1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 #ifndef __HCI_CORE_H 26 #define __HCI_CORE_H 27 28 #include <linux/leds.h> 29 #include <linux/rculist.h> 30 31 #include <net/bluetooth/hci.h> 32 #include <net/bluetooth/hci_sock.h> 33 34 /* HCI priority */ 35 #define HCI_PRIO_MAX 7 36 37 /* HCI Core structures */ 38 struct inquiry_data { 39 bdaddr_t bdaddr; 40 __u8 pscan_rep_mode; 41 __u8 pscan_period_mode; 42 __u8 pscan_mode; 43 __u8 dev_class[3]; 44 __le16 clock_offset; 45 __s8 rssi; 46 __u8 ssp_mode; 47 }; 48 49 struct inquiry_entry { 50 struct list_head all; /* inq_cache.all */ 51 struct list_head list; /* unknown or resolve */ 52 enum { 53 NAME_NOT_KNOWN, 54 NAME_NEEDED, 55 NAME_PENDING, 56 NAME_KNOWN, 57 } name_state; 58 __u32 timestamp; 59 struct inquiry_data data; 60 }; 61 62 struct discovery_state { 63 int type; 64 enum { 65 DISCOVERY_STOPPED, 66 DISCOVERY_STARTING, 67 DISCOVERY_FINDING, 68 DISCOVERY_RESOLVING, 69 DISCOVERY_STOPPING, 70 } state; 71 struct list_head all; /* All devices found during inquiry */ 72 struct list_head unknown; /* Name state not known */ 73 struct list_head resolve; /* Name needs to be resolved */ 74 __u32 timestamp; 75 bdaddr_t last_adv_addr; 76 u8 last_adv_addr_type; 77 s8 last_adv_rssi; 78 u32 last_adv_flags; 79 u8 last_adv_data[HCI_MAX_AD_LENGTH]; 80 u8 last_adv_data_len; 81 bool report_invalid_rssi; 82 bool result_filtering; 83 bool limited; 84 s8 rssi; 85 u16 uuid_count; 86 u8 (*uuids)[16]; 87 unsigned long scan_start; 88 unsigned long scan_duration; 89 }; 90 91 struct hci_conn_hash { 92 struct list_head list; 93 unsigned int acl_num; 94 unsigned int amp_num; 95 unsigned int sco_num; 96 unsigned int le_num; 97 unsigned int le_num_slave; 98 }; 99 100 struct bdaddr_list { 101 struct list_head list; 102 bdaddr_t bdaddr; 103 u8 bdaddr_type; 104 }; 105 106 struct bdaddr_list_with_irk { 107 struct list_head list; 108 bdaddr_t bdaddr; 109 u8 bdaddr_type; 110 u8 peer_irk[16]; 111 u8 local_irk[16]; 112 }; 113 114 struct bt_uuid { 115 struct list_head list; 116 u8 uuid[16]; 117 u8 size; 118 u8 svc_hint; 119 }; 120 121 struct blocked_key { 122 struct list_head list; 123 struct rcu_head rcu; 124 u8 type; 125 u8 val[16]; 126 }; 127 128 struct smp_csrk { 129 bdaddr_t bdaddr; 130 u8 bdaddr_type; 131 u8 type; 132 u8 val[16]; 133 }; 134 135 struct smp_ltk { 136 struct list_head list; 137 struct rcu_head rcu; 138 bdaddr_t bdaddr; 139 u8 bdaddr_type; 140 u8 authenticated; 141 u8 type; 142 u8 enc_size; 143 __le16 ediv; 144 __le64 rand; 145 u8 val[16]; 146 }; 147 148 struct smp_irk { 149 struct list_head list; 150 struct rcu_head rcu; 151 bdaddr_t rpa; 152 bdaddr_t bdaddr; 153 u8 addr_type; 154 u8 val[16]; 155 }; 156 157 struct link_key { 158 struct list_head list; 159 struct rcu_head rcu; 160 bdaddr_t bdaddr; 161 u8 type; 162 u8 val[HCI_LINK_KEY_SIZE]; 163 u8 pin_len; 164 }; 165 166 struct oob_data { 167 struct list_head list; 168 bdaddr_t bdaddr; 169 u8 bdaddr_type; 170 u8 present; 171 u8 hash192[16]; 172 u8 rand192[16]; 173 u8 hash256[16]; 174 u8 rand256[16]; 175 }; 176 177 struct adv_info { 178 struct list_head list; 179 bool pending; 180 __u8 instance; 181 __u32 flags; 182 __u16 timeout; 183 __u16 remaining_time; 184 __u16 duration; 185 __u16 adv_data_len; 186 __u8 adv_data[HCI_MAX_AD_LENGTH]; 187 __u16 scan_rsp_len; 188 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH]; 189 __s8 tx_power; 190 bdaddr_t random_addr; 191 bool rpa_expired; 192 struct delayed_work rpa_expired_cb; 193 }; 194 195 #define HCI_MAX_ADV_INSTANCES 5 196 #define HCI_DEFAULT_ADV_DURATION 2 197 198 #define HCI_MAX_SHORT_NAME_LENGTH 10 199 200 /* Min encryption key size to match with SMP */ 201 #define HCI_MIN_ENC_KEY_SIZE 7 202 203 /* Default LE RPA expiry time, 15 minutes */ 204 #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60) 205 206 /* Default min/max age of connection information (1s/3s) */ 207 #define DEFAULT_CONN_INFO_MIN_AGE 1000 208 #define DEFAULT_CONN_INFO_MAX_AGE 3000 209 /* Default authenticated payload timeout 30s */ 210 #define DEFAULT_AUTH_PAYLOAD_TIMEOUT 0x0bb8 211 212 struct amp_assoc { 213 __u16 len; 214 __u16 offset; 215 __u16 rem_len; 216 __u16 len_so_far; 217 __u8 data[HCI_MAX_AMP_ASSOC_SIZE]; 218 }; 219 220 #define HCI_MAX_PAGES 3 221 222 struct hci_dev { 223 struct list_head list; 224 struct mutex lock; 225 226 char name[8]; 227 unsigned long flags; 228 __u16 id; 229 __u8 bus; 230 __u8 dev_type; 231 bdaddr_t bdaddr; 232 bdaddr_t setup_addr; 233 bdaddr_t public_addr; 234 bdaddr_t random_addr; 235 bdaddr_t static_addr; 236 __u8 adv_addr_type; 237 __u8 dev_name[HCI_MAX_NAME_LENGTH]; 238 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH]; 239 __u8 eir[HCI_MAX_EIR_LENGTH]; 240 __u16 appearance; 241 __u8 dev_class[3]; 242 __u8 major_class; 243 __u8 minor_class; 244 __u8 max_page; 245 __u8 features[HCI_MAX_PAGES][8]; 246 __u8 le_features[8]; 247 __u8 le_white_list_size; 248 __u8 le_resolv_list_size; 249 __u8 le_num_of_adv_sets; 250 __u8 le_states[8]; 251 __u8 commands[64]; 252 __u8 hci_ver; 253 __u16 hci_rev; 254 __u8 lmp_ver; 255 __u16 manufacturer; 256 __u16 lmp_subver; 257 __u16 voice_setting; 258 __u8 num_iac; 259 __u8 stored_max_keys; 260 __u8 stored_num_keys; 261 __u8 io_capability; 262 __s8 inq_tx_power; 263 __u16 page_scan_interval; 264 __u16 page_scan_window; 265 __u8 page_scan_type; 266 __u8 le_adv_channel_map; 267 __u16 le_adv_min_interval; 268 __u16 le_adv_max_interval; 269 __u8 le_scan_type; 270 __u16 le_scan_interval; 271 __u16 le_scan_window; 272 __u16 le_conn_min_interval; 273 __u16 le_conn_max_interval; 274 __u16 le_conn_latency; 275 __u16 le_supv_timeout; 276 __u16 le_def_tx_len; 277 __u16 le_def_tx_time; 278 __u16 le_max_tx_len; 279 __u16 le_max_tx_time; 280 __u16 le_max_rx_len; 281 __u16 le_max_rx_time; 282 __u8 le_max_key_size; 283 __u8 le_min_key_size; 284 __u16 discov_interleaved_timeout; 285 __u16 conn_info_min_age; 286 __u16 conn_info_max_age; 287 __u16 auth_payload_timeout; 288 __u8 min_enc_key_size; 289 __u8 ssp_debug_mode; 290 __u8 hw_error_code; 291 __u32 clock; 292 293 __u16 devid_source; 294 __u16 devid_vendor; 295 __u16 devid_product; 296 __u16 devid_version; 297 298 __u16 pkt_type; 299 __u16 esco_type; 300 __u16 link_policy; 301 __u16 link_mode; 302 303 __u32 idle_timeout; 304 __u16 sniff_min_interval; 305 __u16 sniff_max_interval; 306 307 __u8 amp_status; 308 __u32 amp_total_bw; 309 __u32 amp_max_bw; 310 __u32 amp_min_latency; 311 __u32 amp_max_pdu; 312 __u8 amp_type; 313 __u16 amp_pal_cap; 314 __u16 amp_assoc_size; 315 __u32 amp_max_flush_to; 316 __u32 amp_be_flush_to; 317 318 struct amp_assoc loc_assoc; 319 320 __u8 flow_ctl_mode; 321 322 unsigned int auto_accept_delay; 323 324 unsigned long quirks; 325 326 atomic_t cmd_cnt; 327 unsigned int acl_cnt; 328 unsigned int sco_cnt; 329 unsigned int le_cnt; 330 331 unsigned int acl_mtu; 332 unsigned int sco_mtu; 333 unsigned int le_mtu; 334 unsigned int acl_pkts; 335 unsigned int sco_pkts; 336 unsigned int le_pkts; 337 338 __u16 block_len; 339 __u16 block_mtu; 340 __u16 num_blocks; 341 __u16 block_cnt; 342 343 unsigned long acl_last_tx; 344 unsigned long sco_last_tx; 345 unsigned long le_last_tx; 346 347 __u8 le_tx_def_phys; 348 __u8 le_rx_def_phys; 349 350 struct workqueue_struct *workqueue; 351 struct workqueue_struct *req_workqueue; 352 353 struct work_struct power_on; 354 struct delayed_work power_off; 355 struct work_struct error_reset; 356 357 __u16 discov_timeout; 358 struct delayed_work discov_off; 359 360 struct delayed_work service_cache; 361 362 struct delayed_work cmd_timer; 363 364 struct work_struct rx_work; 365 struct work_struct cmd_work; 366 struct work_struct tx_work; 367 368 struct work_struct discov_update; 369 struct work_struct bg_scan_update; 370 struct work_struct scan_update; 371 struct work_struct connectable_update; 372 struct work_struct discoverable_update; 373 struct delayed_work le_scan_disable; 374 struct delayed_work le_scan_restart; 375 376 struct sk_buff_head rx_q; 377 struct sk_buff_head raw_q; 378 struct sk_buff_head cmd_q; 379 380 struct sk_buff *sent_cmd; 381 382 struct mutex req_lock; 383 wait_queue_head_t req_wait_q; 384 __u32 req_status; 385 __u32 req_result; 386 struct sk_buff *req_skb; 387 388 void *smp_data; 389 void *smp_bredr_data; 390 391 struct discovery_state discovery; 392 struct hci_conn_hash conn_hash; 393 394 struct list_head mgmt_pending; 395 struct list_head blacklist; 396 struct list_head whitelist; 397 struct list_head uuids; 398 struct list_head link_keys; 399 struct list_head long_term_keys; 400 struct list_head identity_resolving_keys; 401 struct list_head remote_oob_data; 402 struct list_head le_white_list; 403 struct list_head le_resolv_list; 404 struct list_head le_conn_params; 405 struct list_head pend_le_conns; 406 struct list_head pend_le_reports; 407 struct list_head blocked_keys; 408 409 struct hci_dev_stats stat; 410 411 atomic_t promisc; 412 413 const char *hw_info; 414 const char *fw_info; 415 struct dentry *debugfs; 416 417 struct device dev; 418 419 struct rfkill *rfkill; 420 421 DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS); 422 423 __s8 adv_tx_power; 424 __u8 adv_data[HCI_MAX_AD_LENGTH]; 425 __u8 adv_data_len; 426 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH]; 427 __u8 scan_rsp_data_len; 428 429 struct list_head adv_instances; 430 unsigned int adv_instance_cnt; 431 __u8 cur_adv_instance; 432 __u16 adv_instance_timeout; 433 struct delayed_work adv_instance_expire; 434 435 __u8 irk[16]; 436 __u32 rpa_timeout; 437 struct delayed_work rpa_expired; 438 bdaddr_t rpa; 439 440 #if IS_ENABLED(CONFIG_BT_LEDS) 441 struct led_trigger *power_led; 442 #endif 443 444 int (*open)(struct hci_dev *hdev); 445 int (*close)(struct hci_dev *hdev); 446 int (*flush)(struct hci_dev *hdev); 447 int (*setup)(struct hci_dev *hdev); 448 int (*shutdown)(struct hci_dev *hdev); 449 int (*send)(struct hci_dev *hdev, struct sk_buff *skb); 450 void (*notify)(struct hci_dev *hdev, unsigned int evt); 451 void (*hw_error)(struct hci_dev *hdev, u8 code); 452 int (*post_init)(struct hci_dev *hdev); 453 int (*set_diag)(struct hci_dev *hdev, bool enable); 454 int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr); 455 void (*cmd_timeout)(struct hci_dev *hdev); 456 }; 457 458 #define HCI_PHY_HANDLE(handle) (handle & 0xff) 459 460 struct hci_conn { 461 struct list_head list; 462 463 atomic_t refcnt; 464 465 bdaddr_t dst; 466 __u8 dst_type; 467 bdaddr_t src; 468 __u8 src_type; 469 bdaddr_t init_addr; 470 __u8 init_addr_type; 471 bdaddr_t resp_addr; 472 __u8 resp_addr_type; 473 __u16 handle; 474 __u16 state; 475 __u8 mode; 476 __u8 type; 477 __u8 role; 478 bool out; 479 __u8 attempt; 480 __u8 dev_class[3]; 481 __u8 features[HCI_MAX_PAGES][8]; 482 __u16 pkt_type; 483 __u16 link_policy; 484 __u8 key_type; 485 __u8 auth_type; 486 __u8 sec_level; 487 __u8 pending_sec_level; 488 __u8 pin_length; 489 __u8 enc_key_size; 490 __u8 io_capability; 491 __u32 passkey_notify; 492 __u8 passkey_entered; 493 __u16 disc_timeout; 494 __u16 conn_timeout; 495 __u16 setting; 496 __u16 auth_payload_timeout; 497 __u16 le_conn_min_interval; 498 __u16 le_conn_max_interval; 499 __u16 le_conn_interval; 500 __u16 le_conn_latency; 501 __u16 le_supv_timeout; 502 __u8 le_adv_data[HCI_MAX_AD_LENGTH]; 503 __u8 le_adv_data_len; 504 __u8 le_tx_phy; 505 __u8 le_rx_phy; 506 __s8 rssi; 507 __s8 tx_power; 508 __s8 max_tx_power; 509 unsigned long flags; 510 511 __u32 clock; 512 __u16 clock_accuracy; 513 514 unsigned long conn_info_timestamp; 515 516 __u8 remote_cap; 517 __u8 remote_auth; 518 __u8 remote_id; 519 520 unsigned int sent; 521 522 struct sk_buff_head data_q; 523 struct list_head chan_list; 524 525 struct delayed_work disc_work; 526 struct delayed_work auto_accept_work; 527 struct delayed_work idle_work; 528 struct delayed_work le_conn_timeout; 529 struct work_struct le_scan_cleanup; 530 531 struct device dev; 532 struct dentry *debugfs; 533 534 struct hci_dev *hdev; 535 void *l2cap_data; 536 void *sco_data; 537 struct amp_mgr *amp_mgr; 538 539 struct hci_conn *link; 540 541 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status); 542 void (*security_cfm_cb) (struct hci_conn *conn, u8 status); 543 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason); 544 }; 545 546 struct hci_chan { 547 struct list_head list; 548 __u16 handle; 549 struct hci_conn *conn; 550 struct sk_buff_head data_q; 551 unsigned int sent; 552 __u8 state; 553 }; 554 555 struct hci_conn_params { 556 struct list_head list; 557 struct list_head action; 558 559 bdaddr_t addr; 560 u8 addr_type; 561 562 u16 conn_min_interval; 563 u16 conn_max_interval; 564 u16 conn_latency; 565 u16 supervision_timeout; 566 567 enum { 568 HCI_AUTO_CONN_DISABLED, 569 HCI_AUTO_CONN_REPORT, 570 HCI_AUTO_CONN_DIRECT, 571 HCI_AUTO_CONN_ALWAYS, 572 HCI_AUTO_CONN_LINK_LOSS, 573 HCI_AUTO_CONN_EXPLICIT, 574 } auto_connect; 575 576 struct hci_conn *conn; 577 bool explicit_connect; 578 }; 579 580 extern struct list_head hci_dev_list; 581 extern struct list_head hci_cb_list; 582 extern rwlock_t hci_dev_list_lock; 583 extern struct mutex hci_cb_list_lock; 584 585 #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags) 586 #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags) 587 #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags) 588 #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags) 589 #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags) 590 #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags) 591 #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags) 592 593 #define hci_dev_clear_volatile_flags(hdev) \ 594 do { \ 595 hci_dev_clear_flag(hdev, HCI_LE_SCAN); \ 596 hci_dev_clear_flag(hdev, HCI_LE_ADV); \ 597 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \ 598 } while (0) 599 600 /* ----- HCI interface to upper protocols ----- */ 601 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr); 602 int l2cap_disconn_ind(struct hci_conn *hcon); 603 void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags); 604 605 #if IS_ENABLED(CONFIG_BT_BREDR) 606 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); 607 void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb); 608 #else 609 static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 610 __u8 *flags) 611 { 612 return 0; 613 } 614 615 static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb) 616 { 617 } 618 #endif 619 620 /* ----- Inquiry cache ----- */ 621 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */ 622 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */ 623 624 static inline void discovery_init(struct hci_dev *hdev) 625 { 626 hdev->discovery.state = DISCOVERY_STOPPED; 627 INIT_LIST_HEAD(&hdev->discovery.all); 628 INIT_LIST_HEAD(&hdev->discovery.unknown); 629 INIT_LIST_HEAD(&hdev->discovery.resolve); 630 hdev->discovery.report_invalid_rssi = true; 631 hdev->discovery.rssi = HCI_RSSI_INVALID; 632 } 633 634 static inline void hci_discovery_filter_clear(struct hci_dev *hdev) 635 { 636 hdev->discovery.result_filtering = false; 637 hdev->discovery.report_invalid_rssi = true; 638 hdev->discovery.rssi = HCI_RSSI_INVALID; 639 hdev->discovery.uuid_count = 0; 640 kfree(hdev->discovery.uuids); 641 hdev->discovery.uuids = NULL; 642 hdev->discovery.scan_start = 0; 643 hdev->discovery.scan_duration = 0; 644 } 645 646 bool hci_discovery_active(struct hci_dev *hdev); 647 648 void hci_discovery_set_state(struct hci_dev *hdev, int state); 649 650 static inline int inquiry_cache_empty(struct hci_dev *hdev) 651 { 652 return list_empty(&hdev->discovery.all); 653 } 654 655 static inline long inquiry_cache_age(struct hci_dev *hdev) 656 { 657 struct discovery_state *c = &hdev->discovery; 658 return jiffies - c->timestamp; 659 } 660 661 static inline long inquiry_entry_age(struct inquiry_entry *e) 662 { 663 return jiffies - e->timestamp; 664 } 665 666 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 667 bdaddr_t *bdaddr); 668 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 669 bdaddr_t *bdaddr); 670 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 671 bdaddr_t *bdaddr, 672 int state); 673 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 674 struct inquiry_entry *ie); 675 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 676 bool name_known); 677 void hci_inquiry_cache_flush(struct hci_dev *hdev); 678 679 /* ----- HCI Connections ----- */ 680 enum { 681 HCI_CONN_AUTH_PEND, 682 HCI_CONN_REAUTH_PEND, 683 HCI_CONN_ENCRYPT_PEND, 684 HCI_CONN_RSWITCH_PEND, 685 HCI_CONN_MODE_CHANGE_PEND, 686 HCI_CONN_SCO_SETUP_PEND, 687 HCI_CONN_MGMT_CONNECTED, 688 HCI_CONN_SSP_ENABLED, 689 HCI_CONN_SC_ENABLED, 690 HCI_CONN_AES_CCM, 691 HCI_CONN_POWER_SAVE, 692 HCI_CONN_FLUSH_KEY, 693 HCI_CONN_ENCRYPT, 694 HCI_CONN_AUTH, 695 HCI_CONN_SECURE, 696 HCI_CONN_FIPS, 697 HCI_CONN_STK_ENCRYPT, 698 HCI_CONN_AUTH_INITIATOR, 699 HCI_CONN_DROP, 700 HCI_CONN_PARAM_REMOVAL_PEND, 701 HCI_CONN_NEW_LINK_KEY, 702 HCI_CONN_SCANNING, 703 HCI_CONN_AUTH_FAILURE, 704 }; 705 706 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn) 707 { 708 struct hci_dev *hdev = conn->hdev; 709 return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 710 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 711 } 712 713 static inline bool hci_conn_sc_enabled(struct hci_conn *conn) 714 { 715 struct hci_dev *hdev = conn->hdev; 716 return hci_dev_test_flag(hdev, HCI_SC_ENABLED) && 717 test_bit(HCI_CONN_SC_ENABLED, &conn->flags); 718 } 719 720 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c) 721 { 722 struct hci_conn_hash *h = &hdev->conn_hash; 723 list_add_rcu(&c->list, &h->list); 724 switch (c->type) { 725 case ACL_LINK: 726 h->acl_num++; 727 break; 728 case AMP_LINK: 729 h->amp_num++; 730 break; 731 case LE_LINK: 732 h->le_num++; 733 if (c->role == HCI_ROLE_SLAVE) 734 h->le_num_slave++; 735 break; 736 case SCO_LINK: 737 case ESCO_LINK: 738 h->sco_num++; 739 break; 740 } 741 } 742 743 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c) 744 { 745 struct hci_conn_hash *h = &hdev->conn_hash; 746 747 list_del_rcu(&c->list); 748 synchronize_rcu(); 749 750 switch (c->type) { 751 case ACL_LINK: 752 h->acl_num--; 753 break; 754 case AMP_LINK: 755 h->amp_num--; 756 break; 757 case LE_LINK: 758 h->le_num--; 759 if (c->role == HCI_ROLE_SLAVE) 760 h->le_num_slave--; 761 break; 762 case SCO_LINK: 763 case ESCO_LINK: 764 h->sco_num--; 765 break; 766 } 767 } 768 769 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type) 770 { 771 struct hci_conn_hash *h = &hdev->conn_hash; 772 switch (type) { 773 case ACL_LINK: 774 return h->acl_num; 775 case AMP_LINK: 776 return h->amp_num; 777 case LE_LINK: 778 return h->le_num; 779 case SCO_LINK: 780 case ESCO_LINK: 781 return h->sco_num; 782 default: 783 return 0; 784 } 785 } 786 787 static inline unsigned int hci_conn_count(struct hci_dev *hdev) 788 { 789 struct hci_conn_hash *c = &hdev->conn_hash; 790 791 return c->acl_num + c->amp_num + c->sco_num + c->le_num; 792 } 793 794 static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle) 795 { 796 struct hci_conn_hash *h = &hdev->conn_hash; 797 struct hci_conn *c; 798 __u8 type = INVALID_LINK; 799 800 rcu_read_lock(); 801 802 list_for_each_entry_rcu(c, &h->list, list) { 803 if (c->handle == handle) { 804 type = c->type; 805 break; 806 } 807 } 808 809 rcu_read_unlock(); 810 811 return type; 812 } 813 814 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev, 815 __u16 handle) 816 { 817 struct hci_conn_hash *h = &hdev->conn_hash; 818 struct hci_conn *c; 819 820 rcu_read_lock(); 821 822 list_for_each_entry_rcu(c, &h->list, list) { 823 if (c->handle == handle) { 824 rcu_read_unlock(); 825 return c; 826 } 827 } 828 rcu_read_unlock(); 829 830 return NULL; 831 } 832 833 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev, 834 __u8 type, bdaddr_t *ba) 835 { 836 struct hci_conn_hash *h = &hdev->conn_hash; 837 struct hci_conn *c; 838 839 rcu_read_lock(); 840 841 list_for_each_entry_rcu(c, &h->list, list) { 842 if (c->type == type && !bacmp(&c->dst, ba)) { 843 rcu_read_unlock(); 844 return c; 845 } 846 } 847 848 rcu_read_unlock(); 849 850 return NULL; 851 } 852 853 static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev, 854 bdaddr_t *ba, 855 __u8 ba_type) 856 { 857 struct hci_conn_hash *h = &hdev->conn_hash; 858 struct hci_conn *c; 859 860 rcu_read_lock(); 861 862 list_for_each_entry_rcu(c, &h->list, list) { 863 if (c->type != LE_LINK) 864 continue; 865 866 if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) { 867 rcu_read_unlock(); 868 return c; 869 } 870 } 871 872 rcu_read_unlock(); 873 874 return NULL; 875 } 876 877 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev, 878 __u8 type, __u16 state) 879 { 880 struct hci_conn_hash *h = &hdev->conn_hash; 881 struct hci_conn *c; 882 883 rcu_read_lock(); 884 885 list_for_each_entry_rcu(c, &h->list, list) { 886 if (c->type == type && c->state == state) { 887 rcu_read_unlock(); 888 return c; 889 } 890 } 891 892 rcu_read_unlock(); 893 894 return NULL; 895 } 896 897 static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev) 898 { 899 struct hci_conn_hash *h = &hdev->conn_hash; 900 struct hci_conn *c; 901 902 rcu_read_lock(); 903 904 list_for_each_entry_rcu(c, &h->list, list) { 905 if (c->type == LE_LINK && c->state == BT_CONNECT && 906 !test_bit(HCI_CONN_SCANNING, &c->flags)) { 907 rcu_read_unlock(); 908 return c; 909 } 910 } 911 912 rcu_read_unlock(); 913 914 return NULL; 915 } 916 917 int hci_disconnect(struct hci_conn *conn, __u8 reason); 918 bool hci_setup_sync(struct hci_conn *conn, __u16 handle); 919 void hci_sco_setup(struct hci_conn *conn, __u8 status); 920 921 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 922 u8 role); 923 int hci_conn_del(struct hci_conn *conn); 924 void hci_conn_hash_flush(struct hci_dev *hdev); 925 void hci_conn_check_pending(struct hci_dev *hdev); 926 927 struct hci_chan *hci_chan_create(struct hci_conn *conn); 928 void hci_chan_del(struct hci_chan *chan); 929 void hci_chan_list_flush(struct hci_conn *conn); 930 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle); 931 932 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 933 u8 dst_type, u8 sec_level, 934 u16 conn_timeout); 935 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 936 u8 dst_type, u8 sec_level, u16 conn_timeout, 937 u8 role, bdaddr_t *direct_rpa); 938 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 939 u8 sec_level, u8 auth_type); 940 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 941 __u16 setting); 942 int hci_conn_check_link_mode(struct hci_conn *conn); 943 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level); 944 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 945 bool initiator); 946 int hci_conn_switch_role(struct hci_conn *conn, __u8 role); 947 948 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active); 949 950 void hci_le_conn_failed(struct hci_conn *conn, u8 status); 951 952 /* 953 * hci_conn_get() and hci_conn_put() are used to control the life-time of an 954 * "hci_conn" object. They do not guarantee that the hci_conn object is running, 955 * working or anything else. They just guarantee that the object is available 956 * and can be dereferenced. So you can use its locks, local variables and any 957 * other constant data. 958 * Before accessing runtime data, you _must_ lock the object and then check that 959 * it is still running. As soon as you release the locks, the connection might 960 * get dropped, though. 961 * 962 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control 963 * how long the underlying connection is held. So every channel that runs on the 964 * hci_conn object calls this to prevent the connection from disappearing. As 965 * long as you hold a device, you must also guarantee that you have a valid 966 * reference to the device via hci_conn_get() (or the initial reference from 967 * hci_conn_add()). 968 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't 969 * break because nobody cares for that. But this means, we cannot use 970 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME). 971 */ 972 973 static inline struct hci_conn *hci_conn_get(struct hci_conn *conn) 974 { 975 get_device(&conn->dev); 976 return conn; 977 } 978 979 static inline void hci_conn_put(struct hci_conn *conn) 980 { 981 put_device(&conn->dev); 982 } 983 984 static inline void hci_conn_hold(struct hci_conn *conn) 985 { 986 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 987 988 atomic_inc(&conn->refcnt); 989 cancel_delayed_work(&conn->disc_work); 990 } 991 992 static inline void hci_conn_drop(struct hci_conn *conn) 993 { 994 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 995 996 if (atomic_dec_and_test(&conn->refcnt)) { 997 unsigned long timeo; 998 999 switch (conn->type) { 1000 case ACL_LINK: 1001 case LE_LINK: 1002 cancel_delayed_work(&conn->idle_work); 1003 if (conn->state == BT_CONNECTED) { 1004 timeo = conn->disc_timeout; 1005 if (!conn->out) 1006 timeo *= 2; 1007 } else { 1008 timeo = 0; 1009 } 1010 break; 1011 1012 case AMP_LINK: 1013 timeo = conn->disc_timeout; 1014 break; 1015 1016 default: 1017 timeo = 0; 1018 break; 1019 } 1020 1021 cancel_delayed_work(&conn->disc_work); 1022 queue_delayed_work(conn->hdev->workqueue, 1023 &conn->disc_work, timeo); 1024 } 1025 } 1026 1027 /* ----- HCI Devices ----- */ 1028 static inline void hci_dev_put(struct hci_dev *d) 1029 { 1030 BT_DBG("%s orig refcnt %d", d->name, 1031 kref_read(&d->dev.kobj.kref)); 1032 1033 put_device(&d->dev); 1034 } 1035 1036 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d) 1037 { 1038 BT_DBG("%s orig refcnt %d", d->name, 1039 kref_read(&d->dev.kobj.kref)); 1040 1041 get_device(&d->dev); 1042 return d; 1043 } 1044 1045 #define hci_dev_lock(d) mutex_lock(&d->lock) 1046 #define hci_dev_unlock(d) mutex_unlock(&d->lock) 1047 1048 #define to_hci_dev(d) container_of(d, struct hci_dev, dev) 1049 #define to_hci_conn(c) container_of(c, struct hci_conn, dev) 1050 1051 static inline void *hci_get_drvdata(struct hci_dev *hdev) 1052 { 1053 return dev_get_drvdata(&hdev->dev); 1054 } 1055 1056 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data) 1057 { 1058 dev_set_drvdata(&hdev->dev, data); 1059 } 1060 1061 struct hci_dev *hci_dev_get(int index); 1062 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, u8 src_type); 1063 1064 struct hci_dev *hci_alloc_dev(void); 1065 void hci_free_dev(struct hci_dev *hdev); 1066 int hci_register_dev(struct hci_dev *hdev); 1067 void hci_unregister_dev(struct hci_dev *hdev); 1068 int hci_suspend_dev(struct hci_dev *hdev); 1069 int hci_resume_dev(struct hci_dev *hdev); 1070 int hci_reset_dev(struct hci_dev *hdev); 1071 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb); 1072 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb); 1073 __printf(2, 3) void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...); 1074 __printf(2, 3) void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...); 1075 int hci_dev_open(__u16 dev); 1076 int hci_dev_close(__u16 dev); 1077 int hci_dev_do_close(struct hci_dev *hdev); 1078 int hci_dev_reset(__u16 dev); 1079 int hci_dev_reset_stat(__u16 dev); 1080 int hci_dev_cmd(unsigned int cmd, void __user *arg); 1081 int hci_get_dev_list(void __user *arg); 1082 int hci_get_dev_info(void __user *arg); 1083 int hci_get_conn_list(void __user *arg); 1084 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg); 1085 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg); 1086 int hci_inquiry(void __user *arg); 1087 1088 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list, 1089 bdaddr_t *bdaddr, u8 type); 1090 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 1091 struct list_head *list, bdaddr_t *bdaddr, 1092 u8 type); 1093 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1094 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 1095 u8 type, u8 *peer_irk, u8 *local_irk); 1096 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1097 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 1098 u8 type); 1099 void hci_bdaddr_list_clear(struct list_head *list); 1100 1101 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 1102 bdaddr_t *addr, u8 addr_type); 1103 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 1104 bdaddr_t *addr, u8 addr_type); 1105 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); 1106 void hci_conn_params_clear_disabled(struct hci_dev *hdev); 1107 1108 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 1109 bdaddr_t *addr, 1110 u8 addr_type); 1111 1112 void hci_uuids_clear(struct hci_dev *hdev); 1113 1114 void hci_link_keys_clear(struct hci_dev *hdev); 1115 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1116 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1117 bdaddr_t *bdaddr, u8 *val, u8 type, 1118 u8 pin_len, bool *persistent); 1119 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1120 u8 addr_type, u8 type, u8 authenticated, 1121 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand); 1122 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1123 u8 addr_type, u8 role); 1124 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); 1125 void hci_smp_ltks_clear(struct hci_dev *hdev); 1126 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1127 1128 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa); 1129 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1130 u8 addr_type); 1131 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1132 u8 addr_type, u8 val[16], bdaddr_t *rpa); 1133 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); 1134 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]); 1135 void hci_blocked_keys_clear(struct hci_dev *hdev); 1136 void hci_smp_irks_clear(struct hci_dev *hdev); 1137 1138 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 1139 1140 void hci_remote_oob_data_clear(struct hci_dev *hdev); 1141 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1142 bdaddr_t *bdaddr, u8 bdaddr_type); 1143 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1144 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1145 u8 *hash256, u8 *rand256); 1146 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1147 u8 bdaddr_type); 1148 1149 void hci_adv_instances_clear(struct hci_dev *hdev); 1150 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance); 1151 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance); 1152 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, 1153 u16 adv_data_len, u8 *adv_data, 1154 u16 scan_rsp_len, u8 *scan_rsp_data, 1155 u16 timeout, u16 duration); 1156 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance); 1157 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired); 1158 1159 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb); 1160 1161 void hci_init_sysfs(struct hci_dev *hdev); 1162 void hci_conn_init_sysfs(struct hci_conn *conn); 1163 void hci_conn_add_sysfs(struct hci_conn *conn); 1164 void hci_conn_del_sysfs(struct hci_conn *conn); 1165 1166 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev)) 1167 1168 /* ----- LMP capabilities ----- */ 1169 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT) 1170 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH) 1171 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD) 1172 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF) 1173 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK) 1174 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ) 1175 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO) 1176 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR)) 1177 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE) 1178 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR) 1179 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC) 1180 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ) 1181 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR)) 1182 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR) 1183 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH) 1184 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO) 1185 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR) 1186 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES) 1187 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT) 1188 #define lmp_edr_2m_capable(dev) ((dev)->features[0][3] & LMP_EDR_2M) 1189 #define lmp_edr_3m_capable(dev) ((dev)->features[0][3] & LMP_EDR_3M) 1190 #define lmp_edr_3slot_capable(dev) ((dev)->features[0][4] & LMP_EDR_3SLOT) 1191 #define lmp_edr_5slot_capable(dev) ((dev)->features[0][5] & LMP_EDR_5SLOT) 1192 1193 /* ----- Extended LMP capabilities ----- */ 1194 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER) 1195 #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE) 1196 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN) 1197 #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN) 1198 #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC) 1199 #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING) 1200 1201 /* ----- Host capabilities ----- */ 1202 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP) 1203 #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC) 1204 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE)) 1205 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR)) 1206 1207 #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \ 1208 !hci_dev_test_flag(dev, HCI_AUTO_OFF)) 1209 #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \ 1210 hci_dev_test_flag(dev, HCI_SC_ENABLED)) 1211 1212 #define scan_1m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_1M) || \ 1213 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_1M)) 1214 1215 #define scan_2m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_2M) || \ 1216 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_2M)) 1217 1218 #define scan_coded(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_CODED) || \ 1219 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_CODED)) 1220 1221 /* Use ext scanning if set ext scan param and ext scan enable is supported */ 1222 #define use_ext_scan(dev) (((dev)->commands[37] & 0x20) && \ 1223 ((dev)->commands[37] & 0x40)) 1224 /* Use ext create connection if command is supported */ 1225 #define use_ext_conn(dev) ((dev)->commands[37] & 0x80) 1226 1227 /* Extended advertising support */ 1228 #define ext_adv_capable(dev) (((dev)->le_features[1] & HCI_LE_EXT_ADV)) 1229 1230 /* ----- HCI protocols ----- */ 1231 #define HCI_PROTO_DEFER 0x01 1232 1233 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 1234 __u8 type, __u8 *flags) 1235 { 1236 switch (type) { 1237 case ACL_LINK: 1238 return l2cap_connect_ind(hdev, bdaddr); 1239 1240 case SCO_LINK: 1241 case ESCO_LINK: 1242 return sco_connect_ind(hdev, bdaddr, flags); 1243 1244 default: 1245 BT_ERR("unknown link type %d", type); 1246 return -EINVAL; 1247 } 1248 } 1249 1250 static inline int hci_proto_disconn_ind(struct hci_conn *conn) 1251 { 1252 if (conn->type != ACL_LINK && conn->type != LE_LINK) 1253 return HCI_ERROR_REMOTE_USER_TERM; 1254 1255 return l2cap_disconn_ind(conn); 1256 } 1257 1258 /* ----- HCI callbacks ----- */ 1259 struct hci_cb { 1260 struct list_head list; 1261 1262 char *name; 1263 1264 void (*connect_cfm) (struct hci_conn *conn, __u8 status); 1265 void (*disconn_cfm) (struct hci_conn *conn, __u8 status); 1266 void (*security_cfm) (struct hci_conn *conn, __u8 status, 1267 __u8 encrypt); 1268 void (*key_change_cfm) (struct hci_conn *conn, __u8 status); 1269 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role); 1270 }; 1271 1272 static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status) 1273 { 1274 struct hci_cb *cb; 1275 1276 mutex_lock(&hci_cb_list_lock); 1277 list_for_each_entry(cb, &hci_cb_list, list) { 1278 if (cb->connect_cfm) 1279 cb->connect_cfm(conn, status); 1280 } 1281 mutex_unlock(&hci_cb_list_lock); 1282 1283 if (conn->connect_cfm_cb) 1284 conn->connect_cfm_cb(conn, status); 1285 } 1286 1287 static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason) 1288 { 1289 struct hci_cb *cb; 1290 1291 mutex_lock(&hci_cb_list_lock); 1292 list_for_each_entry(cb, &hci_cb_list, list) { 1293 if (cb->disconn_cfm) 1294 cb->disconn_cfm(conn, reason); 1295 } 1296 mutex_unlock(&hci_cb_list_lock); 1297 1298 if (conn->disconn_cfm_cb) 1299 conn->disconn_cfm_cb(conn, reason); 1300 } 1301 1302 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status) 1303 { 1304 struct hci_cb *cb; 1305 __u8 encrypt; 1306 1307 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1308 return; 1309 1310 encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00; 1311 1312 mutex_lock(&hci_cb_list_lock); 1313 list_for_each_entry(cb, &hci_cb_list, list) { 1314 if (cb->security_cfm) 1315 cb->security_cfm(conn, status, encrypt); 1316 } 1317 mutex_unlock(&hci_cb_list_lock); 1318 1319 if (conn->security_cfm_cb) 1320 conn->security_cfm_cb(conn, status); 1321 } 1322 1323 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status, 1324 __u8 encrypt) 1325 { 1326 struct hci_cb *cb; 1327 1328 if (conn->sec_level == BT_SECURITY_SDP) 1329 conn->sec_level = BT_SECURITY_LOW; 1330 1331 if (conn->pending_sec_level > conn->sec_level) 1332 conn->sec_level = conn->pending_sec_level; 1333 1334 mutex_lock(&hci_cb_list_lock); 1335 list_for_each_entry(cb, &hci_cb_list, list) { 1336 if (cb->security_cfm) 1337 cb->security_cfm(conn, status, encrypt); 1338 } 1339 mutex_unlock(&hci_cb_list_lock); 1340 1341 if (conn->security_cfm_cb) 1342 conn->security_cfm_cb(conn, status); 1343 } 1344 1345 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status) 1346 { 1347 struct hci_cb *cb; 1348 1349 mutex_lock(&hci_cb_list_lock); 1350 list_for_each_entry(cb, &hci_cb_list, list) { 1351 if (cb->key_change_cfm) 1352 cb->key_change_cfm(conn, status); 1353 } 1354 mutex_unlock(&hci_cb_list_lock); 1355 } 1356 1357 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status, 1358 __u8 role) 1359 { 1360 struct hci_cb *cb; 1361 1362 mutex_lock(&hci_cb_list_lock); 1363 list_for_each_entry(cb, &hci_cb_list, list) { 1364 if (cb->role_switch_cfm) 1365 cb->role_switch_cfm(conn, status, role); 1366 } 1367 mutex_unlock(&hci_cb_list_lock); 1368 } 1369 1370 static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type, 1371 size_t *data_len) 1372 { 1373 size_t parsed = 0; 1374 1375 if (eir_len < 2) 1376 return NULL; 1377 1378 while (parsed < eir_len - 1) { 1379 u8 field_len = eir[0]; 1380 1381 if (field_len == 0) 1382 break; 1383 1384 parsed += field_len + 1; 1385 1386 if (parsed > eir_len) 1387 break; 1388 1389 if (eir[1] != type) { 1390 eir += field_len + 1; 1391 continue; 1392 } 1393 1394 /* Zero length data */ 1395 if (field_len == 1) 1396 return NULL; 1397 1398 if (data_len) 1399 *data_len = field_len - 1; 1400 1401 return &eir[2]; 1402 } 1403 1404 return NULL; 1405 } 1406 1407 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type) 1408 { 1409 if (addr_type != ADDR_LE_DEV_RANDOM) 1410 return false; 1411 1412 if ((bdaddr->b[5] & 0xc0) == 0x40) 1413 return true; 1414 1415 return false; 1416 } 1417 1418 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type) 1419 { 1420 if (addr_type == ADDR_LE_DEV_PUBLIC) 1421 return true; 1422 1423 /* Check for Random Static address type */ 1424 if ((addr->b[5] & 0xc0) == 0xc0) 1425 return true; 1426 1427 return false; 1428 } 1429 1430 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev, 1431 bdaddr_t *bdaddr, u8 addr_type) 1432 { 1433 if (!hci_bdaddr_is_rpa(bdaddr, addr_type)) 1434 return NULL; 1435 1436 return hci_find_irk_by_rpa(hdev, bdaddr); 1437 } 1438 1439 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency, 1440 u16 to_multiplier) 1441 { 1442 u16 max_latency; 1443 1444 if (min > max || min < 6 || max > 3200) 1445 return -EINVAL; 1446 1447 if (to_multiplier < 10 || to_multiplier > 3200) 1448 return -EINVAL; 1449 1450 if (max >= to_multiplier * 8) 1451 return -EINVAL; 1452 1453 max_latency = (to_multiplier * 4 / max) - 1; 1454 if (latency > 499 || latency > max_latency) 1455 return -EINVAL; 1456 1457 return 0; 1458 } 1459 1460 int hci_register_cb(struct hci_cb *hcb); 1461 int hci_unregister_cb(struct hci_cb *hcb); 1462 1463 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1464 const void *param, u32 timeout); 1465 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 1466 const void *param, u8 event, u32 timeout); 1467 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 1468 const void *param); 1469 1470 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 1471 const void *param); 1472 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags); 1473 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb); 1474 1475 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode); 1476 1477 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1478 const void *param, u32 timeout); 1479 1480 /* ----- HCI Sockets ----- */ 1481 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb); 1482 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 1483 int flag, struct sock *skip_sk); 1484 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb); 1485 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, 1486 void *data, u16 data_len, ktime_t tstamp, 1487 int flag, struct sock *skip_sk); 1488 1489 void hci_sock_dev_event(struct hci_dev *hdev, int event); 1490 1491 #define HCI_MGMT_VAR_LEN BIT(0) 1492 #define HCI_MGMT_NO_HDEV BIT(1) 1493 #define HCI_MGMT_UNTRUSTED BIT(2) 1494 #define HCI_MGMT_UNCONFIGURED BIT(3) 1495 1496 struct hci_mgmt_handler { 1497 int (*func) (struct sock *sk, struct hci_dev *hdev, void *data, 1498 u16 data_len); 1499 size_t data_len; 1500 unsigned long flags; 1501 }; 1502 1503 struct hci_mgmt_chan { 1504 struct list_head list; 1505 unsigned short channel; 1506 size_t handler_count; 1507 const struct hci_mgmt_handler *handlers; 1508 void (*hdev_init) (struct sock *sk, struct hci_dev *hdev); 1509 }; 1510 1511 int hci_mgmt_chan_register(struct hci_mgmt_chan *c); 1512 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c); 1513 1514 /* Management interface */ 1515 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR)) 1516 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \ 1517 BIT(BDADDR_LE_RANDOM)) 1518 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \ 1519 BIT(BDADDR_LE_PUBLIC) | \ 1520 BIT(BDADDR_LE_RANDOM)) 1521 1522 /* These LE scan and inquiry parameters were chosen according to LE General 1523 * Discovery Procedure specification. 1524 */ 1525 #define DISCOV_LE_SCAN_WIN 0x12 1526 #define DISCOV_LE_SCAN_INT 0x12 1527 #define DISCOV_LE_TIMEOUT 10240 /* msec */ 1528 #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */ 1529 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04 1530 #define DISCOV_BREDR_INQUIRY_LEN 0x08 1531 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */ 1532 #define DISCOV_LE_FAST_ADV_INT_MIN 100 /* msec */ 1533 #define DISCOV_LE_FAST_ADV_INT_MAX 150 /* msec */ 1534 1535 void mgmt_fill_version_info(void *ver); 1536 int mgmt_new_settings(struct hci_dev *hdev); 1537 void mgmt_index_added(struct hci_dev *hdev); 1538 void mgmt_index_removed(struct hci_dev *hdev); 1539 void mgmt_set_powered_failed(struct hci_dev *hdev, int err); 1540 void mgmt_power_on(struct hci_dev *hdev, int err); 1541 void __mgmt_power_off(struct hci_dev *hdev); 1542 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, 1543 bool persistent); 1544 void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn, 1545 u32 flags, u8 *name, u8 name_len); 1546 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, 1547 u8 link_type, u8 addr_type, u8 reason, 1548 bool mgmt_connected); 1549 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, 1550 u8 link_type, u8 addr_type, u8 status); 1551 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1552 u8 addr_type, u8 status); 1553 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure); 1554 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1555 u8 status); 1556 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1557 u8 status); 1558 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1559 u8 link_type, u8 addr_type, u32 value, 1560 u8 confirm_hint); 1561 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1562 u8 link_type, u8 addr_type, u8 status); 1563 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1564 u8 link_type, u8 addr_type, u8 status); 1565 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1566 u8 link_type, u8 addr_type); 1567 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1568 u8 link_type, u8 addr_type, u8 status); 1569 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1570 u8 link_type, u8 addr_type, u8 status); 1571 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, 1572 u8 link_type, u8 addr_type, u32 passkey, 1573 u8 entered); 1574 void mgmt_auth_failed(struct hci_conn *conn, u8 status); 1575 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status); 1576 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); 1577 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, 1578 u8 status); 1579 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status); 1580 void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status); 1581 void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status); 1582 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1583 u8 addr_type, u8 *dev_class, s8 rssi, u32 flags, 1584 u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len); 1585 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1586 u8 addr_type, s8 rssi, u8 *name, u8 name_len); 1587 void mgmt_discovering(struct hci_dev *hdev, u8 discovering); 1588 bool mgmt_powering_down(struct hci_dev *hdev); 1589 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent); 1590 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent); 1591 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk, 1592 bool persistent); 1593 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr, 1594 u8 bdaddr_type, u8 store_hint, u16 min_interval, 1595 u16 max_interval, u16 latency, u16 timeout); 1596 void mgmt_smp_complete(struct hci_conn *conn, bool complete); 1597 bool mgmt_get_connectable(struct hci_dev *hdev); 1598 void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status); 1599 void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status); 1600 u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev); 1601 void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev, 1602 u8 instance); 1603 void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev, 1604 u8 instance); 1605 int mgmt_phy_configuration_changed(struct hci_dev *hdev, struct sock *skip); 1606 1607 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 1608 u16 to_multiplier); 1609 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 1610 __u8 ltk[16], __u8 key_size); 1611 1612 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 1613 u8 *bdaddr_type); 1614 1615 #define SCO_AIRMODE_MASK 0x0003 1616 #define SCO_AIRMODE_CVSD 0x0000 1617 #define SCO_AIRMODE_TRANSP 0x0003 1618 1619 #endif /* __HCI_CORE_H */ 1620