xref: /openbmc/linux/include/net/bluetooth/hci_core.h (revision bef7a78d)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4 
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10 
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24 
25 #ifndef __HCI_CORE_H
26 #define __HCI_CORE_H
27 
28 #include <linux/idr.h>
29 #include <linux/leds.h>
30 #include <linux/rculist.h>
31 
32 #include <net/bluetooth/hci.h>
33 #include <net/bluetooth/hci_sock.h>
34 
35 /* HCI priority */
36 #define HCI_PRIO_MAX	7
37 
38 /* HCI Core structures */
39 struct inquiry_data {
40 	bdaddr_t	bdaddr;
41 	__u8		pscan_rep_mode;
42 	__u8		pscan_period_mode;
43 	__u8		pscan_mode;
44 	__u8		dev_class[3];
45 	__le16		clock_offset;
46 	__s8		rssi;
47 	__u8		ssp_mode;
48 };
49 
50 struct inquiry_entry {
51 	struct list_head	all;		/* inq_cache.all */
52 	struct list_head	list;		/* unknown or resolve */
53 	enum {
54 		NAME_NOT_KNOWN,
55 		NAME_NEEDED,
56 		NAME_PENDING,
57 		NAME_KNOWN,
58 	} name_state;
59 	__u32			timestamp;
60 	struct inquiry_data	data;
61 };
62 
63 struct discovery_state {
64 	int			type;
65 	enum {
66 		DISCOVERY_STOPPED,
67 		DISCOVERY_STARTING,
68 		DISCOVERY_FINDING,
69 		DISCOVERY_RESOLVING,
70 		DISCOVERY_STOPPING,
71 	} state;
72 	struct list_head	all;	/* All devices found during inquiry */
73 	struct list_head	unknown;	/* Name state not known */
74 	struct list_head	resolve;	/* Name needs to be resolved */
75 	__u32			timestamp;
76 	bdaddr_t		last_adv_addr;
77 	u8			last_adv_addr_type;
78 	s8			last_adv_rssi;
79 	u32			last_adv_flags;
80 	u8			last_adv_data[HCI_MAX_AD_LENGTH];
81 	u8			last_adv_data_len;
82 	bool			report_invalid_rssi;
83 	bool			result_filtering;
84 	bool			limited;
85 	s8			rssi;
86 	u16			uuid_count;
87 	u8			(*uuids)[16];
88 	unsigned long		scan_start;
89 	unsigned long		scan_duration;
90 };
91 
92 #define SUSPEND_NOTIFIER_TIMEOUT	msecs_to_jiffies(2000) /* 2 seconds */
93 
94 enum suspend_tasks {
95 	SUSPEND_PAUSE_DISCOVERY,
96 	SUSPEND_UNPAUSE_DISCOVERY,
97 
98 	SUSPEND_PAUSE_ADVERTISING,
99 	SUSPEND_UNPAUSE_ADVERTISING,
100 
101 	SUSPEND_SCAN_DISABLE,
102 	SUSPEND_SCAN_ENABLE,
103 	SUSPEND_DISCONNECTING,
104 
105 	SUSPEND_POWERING_DOWN,
106 
107 	SUSPEND_PREPARE_NOTIFIER,
108 	__SUSPEND_NUM_TASKS
109 };
110 
111 enum suspended_state {
112 	BT_RUNNING = 0,
113 	BT_SUSPEND_DISCONNECT,
114 	BT_SUSPEND_CONFIGURE_WAKE,
115 };
116 
117 struct hci_conn_hash {
118 	struct list_head list;
119 	unsigned int     acl_num;
120 	unsigned int     amp_num;
121 	unsigned int     sco_num;
122 	unsigned int     le_num;
123 	unsigned int     le_num_slave;
124 };
125 
126 struct bdaddr_list {
127 	struct list_head list;
128 	bdaddr_t bdaddr;
129 	u8 bdaddr_type;
130 };
131 
132 struct bdaddr_list_with_irk {
133 	struct list_head list;
134 	bdaddr_t bdaddr;
135 	u8 bdaddr_type;
136 	u8 peer_irk[16];
137 	u8 local_irk[16];
138 };
139 
140 struct bdaddr_list_with_flags {
141 	struct list_head list;
142 	bdaddr_t bdaddr;
143 	u8 bdaddr_type;
144 	u32 current_flags;
145 };
146 
147 enum hci_conn_flags {
148 	HCI_CONN_FLAG_REMOTE_WAKEUP,
149 	HCI_CONN_FLAG_MAX
150 };
151 
152 #define hci_conn_test_flag(nr, flags) ((flags) & (1U << nr))
153 
154 /* Make sure number of flags doesn't exceed sizeof(current_flags) */
155 static_assert(HCI_CONN_FLAG_MAX < 32);
156 
157 struct bt_uuid {
158 	struct list_head list;
159 	u8 uuid[16];
160 	u8 size;
161 	u8 svc_hint;
162 };
163 
164 struct blocked_key {
165 	struct list_head list;
166 	struct rcu_head rcu;
167 	u8 type;
168 	u8 val[16];
169 };
170 
171 struct smp_csrk {
172 	bdaddr_t bdaddr;
173 	u8 bdaddr_type;
174 	u8 type;
175 	u8 val[16];
176 };
177 
178 struct smp_ltk {
179 	struct list_head list;
180 	struct rcu_head rcu;
181 	bdaddr_t bdaddr;
182 	u8 bdaddr_type;
183 	u8 authenticated;
184 	u8 type;
185 	u8 enc_size;
186 	__le16 ediv;
187 	__le64 rand;
188 	u8 val[16];
189 };
190 
191 struct smp_irk {
192 	struct list_head list;
193 	struct rcu_head rcu;
194 	bdaddr_t rpa;
195 	bdaddr_t bdaddr;
196 	u8 addr_type;
197 	u8 val[16];
198 };
199 
200 struct link_key {
201 	struct list_head list;
202 	struct rcu_head rcu;
203 	bdaddr_t bdaddr;
204 	u8 type;
205 	u8 val[HCI_LINK_KEY_SIZE];
206 	u8 pin_len;
207 };
208 
209 struct oob_data {
210 	struct list_head list;
211 	bdaddr_t bdaddr;
212 	u8 bdaddr_type;
213 	u8 present;
214 	u8 hash192[16];
215 	u8 rand192[16];
216 	u8 hash256[16];
217 	u8 rand256[16];
218 };
219 
220 struct adv_info {
221 	struct list_head list;
222 	bool pending;
223 	__u8	instance;
224 	__u32	flags;
225 	__u16	timeout;
226 	__u16	remaining_time;
227 	__u16	duration;
228 	__u16	adv_data_len;
229 	__u8	adv_data[HCI_MAX_AD_LENGTH];
230 	__u16	scan_rsp_len;
231 	__u8	scan_rsp_data[HCI_MAX_AD_LENGTH];
232 	__s8	tx_power;
233 	__u32   min_interval;
234 	__u32   max_interval;
235 	bdaddr_t	random_addr;
236 	bool 		rpa_expired;
237 	struct delayed_work	rpa_expired_cb;
238 };
239 
240 #define HCI_MAX_ADV_INSTANCES		5
241 #define HCI_DEFAULT_ADV_DURATION	2
242 
243 #define HCI_ADV_TX_POWER_NO_PREFERENCE 0x7F
244 
245 struct adv_pattern {
246 	struct list_head list;
247 	__u8 ad_type;
248 	__u8 offset;
249 	__u8 length;
250 	__u8 value[HCI_MAX_AD_LENGTH];
251 };
252 
253 struct adv_monitor {
254 	struct list_head patterns;
255 	bool		active;
256 	__u16		handle;
257 };
258 
259 #define HCI_MIN_ADV_MONITOR_HANDLE		1
260 #define HCI_MAX_ADV_MONITOR_NUM_HANDLES	32
261 #define HCI_MAX_ADV_MONITOR_NUM_PATTERNS	16
262 
263 #define HCI_MAX_SHORT_NAME_LENGTH	10
264 
265 /* Min encryption key size to match with SMP */
266 #define HCI_MIN_ENC_KEY_SIZE		7
267 
268 /* Default LE RPA expiry time, 15 minutes */
269 #define HCI_DEFAULT_RPA_TIMEOUT		(15 * 60)
270 
271 /* Default min/max age of connection information (1s/3s) */
272 #define DEFAULT_CONN_INFO_MIN_AGE	1000
273 #define DEFAULT_CONN_INFO_MAX_AGE	3000
274 /* Default authenticated payload timeout 30s */
275 #define DEFAULT_AUTH_PAYLOAD_TIMEOUT   0x0bb8
276 
277 struct amp_assoc {
278 	__u16	len;
279 	__u16	offset;
280 	__u16	rem_len;
281 	__u16	len_so_far;
282 	__u8	data[HCI_MAX_AMP_ASSOC_SIZE];
283 };
284 
285 #define HCI_MAX_PAGES	3
286 
287 struct hci_dev {
288 	struct list_head list;
289 	struct mutex	lock;
290 
291 	char		name[8];
292 	unsigned long	flags;
293 	__u16		id;
294 	__u8		bus;
295 	__u8		dev_type;
296 	bdaddr_t	bdaddr;
297 	bdaddr_t	setup_addr;
298 	bdaddr_t	public_addr;
299 	bdaddr_t	random_addr;
300 	bdaddr_t	static_addr;
301 	__u8		adv_addr_type;
302 	__u8		dev_name[HCI_MAX_NAME_LENGTH];
303 	__u8		short_name[HCI_MAX_SHORT_NAME_LENGTH];
304 	__u8		eir[HCI_MAX_EIR_LENGTH];
305 	__u16		appearance;
306 	__u8		dev_class[3];
307 	__u8		major_class;
308 	__u8		minor_class;
309 	__u8		max_page;
310 	__u8		features[HCI_MAX_PAGES][8];
311 	__u8		le_features[8];
312 	__u8		le_white_list_size;
313 	__u8		le_resolv_list_size;
314 	__u8		le_num_of_adv_sets;
315 	__u8		le_states[8];
316 	__u8		commands[64];
317 	__u8		hci_ver;
318 	__u16		hci_rev;
319 	__u8		lmp_ver;
320 	__u16		manufacturer;
321 	__u16		lmp_subver;
322 	__u16		voice_setting;
323 	__u8		num_iac;
324 	__u8		stored_max_keys;
325 	__u8		stored_num_keys;
326 	__u8		io_capability;
327 	__s8		inq_tx_power;
328 	__u8		err_data_reporting;
329 	__u16		page_scan_interval;
330 	__u16		page_scan_window;
331 	__u8		page_scan_type;
332 	__u8		le_adv_channel_map;
333 	__u16		le_adv_min_interval;
334 	__u16		le_adv_max_interval;
335 	__u8		le_scan_type;
336 	__u16		le_scan_interval;
337 	__u16		le_scan_window;
338 	__u16		le_scan_int_suspend;
339 	__u16		le_scan_window_suspend;
340 	__u16		le_scan_int_discovery;
341 	__u16		le_scan_window_discovery;
342 	__u16		le_scan_int_adv_monitor;
343 	__u16		le_scan_window_adv_monitor;
344 	__u16		le_scan_int_connect;
345 	__u16		le_scan_window_connect;
346 	__u16		le_conn_min_interval;
347 	__u16		le_conn_max_interval;
348 	__u16		le_conn_latency;
349 	__u16		le_supv_timeout;
350 	__u16		le_def_tx_len;
351 	__u16		le_def_tx_time;
352 	__u16		le_max_tx_len;
353 	__u16		le_max_tx_time;
354 	__u16		le_max_rx_len;
355 	__u16		le_max_rx_time;
356 	__u8		le_max_key_size;
357 	__u8		le_min_key_size;
358 	__u16		discov_interleaved_timeout;
359 	__u16		conn_info_min_age;
360 	__u16		conn_info_max_age;
361 	__u16		auth_payload_timeout;
362 	__u8		min_enc_key_size;
363 	__u8		max_enc_key_size;
364 	__u8		pairing_opts;
365 	__u8		ssp_debug_mode;
366 	__u8		hw_error_code;
367 	__u32		clock;
368 	__u16		advmon_allowlist_duration;
369 	__u16		advmon_no_filter_duration;
370 	__u8		enable_advmon_interleave_scan;
371 
372 	__u16		devid_source;
373 	__u16		devid_vendor;
374 	__u16		devid_product;
375 	__u16		devid_version;
376 
377 	__u8		def_page_scan_type;
378 	__u16		def_page_scan_int;
379 	__u16		def_page_scan_window;
380 	__u8		def_inq_scan_type;
381 	__u16		def_inq_scan_int;
382 	__u16		def_inq_scan_window;
383 	__u16		def_br_lsto;
384 	__u16		def_page_timeout;
385 	__u16		def_multi_adv_rotation_duration;
386 	__u16		def_le_autoconnect_timeout;
387 	__s8		min_le_tx_power;
388 	__s8		max_le_tx_power;
389 
390 	__u16		pkt_type;
391 	__u16		esco_type;
392 	__u16		link_policy;
393 	__u16		link_mode;
394 
395 	__u32		idle_timeout;
396 	__u16		sniff_min_interval;
397 	__u16		sniff_max_interval;
398 
399 	__u8		amp_status;
400 	__u32		amp_total_bw;
401 	__u32		amp_max_bw;
402 	__u32		amp_min_latency;
403 	__u32		amp_max_pdu;
404 	__u8		amp_type;
405 	__u16		amp_pal_cap;
406 	__u16		amp_assoc_size;
407 	__u32		amp_max_flush_to;
408 	__u32		amp_be_flush_to;
409 
410 	struct amp_assoc	loc_assoc;
411 
412 	__u8		flow_ctl_mode;
413 
414 	unsigned int	auto_accept_delay;
415 
416 	unsigned long	quirks;
417 
418 	atomic_t	cmd_cnt;
419 	unsigned int	acl_cnt;
420 	unsigned int	sco_cnt;
421 	unsigned int	le_cnt;
422 
423 	unsigned int	acl_mtu;
424 	unsigned int	sco_mtu;
425 	unsigned int	le_mtu;
426 	unsigned int	acl_pkts;
427 	unsigned int	sco_pkts;
428 	unsigned int	le_pkts;
429 
430 	__u16		block_len;
431 	__u16		block_mtu;
432 	__u16		num_blocks;
433 	__u16		block_cnt;
434 
435 	unsigned long	acl_last_tx;
436 	unsigned long	sco_last_tx;
437 	unsigned long	le_last_tx;
438 
439 	__u8		le_tx_def_phys;
440 	__u8		le_rx_def_phys;
441 
442 	struct workqueue_struct	*workqueue;
443 	struct workqueue_struct	*req_workqueue;
444 
445 	struct work_struct	power_on;
446 	struct delayed_work	power_off;
447 	struct work_struct	error_reset;
448 
449 	__u16			discov_timeout;
450 	struct delayed_work	discov_off;
451 
452 	struct delayed_work	service_cache;
453 
454 	struct delayed_work	cmd_timer;
455 
456 	struct work_struct	rx_work;
457 	struct work_struct	cmd_work;
458 	struct work_struct	tx_work;
459 
460 	struct work_struct	discov_update;
461 	struct work_struct	bg_scan_update;
462 	struct work_struct	scan_update;
463 	struct work_struct	connectable_update;
464 	struct work_struct	discoverable_update;
465 	struct delayed_work	le_scan_disable;
466 	struct delayed_work	le_scan_restart;
467 
468 	struct sk_buff_head	rx_q;
469 	struct sk_buff_head	raw_q;
470 	struct sk_buff_head	cmd_q;
471 
472 	struct sk_buff		*sent_cmd;
473 
474 	struct mutex		req_lock;
475 	wait_queue_head_t	req_wait_q;
476 	__u32			req_status;
477 	__u32			req_result;
478 	struct sk_buff		*req_skb;
479 
480 	void			*smp_data;
481 	void			*smp_bredr_data;
482 
483 	struct discovery_state	discovery;
484 
485 	int			discovery_old_state;
486 	bool			discovery_paused;
487 	int			advertising_old_state;
488 	bool			advertising_paused;
489 
490 	struct notifier_block	suspend_notifier;
491 	struct work_struct	suspend_prepare;
492 	enum suspended_state	suspend_state_next;
493 	enum suspended_state	suspend_state;
494 	bool			scanning_paused;
495 	bool			suspended;
496 	u8			wake_reason;
497 	bdaddr_t		wake_addr;
498 	u8			wake_addr_type;
499 
500 	wait_queue_head_t	suspend_wait_q;
501 	DECLARE_BITMAP(suspend_tasks, __SUSPEND_NUM_TASKS);
502 
503 	struct hci_conn_hash	conn_hash;
504 
505 	struct list_head	mgmt_pending;
506 	struct list_head	blacklist;
507 	struct list_head	whitelist;
508 	struct list_head	uuids;
509 	struct list_head	link_keys;
510 	struct list_head	long_term_keys;
511 	struct list_head	identity_resolving_keys;
512 	struct list_head	remote_oob_data;
513 	struct list_head	le_white_list;
514 	struct list_head	le_resolv_list;
515 	struct list_head	le_conn_params;
516 	struct list_head	pend_le_conns;
517 	struct list_head	pend_le_reports;
518 	struct list_head	blocked_keys;
519 
520 	struct hci_dev_stats	stat;
521 
522 	atomic_t		promisc;
523 
524 	const char		*hw_info;
525 	const char		*fw_info;
526 	struct dentry		*debugfs;
527 
528 	struct device		dev;
529 
530 	struct rfkill		*rfkill;
531 
532 	DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS);
533 
534 	__s8			adv_tx_power;
535 	__u8			adv_data[HCI_MAX_AD_LENGTH];
536 	__u8			adv_data_len;
537 	__u8			scan_rsp_data[HCI_MAX_AD_LENGTH];
538 	__u8			scan_rsp_data_len;
539 
540 	struct list_head	adv_instances;
541 	unsigned int		adv_instance_cnt;
542 	__u8			cur_adv_instance;
543 	__u16			adv_instance_timeout;
544 	struct delayed_work	adv_instance_expire;
545 
546 	struct idr		adv_monitors_idr;
547 	unsigned int		adv_monitors_cnt;
548 
549 	__u8			irk[16];
550 	__u32			rpa_timeout;
551 	struct delayed_work	rpa_expired;
552 	bdaddr_t		rpa;
553 
554 	enum {
555 		INTERLEAVE_SCAN_NONE,
556 		INTERLEAVE_SCAN_NO_FILTER,
557 		INTERLEAVE_SCAN_ALLOWLIST
558 	} interleave_scan_state;
559 
560 	struct delayed_work	interleave_scan;
561 
562 #if IS_ENABLED(CONFIG_BT_LEDS)
563 	struct led_trigger	*power_led;
564 #endif
565 
566 #if IS_ENABLED(CONFIG_BT_MSFTEXT)
567 	__u16			msft_opcode;
568 	void			*msft_data;
569 #endif
570 
571 	int (*open)(struct hci_dev *hdev);
572 	int (*close)(struct hci_dev *hdev);
573 	int (*flush)(struct hci_dev *hdev);
574 	int (*setup)(struct hci_dev *hdev);
575 	int (*shutdown)(struct hci_dev *hdev);
576 	int (*send)(struct hci_dev *hdev, struct sk_buff *skb);
577 	void (*notify)(struct hci_dev *hdev, unsigned int evt);
578 	void (*hw_error)(struct hci_dev *hdev, u8 code);
579 	int (*post_init)(struct hci_dev *hdev);
580 	int (*set_diag)(struct hci_dev *hdev, bool enable);
581 	int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr);
582 	void (*cmd_timeout)(struct hci_dev *hdev);
583 	bool (*prevent_wake)(struct hci_dev *hdev);
584 };
585 
586 #define HCI_PHY_HANDLE(handle)	(handle & 0xff)
587 
588 enum conn_reasons {
589 	CONN_REASON_PAIR_DEVICE,
590 	CONN_REASON_L2CAP_CHAN,
591 	CONN_REASON_SCO_CONNECT,
592 };
593 
594 struct hci_conn {
595 	struct list_head list;
596 
597 	atomic_t	refcnt;
598 
599 	bdaddr_t	dst;
600 	__u8		dst_type;
601 	bdaddr_t	src;
602 	__u8		src_type;
603 	bdaddr_t	init_addr;
604 	__u8		init_addr_type;
605 	bdaddr_t	resp_addr;
606 	__u8		resp_addr_type;
607 	__u16		handle;
608 	__u16		state;
609 	__u8		mode;
610 	__u8		type;
611 	__u8		role;
612 	bool		out;
613 	__u8		attempt;
614 	__u8		dev_class[3];
615 	__u8		features[HCI_MAX_PAGES][8];
616 	__u16		pkt_type;
617 	__u16		link_policy;
618 	__u8		key_type;
619 	__u8		auth_type;
620 	__u8		sec_level;
621 	__u8		pending_sec_level;
622 	__u8		pin_length;
623 	__u8		enc_key_size;
624 	__u8		io_capability;
625 	__u32		passkey_notify;
626 	__u8		passkey_entered;
627 	__u16		disc_timeout;
628 	__u16		conn_timeout;
629 	__u16		setting;
630 	__u16		auth_payload_timeout;
631 	__u16		le_conn_min_interval;
632 	__u16		le_conn_max_interval;
633 	__u16		le_conn_interval;
634 	__u16		le_conn_latency;
635 	__u16		le_supv_timeout;
636 	__u8		le_adv_data[HCI_MAX_AD_LENGTH];
637 	__u8		le_adv_data_len;
638 	__u8		le_tx_phy;
639 	__u8		le_rx_phy;
640 	__s8		rssi;
641 	__s8		tx_power;
642 	__s8		max_tx_power;
643 	unsigned long	flags;
644 
645 	enum conn_reasons conn_reason;
646 
647 	__u32		clock;
648 	__u16		clock_accuracy;
649 
650 	unsigned long	conn_info_timestamp;
651 
652 	__u8		remote_cap;
653 	__u8		remote_auth;
654 	__u8		remote_id;
655 
656 	unsigned int	sent;
657 
658 	struct sk_buff_head data_q;
659 	struct list_head chan_list;
660 
661 	struct delayed_work disc_work;
662 	struct delayed_work auto_accept_work;
663 	struct delayed_work idle_work;
664 	struct delayed_work le_conn_timeout;
665 	struct work_struct  le_scan_cleanup;
666 
667 	struct device	dev;
668 	struct dentry	*debugfs;
669 
670 	struct hci_dev	*hdev;
671 	void		*l2cap_data;
672 	void		*sco_data;
673 	struct amp_mgr	*amp_mgr;
674 
675 	struct hci_conn	*link;
676 
677 	void (*connect_cfm_cb)	(struct hci_conn *conn, u8 status);
678 	void (*security_cfm_cb)	(struct hci_conn *conn, u8 status);
679 	void (*disconn_cfm_cb)	(struct hci_conn *conn, u8 reason);
680 };
681 
682 struct hci_chan {
683 	struct list_head list;
684 	__u16 handle;
685 	struct hci_conn *conn;
686 	struct sk_buff_head data_q;
687 	unsigned int	sent;
688 	__u8		state;
689 };
690 
691 struct hci_conn_params {
692 	struct list_head list;
693 	struct list_head action;
694 
695 	bdaddr_t addr;
696 	u8 addr_type;
697 
698 	u16 conn_min_interval;
699 	u16 conn_max_interval;
700 	u16 conn_latency;
701 	u16 supervision_timeout;
702 
703 	enum {
704 		HCI_AUTO_CONN_DISABLED,
705 		HCI_AUTO_CONN_REPORT,
706 		HCI_AUTO_CONN_DIRECT,
707 		HCI_AUTO_CONN_ALWAYS,
708 		HCI_AUTO_CONN_LINK_LOSS,
709 		HCI_AUTO_CONN_EXPLICIT,
710 	} auto_connect;
711 
712 	struct hci_conn *conn;
713 	bool explicit_connect;
714 	u32 current_flags;
715 };
716 
717 extern struct list_head hci_dev_list;
718 extern struct list_head hci_cb_list;
719 extern rwlock_t hci_dev_list_lock;
720 extern struct mutex hci_cb_list_lock;
721 
722 #define hci_dev_set_flag(hdev, nr)             set_bit((nr), (hdev)->dev_flags)
723 #define hci_dev_clear_flag(hdev, nr)           clear_bit((nr), (hdev)->dev_flags)
724 #define hci_dev_change_flag(hdev, nr)          change_bit((nr), (hdev)->dev_flags)
725 #define hci_dev_test_flag(hdev, nr)            test_bit((nr), (hdev)->dev_flags)
726 #define hci_dev_test_and_set_flag(hdev, nr)    test_and_set_bit((nr), (hdev)->dev_flags)
727 #define hci_dev_test_and_clear_flag(hdev, nr)  test_and_clear_bit((nr), (hdev)->dev_flags)
728 #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags)
729 
730 #define hci_dev_clear_volatile_flags(hdev)			\
731 	do {							\
732 		hci_dev_clear_flag(hdev, HCI_LE_SCAN);		\
733 		hci_dev_clear_flag(hdev, HCI_LE_ADV);		\
734 		hci_dev_clear_flag(hdev, HCI_LL_RPA_RESOLUTION);\
735 		hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ);	\
736 	} while (0)
737 
738 /* ----- HCI interface to upper protocols ----- */
739 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
740 int l2cap_disconn_ind(struct hci_conn *hcon);
741 void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags);
742 
743 #if IS_ENABLED(CONFIG_BT_BREDR)
744 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags);
745 void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb);
746 #else
747 static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
748 				  __u8 *flags)
749 {
750 	return 0;
751 }
752 
753 static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb)
754 {
755 }
756 #endif
757 
758 /* ----- Inquiry cache ----- */
759 #define INQUIRY_CACHE_AGE_MAX   (HZ*30)   /* 30 seconds */
760 #define INQUIRY_ENTRY_AGE_MAX   (HZ*60)   /* 60 seconds */
761 
762 static inline void discovery_init(struct hci_dev *hdev)
763 {
764 	hdev->discovery.state = DISCOVERY_STOPPED;
765 	INIT_LIST_HEAD(&hdev->discovery.all);
766 	INIT_LIST_HEAD(&hdev->discovery.unknown);
767 	INIT_LIST_HEAD(&hdev->discovery.resolve);
768 	hdev->discovery.report_invalid_rssi = true;
769 	hdev->discovery.rssi = HCI_RSSI_INVALID;
770 }
771 
772 static inline void hci_discovery_filter_clear(struct hci_dev *hdev)
773 {
774 	hdev->discovery.result_filtering = false;
775 	hdev->discovery.report_invalid_rssi = true;
776 	hdev->discovery.rssi = HCI_RSSI_INVALID;
777 	hdev->discovery.uuid_count = 0;
778 	kfree(hdev->discovery.uuids);
779 	hdev->discovery.uuids = NULL;
780 	hdev->discovery.scan_start = 0;
781 	hdev->discovery.scan_duration = 0;
782 }
783 
784 bool hci_discovery_active(struct hci_dev *hdev);
785 
786 void hci_discovery_set_state(struct hci_dev *hdev, int state);
787 
788 static inline int inquiry_cache_empty(struct hci_dev *hdev)
789 {
790 	return list_empty(&hdev->discovery.all);
791 }
792 
793 static inline long inquiry_cache_age(struct hci_dev *hdev)
794 {
795 	struct discovery_state *c = &hdev->discovery;
796 	return jiffies - c->timestamp;
797 }
798 
799 static inline long inquiry_entry_age(struct inquiry_entry *e)
800 {
801 	return jiffies - e->timestamp;
802 }
803 
804 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
805 					       bdaddr_t *bdaddr);
806 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
807 						       bdaddr_t *bdaddr);
808 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
809 						       bdaddr_t *bdaddr,
810 						       int state);
811 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
812 				      struct inquiry_entry *ie);
813 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
814 			     bool name_known);
815 void hci_inquiry_cache_flush(struct hci_dev *hdev);
816 
817 /* ----- HCI Connections ----- */
818 enum {
819 	HCI_CONN_AUTH_PEND,
820 	HCI_CONN_REAUTH_PEND,
821 	HCI_CONN_ENCRYPT_PEND,
822 	HCI_CONN_RSWITCH_PEND,
823 	HCI_CONN_MODE_CHANGE_PEND,
824 	HCI_CONN_SCO_SETUP_PEND,
825 	HCI_CONN_MGMT_CONNECTED,
826 	HCI_CONN_SSP_ENABLED,
827 	HCI_CONN_SC_ENABLED,
828 	HCI_CONN_AES_CCM,
829 	HCI_CONN_POWER_SAVE,
830 	HCI_CONN_FLUSH_KEY,
831 	HCI_CONN_ENCRYPT,
832 	HCI_CONN_AUTH,
833 	HCI_CONN_SECURE,
834 	HCI_CONN_FIPS,
835 	HCI_CONN_STK_ENCRYPT,
836 	HCI_CONN_AUTH_INITIATOR,
837 	HCI_CONN_DROP,
838 	HCI_CONN_PARAM_REMOVAL_PEND,
839 	HCI_CONN_NEW_LINK_KEY,
840 	HCI_CONN_SCANNING,
841 	HCI_CONN_AUTH_FAILURE,
842 };
843 
844 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn)
845 {
846 	struct hci_dev *hdev = conn->hdev;
847 	return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
848 	       test_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
849 }
850 
851 static inline bool hci_conn_sc_enabled(struct hci_conn *conn)
852 {
853 	struct hci_dev *hdev = conn->hdev;
854 	return hci_dev_test_flag(hdev, HCI_SC_ENABLED) &&
855 	       test_bit(HCI_CONN_SC_ENABLED, &conn->flags);
856 }
857 
858 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c)
859 {
860 	struct hci_conn_hash *h = &hdev->conn_hash;
861 	list_add_rcu(&c->list, &h->list);
862 	switch (c->type) {
863 	case ACL_LINK:
864 		h->acl_num++;
865 		break;
866 	case AMP_LINK:
867 		h->amp_num++;
868 		break;
869 	case LE_LINK:
870 		h->le_num++;
871 		if (c->role == HCI_ROLE_SLAVE)
872 			h->le_num_slave++;
873 		break;
874 	case SCO_LINK:
875 	case ESCO_LINK:
876 		h->sco_num++;
877 		break;
878 	}
879 }
880 
881 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c)
882 {
883 	struct hci_conn_hash *h = &hdev->conn_hash;
884 
885 	list_del_rcu(&c->list);
886 	synchronize_rcu();
887 
888 	switch (c->type) {
889 	case ACL_LINK:
890 		h->acl_num--;
891 		break;
892 	case AMP_LINK:
893 		h->amp_num--;
894 		break;
895 	case LE_LINK:
896 		h->le_num--;
897 		if (c->role == HCI_ROLE_SLAVE)
898 			h->le_num_slave--;
899 		break;
900 	case SCO_LINK:
901 	case ESCO_LINK:
902 		h->sco_num--;
903 		break;
904 	}
905 }
906 
907 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type)
908 {
909 	struct hci_conn_hash *h = &hdev->conn_hash;
910 	switch (type) {
911 	case ACL_LINK:
912 		return h->acl_num;
913 	case AMP_LINK:
914 		return h->amp_num;
915 	case LE_LINK:
916 		return h->le_num;
917 	case SCO_LINK:
918 	case ESCO_LINK:
919 		return h->sco_num;
920 	default:
921 		return 0;
922 	}
923 }
924 
925 static inline unsigned int hci_conn_count(struct hci_dev *hdev)
926 {
927 	struct hci_conn_hash *c = &hdev->conn_hash;
928 
929 	return c->acl_num + c->amp_num + c->sco_num + c->le_num;
930 }
931 
932 static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle)
933 {
934 	struct hci_conn_hash *h = &hdev->conn_hash;
935 	struct hci_conn *c;
936 	__u8 type = INVALID_LINK;
937 
938 	rcu_read_lock();
939 
940 	list_for_each_entry_rcu(c, &h->list, list) {
941 		if (c->handle == handle) {
942 			type = c->type;
943 			break;
944 		}
945 	}
946 
947 	rcu_read_unlock();
948 
949 	return type;
950 }
951 
952 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev,
953 								__u16 handle)
954 {
955 	struct hci_conn_hash *h = &hdev->conn_hash;
956 	struct hci_conn  *c;
957 
958 	rcu_read_lock();
959 
960 	list_for_each_entry_rcu(c, &h->list, list) {
961 		if (c->handle == handle) {
962 			rcu_read_unlock();
963 			return c;
964 		}
965 	}
966 	rcu_read_unlock();
967 
968 	return NULL;
969 }
970 
971 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev,
972 							__u8 type, bdaddr_t *ba)
973 {
974 	struct hci_conn_hash *h = &hdev->conn_hash;
975 	struct hci_conn  *c;
976 
977 	rcu_read_lock();
978 
979 	list_for_each_entry_rcu(c, &h->list, list) {
980 		if (c->type == type && !bacmp(&c->dst, ba)) {
981 			rcu_read_unlock();
982 			return c;
983 		}
984 	}
985 
986 	rcu_read_unlock();
987 
988 	return NULL;
989 }
990 
991 static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev,
992 						       bdaddr_t *ba,
993 						       __u8 ba_type)
994 {
995 	struct hci_conn_hash *h = &hdev->conn_hash;
996 	struct hci_conn  *c;
997 
998 	rcu_read_lock();
999 
1000 	list_for_each_entry_rcu(c, &h->list, list) {
1001 		if (c->type != LE_LINK)
1002 		       continue;
1003 
1004 		if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) {
1005 			rcu_read_unlock();
1006 			return c;
1007 		}
1008 	}
1009 
1010 	rcu_read_unlock();
1011 
1012 	return NULL;
1013 }
1014 
1015 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev,
1016 							__u8 type, __u16 state)
1017 {
1018 	struct hci_conn_hash *h = &hdev->conn_hash;
1019 	struct hci_conn  *c;
1020 
1021 	rcu_read_lock();
1022 
1023 	list_for_each_entry_rcu(c, &h->list, list) {
1024 		if (c->type == type && c->state == state) {
1025 			rcu_read_unlock();
1026 			return c;
1027 		}
1028 	}
1029 
1030 	rcu_read_unlock();
1031 
1032 	return NULL;
1033 }
1034 
1035 static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev)
1036 {
1037 	struct hci_conn_hash *h = &hdev->conn_hash;
1038 	struct hci_conn  *c;
1039 
1040 	rcu_read_lock();
1041 
1042 	list_for_each_entry_rcu(c, &h->list, list) {
1043 		if (c->type == LE_LINK && c->state == BT_CONNECT &&
1044 		    !test_bit(HCI_CONN_SCANNING, &c->flags)) {
1045 			rcu_read_unlock();
1046 			return c;
1047 		}
1048 	}
1049 
1050 	rcu_read_unlock();
1051 
1052 	return NULL;
1053 }
1054 
1055 int hci_disconnect(struct hci_conn *conn, __u8 reason);
1056 bool hci_setup_sync(struct hci_conn *conn, __u16 handle);
1057 void hci_sco_setup(struct hci_conn *conn, __u8 status);
1058 
1059 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
1060 			      u8 role);
1061 int hci_conn_del(struct hci_conn *conn);
1062 void hci_conn_hash_flush(struct hci_dev *hdev);
1063 void hci_conn_check_pending(struct hci_dev *hdev);
1064 
1065 struct hci_chan *hci_chan_create(struct hci_conn *conn);
1066 void hci_chan_del(struct hci_chan *chan);
1067 void hci_chan_list_flush(struct hci_conn *conn);
1068 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle);
1069 
1070 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1071 				     u8 dst_type, u8 sec_level,
1072 				     u16 conn_timeout,
1073 				     enum conn_reasons conn_reason);
1074 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
1075 				u8 dst_type, u8 sec_level, u16 conn_timeout,
1076 				u8 role, bdaddr_t *direct_rpa);
1077 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1078 				 u8 sec_level, u8 auth_type,
1079 				 enum conn_reasons conn_reason);
1080 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1081 				 __u16 setting);
1082 int hci_conn_check_link_mode(struct hci_conn *conn);
1083 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level);
1084 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1085 		      bool initiator);
1086 int hci_conn_switch_role(struct hci_conn *conn, __u8 role);
1087 
1088 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active);
1089 
1090 void hci_le_conn_failed(struct hci_conn *conn, u8 status);
1091 
1092 /*
1093  * hci_conn_get() and hci_conn_put() are used to control the life-time of an
1094  * "hci_conn" object. They do not guarantee that the hci_conn object is running,
1095  * working or anything else. They just guarantee that the object is available
1096  * and can be dereferenced. So you can use its locks, local variables and any
1097  * other constant data.
1098  * Before accessing runtime data, you _must_ lock the object and then check that
1099  * it is still running. As soon as you release the locks, the connection might
1100  * get dropped, though.
1101  *
1102  * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control
1103  * how long the underlying connection is held. So every channel that runs on the
1104  * hci_conn object calls this to prevent the connection from disappearing. As
1105  * long as you hold a device, you must also guarantee that you have a valid
1106  * reference to the device via hci_conn_get() (or the initial reference from
1107  * hci_conn_add()).
1108  * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't
1109  * break because nobody cares for that. But this means, we cannot use
1110  * _get()/_drop() in it, but require the caller to have a valid ref (FIXME).
1111  */
1112 
1113 static inline struct hci_conn *hci_conn_get(struct hci_conn *conn)
1114 {
1115 	get_device(&conn->dev);
1116 	return conn;
1117 }
1118 
1119 static inline void hci_conn_put(struct hci_conn *conn)
1120 {
1121 	put_device(&conn->dev);
1122 }
1123 
1124 static inline void hci_conn_hold(struct hci_conn *conn)
1125 {
1126 	BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
1127 
1128 	atomic_inc(&conn->refcnt);
1129 	cancel_delayed_work(&conn->disc_work);
1130 }
1131 
1132 static inline void hci_conn_drop(struct hci_conn *conn)
1133 {
1134 	BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
1135 
1136 	if (atomic_dec_and_test(&conn->refcnt)) {
1137 		unsigned long timeo;
1138 
1139 		switch (conn->type) {
1140 		case ACL_LINK:
1141 		case LE_LINK:
1142 			cancel_delayed_work(&conn->idle_work);
1143 			if (conn->state == BT_CONNECTED) {
1144 				timeo = conn->disc_timeout;
1145 				if (!conn->out)
1146 					timeo *= 2;
1147 			} else {
1148 				timeo = 0;
1149 			}
1150 			break;
1151 
1152 		case AMP_LINK:
1153 			timeo = conn->disc_timeout;
1154 			break;
1155 
1156 		default:
1157 			timeo = 0;
1158 			break;
1159 		}
1160 
1161 		cancel_delayed_work(&conn->disc_work);
1162 		queue_delayed_work(conn->hdev->workqueue,
1163 				   &conn->disc_work, timeo);
1164 	}
1165 }
1166 
1167 /* ----- HCI Devices ----- */
1168 static inline void hci_dev_put(struct hci_dev *d)
1169 {
1170 	BT_DBG("%s orig refcnt %d", d->name,
1171 	       kref_read(&d->dev.kobj.kref));
1172 
1173 	put_device(&d->dev);
1174 }
1175 
1176 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d)
1177 {
1178 	BT_DBG("%s orig refcnt %d", d->name,
1179 	       kref_read(&d->dev.kobj.kref));
1180 
1181 	get_device(&d->dev);
1182 	return d;
1183 }
1184 
1185 #define hci_dev_lock(d)		mutex_lock(&d->lock)
1186 #define hci_dev_unlock(d)	mutex_unlock(&d->lock)
1187 
1188 #define to_hci_dev(d) container_of(d, struct hci_dev, dev)
1189 #define to_hci_conn(c) container_of(c, struct hci_conn, dev)
1190 
1191 static inline void *hci_get_drvdata(struct hci_dev *hdev)
1192 {
1193 	return dev_get_drvdata(&hdev->dev);
1194 }
1195 
1196 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data)
1197 {
1198 	dev_set_drvdata(&hdev->dev, data);
1199 }
1200 
1201 struct hci_dev *hci_dev_get(int index);
1202 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, u8 src_type);
1203 
1204 struct hci_dev *hci_alloc_dev(void);
1205 void hci_free_dev(struct hci_dev *hdev);
1206 int hci_register_dev(struct hci_dev *hdev);
1207 void hci_unregister_dev(struct hci_dev *hdev);
1208 int hci_suspend_dev(struct hci_dev *hdev);
1209 int hci_resume_dev(struct hci_dev *hdev);
1210 int hci_reset_dev(struct hci_dev *hdev);
1211 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb);
1212 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb);
1213 __printf(2, 3) void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...);
1214 __printf(2, 3) void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...);
1215 
1216 static inline void hci_set_msft_opcode(struct hci_dev *hdev, __u16 opcode)
1217 {
1218 #if IS_ENABLED(CONFIG_BT_MSFTEXT)
1219 	hdev->msft_opcode = opcode;
1220 #endif
1221 }
1222 
1223 int hci_dev_open(__u16 dev);
1224 int hci_dev_close(__u16 dev);
1225 int hci_dev_do_close(struct hci_dev *hdev);
1226 int hci_dev_reset(__u16 dev);
1227 int hci_dev_reset_stat(__u16 dev);
1228 int hci_dev_cmd(unsigned int cmd, void __user *arg);
1229 int hci_get_dev_list(void __user *arg);
1230 int hci_get_dev_info(void __user *arg);
1231 int hci_get_conn_list(void __user *arg);
1232 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg);
1233 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg);
1234 int hci_inquiry(void __user *arg);
1235 
1236 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list,
1237 					   bdaddr_t *bdaddr, u8 type);
1238 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
1239 				    struct list_head *list, bdaddr_t *bdaddr,
1240 				    u8 type);
1241 struct bdaddr_list_with_flags *
1242 hci_bdaddr_list_lookup_with_flags(struct list_head *list, bdaddr_t *bdaddr,
1243 				  u8 type);
1244 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type);
1245 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
1246 				 u8 type, u8 *peer_irk, u8 *local_irk);
1247 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
1248 				   u8 type, u32 flags);
1249 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type);
1250 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
1251 				 u8 type);
1252 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
1253 				   u8 type);
1254 void hci_bdaddr_list_clear(struct list_head *list);
1255 
1256 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
1257 					       bdaddr_t *addr, u8 addr_type);
1258 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
1259 					    bdaddr_t *addr, u8 addr_type);
1260 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type);
1261 void hci_conn_params_clear_disabled(struct hci_dev *hdev);
1262 
1263 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
1264 						  bdaddr_t *addr,
1265 						  u8 addr_type);
1266 
1267 void hci_uuids_clear(struct hci_dev *hdev);
1268 
1269 void hci_link_keys_clear(struct hci_dev *hdev);
1270 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
1271 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1272 				  bdaddr_t *bdaddr, u8 *val, u8 type,
1273 				  u8 pin_len, bool *persistent);
1274 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1275 			    u8 addr_type, u8 type, u8 authenticated,
1276 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand);
1277 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1278 			     u8 addr_type, u8 role);
1279 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type);
1280 void hci_smp_ltks_clear(struct hci_dev *hdev);
1281 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
1282 
1283 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa);
1284 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1285 				     u8 addr_type);
1286 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1287 			    u8 addr_type, u8 val[16], bdaddr_t *rpa);
1288 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type);
1289 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]);
1290 void hci_blocked_keys_clear(struct hci_dev *hdev);
1291 void hci_smp_irks_clear(struct hci_dev *hdev);
1292 
1293 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
1294 
1295 void hci_remote_oob_data_clear(struct hci_dev *hdev);
1296 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1297 					  bdaddr_t *bdaddr, u8 bdaddr_type);
1298 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1299 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1300 			    u8 *hash256, u8 *rand256);
1301 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1302 			       u8 bdaddr_type);
1303 
1304 void hci_adv_instances_clear(struct hci_dev *hdev);
1305 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance);
1306 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance);
1307 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
1308 			 u16 adv_data_len, u8 *adv_data,
1309 			 u16 scan_rsp_len, u8 *scan_rsp_data,
1310 			 u16 timeout, u16 duration, s8 tx_power,
1311 			 u32 min_interval, u32 max_interval);
1312 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1313 			 u16 adv_data_len, u8 *adv_data,
1314 			 u16 scan_rsp_len, u8 *scan_rsp_data);
1315 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance);
1316 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired);
1317 
1318 void hci_adv_monitors_clear(struct hci_dev *hdev);
1319 void hci_free_adv_monitor(struct adv_monitor *monitor);
1320 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor);
1321 int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle);
1322 bool hci_is_adv_monitoring(struct hci_dev *hdev);
1323 
1324 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);
1325 
1326 void hci_init_sysfs(struct hci_dev *hdev);
1327 void hci_conn_init_sysfs(struct hci_conn *conn);
1328 void hci_conn_add_sysfs(struct hci_conn *conn);
1329 void hci_conn_del_sysfs(struct hci_conn *conn);
1330 
1331 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev))
1332 
1333 /* ----- LMP capabilities ----- */
1334 #define lmp_encrypt_capable(dev)   ((dev)->features[0][0] & LMP_ENCRYPT)
1335 #define lmp_rswitch_capable(dev)   ((dev)->features[0][0] & LMP_RSWITCH)
1336 #define lmp_hold_capable(dev)      ((dev)->features[0][0] & LMP_HOLD)
1337 #define lmp_sniff_capable(dev)     ((dev)->features[0][0] & LMP_SNIFF)
1338 #define lmp_park_capable(dev)      ((dev)->features[0][1] & LMP_PARK)
1339 #define lmp_inq_rssi_capable(dev)  ((dev)->features[0][3] & LMP_RSSI_INQ)
1340 #define lmp_esco_capable(dev)      ((dev)->features[0][3] & LMP_ESCO)
1341 #define lmp_bredr_capable(dev)     (!((dev)->features[0][4] & LMP_NO_BREDR))
1342 #define lmp_le_capable(dev)        ((dev)->features[0][4] & LMP_LE)
1343 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR)
1344 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC)
1345 #define lmp_ext_inq_capable(dev)   ((dev)->features[0][6] & LMP_EXT_INQ)
1346 #define lmp_le_br_capable(dev)     (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR))
1347 #define lmp_ssp_capable(dev)       ((dev)->features[0][6] & LMP_SIMPLE_PAIR)
1348 #define lmp_no_flush_capable(dev)  ((dev)->features[0][6] & LMP_NO_FLUSH)
1349 #define lmp_lsto_capable(dev)      ((dev)->features[0][7] & LMP_LSTO)
1350 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR)
1351 #define lmp_ext_feat_capable(dev)  ((dev)->features[0][7] & LMP_EXTFEATURES)
1352 #define lmp_transp_capable(dev)    ((dev)->features[0][2] & LMP_TRANSPARENT)
1353 #define lmp_edr_2m_capable(dev)    ((dev)->features[0][3] & LMP_EDR_2M)
1354 #define lmp_edr_3m_capable(dev)    ((dev)->features[0][3] & LMP_EDR_3M)
1355 #define lmp_edr_3slot_capable(dev) ((dev)->features[0][4] & LMP_EDR_3SLOT)
1356 #define lmp_edr_5slot_capable(dev) ((dev)->features[0][5] & LMP_EDR_5SLOT)
1357 
1358 /* ----- Extended LMP capabilities ----- */
1359 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER)
1360 #define lmp_csb_slave_capable(dev)  ((dev)->features[2][0] & LMP_CSB_SLAVE)
1361 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN)
1362 #define lmp_sync_scan_capable(dev)  ((dev)->features[2][0] & LMP_SYNC_SCAN)
1363 #define lmp_sc_capable(dev)         ((dev)->features[2][1] & LMP_SC)
1364 #define lmp_ping_capable(dev)       ((dev)->features[2][1] & LMP_PING)
1365 
1366 /* ----- Host capabilities ----- */
1367 #define lmp_host_ssp_capable(dev)  ((dev)->features[1][0] & LMP_HOST_SSP)
1368 #define lmp_host_sc_capable(dev)   ((dev)->features[1][0] & LMP_HOST_SC)
1369 #define lmp_host_le_capable(dev)   (!!((dev)->features[1][0] & LMP_HOST_LE))
1370 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR))
1371 
1372 #define hdev_is_powered(dev)   (test_bit(HCI_UP, &(dev)->flags) && \
1373 				!hci_dev_test_flag(dev, HCI_AUTO_OFF))
1374 #define bredr_sc_enabled(dev)  (lmp_sc_capable(dev) && \
1375 				hci_dev_test_flag(dev, HCI_SC_ENABLED))
1376 
1377 #define scan_1m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_1M) || \
1378 		      ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_1M))
1379 
1380 #define scan_2m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_2M) || \
1381 		      ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_2M))
1382 
1383 #define scan_coded(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_CODED) || \
1384 			 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_CODED))
1385 
1386 /* Use LL Privacy based address resolution if supported */
1387 #define use_ll_privacy(dev) ((dev)->le_features[0] & HCI_LE_LL_PRIVACY)
1388 
1389 /* Use ext scanning if set ext scan param and ext scan enable is supported */
1390 #define use_ext_scan(dev) (((dev)->commands[37] & 0x20) && \
1391 			   ((dev)->commands[37] & 0x40))
1392 /* Use ext create connection if command is supported */
1393 #define use_ext_conn(dev) ((dev)->commands[37] & 0x80)
1394 
1395 /* Extended advertising support */
1396 #define ext_adv_capable(dev) (((dev)->le_features[1] & HCI_LE_EXT_ADV))
1397 
1398 /* ----- HCI protocols ----- */
1399 #define HCI_PROTO_DEFER             0x01
1400 
1401 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
1402 					__u8 type, __u8 *flags)
1403 {
1404 	switch (type) {
1405 	case ACL_LINK:
1406 		return l2cap_connect_ind(hdev, bdaddr);
1407 
1408 	case SCO_LINK:
1409 	case ESCO_LINK:
1410 		return sco_connect_ind(hdev, bdaddr, flags);
1411 
1412 	default:
1413 		BT_ERR("unknown link type %d", type);
1414 		return -EINVAL;
1415 	}
1416 }
1417 
1418 static inline int hci_proto_disconn_ind(struct hci_conn *conn)
1419 {
1420 	if (conn->type != ACL_LINK && conn->type != LE_LINK)
1421 		return HCI_ERROR_REMOTE_USER_TERM;
1422 
1423 	return l2cap_disconn_ind(conn);
1424 }
1425 
1426 /* ----- HCI callbacks ----- */
1427 struct hci_cb {
1428 	struct list_head list;
1429 
1430 	char *name;
1431 
1432 	void (*connect_cfm)	(struct hci_conn *conn, __u8 status);
1433 	void (*disconn_cfm)	(struct hci_conn *conn, __u8 status);
1434 	void (*security_cfm)	(struct hci_conn *conn, __u8 status,
1435 								__u8 encrypt);
1436 	void (*key_change_cfm)	(struct hci_conn *conn, __u8 status);
1437 	void (*role_switch_cfm)	(struct hci_conn *conn, __u8 status, __u8 role);
1438 };
1439 
1440 static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status)
1441 {
1442 	struct hci_cb *cb;
1443 
1444 	mutex_lock(&hci_cb_list_lock);
1445 	list_for_each_entry(cb, &hci_cb_list, list) {
1446 		if (cb->connect_cfm)
1447 			cb->connect_cfm(conn, status);
1448 	}
1449 	mutex_unlock(&hci_cb_list_lock);
1450 
1451 	if (conn->connect_cfm_cb)
1452 		conn->connect_cfm_cb(conn, status);
1453 }
1454 
1455 static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason)
1456 {
1457 	struct hci_cb *cb;
1458 
1459 	mutex_lock(&hci_cb_list_lock);
1460 	list_for_each_entry(cb, &hci_cb_list, list) {
1461 		if (cb->disconn_cfm)
1462 			cb->disconn_cfm(conn, reason);
1463 	}
1464 	mutex_unlock(&hci_cb_list_lock);
1465 
1466 	if (conn->disconn_cfm_cb)
1467 		conn->disconn_cfm_cb(conn, reason);
1468 }
1469 
1470 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status)
1471 {
1472 	struct hci_cb *cb;
1473 	__u8 encrypt;
1474 
1475 	if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1476 		return;
1477 
1478 	encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00;
1479 
1480 	mutex_lock(&hci_cb_list_lock);
1481 	list_for_each_entry(cb, &hci_cb_list, list) {
1482 		if (cb->security_cfm)
1483 			cb->security_cfm(conn, status, encrypt);
1484 	}
1485 	mutex_unlock(&hci_cb_list_lock);
1486 
1487 	if (conn->security_cfm_cb)
1488 		conn->security_cfm_cb(conn, status);
1489 }
1490 
1491 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status)
1492 {
1493 	struct hci_cb *cb;
1494 	__u8 encrypt;
1495 
1496 	if (conn->state == BT_CONFIG) {
1497 		if (!status)
1498 			conn->state = BT_CONNECTED;
1499 
1500 		hci_connect_cfm(conn, status);
1501 		hci_conn_drop(conn);
1502 		return;
1503 	}
1504 
1505 	if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1506 		encrypt = 0x00;
1507 	else if (test_bit(HCI_CONN_AES_CCM, &conn->flags))
1508 		encrypt = 0x02;
1509 	else
1510 		encrypt = 0x01;
1511 
1512 	if (!status) {
1513 		if (conn->sec_level == BT_SECURITY_SDP)
1514 			conn->sec_level = BT_SECURITY_LOW;
1515 
1516 		if (conn->pending_sec_level > conn->sec_level)
1517 			conn->sec_level = conn->pending_sec_level;
1518 	}
1519 
1520 	mutex_lock(&hci_cb_list_lock);
1521 	list_for_each_entry(cb, &hci_cb_list, list) {
1522 		if (cb->security_cfm)
1523 			cb->security_cfm(conn, status, encrypt);
1524 	}
1525 	mutex_unlock(&hci_cb_list_lock);
1526 
1527 	if (conn->security_cfm_cb)
1528 		conn->security_cfm_cb(conn, status);
1529 }
1530 
1531 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status)
1532 {
1533 	struct hci_cb *cb;
1534 
1535 	mutex_lock(&hci_cb_list_lock);
1536 	list_for_each_entry(cb, &hci_cb_list, list) {
1537 		if (cb->key_change_cfm)
1538 			cb->key_change_cfm(conn, status);
1539 	}
1540 	mutex_unlock(&hci_cb_list_lock);
1541 }
1542 
1543 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status,
1544 								__u8 role)
1545 {
1546 	struct hci_cb *cb;
1547 
1548 	mutex_lock(&hci_cb_list_lock);
1549 	list_for_each_entry(cb, &hci_cb_list, list) {
1550 		if (cb->role_switch_cfm)
1551 			cb->role_switch_cfm(conn, status, role);
1552 	}
1553 	mutex_unlock(&hci_cb_list_lock);
1554 }
1555 
1556 static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type,
1557 				 size_t *data_len)
1558 {
1559 	size_t parsed = 0;
1560 
1561 	if (eir_len < 2)
1562 		return NULL;
1563 
1564 	while (parsed < eir_len - 1) {
1565 		u8 field_len = eir[0];
1566 
1567 		if (field_len == 0)
1568 			break;
1569 
1570 		parsed += field_len + 1;
1571 
1572 		if (parsed > eir_len)
1573 			break;
1574 
1575 		if (eir[1] != type) {
1576 			eir += field_len + 1;
1577 			continue;
1578 		}
1579 
1580 		/* Zero length data */
1581 		if (field_len == 1)
1582 			return NULL;
1583 
1584 		if (data_len)
1585 			*data_len = field_len - 1;
1586 
1587 		return &eir[2];
1588 	}
1589 
1590 	return NULL;
1591 }
1592 
1593 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type)
1594 {
1595 	if (addr_type != ADDR_LE_DEV_RANDOM)
1596 		return false;
1597 
1598 	if ((bdaddr->b[5] & 0xc0) == 0x40)
1599 	       return true;
1600 
1601 	return false;
1602 }
1603 
1604 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type)
1605 {
1606 	if (addr_type == ADDR_LE_DEV_PUBLIC)
1607 		return true;
1608 
1609 	/* Check for Random Static address type */
1610 	if ((addr->b[5] & 0xc0) == 0xc0)
1611 		return true;
1612 
1613 	return false;
1614 }
1615 
1616 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev,
1617 					  bdaddr_t *bdaddr, u8 addr_type)
1618 {
1619 	if (!hci_bdaddr_is_rpa(bdaddr, addr_type))
1620 		return NULL;
1621 
1622 	return hci_find_irk_by_rpa(hdev, bdaddr);
1623 }
1624 
1625 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency,
1626 					u16 to_multiplier)
1627 {
1628 	u16 max_latency;
1629 
1630 	if (min > max || min < 6 || max > 3200)
1631 		return -EINVAL;
1632 
1633 	if (to_multiplier < 10 || to_multiplier > 3200)
1634 		return -EINVAL;
1635 
1636 	if (max >= to_multiplier * 8)
1637 		return -EINVAL;
1638 
1639 	max_latency = (to_multiplier * 4 / max) - 1;
1640 	if (latency > 499 || latency > max_latency)
1641 		return -EINVAL;
1642 
1643 	return 0;
1644 }
1645 
1646 int hci_register_cb(struct hci_cb *hcb);
1647 int hci_unregister_cb(struct hci_cb *hcb);
1648 
1649 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1650 			       const void *param, u32 timeout);
1651 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1652 				  const void *param, u8 event, u32 timeout);
1653 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
1654 		   const void *param);
1655 
1656 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
1657 		 const void *param);
1658 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags);
1659 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb);
1660 
1661 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode);
1662 
1663 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1664 			     const void *param, u32 timeout);
1665 
1666 u32 hci_conn_get_phy(struct hci_conn *conn);
1667 
1668 /* ----- HCI Sockets ----- */
1669 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb);
1670 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
1671 			 int flag, struct sock *skip_sk);
1672 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb);
1673 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event,
1674 				 void *data, u16 data_len, ktime_t tstamp,
1675 				 int flag, struct sock *skip_sk);
1676 
1677 void hci_sock_dev_event(struct hci_dev *hdev, int event);
1678 
1679 #define HCI_MGMT_VAR_LEN	BIT(0)
1680 #define HCI_MGMT_NO_HDEV	BIT(1)
1681 #define HCI_MGMT_UNTRUSTED	BIT(2)
1682 #define HCI_MGMT_UNCONFIGURED	BIT(3)
1683 #define HCI_MGMT_HDEV_OPTIONAL	BIT(4)
1684 
1685 struct hci_mgmt_handler {
1686 	int (*func) (struct sock *sk, struct hci_dev *hdev, void *data,
1687 		     u16 data_len);
1688 	size_t data_len;
1689 	unsigned long flags;
1690 };
1691 
1692 struct hci_mgmt_chan {
1693 	struct list_head list;
1694 	unsigned short channel;
1695 	size_t handler_count;
1696 	const struct hci_mgmt_handler *handlers;
1697 	void (*hdev_init) (struct sock *sk, struct hci_dev *hdev);
1698 };
1699 
1700 int hci_mgmt_chan_register(struct hci_mgmt_chan *c);
1701 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c);
1702 
1703 /* Management interface */
1704 #define DISCOV_TYPE_BREDR		(BIT(BDADDR_BREDR))
1705 #define DISCOV_TYPE_LE			(BIT(BDADDR_LE_PUBLIC) | \
1706 					 BIT(BDADDR_LE_RANDOM))
1707 #define DISCOV_TYPE_INTERLEAVED		(BIT(BDADDR_BREDR) | \
1708 					 BIT(BDADDR_LE_PUBLIC) | \
1709 					 BIT(BDADDR_LE_RANDOM))
1710 
1711 /* These LE scan and inquiry parameters were chosen according to LE General
1712  * Discovery Procedure specification.
1713  */
1714 #define DISCOV_LE_SCAN_WIN		0x12
1715 #define DISCOV_LE_SCAN_INT		0x12
1716 #define DISCOV_LE_TIMEOUT		10240	/* msec */
1717 #define DISCOV_INTERLEAVED_TIMEOUT	5120	/* msec */
1718 #define DISCOV_INTERLEAVED_INQUIRY_LEN	0x04
1719 #define DISCOV_BREDR_INQUIRY_LEN	0x08
1720 #define DISCOV_LE_RESTART_DELAY		msecs_to_jiffies(200)	/* msec */
1721 #define DISCOV_LE_FAST_ADV_INT_MIN     100     /* msec */
1722 #define DISCOV_LE_FAST_ADV_INT_MAX     150     /* msec */
1723 
1724 void mgmt_fill_version_info(void *ver);
1725 int mgmt_new_settings(struct hci_dev *hdev);
1726 void mgmt_index_added(struct hci_dev *hdev);
1727 void mgmt_index_removed(struct hci_dev *hdev);
1728 void mgmt_set_powered_failed(struct hci_dev *hdev, int err);
1729 void mgmt_power_on(struct hci_dev *hdev, int err);
1730 void __mgmt_power_off(struct hci_dev *hdev);
1731 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key,
1732 		       bool persistent);
1733 void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn,
1734 			   u32 flags, u8 *name, u8 name_len);
1735 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr,
1736 			      u8 link_type, u8 addr_type, u8 reason,
1737 			      bool mgmt_connected);
1738 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr,
1739 			    u8 link_type, u8 addr_type, u8 status);
1740 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1741 			 u8 addr_type, u8 status);
1742 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure);
1743 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1744 				  u8 status);
1745 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1746 				      u8 status);
1747 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1748 			      u8 link_type, u8 addr_type, u32 value,
1749 			      u8 confirm_hint);
1750 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1751 				     u8 link_type, u8 addr_type, u8 status);
1752 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1753 					 u8 link_type, u8 addr_type, u8 status);
1754 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1755 			      u8 link_type, u8 addr_type);
1756 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1757 				     u8 link_type, u8 addr_type, u8 status);
1758 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1759 					 u8 link_type, u8 addr_type, u8 status);
1760 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr,
1761 			     u8 link_type, u8 addr_type, u32 passkey,
1762 			     u8 entered);
1763 void mgmt_auth_failed(struct hci_conn *conn, u8 status);
1764 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status);
1765 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1766 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class,
1767 				    u8 status);
1768 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status);
1769 void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status);
1770 void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status);
1771 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1772 		       u8 addr_type, u8 *dev_class, s8 rssi, u32 flags,
1773 		       u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len);
1774 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1775 		      u8 addr_type, s8 rssi, u8 *name, u8 name_len);
1776 void mgmt_discovering(struct hci_dev *hdev, u8 discovering);
1777 void mgmt_suspending(struct hci_dev *hdev, u8 state);
1778 void mgmt_resuming(struct hci_dev *hdev, u8 reason, bdaddr_t *bdaddr,
1779 		   u8 addr_type);
1780 bool mgmt_powering_down(struct hci_dev *hdev);
1781 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent);
1782 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent);
1783 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk,
1784 		   bool persistent);
1785 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr,
1786 			 u8 bdaddr_type, u8 store_hint, u16 min_interval,
1787 			 u16 max_interval, u16 latency, u16 timeout);
1788 void mgmt_smp_complete(struct hci_conn *conn, bool complete);
1789 bool mgmt_get_connectable(struct hci_dev *hdev);
1790 void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status);
1791 void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status);
1792 u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev);
1793 void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev,
1794 			    u8 instance);
1795 void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev,
1796 			      u8 instance);
1797 int mgmt_phy_configuration_changed(struct hci_dev *hdev, struct sock *skip);
1798 
1799 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
1800 		      u16 to_multiplier);
1801 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
1802 		      __u8 ltk[16], __u8 key_size);
1803 
1804 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
1805 			       u8 *bdaddr_type);
1806 
1807 #define SCO_AIRMODE_MASK       0x0003
1808 #define SCO_AIRMODE_CVSD       0x0000
1809 #define SCO_AIRMODE_TRANSP     0x0003
1810 
1811 #endif /* __HCI_CORE_H */
1812