337 void hci_smp_irks_clear(struct hci_dev *hdev); 1338 1339 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 1340 1341 void hci_remote_oob_data_clear(struct hci_dev *hdev); 1342 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1343 bdaddr_t *bdaddr, u8 bdaddr_type); 1344 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1345 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1346 u8 *hash256, u8 *rand256); 1347 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1348 u8 bdaddr_type); 1349 1350 void hci_adv_instances_clear(struct hci_dev *hdev); 1351 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance); 1352 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance); 1353 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, 1354 u16 adv_data_len, u8 *adv_data, 1355 u16 scan_rsp_len, u8 *scan_rsp_data, 1356 u16 timeout, u16 duration, s8 tx_power, 1357 u32 min_interval, u32 max_interval); 1358 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance, 1359 u16 adv_data_len, u8 *adv_data, 1360 u16 scan_rsp_len, u8 *scan_rsp_data); 1361 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance); 1362 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired); 1363 1364 void hci_adv_monitors_clear(struct hci_dev *hdev); 1365 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor); 1366 int hci_add_adv_patterns_monitor_complete(struct hci_dev *hdev, u8 status); 1367 int hci_remove_adv_monitor_complete(struct hci_dev *hdev, u8 status); 1368 bool hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor, 1369 int *err); 1370 bool hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle, int *err); 1371 bool hci_remove_all_adv_monitor(struct hci_dev *hdev, int *err); 1372 bool hci_is_adv_monitoring(struct hci_dev *hdev); 1373 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev); 1374 1375 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb); 1376 1377 void hci_init_sysfs(struct hci_dev *hdev); 1378 void hci_conn_init_sysfs(struct hci_conn *conn); 1379 void hci_conn_add_sysfs(struct hci_conn *conn); 1380 void hci_conn_del_sysfs(struct hci_conn *conn); 1381 1382 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev)) 1383 1384 /* ----- LMP capabilities ----- */ 1385 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT) 1386 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH) 1387 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD) 1388 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF) 1389 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK) 1390 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ) 1391 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO) 1392 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR)) 1393 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE) 1394 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR) 1395 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC) 1396 #define lmp_esco_2m_capable(dev) ((dev)->features[0][5] & LMP_EDR_ESCO_2M) 1397 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ) 1398 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR)) 1399 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR) 1400 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH) 1401 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO) 1402 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR) 1403 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES) 1404 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT) 1405 #define lmp_edr_2m_capable(dev) ((dev)->features[0][3] & LMP_EDR_2M) 1406 #define lmp_edr_3m_capable(dev) ((dev)->features[0][3] & LMP_EDR_3M) 1407 #define lmp_edr_3slot_capable(dev) ((dev)->features[0][4] & LMP_EDR_3SLOT) 1408 #define lmp_edr_5slot_capable(dev) ((dev)->features[0][5] & LMP_EDR_5SLOT) 1409 1410 /* ----- Extended LMP capabilities ----- */ 1411 #define lmp_cpb_central_capable(dev) ((dev)->features[2][0] & LMP_CPB_CENTRAL) 1412 #define lmp_cpb_peripheral_capable(dev) ((dev)->features[2][0] & LMP_CPB_PERIPHERAL) 1413 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN) 1414 #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN) 1415 #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC) 1416 #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING) 1417 1418 /* ----- Host capabilities ----- */ 1419 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP) 1420 #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC) 1421 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE)) 1422 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR)) 1423 1424 #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \ 1425 !hci_dev_test_flag(dev, HCI_AUTO_OFF)) 1426 #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \ 1427 hci_dev_test_flag(dev, HCI_SC_ENABLED)) 1428 #define rpa_valid(dev) (bacmp(&dev->rpa, BDADDR_ANY) && \ 1429 !hci_dev_test_flag(dev, HCI_RPA_EXPIRED)) 1430 #define adv_rpa_valid(adv) (bacmp(&adv->random_addr, BDADDR_ANY) && \ 1431 !adv->rpa_expired) 1432 1433 #define scan_1m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_1M) || \ 1434 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_1M)) 1435 1436 #define scan_2m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_2M) || \ 1437 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_2M)) 1438 1439 #define scan_coded(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_CODED) || \ 1440 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_CODED)) 1441 1442 /* Use LL Privacy based address resolution if supported */ 1443 #define use_ll_privacy(dev) ((dev)->le_features[0] & HCI_LE_LL_PRIVACY) 1444 1445 /* Use ext scanning if set ext scan param and ext scan enable is supported */ 1446 #define use_ext_scan(dev) (((dev)->commands[37] & 0x20) && \ 1447 ((dev)->commands[37] & 0x40)) 1448 /* Use ext create connection if command is supported */ 1449 #define use_ext_conn(dev) ((dev)->commands[37] & 0x80) 1450 1451 /* Extended advertising support */ 1452 #define ext_adv_capable(dev) (((dev)->le_features[1] & HCI_LE_EXT_ADV)) 1453 1454 /* ----- HCI protocols ----- */ 1455 #define HCI_PROTO_DEFER 0x01 1456 1457 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 1458 __u8 type, __u8 *flags) 1459 { 1460 switch (type) { 1461 case ACL_LINK: 1462 return l2cap_connect_ind(hdev, bdaddr); 1463 1464 case SCO_LINK: 1465 case ESCO_LINK: 1466 return sco_connect_ind(hdev, bdaddr, flags); 1467 1468 default: 1469 BT_ERR("unknown link type %d", type); 1470 return -EINVAL; 1471 } 1472 } 1473 1474 static inline int hci_proto_disconn_ind(struct hci_conn *conn) 1475 { 1476 if (conn->type != ACL_LINK && conn->type != LE_LINK) 1477 return HCI_ERROR_REMOTE_USER_TERM; 1478 1479 return l2cap_disconn_ind(conn); 1480 } 1481 1482 /* ----- HCI callbacks ----- */ 1483 struct hci_cb { 1484 struct list_head list; 1485 1486 char *name; 1487 1488 void (*connect_cfm) (struct hci_conn *conn, __u8 status); 1489 void (*disconn_cfm) (struct hci_conn *conn, __u8 status); 1490 void (*security_cfm) (struct hci_conn *conn, __u8 status, 1491 __u8 encrypt); 1492 void (*key_change_cfm) (struct hci_conn *conn, __u8 status); 1493 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role); 1494 }; 1495 1496 static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status) 1497 { 1498 struct hci_cb *cb; 1499 1500 mutex_lock(&hci_cb_list_lock); 1501 list_for_each_entry(cb, &hci_cb_list, list) { 1502 if (cb->connect_cfm) 1503 cb->connect_cfm(conn, status); 1504 } 1505 mutex_unlock(&hci_cb_list_lock); 1506 1507 if (conn->connect_cfm_cb) 1508 conn->connect_cfm_cb(conn, status); 1509 } 1510 1511 static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason) 1512 { 1513 struct hci_cb *cb; 1514 1515 mutex_lock(&hci_cb_list_lock); 1516 list_for_each_entry(cb, &hci_cb_list, list) { 1517 if (cb->disconn_cfm) 1518 cb->disconn_cfm(conn, reason); 1519 } 1520 mutex_unlock(&hci_cb_list_lock); 1521 1522 if (conn->disconn_cfm_cb) 1523 conn->disconn_cfm_cb(conn, reason); 1524 } 1525 1526 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status) 1527 { 1528 struct hci_cb *cb; 1529 __u8 encrypt; 1530 1531 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1532 return; 1533 1534 encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00; 1535 1536 mutex_lock(&hci_cb_list_lock); 1537 list_for_each_entry(cb, &hci_cb_list, list) { 1538 if (cb->security_cfm) 1539 cb->security_cfm(conn, status, encrypt); 1540 } 1541 mutex_unlock(&hci_cb_list_lock); 1542 1543 if (conn->security_cfm_cb) 1544 conn->security_cfm_cb(conn, status); 1545 } 1546 1547 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status) 1548 { 1549 struct hci_cb *cb; 1550 __u8 encrypt; 1551 1552 if (conn->state == BT_CONFIG) { 1553 if (!status) 1554 conn->state = BT_CONNECTED; 1555 1556 hci_connect_cfm(conn, status); 1557 hci_conn_drop(conn); 1558 return; 1559 } 1560 1561 if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1562 encrypt = 0x00; 1563 else if (test_bit(HCI_CONN_AES_CCM, &conn->flags)) 1564 encrypt = 0x02; 1565 else 1566 encrypt = 0x01; 1567 1568 if (!status) { 1569 if (conn->sec_level == BT_SECURITY_SDP) 1570 conn->sec_level = BT_SECURITY_LOW; 1571 1572 if (conn->pending_sec_level > conn->sec_level) 1573 conn->sec_level = conn->pending_sec_level; 1574 } 1575 1576 mutex_lock(&hci_cb_list_lock); 1577 list_for_each_entry(cb, &hci_cb_list, list) { 1578 if (cb->security_cfm) 1579 cb->security_cfm(conn, status, encrypt); 1580 } 1581 mutex_unlock(&hci_cb_list_lock); 1582 1583 if (conn->security_cfm_cb) 1584 conn->security_cfm_cb(conn, status); 1585 } 1586 1587 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status) 1588 { 1589 struct hci_cb *cb; 1590 1591 mutex_lock(&hci_cb_list_lock); 1592 list_for_each_entry(cb, &hci_cb_list, list) { 1593 if (cb->key_change_cfm) 1594 cb->key_change_cfm(conn, status); 1595 } 1596 mutex_unlock(&hci_cb_list_lock); 1597 } 1598 1599 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status, 1600 __u8 role) 1601 { 1602 struct hci_cb *cb; 1603 1604 mutex_lock(&hci_cb_list_lock); 1605 list_for_each_entry(cb, &hci_cb_list, list) { 1606 if (cb->role_switch_cfm) 1607 cb->role_switch_cfm(conn, status, role); 1608 } 1609 mutex_unlock(&hci_cb_list_lock); 1610 } 1611 1612 static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type, 1613 size_t *data_len) 1614 { 1615 size_t parsed = 0; 1616 1617 if (eir_len < 2) 1618 return NULL; 1619 1620 while (parsed < eir_len - 1) { 1621 u8 field_len = eir[0]; 1622 1623 if (field_len == 0) 1624 break; 1625 1626 parsed += field_len + 1; 1627 1628 if (parsed > eir_len) 1629 break; 1630 1631 if (eir[1] != type) { 1632 eir += field_len + 1; 1633 continue; 1634 } 1635 1636 /* Zero length data */ 1637 if (field_len == 1) 1638 return NULL; 1639 1640 if (data_len) 1641 *data_len = field_len - 1; 1642 1643 return &eir[2]; 1644 } 1645 1646 return NULL; 1647 } 1648 1649 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type) 1650 { 1651 if (addr_type != ADDR_LE_DEV_RANDOM) 1652 return false; 1653 1654 if ((bdaddr->b[5] & 0xc0) == 0x40) 1655 return true; 1656 1657 return false; 1658 } 1659 1660 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type) 1661 { 1662 if (addr_type == ADDR_LE_DEV_PUBLIC) 1663 return true; 1664 1665 /* Check for Random Static address type */ 1666 if ((addr->b[5] & 0xc0) == 0xc0) 1667 return true; 1668 1669 return false; 1670 } 1671 1672 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev, 1673 bdaddr_t *bdaddr, u8 addr_type) 1674 { 1675 if (!hci_bdaddr_is_rpa(bdaddr, addr_type)) 1676 return NULL; 1677 1678 return hci_find_irk_by_rpa(hdev, bdaddr); 1679 } 1680 1681 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency, 1682 u16 to_multiplier) 1683 { 1684 u16 max_latency; 1685 1686 if (min > max || min < 6 || max > 3200) 1687 return -EINVAL; 1688 1689 if (to_multiplier < 10 || to_multiplier > 3200) 1690 return -EINVAL; 1691 1692 if (max >= to_multiplier * 8) 1693 return -EINVAL; 1694 1695 max_latency = (to_multiplier * 4 / max) - 1; 1696 if (latency > 499 || latency > max_latency) 1697 return -EINVAL; 1698 1699 return 0; 1700 } 1701 1702 int hci_register_cb(struct hci_cb *hcb); 1703 int hci_unregister_cb(struct hci_cb *hcb); 1704 1705 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1706 const void *param, u32 timeout); 1707 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 1708 const void *param, u8 event, u32 timeout); 1709 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 1710 const void *param); 1711 1712 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 1713 const void *param); 1714 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags); 1715 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb); 1716 1717 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode); 1718 1719 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1720 const void *param, u32 timeout); 1721 1722 u32 hci_conn_get_phy(struct hci_conn *conn); 1723 1724 /* ----- HCI Sockets ----- */ 1725 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb); 1726 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 1727 int flag, struct sock *skip_sk); 1728 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb); 1729 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, 1730 void *data, u16 data_len, ktime_t tstamp, 1731 int flag, struct sock *skip_sk); 1732 1733 void hci_sock_dev_event(struct hci_dev *hdev, int event); 1734 1735 #define HCI_MGMT_VAR_LEN BIT(0) 1736 #define HCI_MGMT_NO_HDEV BIT(1) 1737 #define HCI_MGMT_UNTRUSTED BIT(2) 1738 #define HCI_MGMT_UNCONFIGURED BIT(3) 1739 #define HCI_MGMT_HDEV_OPTIONAL BIT(4) 1740 1741 struct hci_mgmt_handler { 1742 int (*func) (struct sock *sk, struct hci_dev *hdev, void *data, 1743 u16 data_len); 1744 size_t data_len; 1745 unsigned long flags; 1746 }; 1747 1748 struct hci_mgmt_chan { 1749 struct list_head list; 1750 unsigned short channel; 1751 size_t handler_count; 1752 const struct hci_mgmt_handler *handlers; 1753 void (*hdev_init) (struct sock *sk, struct hci_dev *hdev); 1754 }; 1755 1756 int hci_mgmt_chan_register(struct hci_mgmt_chan *c); 1757 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c); 1758 1759 /* Management interface */ 1760 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR)) 1761 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \ 1762 BIT(BDADDR_LE_RANDOM)) 1763 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \ 1764 BIT(BDADDR_LE_PUBLIC) | \ 1765 BIT(BDADDR_LE_RANDOM)) 1766 1767 /* These LE scan and inquiry parameters were chosen according to LE General 1768 * Discovery Procedure specification. 1769 */ 1770 #define DISCOV_LE_SCAN_WIN 0x12 1771 #define DISCOV_LE_SCAN_INT 0x12 1772 #define DISCOV_LE_TIMEOUT 10240 /* msec */ 1773 #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */ 1774 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04 1775 #define DISCOV_BREDR_INQUIRY_LEN 0x08 1776 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */ 1777 #define DISCOV_LE_FAST_ADV_INT_MIN 0x00A0 /* 100 msec */ 1778 #define DISCOV_LE_FAST_ADV_INT_MAX 0x00F0 /* 150 msec */ 1779 1780 void mgmt_fill_version_info(void *ver); 1781 int mgmt_new_settings(struct hci_dev *hdev); 1782 void mgmt_index_added(struct hci_dev *hdev); 1783 void mgmt_index_removed(struct hci_dev *hdev); 1784 void mgmt_set_powered_failed(struct hci_dev *hdev, int err); 1785 void mgmt_power_on(struct hci_dev *hdev, int err); 1786 void __mgmt_power_off(struct hci_dev *hdev); 1787 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, 1788 bool persistent); 1789 void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn, 1790 u8 *name, u8 name_len); 1791 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, 1792 u8 link_type, u8 addr_type, u8 reason, 1793 bool mgmt_connected); 1794 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, 1795 u8 link_type, u8 addr_type, u8 status); 1796 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1797 u8 addr_type, u8 status); 1798 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure); 1799 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1800 u8 status); 1801 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1802 u8 status); 1803 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1804 u8 link_type, u8 addr_type, u32 value, 1805 u8 confirm_hint); 1806 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1807 u8 link_type, u8 addr_type, u8 status); 1808 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1809 u8 link_type, u8 addr_type, u8 status); 1810 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1811 u8 link_type, u8 addr_type); 1812 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1813 u8 link_type, u8 addr_type, u8 status); 1814 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1815 u8 link_type, u8 addr_type, u8 status); 1816 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, 1817 u8 link_type, u8 addr_type, u32 passkey, 1818 u8 entered); 1819 void mgmt_auth_failed(struct hci_conn *conn, u8 status); 1820 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status); 1821 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); 1822 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, 1823 u8 status); 1824 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status); 1825 void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status); 1826 void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status); 1827 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1828 u8 addr_type, u8 *dev_class, s8 rssi, u32 flags, 1829 u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len); 1830 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1831 u8 addr_type, s8 rssi, u8 *name, u8 name_len); 1832 void mgmt_discovering(struct hci_dev *hdev, u8 discovering); 1833 void mgmt_suspending(struct hci_dev *hdev, u8 state); 1834 void mgmt_resuming(struct hci_dev *hdev, u8 reason, bdaddr_t *bdaddr, 1835 u8 addr_type); 1836 bool mgmt_powering_down(struct hci_dev *hdev); 1837 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent); 1838 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent); 1839 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk, 1840 bool persistent); 1841 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr, 1842 u8 bdaddr_type, u8 store_hint, u16 min_interval, 1843 u16 max_interval, u16 latency, u16 timeout); 1844 void mgmt_smp_complete(struct hci_conn *conn, bool complete); 1845 bool mgmt_get_connectable(struct hci_dev *hdev); 1846 void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status); 1847 void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status); 1848 u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev); 1849 void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev, 1850 u8 instance); 1851 void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev, 1852 u8 instance); 1853 void mgmt_adv_monitor_removed(struct hci_dev *hdev, u16 handle); 1854 int mgmt_phy_configuration_changed(struct hci_dev *hdev, struct sock *skip); 1855 int mgmt_add_adv_patterns_monitor_complete(struct hci_dev *hdev, u8 status); 1856 int mgmt_remove_adv_monitor_complete(struct hci_dev *hdev, u8 status); 1857 1858 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 1859 u16 to_multiplier); 1860 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 1861 __u8 ltk[16], __u8 key_size); 1862 1863 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 1864 u8 *bdaddr_type); 1865 1866 #define SCO_AIRMODE_MASK 0x0003 1867 #define SCO_AIRMODE_CVSD 0x0000 1868 #define SCO_AIRMODE_TRANSP 0x0003 1869 1870 #endif /* __HCI_CORE_H */ 1871