xref: /openbmc/linux/include/net/bluetooth/hci_core.h (revision af958a38)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4 
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10 
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24 
25 #ifndef __HCI_CORE_H
26 #define __HCI_CORE_H
27 
28 #include <net/bluetooth/hci.h>
29 #include <net/bluetooth/hci_sock.h>
30 
31 /* HCI priority */
32 #define HCI_PRIO_MAX	7
33 
34 /* HCI Core structures */
35 struct inquiry_data {
36 	bdaddr_t	bdaddr;
37 	__u8		pscan_rep_mode;
38 	__u8		pscan_period_mode;
39 	__u8		pscan_mode;
40 	__u8		dev_class[3];
41 	__le16		clock_offset;
42 	__s8		rssi;
43 	__u8		ssp_mode;
44 };
45 
46 struct inquiry_entry {
47 	struct list_head	all;		/* inq_cache.all */
48 	struct list_head	list;		/* unknown or resolve */
49 	enum {
50 		NAME_NOT_KNOWN,
51 		NAME_NEEDED,
52 		NAME_PENDING,
53 		NAME_KNOWN,
54 	} name_state;
55 	__u32			timestamp;
56 	struct inquiry_data	data;
57 };
58 
59 struct discovery_state {
60 	int			type;
61 	enum {
62 		DISCOVERY_STOPPED,
63 		DISCOVERY_STARTING,
64 		DISCOVERY_FINDING,
65 		DISCOVERY_RESOLVING,
66 		DISCOVERY_STOPPING,
67 	} state;
68 	struct list_head	all;	/* All devices found during inquiry */
69 	struct list_head	unknown;	/* Name state not known */
70 	struct list_head	resolve;	/* Name needs to be resolved */
71 	__u32			timestamp;
72 	bdaddr_t		last_adv_addr;
73 	u8			last_adv_addr_type;
74 	s8			last_adv_rssi;
75 	u32			last_adv_flags;
76 	u8			last_adv_data[HCI_MAX_AD_LENGTH];
77 	u8			last_adv_data_len;
78 };
79 
80 struct hci_conn_hash {
81 	struct list_head list;
82 	unsigned int     acl_num;
83 	unsigned int     amp_num;
84 	unsigned int     sco_num;
85 	unsigned int     le_num;
86 	unsigned int     le_num_slave;
87 };
88 
89 struct bdaddr_list {
90 	struct list_head list;
91 	bdaddr_t bdaddr;
92 	u8 bdaddr_type;
93 };
94 
95 struct bt_uuid {
96 	struct list_head list;
97 	u8 uuid[16];
98 	u8 size;
99 	u8 svc_hint;
100 };
101 
102 struct smp_csrk {
103 	bdaddr_t bdaddr;
104 	u8 bdaddr_type;
105 	u8 master;
106 	u8 val[16];
107 };
108 
109 struct smp_ltk {
110 	struct list_head list;
111 	bdaddr_t bdaddr;
112 	u8 bdaddr_type;
113 	u8 authenticated;
114 	u8 type;
115 	u8 enc_size;
116 	__le16 ediv;
117 	__le64 rand;
118 	u8 val[16];
119 };
120 
121 struct smp_irk {
122 	struct list_head list;
123 	bdaddr_t rpa;
124 	bdaddr_t bdaddr;
125 	u8 addr_type;
126 	u8 val[16];
127 };
128 
129 struct link_key {
130 	struct list_head list;
131 	bdaddr_t bdaddr;
132 	u8 type;
133 	u8 val[HCI_LINK_KEY_SIZE];
134 	u8 pin_len;
135 };
136 
137 struct oob_data {
138 	struct list_head list;
139 	bdaddr_t bdaddr;
140 	u8 hash192[16];
141 	u8 randomizer192[16];
142 	u8 hash256[16];
143 	u8 randomizer256[16];
144 };
145 
146 #define HCI_MAX_SHORT_NAME_LENGTH	10
147 
148 /* Default LE RPA expiry time, 15 minutes */
149 #define HCI_DEFAULT_RPA_TIMEOUT		(15 * 60)
150 
151 /* Default min/max age of connection information (1s/3s) */
152 #define DEFAULT_CONN_INFO_MIN_AGE	1000
153 #define DEFAULT_CONN_INFO_MAX_AGE	3000
154 
155 struct amp_assoc {
156 	__u16	len;
157 	__u16	offset;
158 	__u16	rem_len;
159 	__u16	len_so_far;
160 	__u8	data[HCI_MAX_AMP_ASSOC_SIZE];
161 };
162 
163 #define HCI_MAX_PAGES	3
164 
165 #define NUM_REASSEMBLY 4
166 struct hci_dev {
167 	struct list_head list;
168 	struct mutex	lock;
169 
170 	char		name[8];
171 	unsigned long	flags;
172 	__u16		id;
173 	__u8		bus;
174 	__u8		dev_type;
175 	bdaddr_t	bdaddr;
176 	bdaddr_t	setup_addr;
177 	bdaddr_t	public_addr;
178 	bdaddr_t	random_addr;
179 	bdaddr_t	static_addr;
180 	__u8		adv_addr_type;
181 	__u8		dev_name[HCI_MAX_NAME_LENGTH];
182 	__u8		short_name[HCI_MAX_SHORT_NAME_LENGTH];
183 	__u8		eir[HCI_MAX_EIR_LENGTH];
184 	__u8		dev_class[3];
185 	__u8		major_class;
186 	__u8		minor_class;
187 	__u8		max_page;
188 	__u8		features[HCI_MAX_PAGES][8];
189 	__u8		le_features[8];
190 	__u8		le_white_list_size;
191 	__u8		le_states[8];
192 	__u8		commands[64];
193 	__u8		hci_ver;
194 	__u16		hci_rev;
195 	__u8		lmp_ver;
196 	__u16		manufacturer;
197 	__u16		lmp_subver;
198 	__u16		voice_setting;
199 	__u8		num_iac;
200 	__u8		io_capability;
201 	__s8		inq_tx_power;
202 	__u16		page_scan_interval;
203 	__u16		page_scan_window;
204 	__u8		page_scan_type;
205 	__u8		le_adv_channel_map;
206 	__u16		le_adv_min_interval;
207 	__u16		le_adv_max_interval;
208 	__u8		le_scan_type;
209 	__u16		le_scan_interval;
210 	__u16		le_scan_window;
211 	__u16		le_conn_min_interval;
212 	__u16		le_conn_max_interval;
213 	__u16		le_conn_latency;
214 	__u16		le_supv_timeout;
215 	__u16		discov_interleaved_timeout;
216 	__u16		conn_info_min_age;
217 	__u16		conn_info_max_age;
218 	__u8		ssp_debug_mode;
219 	__u32		clock;
220 
221 	__u16		devid_source;
222 	__u16		devid_vendor;
223 	__u16		devid_product;
224 	__u16		devid_version;
225 
226 	__u16		pkt_type;
227 	__u16		esco_type;
228 	__u16		link_policy;
229 	__u16		link_mode;
230 
231 	__u32		idle_timeout;
232 	__u16		sniff_min_interval;
233 	__u16		sniff_max_interval;
234 
235 	__u8		amp_status;
236 	__u32		amp_total_bw;
237 	__u32		amp_max_bw;
238 	__u32		amp_min_latency;
239 	__u32		amp_max_pdu;
240 	__u8		amp_type;
241 	__u16		amp_pal_cap;
242 	__u16		amp_assoc_size;
243 	__u32		amp_max_flush_to;
244 	__u32		amp_be_flush_to;
245 
246 	struct amp_assoc	loc_assoc;
247 
248 	__u8		flow_ctl_mode;
249 
250 	unsigned int	auto_accept_delay;
251 
252 	unsigned long	quirks;
253 
254 	atomic_t	cmd_cnt;
255 	unsigned int	acl_cnt;
256 	unsigned int	sco_cnt;
257 	unsigned int	le_cnt;
258 
259 	unsigned int	acl_mtu;
260 	unsigned int	sco_mtu;
261 	unsigned int	le_mtu;
262 	unsigned int	acl_pkts;
263 	unsigned int	sco_pkts;
264 	unsigned int	le_pkts;
265 
266 	__u16		block_len;
267 	__u16		block_mtu;
268 	__u16		num_blocks;
269 	__u16		block_cnt;
270 
271 	unsigned long	acl_last_tx;
272 	unsigned long	sco_last_tx;
273 	unsigned long	le_last_tx;
274 
275 	struct workqueue_struct	*workqueue;
276 	struct workqueue_struct	*req_workqueue;
277 
278 	struct work_struct	power_on;
279 	struct delayed_work	power_off;
280 
281 	__u16			discov_timeout;
282 	struct delayed_work	discov_off;
283 
284 	struct delayed_work	service_cache;
285 
286 	struct delayed_work	cmd_timer;
287 
288 	struct work_struct	rx_work;
289 	struct work_struct	cmd_work;
290 	struct work_struct	tx_work;
291 
292 	struct sk_buff_head	rx_q;
293 	struct sk_buff_head	raw_q;
294 	struct sk_buff_head	cmd_q;
295 
296 	struct sk_buff		*recv_evt;
297 	struct sk_buff		*sent_cmd;
298 	struct sk_buff		*reassembly[NUM_REASSEMBLY];
299 
300 	struct mutex		req_lock;
301 	wait_queue_head_t	req_wait_q;
302 	__u32			req_status;
303 	__u32			req_result;
304 
305 	struct crypto_blkcipher	*tfm_aes;
306 
307 	struct discovery_state	discovery;
308 	struct hci_conn_hash	conn_hash;
309 
310 	struct list_head	mgmt_pending;
311 	struct list_head	blacklist;
312 	struct list_head	whitelist;
313 	struct list_head	uuids;
314 	struct list_head	link_keys;
315 	struct list_head	long_term_keys;
316 	struct list_head	identity_resolving_keys;
317 	struct list_head	remote_oob_data;
318 	struct list_head	le_white_list;
319 	struct list_head	le_conn_params;
320 	struct list_head	pend_le_conns;
321 	struct list_head	pend_le_reports;
322 
323 	struct hci_dev_stats	stat;
324 
325 	atomic_t		promisc;
326 
327 	struct dentry		*debugfs;
328 
329 	struct device		dev;
330 
331 	struct rfkill		*rfkill;
332 
333 	unsigned long		dbg_flags;
334 	unsigned long		dev_flags;
335 
336 	struct delayed_work	le_scan_disable;
337 
338 	__s8			adv_tx_power;
339 	__u8			adv_data[HCI_MAX_AD_LENGTH];
340 	__u8			adv_data_len;
341 	__u8			scan_rsp_data[HCI_MAX_AD_LENGTH];
342 	__u8			scan_rsp_data_len;
343 
344 	__u8			irk[16];
345 	__u32			rpa_timeout;
346 	struct delayed_work	rpa_expired;
347 	bdaddr_t		rpa;
348 
349 	int (*open)(struct hci_dev *hdev);
350 	int (*close)(struct hci_dev *hdev);
351 	int (*flush)(struct hci_dev *hdev);
352 	int (*setup)(struct hci_dev *hdev);
353 	int (*send)(struct hci_dev *hdev, struct sk_buff *skb);
354 	void (*notify)(struct hci_dev *hdev, unsigned int evt);
355 	int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr);
356 };
357 
358 #define HCI_PHY_HANDLE(handle)	(handle & 0xff)
359 
360 struct hci_conn {
361 	struct list_head list;
362 
363 	atomic_t	refcnt;
364 
365 	bdaddr_t	dst;
366 	__u8		dst_type;
367 	bdaddr_t	src;
368 	__u8		src_type;
369 	bdaddr_t	init_addr;
370 	__u8		init_addr_type;
371 	bdaddr_t	resp_addr;
372 	__u8		resp_addr_type;
373 	__u16		handle;
374 	__u16		state;
375 	__u8		mode;
376 	__u8		type;
377 	__u8		role;
378 	bool		out;
379 	__u8		attempt;
380 	__u8		dev_class[3];
381 	__u8		features[HCI_MAX_PAGES][8];
382 	__u16		pkt_type;
383 	__u16		link_policy;
384 	__u8		key_type;
385 	__u8		auth_type;
386 	__u8		sec_level;
387 	__u8		pending_sec_level;
388 	__u8		pin_length;
389 	__u8		enc_key_size;
390 	__u8		io_capability;
391 	__u32		passkey_notify;
392 	__u8		passkey_entered;
393 	__u16		disc_timeout;
394 	__u16		conn_timeout;
395 	__u16		setting;
396 	__u16		le_conn_min_interval;
397 	__u16		le_conn_max_interval;
398 	__u16		le_conn_interval;
399 	__u16		le_conn_latency;
400 	__u16		le_supv_timeout;
401 	__s8		rssi;
402 	__s8		tx_power;
403 	__s8		max_tx_power;
404 	unsigned long	flags;
405 
406 	__u32		clock;
407 	__u16		clock_accuracy;
408 
409 	unsigned long	conn_info_timestamp;
410 
411 	__u8		remote_cap;
412 	__u8		remote_auth;
413 	__u8		remote_id;
414 
415 	unsigned int	sent;
416 
417 	struct sk_buff_head data_q;
418 	struct list_head chan_list;
419 
420 	struct delayed_work disc_work;
421 	struct delayed_work auto_accept_work;
422 	struct delayed_work idle_work;
423 	struct delayed_work le_conn_timeout;
424 
425 	struct device	dev;
426 
427 	struct hci_dev	*hdev;
428 	void		*l2cap_data;
429 	void		*sco_data;
430 	struct amp_mgr	*amp_mgr;
431 
432 	struct hci_conn	*link;
433 
434 	void (*connect_cfm_cb)	(struct hci_conn *conn, u8 status);
435 	void (*security_cfm_cb)	(struct hci_conn *conn, u8 status);
436 	void (*disconn_cfm_cb)	(struct hci_conn *conn, u8 reason);
437 };
438 
439 struct hci_chan {
440 	struct list_head list;
441 	__u16 handle;
442 	struct hci_conn *conn;
443 	struct sk_buff_head data_q;
444 	unsigned int	sent;
445 	__u8		state;
446 };
447 
448 struct hci_conn_params {
449 	struct list_head list;
450 	struct list_head action;
451 
452 	bdaddr_t addr;
453 	u8 addr_type;
454 
455 	u16 conn_min_interval;
456 	u16 conn_max_interval;
457 	u16 conn_latency;
458 	u16 supervision_timeout;
459 
460 	enum {
461 		HCI_AUTO_CONN_DISABLED,
462 		HCI_AUTO_CONN_REPORT,
463 		HCI_AUTO_CONN_DIRECT,
464 		HCI_AUTO_CONN_ALWAYS,
465 		HCI_AUTO_CONN_LINK_LOSS,
466 	} auto_connect;
467 
468 	struct hci_conn *conn;
469 };
470 
471 extern struct list_head hci_dev_list;
472 extern struct list_head hci_cb_list;
473 extern rwlock_t hci_dev_list_lock;
474 extern rwlock_t hci_cb_list_lock;
475 
476 /* ----- HCI interface to upper protocols ----- */
477 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
478 void l2cap_connect_cfm(struct hci_conn *hcon, u8 status);
479 int l2cap_disconn_ind(struct hci_conn *hcon);
480 void l2cap_disconn_cfm(struct hci_conn *hcon, u8 reason);
481 int l2cap_security_cfm(struct hci_conn *hcon, u8 status, u8 encrypt);
482 int l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags);
483 
484 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags);
485 void sco_connect_cfm(struct hci_conn *hcon, __u8 status);
486 void sco_disconn_cfm(struct hci_conn *hcon, __u8 reason);
487 int sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb);
488 
489 /* ----- Inquiry cache ----- */
490 #define INQUIRY_CACHE_AGE_MAX   (HZ*30)   /* 30 seconds */
491 #define INQUIRY_ENTRY_AGE_MAX   (HZ*60)   /* 60 seconds */
492 
493 static inline void discovery_init(struct hci_dev *hdev)
494 {
495 	hdev->discovery.state = DISCOVERY_STOPPED;
496 	INIT_LIST_HEAD(&hdev->discovery.all);
497 	INIT_LIST_HEAD(&hdev->discovery.unknown);
498 	INIT_LIST_HEAD(&hdev->discovery.resolve);
499 }
500 
501 bool hci_discovery_active(struct hci_dev *hdev);
502 
503 void hci_discovery_set_state(struct hci_dev *hdev, int state);
504 
505 static inline int inquiry_cache_empty(struct hci_dev *hdev)
506 {
507 	return list_empty(&hdev->discovery.all);
508 }
509 
510 static inline long inquiry_cache_age(struct hci_dev *hdev)
511 {
512 	struct discovery_state *c = &hdev->discovery;
513 	return jiffies - c->timestamp;
514 }
515 
516 static inline long inquiry_entry_age(struct inquiry_entry *e)
517 {
518 	return jiffies - e->timestamp;
519 }
520 
521 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
522 					       bdaddr_t *bdaddr);
523 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
524 						       bdaddr_t *bdaddr);
525 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
526 						       bdaddr_t *bdaddr,
527 						       int state);
528 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
529 				      struct inquiry_entry *ie);
530 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
531 			     bool name_known);
532 void hci_inquiry_cache_flush(struct hci_dev *hdev);
533 
534 /* ----- HCI Connections ----- */
535 enum {
536 	HCI_CONN_AUTH_PEND,
537 	HCI_CONN_REAUTH_PEND,
538 	HCI_CONN_ENCRYPT_PEND,
539 	HCI_CONN_RSWITCH_PEND,
540 	HCI_CONN_MODE_CHANGE_PEND,
541 	HCI_CONN_SCO_SETUP_PEND,
542 	HCI_CONN_LE_SMP_PEND,
543 	HCI_CONN_MGMT_CONNECTED,
544 	HCI_CONN_SSP_ENABLED,
545 	HCI_CONN_SC_ENABLED,
546 	HCI_CONN_AES_CCM,
547 	HCI_CONN_POWER_SAVE,
548 	HCI_CONN_REMOTE_OOB,
549 	HCI_CONN_FLUSH_KEY,
550 	HCI_CONN_ENCRYPT,
551 	HCI_CONN_AUTH,
552 	HCI_CONN_SECURE,
553 	HCI_CONN_FIPS,
554 	HCI_CONN_STK_ENCRYPT,
555 	HCI_CONN_AUTH_INITIATOR,
556 };
557 
558 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn)
559 {
560 	struct hci_dev *hdev = conn->hdev;
561 	return test_bit(HCI_SSP_ENABLED, &hdev->dev_flags) &&
562 	       test_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
563 }
564 
565 static inline bool hci_conn_sc_enabled(struct hci_conn *conn)
566 {
567 	struct hci_dev *hdev = conn->hdev;
568 	return test_bit(HCI_SC_ENABLED, &hdev->dev_flags) &&
569 	       test_bit(HCI_CONN_SC_ENABLED, &conn->flags);
570 }
571 
572 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c)
573 {
574 	struct hci_conn_hash *h = &hdev->conn_hash;
575 	list_add_rcu(&c->list, &h->list);
576 	switch (c->type) {
577 	case ACL_LINK:
578 		h->acl_num++;
579 		break;
580 	case AMP_LINK:
581 		h->amp_num++;
582 		break;
583 	case LE_LINK:
584 		h->le_num++;
585 		if (c->role == HCI_ROLE_SLAVE)
586 			h->le_num_slave++;
587 		break;
588 	case SCO_LINK:
589 	case ESCO_LINK:
590 		h->sco_num++;
591 		break;
592 	}
593 }
594 
595 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c)
596 {
597 	struct hci_conn_hash *h = &hdev->conn_hash;
598 
599 	list_del_rcu(&c->list);
600 	synchronize_rcu();
601 
602 	switch (c->type) {
603 	case ACL_LINK:
604 		h->acl_num--;
605 		break;
606 	case AMP_LINK:
607 		h->amp_num--;
608 		break;
609 	case LE_LINK:
610 		h->le_num--;
611 		if (c->role == HCI_ROLE_SLAVE)
612 			h->le_num_slave--;
613 		break;
614 	case SCO_LINK:
615 	case ESCO_LINK:
616 		h->sco_num--;
617 		break;
618 	}
619 }
620 
621 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type)
622 {
623 	struct hci_conn_hash *h = &hdev->conn_hash;
624 	switch (type) {
625 	case ACL_LINK:
626 		return h->acl_num;
627 	case AMP_LINK:
628 		return h->amp_num;
629 	case LE_LINK:
630 		return h->le_num;
631 	case SCO_LINK:
632 	case ESCO_LINK:
633 		return h->sco_num;
634 	default:
635 		return 0;
636 	}
637 }
638 
639 static inline unsigned int hci_conn_count(struct hci_dev *hdev)
640 {
641 	struct hci_conn_hash *c = &hdev->conn_hash;
642 
643 	return c->acl_num + c->amp_num + c->sco_num + c->le_num;
644 }
645 
646 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev,
647 								__u16 handle)
648 {
649 	struct hci_conn_hash *h = &hdev->conn_hash;
650 	struct hci_conn  *c;
651 
652 	rcu_read_lock();
653 
654 	list_for_each_entry_rcu(c, &h->list, list) {
655 		if (c->handle == handle) {
656 			rcu_read_unlock();
657 			return c;
658 		}
659 	}
660 	rcu_read_unlock();
661 
662 	return NULL;
663 }
664 
665 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev,
666 							__u8 type, bdaddr_t *ba)
667 {
668 	struct hci_conn_hash *h = &hdev->conn_hash;
669 	struct hci_conn  *c;
670 
671 	rcu_read_lock();
672 
673 	list_for_each_entry_rcu(c, &h->list, list) {
674 		if (c->type == type && !bacmp(&c->dst, ba)) {
675 			rcu_read_unlock();
676 			return c;
677 		}
678 	}
679 
680 	rcu_read_unlock();
681 
682 	return NULL;
683 }
684 
685 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev,
686 							__u8 type, __u16 state)
687 {
688 	struct hci_conn_hash *h = &hdev->conn_hash;
689 	struct hci_conn  *c;
690 
691 	rcu_read_lock();
692 
693 	list_for_each_entry_rcu(c, &h->list, list) {
694 		if (c->type == type && c->state == state) {
695 			rcu_read_unlock();
696 			return c;
697 		}
698 	}
699 
700 	rcu_read_unlock();
701 
702 	return NULL;
703 }
704 
705 void hci_disconnect(struct hci_conn *conn, __u8 reason);
706 bool hci_setup_sync(struct hci_conn *conn, __u16 handle);
707 void hci_sco_setup(struct hci_conn *conn, __u8 status);
708 
709 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
710 			      u8 role);
711 int hci_conn_del(struct hci_conn *conn);
712 void hci_conn_hash_flush(struct hci_dev *hdev);
713 void hci_conn_check_pending(struct hci_dev *hdev);
714 
715 struct hci_chan *hci_chan_create(struct hci_conn *conn);
716 void hci_chan_del(struct hci_chan *chan);
717 void hci_chan_list_flush(struct hci_conn *conn);
718 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle);
719 
720 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
721 				u8 dst_type, u8 sec_level, u16 conn_timeout,
722 				u8 role);
723 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
724 				 u8 sec_level, u8 auth_type);
725 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
726 				 __u16 setting);
727 int hci_conn_check_link_mode(struct hci_conn *conn);
728 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level);
729 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
730 		      bool initiator);
731 int hci_conn_change_link_key(struct hci_conn *conn);
732 int hci_conn_switch_role(struct hci_conn *conn, __u8 role);
733 
734 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active);
735 
736 void hci_le_conn_failed(struct hci_conn *conn, u8 status);
737 
738 /*
739  * hci_conn_get() and hci_conn_put() are used to control the life-time of an
740  * "hci_conn" object. They do not guarantee that the hci_conn object is running,
741  * working or anything else. They just guarantee that the object is available
742  * and can be dereferenced. So you can use its locks, local variables and any
743  * other constant data.
744  * Before accessing runtime data, you _must_ lock the object and then check that
745  * it is still running. As soon as you release the locks, the connection might
746  * get dropped, though.
747  *
748  * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control
749  * how long the underlying connection is held. So every channel that runs on the
750  * hci_conn object calls this to prevent the connection from disappearing. As
751  * long as you hold a device, you must also guarantee that you have a valid
752  * reference to the device via hci_conn_get() (or the initial reference from
753  * hci_conn_add()).
754  * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't
755  * break because nobody cares for that. But this means, we cannot use
756  * _get()/_drop() in it, but require the caller to have a valid ref (FIXME).
757  */
758 
759 static inline void hci_conn_get(struct hci_conn *conn)
760 {
761 	get_device(&conn->dev);
762 }
763 
764 static inline void hci_conn_put(struct hci_conn *conn)
765 {
766 	put_device(&conn->dev);
767 }
768 
769 static inline void hci_conn_hold(struct hci_conn *conn)
770 {
771 	BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
772 
773 	atomic_inc(&conn->refcnt);
774 	cancel_delayed_work(&conn->disc_work);
775 }
776 
777 static inline void hci_conn_drop(struct hci_conn *conn)
778 {
779 	BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
780 
781 	if (atomic_dec_and_test(&conn->refcnt)) {
782 		unsigned long timeo;
783 
784 		switch (conn->type) {
785 		case ACL_LINK:
786 		case LE_LINK:
787 			cancel_delayed_work(&conn->idle_work);
788 			if (conn->state == BT_CONNECTED) {
789 				timeo = conn->disc_timeout;
790 				if (!conn->out)
791 					timeo *= 2;
792 			} else {
793 				timeo = msecs_to_jiffies(10);
794 			}
795 			break;
796 
797 		case AMP_LINK:
798 			timeo = conn->disc_timeout;
799 			break;
800 
801 		default:
802 			timeo = msecs_to_jiffies(10);
803 			break;
804 		}
805 
806 		cancel_delayed_work(&conn->disc_work);
807 		queue_delayed_work(conn->hdev->workqueue,
808 				   &conn->disc_work, timeo);
809 	}
810 }
811 
812 /* ----- HCI Devices ----- */
813 static inline void hci_dev_put(struct hci_dev *d)
814 {
815 	BT_DBG("%s orig refcnt %d", d->name,
816 	       atomic_read(&d->dev.kobj.kref.refcount));
817 
818 	put_device(&d->dev);
819 }
820 
821 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d)
822 {
823 	BT_DBG("%s orig refcnt %d", d->name,
824 	       atomic_read(&d->dev.kobj.kref.refcount));
825 
826 	get_device(&d->dev);
827 	return d;
828 }
829 
830 #define hci_dev_lock(d)		mutex_lock(&d->lock)
831 #define hci_dev_unlock(d)	mutex_unlock(&d->lock)
832 
833 #define to_hci_dev(d) container_of(d, struct hci_dev, dev)
834 #define to_hci_conn(c) container_of(c, struct hci_conn, dev)
835 
836 static inline void *hci_get_drvdata(struct hci_dev *hdev)
837 {
838 	return dev_get_drvdata(&hdev->dev);
839 }
840 
841 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data)
842 {
843 	dev_set_drvdata(&hdev->dev, data);
844 }
845 
846 struct hci_dev *hci_dev_get(int index);
847 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src);
848 
849 struct hci_dev *hci_alloc_dev(void);
850 void hci_free_dev(struct hci_dev *hdev);
851 int hci_register_dev(struct hci_dev *hdev);
852 void hci_unregister_dev(struct hci_dev *hdev);
853 int hci_suspend_dev(struct hci_dev *hdev);
854 int hci_resume_dev(struct hci_dev *hdev);
855 int hci_dev_open(__u16 dev);
856 int hci_dev_close(__u16 dev);
857 int hci_dev_reset(__u16 dev);
858 int hci_dev_reset_stat(__u16 dev);
859 int hci_dev_cmd(unsigned int cmd, void __user *arg);
860 int hci_get_dev_list(void __user *arg);
861 int hci_get_dev_info(void __user *arg);
862 int hci_get_conn_list(void __user *arg);
863 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg);
864 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg);
865 int hci_inquiry(void __user *arg);
866 
867 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list,
868 					   bdaddr_t *bdaddr, u8 type);
869 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type);
870 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type);
871 void hci_bdaddr_list_clear(struct list_head *list);
872 
873 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
874 					       bdaddr_t *addr, u8 addr_type);
875 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
876 					    bdaddr_t *addr, u8 addr_type);
877 int hci_conn_params_set(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type,
878 			u8 auto_connect);
879 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type);
880 void hci_conn_params_clear_all(struct hci_dev *hdev);
881 void hci_conn_params_clear_disabled(struct hci_dev *hdev);
882 
883 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
884 						  bdaddr_t *addr,
885 						  u8 addr_type);
886 
887 void hci_update_background_scan(struct hci_dev *hdev);
888 
889 void hci_uuids_clear(struct hci_dev *hdev);
890 
891 void hci_link_keys_clear(struct hci_dev *hdev);
892 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
893 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
894 				  bdaddr_t *bdaddr, u8 *val, u8 type,
895 				  u8 pin_len, bool *persistent);
896 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, __le64 rand,
897 			     u8 role);
898 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
899 			    u8 addr_type, u8 type, u8 authenticated,
900 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand);
901 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
902 				     u8 addr_type, u8 role);
903 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type);
904 void hci_smp_ltks_clear(struct hci_dev *hdev);
905 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
906 
907 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa);
908 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
909 				     u8 addr_type);
910 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
911 			    u8 addr_type, u8 val[16], bdaddr_t *rpa);
912 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type);
913 void hci_smp_irks_clear(struct hci_dev *hdev);
914 
915 void hci_remote_oob_data_clear(struct hci_dev *hdev);
916 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
917 					  bdaddr_t *bdaddr);
918 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
919 			    u8 *hash, u8 *randomizer);
920 int hci_add_remote_oob_ext_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
921 				u8 *hash192, u8 *randomizer192,
922 				u8 *hash256, u8 *randomizer256);
923 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr);
924 
925 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);
926 
927 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb);
928 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count);
929 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count);
930 
931 void hci_init_sysfs(struct hci_dev *hdev);
932 void hci_conn_init_sysfs(struct hci_conn *conn);
933 void hci_conn_add_sysfs(struct hci_conn *conn);
934 void hci_conn_del_sysfs(struct hci_conn *conn);
935 
936 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev))
937 
938 /* ----- LMP capabilities ----- */
939 #define lmp_encrypt_capable(dev)   ((dev)->features[0][0] & LMP_ENCRYPT)
940 #define lmp_rswitch_capable(dev)   ((dev)->features[0][0] & LMP_RSWITCH)
941 #define lmp_hold_capable(dev)      ((dev)->features[0][0] & LMP_HOLD)
942 #define lmp_sniff_capable(dev)     ((dev)->features[0][0] & LMP_SNIFF)
943 #define lmp_park_capable(dev)      ((dev)->features[0][1] & LMP_PARK)
944 #define lmp_inq_rssi_capable(dev)  ((dev)->features[0][3] & LMP_RSSI_INQ)
945 #define lmp_esco_capable(dev)      ((dev)->features[0][3] & LMP_ESCO)
946 #define lmp_bredr_capable(dev)     (!((dev)->features[0][4] & LMP_NO_BREDR))
947 #define lmp_le_capable(dev)        ((dev)->features[0][4] & LMP_LE)
948 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR)
949 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC)
950 #define lmp_ext_inq_capable(dev)   ((dev)->features[0][6] & LMP_EXT_INQ)
951 #define lmp_le_br_capable(dev)     (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR))
952 #define lmp_ssp_capable(dev)       ((dev)->features[0][6] & LMP_SIMPLE_PAIR)
953 #define lmp_no_flush_capable(dev)  ((dev)->features[0][6] & LMP_NO_FLUSH)
954 #define lmp_lsto_capable(dev)      ((dev)->features[0][7] & LMP_LSTO)
955 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR)
956 #define lmp_ext_feat_capable(dev)  ((dev)->features[0][7] & LMP_EXTFEATURES)
957 #define lmp_transp_capable(dev)    ((dev)->features[0][2] & LMP_TRANSPARENT)
958 
959 /* ----- Extended LMP capabilities ----- */
960 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER)
961 #define lmp_csb_slave_capable(dev)  ((dev)->features[2][0] & LMP_CSB_SLAVE)
962 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN)
963 #define lmp_sync_scan_capable(dev)  ((dev)->features[2][0] & LMP_SYNC_SCAN)
964 #define lmp_sc_capable(dev)         ((dev)->features[2][1] & LMP_SC)
965 #define lmp_ping_capable(dev)       ((dev)->features[2][1] & LMP_PING)
966 
967 /* ----- Host capabilities ----- */
968 #define lmp_host_ssp_capable(dev)  ((dev)->features[1][0] & LMP_HOST_SSP)
969 #define lmp_host_sc_capable(dev)   ((dev)->features[1][0] & LMP_HOST_SC)
970 #define lmp_host_le_capable(dev)   (!!((dev)->features[1][0] & LMP_HOST_LE))
971 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR))
972 
973 /* ----- HCI protocols ----- */
974 #define HCI_PROTO_DEFER             0x01
975 
976 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
977 					__u8 type, __u8 *flags)
978 {
979 	switch (type) {
980 	case ACL_LINK:
981 		return l2cap_connect_ind(hdev, bdaddr);
982 
983 	case SCO_LINK:
984 	case ESCO_LINK:
985 		return sco_connect_ind(hdev, bdaddr, flags);
986 
987 	default:
988 		BT_ERR("unknown link type %d", type);
989 		return -EINVAL;
990 	}
991 }
992 
993 static inline void hci_proto_connect_cfm(struct hci_conn *conn, __u8 status)
994 {
995 	switch (conn->type) {
996 	case ACL_LINK:
997 	case LE_LINK:
998 		l2cap_connect_cfm(conn, status);
999 		break;
1000 
1001 	case SCO_LINK:
1002 	case ESCO_LINK:
1003 		sco_connect_cfm(conn, status);
1004 		break;
1005 
1006 	default:
1007 		BT_ERR("unknown link type %d", conn->type);
1008 		break;
1009 	}
1010 
1011 	if (conn->connect_cfm_cb)
1012 		conn->connect_cfm_cb(conn, status);
1013 }
1014 
1015 static inline int hci_proto_disconn_ind(struct hci_conn *conn)
1016 {
1017 	if (conn->type != ACL_LINK && conn->type != LE_LINK)
1018 		return HCI_ERROR_REMOTE_USER_TERM;
1019 
1020 	return l2cap_disconn_ind(conn);
1021 }
1022 
1023 static inline void hci_proto_disconn_cfm(struct hci_conn *conn, __u8 reason)
1024 {
1025 	switch (conn->type) {
1026 	case ACL_LINK:
1027 	case LE_LINK:
1028 		l2cap_disconn_cfm(conn, reason);
1029 		break;
1030 
1031 	case SCO_LINK:
1032 	case ESCO_LINK:
1033 		sco_disconn_cfm(conn, reason);
1034 		break;
1035 
1036 	/* L2CAP would be handled for BREDR chan */
1037 	case AMP_LINK:
1038 		break;
1039 
1040 	default:
1041 		BT_ERR("unknown link type %d", conn->type);
1042 		break;
1043 	}
1044 
1045 	if (conn->disconn_cfm_cb)
1046 		conn->disconn_cfm_cb(conn, reason);
1047 }
1048 
1049 static inline void hci_proto_auth_cfm(struct hci_conn *conn, __u8 status)
1050 {
1051 	__u8 encrypt;
1052 
1053 	if (conn->type != ACL_LINK && conn->type != LE_LINK)
1054 		return;
1055 
1056 	if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1057 		return;
1058 
1059 	encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00;
1060 	l2cap_security_cfm(conn, status, encrypt);
1061 
1062 	if (conn->security_cfm_cb)
1063 		conn->security_cfm_cb(conn, status);
1064 }
1065 
1066 static inline void hci_proto_encrypt_cfm(struct hci_conn *conn, __u8 status,
1067 								__u8 encrypt)
1068 {
1069 	if (conn->type != ACL_LINK && conn->type != LE_LINK)
1070 		return;
1071 
1072 	l2cap_security_cfm(conn, status, encrypt);
1073 
1074 	if (conn->security_cfm_cb)
1075 		conn->security_cfm_cb(conn, status);
1076 }
1077 
1078 /* ----- HCI callbacks ----- */
1079 struct hci_cb {
1080 	struct list_head list;
1081 
1082 	char *name;
1083 
1084 	void (*security_cfm)	(struct hci_conn *conn, __u8 status,
1085 								__u8 encrypt);
1086 	void (*key_change_cfm)	(struct hci_conn *conn, __u8 status);
1087 	void (*role_switch_cfm)	(struct hci_conn *conn, __u8 status, __u8 role);
1088 };
1089 
1090 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status)
1091 {
1092 	struct hci_cb *cb;
1093 	__u8 encrypt;
1094 
1095 	hci_proto_auth_cfm(conn, status);
1096 
1097 	if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1098 		return;
1099 
1100 	encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00;
1101 
1102 	read_lock(&hci_cb_list_lock);
1103 	list_for_each_entry(cb, &hci_cb_list, list) {
1104 		if (cb->security_cfm)
1105 			cb->security_cfm(conn, status, encrypt);
1106 	}
1107 	read_unlock(&hci_cb_list_lock);
1108 }
1109 
1110 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status,
1111 								__u8 encrypt)
1112 {
1113 	struct hci_cb *cb;
1114 
1115 	if (conn->sec_level == BT_SECURITY_SDP)
1116 		conn->sec_level = BT_SECURITY_LOW;
1117 
1118 	if (conn->pending_sec_level > conn->sec_level)
1119 		conn->sec_level = conn->pending_sec_level;
1120 
1121 	hci_proto_encrypt_cfm(conn, status, encrypt);
1122 
1123 	read_lock(&hci_cb_list_lock);
1124 	list_for_each_entry(cb, &hci_cb_list, list) {
1125 		if (cb->security_cfm)
1126 			cb->security_cfm(conn, status, encrypt);
1127 	}
1128 	read_unlock(&hci_cb_list_lock);
1129 }
1130 
1131 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status)
1132 {
1133 	struct hci_cb *cb;
1134 
1135 	read_lock(&hci_cb_list_lock);
1136 	list_for_each_entry(cb, &hci_cb_list, list) {
1137 		if (cb->key_change_cfm)
1138 			cb->key_change_cfm(conn, status);
1139 	}
1140 	read_unlock(&hci_cb_list_lock);
1141 }
1142 
1143 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status,
1144 								__u8 role)
1145 {
1146 	struct hci_cb *cb;
1147 
1148 	read_lock(&hci_cb_list_lock);
1149 	list_for_each_entry(cb, &hci_cb_list, list) {
1150 		if (cb->role_switch_cfm)
1151 			cb->role_switch_cfm(conn, status, role);
1152 	}
1153 	read_unlock(&hci_cb_list_lock);
1154 }
1155 
1156 static inline bool eir_has_data_type(u8 *data, size_t data_len, u8 type)
1157 {
1158 	size_t parsed = 0;
1159 
1160 	if (data_len < 2)
1161 		return false;
1162 
1163 	while (parsed < data_len - 1) {
1164 		u8 field_len = data[0];
1165 
1166 		if (field_len == 0)
1167 			break;
1168 
1169 		parsed += field_len + 1;
1170 
1171 		if (parsed > data_len)
1172 			break;
1173 
1174 		if (data[1] == type)
1175 			return true;
1176 
1177 		data += field_len + 1;
1178 	}
1179 
1180 	return false;
1181 }
1182 
1183 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type)
1184 {
1185 	if (addr_type != ADDR_LE_DEV_RANDOM)
1186 		return false;
1187 
1188 	if ((bdaddr->b[5] & 0xc0) == 0x40)
1189 	       return true;
1190 
1191 	return false;
1192 }
1193 
1194 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type)
1195 {
1196 	if (addr_type == ADDR_LE_DEV_PUBLIC)
1197 		return true;
1198 
1199 	/* Check for Random Static address type */
1200 	if ((addr->b[5] & 0xc0) == 0xc0)
1201 		return true;
1202 
1203 	return false;
1204 }
1205 
1206 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev,
1207 					  bdaddr_t *bdaddr, u8 addr_type)
1208 {
1209 	if (!hci_bdaddr_is_rpa(bdaddr, addr_type))
1210 		return NULL;
1211 
1212 	return hci_find_irk_by_rpa(hdev, bdaddr);
1213 }
1214 
1215 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency,
1216 					u16 to_multiplier)
1217 {
1218 	u16 max_latency;
1219 
1220 	if (min > max || min < 6 || max > 3200)
1221 		return -EINVAL;
1222 
1223 	if (to_multiplier < 10 || to_multiplier > 3200)
1224 		return -EINVAL;
1225 
1226 	if (max >= to_multiplier * 8)
1227 		return -EINVAL;
1228 
1229 	max_latency = (to_multiplier * 8 / max) - 1;
1230 	if (latency > 499 || latency > max_latency)
1231 		return -EINVAL;
1232 
1233 	return 0;
1234 }
1235 
1236 int hci_register_cb(struct hci_cb *hcb);
1237 int hci_unregister_cb(struct hci_cb *hcb);
1238 
1239 struct hci_request {
1240 	struct hci_dev		*hdev;
1241 	struct sk_buff_head	cmd_q;
1242 
1243 	/* If something goes wrong when building the HCI request, the error
1244 	 * value is stored in this field.
1245 	 */
1246 	int			err;
1247 };
1248 
1249 void hci_req_init(struct hci_request *req, struct hci_dev *hdev);
1250 int hci_req_run(struct hci_request *req, hci_req_complete_t complete);
1251 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
1252 		 const void *param);
1253 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
1254 		    const void *param, u8 event);
1255 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status);
1256 bool hci_req_pending(struct hci_dev *hdev);
1257 
1258 void hci_req_add_le_scan_disable(struct hci_request *req);
1259 void hci_req_add_le_passive_scan(struct hci_request *req);
1260 
1261 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1262 			       const void *param, u32 timeout);
1263 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1264 				  const void *param, u8 event, u32 timeout);
1265 
1266 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
1267 		 const void *param);
1268 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags);
1269 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb);
1270 
1271 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode);
1272 
1273 /* ----- HCI Sockets ----- */
1274 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb);
1275 void hci_send_to_control(struct sk_buff *skb, struct sock *skip_sk);
1276 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb);
1277 
1278 void hci_sock_dev_event(struct hci_dev *hdev, int event);
1279 
1280 /* Management interface */
1281 #define DISCOV_TYPE_BREDR		(BIT(BDADDR_BREDR))
1282 #define DISCOV_TYPE_LE			(BIT(BDADDR_LE_PUBLIC) | \
1283 					 BIT(BDADDR_LE_RANDOM))
1284 #define DISCOV_TYPE_INTERLEAVED		(BIT(BDADDR_BREDR) | \
1285 					 BIT(BDADDR_LE_PUBLIC) | \
1286 					 BIT(BDADDR_LE_RANDOM))
1287 
1288 /* These LE scan and inquiry parameters were chosen according to LE General
1289  * Discovery Procedure specification.
1290  */
1291 #define DISCOV_LE_SCAN_WIN		0x12
1292 #define DISCOV_LE_SCAN_INT		0x12
1293 #define DISCOV_LE_TIMEOUT		10240	/* msec */
1294 #define DISCOV_INTERLEAVED_TIMEOUT	5120	/* msec */
1295 #define DISCOV_INTERLEAVED_INQUIRY_LEN	0x04
1296 #define DISCOV_BREDR_INQUIRY_LEN	0x08
1297 
1298 int mgmt_control(struct sock *sk, struct msghdr *msg, size_t len);
1299 int mgmt_new_settings(struct hci_dev *hdev);
1300 void mgmt_index_added(struct hci_dev *hdev);
1301 void mgmt_index_removed(struct hci_dev *hdev);
1302 void mgmt_set_powered_failed(struct hci_dev *hdev, int err);
1303 int mgmt_powered(struct hci_dev *hdev, u8 powered);
1304 int mgmt_update_adv_data(struct hci_dev *hdev);
1305 void mgmt_discoverable_timeout(struct hci_dev *hdev);
1306 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key,
1307 		       bool persistent);
1308 void mgmt_device_connected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1309 			   u8 addr_type, u32 flags, u8 *name, u8 name_len,
1310 			   u8 *dev_class);
1311 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr,
1312 			      u8 link_type, u8 addr_type, u8 reason,
1313 			      bool mgmt_connected);
1314 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr,
1315 			    u8 link_type, u8 addr_type, u8 status);
1316 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1317 			 u8 addr_type, u8 status);
1318 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure);
1319 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1320 				  u8 status);
1321 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1322 				      u8 status);
1323 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1324 			      u8 link_type, u8 addr_type, u32 value,
1325 			      u8 confirm_hint);
1326 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1327 				     u8 link_type, u8 addr_type, u8 status);
1328 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1329 					 u8 link_type, u8 addr_type, u8 status);
1330 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1331 			      u8 link_type, u8 addr_type);
1332 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1333 				     u8 link_type, u8 addr_type, u8 status);
1334 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1335 					 u8 link_type, u8 addr_type, u8 status);
1336 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr,
1337 			     u8 link_type, u8 addr_type, u32 passkey,
1338 			     u8 entered);
1339 void mgmt_auth_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1340 		      u8 addr_type, u8 status);
1341 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status);
1342 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1343 void mgmt_sc_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1344 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class,
1345 				    u8 status);
1346 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status);
1347 void mgmt_read_local_oob_data_complete(struct hci_dev *hdev, u8 *hash192,
1348 				       u8 *randomizer192, u8 *hash256,
1349 				       u8 *randomizer256, u8 status);
1350 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1351 		       u8 addr_type, u8 *dev_class, s8 rssi, u32 flags,
1352 		       u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len);
1353 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1354 		      u8 addr_type, s8 rssi, u8 *name, u8 name_len);
1355 void mgmt_discovering(struct hci_dev *hdev, u8 discovering);
1356 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent);
1357 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk);
1358 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk,
1359 		   bool persistent);
1360 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr,
1361 			 u8 bdaddr_type, u8 store_hint, u16 min_interval,
1362 			 u16 max_interval, u16 latency, u16 timeout);
1363 void mgmt_reenable_advertising(struct hci_dev *hdev);
1364 void mgmt_smp_complete(struct hci_conn *conn, bool complete);
1365 
1366 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
1367 		      u16 to_multiplier);
1368 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
1369 							__u8 ltk[16]);
1370 
1371 int hci_update_random_address(struct hci_request *req, bool require_privacy,
1372 			      u8 *own_addr_type);
1373 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
1374 			       u8 *bdaddr_type);
1375 
1376 #define SCO_AIRMODE_MASK       0x0003
1377 #define SCO_AIRMODE_CVSD       0x0000
1378 #define SCO_AIRMODE_TRANSP     0x0003
1379 
1380 #endif /* __HCI_CORE_H */
1381