1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 #ifndef __HCI_CORE_H 26 #define __HCI_CORE_H 27 28 #include <linux/leds.h> 29 #include <linux/rculist.h> 30 31 #include <net/bluetooth/hci.h> 32 #include <net/bluetooth/hci_sock.h> 33 34 /* HCI priority */ 35 #define HCI_PRIO_MAX 7 36 37 /* HCI Core structures */ 38 struct inquiry_data { 39 bdaddr_t bdaddr; 40 __u8 pscan_rep_mode; 41 __u8 pscan_period_mode; 42 __u8 pscan_mode; 43 __u8 dev_class[3]; 44 __le16 clock_offset; 45 __s8 rssi; 46 __u8 ssp_mode; 47 }; 48 49 struct inquiry_entry { 50 struct list_head all; /* inq_cache.all */ 51 struct list_head list; /* unknown or resolve */ 52 enum { 53 NAME_NOT_KNOWN, 54 NAME_NEEDED, 55 NAME_PENDING, 56 NAME_KNOWN, 57 } name_state; 58 __u32 timestamp; 59 struct inquiry_data data; 60 }; 61 62 struct discovery_state { 63 int type; 64 enum { 65 DISCOVERY_STOPPED, 66 DISCOVERY_STARTING, 67 DISCOVERY_FINDING, 68 DISCOVERY_RESOLVING, 69 DISCOVERY_STOPPING, 70 } state; 71 struct list_head all; /* All devices found during inquiry */ 72 struct list_head unknown; /* Name state not known */ 73 struct list_head resolve; /* Name needs to be resolved */ 74 __u32 timestamp; 75 bdaddr_t last_adv_addr; 76 u8 last_adv_addr_type; 77 s8 last_adv_rssi; 78 u32 last_adv_flags; 79 u8 last_adv_data[HCI_MAX_AD_LENGTH]; 80 u8 last_adv_data_len; 81 bool report_invalid_rssi; 82 bool result_filtering; 83 bool limited; 84 s8 rssi; 85 u16 uuid_count; 86 u8 (*uuids)[16]; 87 unsigned long scan_start; 88 unsigned long scan_duration; 89 }; 90 91 struct hci_conn_hash { 92 struct list_head list; 93 unsigned int acl_num; 94 unsigned int amp_num; 95 unsigned int sco_num; 96 unsigned int le_num; 97 unsigned int le_num_slave; 98 }; 99 100 struct bdaddr_list { 101 struct list_head list; 102 bdaddr_t bdaddr; 103 u8 bdaddr_type; 104 }; 105 106 struct bt_uuid { 107 struct list_head list; 108 u8 uuid[16]; 109 u8 size; 110 u8 svc_hint; 111 }; 112 113 struct smp_csrk { 114 bdaddr_t bdaddr; 115 u8 bdaddr_type; 116 u8 type; 117 u8 val[16]; 118 }; 119 120 struct smp_ltk { 121 struct list_head list; 122 struct rcu_head rcu; 123 bdaddr_t bdaddr; 124 u8 bdaddr_type; 125 u8 authenticated; 126 u8 type; 127 u8 enc_size; 128 __le16 ediv; 129 __le64 rand; 130 u8 val[16]; 131 }; 132 133 struct smp_irk { 134 struct list_head list; 135 struct rcu_head rcu; 136 bdaddr_t rpa; 137 bdaddr_t bdaddr; 138 u8 addr_type; 139 u8 val[16]; 140 }; 141 142 struct link_key { 143 struct list_head list; 144 struct rcu_head rcu; 145 bdaddr_t bdaddr; 146 u8 type; 147 u8 val[HCI_LINK_KEY_SIZE]; 148 u8 pin_len; 149 }; 150 151 struct oob_data { 152 struct list_head list; 153 bdaddr_t bdaddr; 154 u8 bdaddr_type; 155 u8 present; 156 u8 hash192[16]; 157 u8 rand192[16]; 158 u8 hash256[16]; 159 u8 rand256[16]; 160 }; 161 162 struct adv_info { 163 struct list_head list; 164 bool pending; 165 __u8 instance; 166 __u32 flags; 167 __u16 timeout; 168 __u16 remaining_time; 169 __u16 duration; 170 __u16 adv_data_len; 171 __u8 adv_data[HCI_MAX_AD_LENGTH]; 172 __u16 scan_rsp_len; 173 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH]; 174 __s8 tx_power; 175 bdaddr_t random_addr; 176 bool rpa_expired; 177 struct delayed_work rpa_expired_cb; 178 }; 179 180 #define HCI_MAX_ADV_INSTANCES 5 181 #define HCI_DEFAULT_ADV_DURATION 2 182 183 #define HCI_MAX_SHORT_NAME_LENGTH 10 184 185 /* Default LE RPA expiry time, 15 minutes */ 186 #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60) 187 188 /* Default min/max age of connection information (1s/3s) */ 189 #define DEFAULT_CONN_INFO_MIN_AGE 1000 190 #define DEFAULT_CONN_INFO_MAX_AGE 3000 191 192 struct amp_assoc { 193 __u16 len; 194 __u16 offset; 195 __u16 rem_len; 196 __u16 len_so_far; 197 __u8 data[HCI_MAX_AMP_ASSOC_SIZE]; 198 }; 199 200 #define HCI_MAX_PAGES 3 201 202 struct hci_dev { 203 struct list_head list; 204 struct mutex lock; 205 206 char name[8]; 207 unsigned long flags; 208 __u16 id; 209 __u8 bus; 210 __u8 dev_type; 211 bdaddr_t bdaddr; 212 bdaddr_t setup_addr; 213 bdaddr_t public_addr; 214 bdaddr_t random_addr; 215 bdaddr_t static_addr; 216 __u8 adv_addr_type; 217 __u8 dev_name[HCI_MAX_NAME_LENGTH]; 218 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH]; 219 __u8 eir[HCI_MAX_EIR_LENGTH]; 220 __u16 appearance; 221 __u8 dev_class[3]; 222 __u8 major_class; 223 __u8 minor_class; 224 __u8 max_page; 225 __u8 features[HCI_MAX_PAGES][8]; 226 __u8 le_features[8]; 227 __u8 le_white_list_size; 228 __u8 le_resolv_list_size; 229 __u8 le_num_of_adv_sets; 230 __u8 le_states[8]; 231 __u8 commands[64]; 232 __u8 hci_ver; 233 __u16 hci_rev; 234 __u8 lmp_ver; 235 __u16 manufacturer; 236 __u16 lmp_subver; 237 __u16 voice_setting; 238 __u8 num_iac; 239 __u8 stored_max_keys; 240 __u8 stored_num_keys; 241 __u8 io_capability; 242 __s8 inq_tx_power; 243 __u16 page_scan_interval; 244 __u16 page_scan_window; 245 __u8 page_scan_type; 246 __u8 le_adv_channel_map; 247 __u16 le_adv_min_interval; 248 __u16 le_adv_max_interval; 249 __u8 le_scan_type; 250 __u16 le_scan_interval; 251 __u16 le_scan_window; 252 __u16 le_conn_min_interval; 253 __u16 le_conn_max_interval; 254 __u16 le_conn_latency; 255 __u16 le_supv_timeout; 256 __u16 le_def_tx_len; 257 __u16 le_def_tx_time; 258 __u16 le_max_tx_len; 259 __u16 le_max_tx_time; 260 __u16 le_max_rx_len; 261 __u16 le_max_rx_time; 262 __u16 discov_interleaved_timeout; 263 __u16 conn_info_min_age; 264 __u16 conn_info_max_age; 265 __u8 ssp_debug_mode; 266 __u8 hw_error_code; 267 __u32 clock; 268 269 __u16 devid_source; 270 __u16 devid_vendor; 271 __u16 devid_product; 272 __u16 devid_version; 273 274 __u16 pkt_type; 275 __u16 esco_type; 276 __u16 link_policy; 277 __u16 link_mode; 278 279 __u32 idle_timeout; 280 __u16 sniff_min_interval; 281 __u16 sniff_max_interval; 282 283 __u8 amp_status; 284 __u32 amp_total_bw; 285 __u32 amp_max_bw; 286 __u32 amp_min_latency; 287 __u32 amp_max_pdu; 288 __u8 amp_type; 289 __u16 amp_pal_cap; 290 __u16 amp_assoc_size; 291 __u32 amp_max_flush_to; 292 __u32 amp_be_flush_to; 293 294 struct amp_assoc loc_assoc; 295 296 __u8 flow_ctl_mode; 297 298 unsigned int auto_accept_delay; 299 300 unsigned long quirks; 301 302 atomic_t cmd_cnt; 303 unsigned int acl_cnt; 304 unsigned int sco_cnt; 305 unsigned int le_cnt; 306 307 unsigned int acl_mtu; 308 unsigned int sco_mtu; 309 unsigned int le_mtu; 310 unsigned int acl_pkts; 311 unsigned int sco_pkts; 312 unsigned int le_pkts; 313 314 __u16 block_len; 315 __u16 block_mtu; 316 __u16 num_blocks; 317 __u16 block_cnt; 318 319 unsigned long acl_last_tx; 320 unsigned long sco_last_tx; 321 unsigned long le_last_tx; 322 323 __u8 le_tx_def_phys; 324 __u8 le_rx_def_phys; 325 326 struct workqueue_struct *workqueue; 327 struct workqueue_struct *req_workqueue; 328 329 struct work_struct power_on; 330 struct delayed_work power_off; 331 struct work_struct error_reset; 332 333 __u16 discov_timeout; 334 struct delayed_work discov_off; 335 336 struct delayed_work service_cache; 337 338 struct delayed_work cmd_timer; 339 340 struct work_struct rx_work; 341 struct work_struct cmd_work; 342 struct work_struct tx_work; 343 344 struct work_struct discov_update; 345 struct work_struct bg_scan_update; 346 struct work_struct scan_update; 347 struct work_struct connectable_update; 348 struct work_struct discoverable_update; 349 struct delayed_work le_scan_disable; 350 struct delayed_work le_scan_restart; 351 352 struct sk_buff_head rx_q; 353 struct sk_buff_head raw_q; 354 struct sk_buff_head cmd_q; 355 356 struct sk_buff *sent_cmd; 357 358 struct mutex req_lock; 359 wait_queue_head_t req_wait_q; 360 __u32 req_status; 361 __u32 req_result; 362 struct sk_buff *req_skb; 363 364 void *smp_data; 365 void *smp_bredr_data; 366 367 struct discovery_state discovery; 368 struct hci_conn_hash conn_hash; 369 370 struct list_head mgmt_pending; 371 struct list_head blacklist; 372 struct list_head whitelist; 373 struct list_head uuids; 374 struct list_head link_keys; 375 struct list_head long_term_keys; 376 struct list_head identity_resolving_keys; 377 struct list_head remote_oob_data; 378 struct list_head le_white_list; 379 struct list_head le_resolv_list; 380 struct list_head le_conn_params; 381 struct list_head pend_le_conns; 382 struct list_head pend_le_reports; 383 384 struct hci_dev_stats stat; 385 386 atomic_t promisc; 387 388 const char *hw_info; 389 const char *fw_info; 390 struct dentry *debugfs; 391 392 struct device dev; 393 394 struct rfkill *rfkill; 395 396 DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS); 397 398 __s8 adv_tx_power; 399 __u8 adv_data[HCI_MAX_AD_LENGTH]; 400 __u8 adv_data_len; 401 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH]; 402 __u8 scan_rsp_data_len; 403 404 struct list_head adv_instances; 405 unsigned int adv_instance_cnt; 406 __u8 cur_adv_instance; 407 __u16 adv_instance_timeout; 408 struct delayed_work adv_instance_expire; 409 410 __u8 irk[16]; 411 __u32 rpa_timeout; 412 struct delayed_work rpa_expired; 413 bdaddr_t rpa; 414 415 #if IS_ENABLED(CONFIG_BT_LEDS) 416 struct led_trigger *power_led; 417 #endif 418 419 int (*open)(struct hci_dev *hdev); 420 int (*close)(struct hci_dev *hdev); 421 int (*flush)(struct hci_dev *hdev); 422 int (*setup)(struct hci_dev *hdev); 423 int (*shutdown)(struct hci_dev *hdev); 424 int (*send)(struct hci_dev *hdev, struct sk_buff *skb); 425 void (*notify)(struct hci_dev *hdev, unsigned int evt); 426 void (*hw_error)(struct hci_dev *hdev, u8 code); 427 int (*post_init)(struct hci_dev *hdev); 428 int (*set_diag)(struct hci_dev *hdev, bool enable); 429 int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr); 430 }; 431 432 #define HCI_PHY_HANDLE(handle) (handle & 0xff) 433 434 struct hci_conn { 435 struct list_head list; 436 437 atomic_t refcnt; 438 439 bdaddr_t dst; 440 __u8 dst_type; 441 bdaddr_t src; 442 __u8 src_type; 443 bdaddr_t init_addr; 444 __u8 init_addr_type; 445 bdaddr_t resp_addr; 446 __u8 resp_addr_type; 447 __u16 handle; 448 __u16 state; 449 __u8 mode; 450 __u8 type; 451 __u8 role; 452 bool out; 453 __u8 attempt; 454 __u8 dev_class[3]; 455 __u8 features[HCI_MAX_PAGES][8]; 456 __u16 pkt_type; 457 __u16 link_policy; 458 __u8 key_type; 459 __u8 auth_type; 460 __u8 sec_level; 461 __u8 pending_sec_level; 462 __u8 pin_length; 463 __u8 enc_key_size; 464 __u8 io_capability; 465 __u32 passkey_notify; 466 __u8 passkey_entered; 467 __u16 disc_timeout; 468 __u16 conn_timeout; 469 __u16 setting; 470 __u16 le_conn_min_interval; 471 __u16 le_conn_max_interval; 472 __u16 le_conn_interval; 473 __u16 le_conn_latency; 474 __u16 le_supv_timeout; 475 __u8 le_adv_data[HCI_MAX_AD_LENGTH]; 476 __u8 le_adv_data_len; 477 __s8 rssi; 478 __s8 tx_power; 479 __s8 max_tx_power; 480 unsigned long flags; 481 482 __u32 clock; 483 __u16 clock_accuracy; 484 485 unsigned long conn_info_timestamp; 486 487 __u8 remote_cap; 488 __u8 remote_auth; 489 __u8 remote_id; 490 491 unsigned int sent; 492 493 struct sk_buff_head data_q; 494 struct list_head chan_list; 495 496 struct delayed_work disc_work; 497 struct delayed_work auto_accept_work; 498 struct delayed_work idle_work; 499 struct delayed_work le_conn_timeout; 500 struct work_struct le_scan_cleanup; 501 502 struct device dev; 503 struct dentry *debugfs; 504 505 struct hci_dev *hdev; 506 void *l2cap_data; 507 void *sco_data; 508 struct amp_mgr *amp_mgr; 509 510 struct hci_conn *link; 511 512 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status); 513 void (*security_cfm_cb) (struct hci_conn *conn, u8 status); 514 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason); 515 }; 516 517 struct hci_chan { 518 struct list_head list; 519 __u16 handle; 520 struct hci_conn *conn; 521 struct sk_buff_head data_q; 522 unsigned int sent; 523 __u8 state; 524 }; 525 526 struct hci_conn_params { 527 struct list_head list; 528 struct list_head action; 529 530 bdaddr_t addr; 531 u8 addr_type; 532 533 u16 conn_min_interval; 534 u16 conn_max_interval; 535 u16 conn_latency; 536 u16 supervision_timeout; 537 538 enum { 539 HCI_AUTO_CONN_DISABLED, 540 HCI_AUTO_CONN_REPORT, 541 HCI_AUTO_CONN_DIRECT, 542 HCI_AUTO_CONN_ALWAYS, 543 HCI_AUTO_CONN_LINK_LOSS, 544 HCI_AUTO_CONN_EXPLICIT, 545 } auto_connect; 546 547 struct hci_conn *conn; 548 bool explicit_connect; 549 }; 550 551 extern struct list_head hci_dev_list; 552 extern struct list_head hci_cb_list; 553 extern rwlock_t hci_dev_list_lock; 554 extern struct mutex hci_cb_list_lock; 555 556 #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags) 557 #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags) 558 #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags) 559 #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags) 560 #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags) 561 #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags) 562 #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags) 563 564 #define hci_dev_clear_volatile_flags(hdev) \ 565 do { \ 566 hci_dev_clear_flag(hdev, HCI_LE_SCAN); \ 567 hci_dev_clear_flag(hdev, HCI_LE_ADV); \ 568 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \ 569 } while (0) 570 571 /* ----- HCI interface to upper protocols ----- */ 572 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr); 573 int l2cap_disconn_ind(struct hci_conn *hcon); 574 void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags); 575 576 #if IS_ENABLED(CONFIG_BT_BREDR) 577 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); 578 void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb); 579 #else 580 static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 581 __u8 *flags) 582 { 583 return 0; 584 } 585 586 static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb) 587 { 588 } 589 #endif 590 591 /* ----- Inquiry cache ----- */ 592 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */ 593 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */ 594 595 static inline void discovery_init(struct hci_dev *hdev) 596 { 597 hdev->discovery.state = DISCOVERY_STOPPED; 598 INIT_LIST_HEAD(&hdev->discovery.all); 599 INIT_LIST_HEAD(&hdev->discovery.unknown); 600 INIT_LIST_HEAD(&hdev->discovery.resolve); 601 hdev->discovery.report_invalid_rssi = true; 602 hdev->discovery.rssi = HCI_RSSI_INVALID; 603 } 604 605 static inline void hci_discovery_filter_clear(struct hci_dev *hdev) 606 { 607 hdev->discovery.result_filtering = false; 608 hdev->discovery.report_invalid_rssi = true; 609 hdev->discovery.rssi = HCI_RSSI_INVALID; 610 hdev->discovery.uuid_count = 0; 611 kfree(hdev->discovery.uuids); 612 hdev->discovery.uuids = NULL; 613 hdev->discovery.scan_start = 0; 614 hdev->discovery.scan_duration = 0; 615 } 616 617 bool hci_discovery_active(struct hci_dev *hdev); 618 619 void hci_discovery_set_state(struct hci_dev *hdev, int state); 620 621 static inline int inquiry_cache_empty(struct hci_dev *hdev) 622 { 623 return list_empty(&hdev->discovery.all); 624 } 625 626 static inline long inquiry_cache_age(struct hci_dev *hdev) 627 { 628 struct discovery_state *c = &hdev->discovery; 629 return jiffies - c->timestamp; 630 } 631 632 static inline long inquiry_entry_age(struct inquiry_entry *e) 633 { 634 return jiffies - e->timestamp; 635 } 636 637 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 638 bdaddr_t *bdaddr); 639 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 640 bdaddr_t *bdaddr); 641 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 642 bdaddr_t *bdaddr, 643 int state); 644 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 645 struct inquiry_entry *ie); 646 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 647 bool name_known); 648 void hci_inquiry_cache_flush(struct hci_dev *hdev); 649 650 /* ----- HCI Connections ----- */ 651 enum { 652 HCI_CONN_AUTH_PEND, 653 HCI_CONN_REAUTH_PEND, 654 HCI_CONN_ENCRYPT_PEND, 655 HCI_CONN_RSWITCH_PEND, 656 HCI_CONN_MODE_CHANGE_PEND, 657 HCI_CONN_SCO_SETUP_PEND, 658 HCI_CONN_MGMT_CONNECTED, 659 HCI_CONN_SSP_ENABLED, 660 HCI_CONN_SC_ENABLED, 661 HCI_CONN_AES_CCM, 662 HCI_CONN_POWER_SAVE, 663 HCI_CONN_FLUSH_KEY, 664 HCI_CONN_ENCRYPT, 665 HCI_CONN_AUTH, 666 HCI_CONN_SECURE, 667 HCI_CONN_FIPS, 668 HCI_CONN_STK_ENCRYPT, 669 HCI_CONN_AUTH_INITIATOR, 670 HCI_CONN_DROP, 671 HCI_CONN_PARAM_REMOVAL_PEND, 672 HCI_CONN_NEW_LINK_KEY, 673 HCI_CONN_SCANNING, 674 HCI_CONN_AUTH_FAILURE, 675 }; 676 677 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn) 678 { 679 struct hci_dev *hdev = conn->hdev; 680 return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 681 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 682 } 683 684 static inline bool hci_conn_sc_enabled(struct hci_conn *conn) 685 { 686 struct hci_dev *hdev = conn->hdev; 687 return hci_dev_test_flag(hdev, HCI_SC_ENABLED) && 688 test_bit(HCI_CONN_SC_ENABLED, &conn->flags); 689 } 690 691 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c) 692 { 693 struct hci_conn_hash *h = &hdev->conn_hash; 694 list_add_rcu(&c->list, &h->list); 695 switch (c->type) { 696 case ACL_LINK: 697 h->acl_num++; 698 break; 699 case AMP_LINK: 700 h->amp_num++; 701 break; 702 case LE_LINK: 703 h->le_num++; 704 if (c->role == HCI_ROLE_SLAVE) 705 h->le_num_slave++; 706 break; 707 case SCO_LINK: 708 case ESCO_LINK: 709 h->sco_num++; 710 break; 711 } 712 } 713 714 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c) 715 { 716 struct hci_conn_hash *h = &hdev->conn_hash; 717 718 list_del_rcu(&c->list); 719 synchronize_rcu(); 720 721 switch (c->type) { 722 case ACL_LINK: 723 h->acl_num--; 724 break; 725 case AMP_LINK: 726 h->amp_num--; 727 break; 728 case LE_LINK: 729 h->le_num--; 730 if (c->role == HCI_ROLE_SLAVE) 731 h->le_num_slave--; 732 break; 733 case SCO_LINK: 734 case ESCO_LINK: 735 h->sco_num--; 736 break; 737 } 738 } 739 740 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type) 741 { 742 struct hci_conn_hash *h = &hdev->conn_hash; 743 switch (type) { 744 case ACL_LINK: 745 return h->acl_num; 746 case AMP_LINK: 747 return h->amp_num; 748 case LE_LINK: 749 return h->le_num; 750 case SCO_LINK: 751 case ESCO_LINK: 752 return h->sco_num; 753 default: 754 return 0; 755 } 756 } 757 758 static inline unsigned int hci_conn_count(struct hci_dev *hdev) 759 { 760 struct hci_conn_hash *c = &hdev->conn_hash; 761 762 return c->acl_num + c->amp_num + c->sco_num + c->le_num; 763 } 764 765 static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle) 766 { 767 struct hci_conn_hash *h = &hdev->conn_hash; 768 struct hci_conn *c; 769 __u8 type = INVALID_LINK; 770 771 rcu_read_lock(); 772 773 list_for_each_entry_rcu(c, &h->list, list) { 774 if (c->handle == handle) { 775 type = c->type; 776 break; 777 } 778 } 779 780 rcu_read_unlock(); 781 782 return type; 783 } 784 785 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev, 786 __u16 handle) 787 { 788 struct hci_conn_hash *h = &hdev->conn_hash; 789 struct hci_conn *c; 790 791 rcu_read_lock(); 792 793 list_for_each_entry_rcu(c, &h->list, list) { 794 if (c->handle == handle) { 795 rcu_read_unlock(); 796 return c; 797 } 798 } 799 rcu_read_unlock(); 800 801 return NULL; 802 } 803 804 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev, 805 __u8 type, bdaddr_t *ba) 806 { 807 struct hci_conn_hash *h = &hdev->conn_hash; 808 struct hci_conn *c; 809 810 rcu_read_lock(); 811 812 list_for_each_entry_rcu(c, &h->list, list) { 813 if (c->type == type && !bacmp(&c->dst, ba)) { 814 rcu_read_unlock(); 815 return c; 816 } 817 } 818 819 rcu_read_unlock(); 820 821 return NULL; 822 } 823 824 static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev, 825 bdaddr_t *ba, 826 __u8 ba_type) 827 { 828 struct hci_conn_hash *h = &hdev->conn_hash; 829 struct hci_conn *c; 830 831 rcu_read_lock(); 832 833 list_for_each_entry_rcu(c, &h->list, list) { 834 if (c->type != LE_LINK) 835 continue; 836 837 if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) { 838 rcu_read_unlock(); 839 return c; 840 } 841 } 842 843 rcu_read_unlock(); 844 845 return NULL; 846 } 847 848 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev, 849 __u8 type, __u16 state) 850 { 851 struct hci_conn_hash *h = &hdev->conn_hash; 852 struct hci_conn *c; 853 854 rcu_read_lock(); 855 856 list_for_each_entry_rcu(c, &h->list, list) { 857 if (c->type == type && c->state == state) { 858 rcu_read_unlock(); 859 return c; 860 } 861 } 862 863 rcu_read_unlock(); 864 865 return NULL; 866 } 867 868 static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev) 869 { 870 struct hci_conn_hash *h = &hdev->conn_hash; 871 struct hci_conn *c; 872 873 rcu_read_lock(); 874 875 list_for_each_entry_rcu(c, &h->list, list) { 876 if (c->type == LE_LINK && c->state == BT_CONNECT && 877 !test_bit(HCI_CONN_SCANNING, &c->flags)) { 878 rcu_read_unlock(); 879 return c; 880 } 881 } 882 883 rcu_read_unlock(); 884 885 return NULL; 886 } 887 888 int hci_disconnect(struct hci_conn *conn, __u8 reason); 889 bool hci_setup_sync(struct hci_conn *conn, __u16 handle); 890 void hci_sco_setup(struct hci_conn *conn, __u8 status); 891 892 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 893 u8 role); 894 int hci_conn_del(struct hci_conn *conn); 895 void hci_conn_hash_flush(struct hci_dev *hdev); 896 void hci_conn_check_pending(struct hci_dev *hdev); 897 898 struct hci_chan *hci_chan_create(struct hci_conn *conn); 899 void hci_chan_del(struct hci_chan *chan); 900 void hci_chan_list_flush(struct hci_conn *conn); 901 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle); 902 903 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 904 u8 dst_type, u8 sec_level, 905 u16 conn_timeout); 906 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 907 u8 dst_type, u8 sec_level, u16 conn_timeout, 908 u8 role, bdaddr_t *direct_rpa); 909 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 910 u8 sec_level, u8 auth_type); 911 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 912 __u16 setting); 913 int hci_conn_check_link_mode(struct hci_conn *conn); 914 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level); 915 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 916 bool initiator); 917 int hci_conn_switch_role(struct hci_conn *conn, __u8 role); 918 919 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active); 920 921 void hci_le_conn_failed(struct hci_conn *conn, u8 status); 922 923 /* 924 * hci_conn_get() and hci_conn_put() are used to control the life-time of an 925 * "hci_conn" object. They do not guarantee that the hci_conn object is running, 926 * working or anything else. They just guarantee that the object is available 927 * and can be dereferenced. So you can use its locks, local variables and any 928 * other constant data. 929 * Before accessing runtime data, you _must_ lock the object and then check that 930 * it is still running. As soon as you release the locks, the connection might 931 * get dropped, though. 932 * 933 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control 934 * how long the underlying connection is held. So every channel that runs on the 935 * hci_conn object calls this to prevent the connection from disappearing. As 936 * long as you hold a device, you must also guarantee that you have a valid 937 * reference to the device via hci_conn_get() (or the initial reference from 938 * hci_conn_add()). 939 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't 940 * break because nobody cares for that. But this means, we cannot use 941 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME). 942 */ 943 944 static inline struct hci_conn *hci_conn_get(struct hci_conn *conn) 945 { 946 get_device(&conn->dev); 947 return conn; 948 } 949 950 static inline void hci_conn_put(struct hci_conn *conn) 951 { 952 put_device(&conn->dev); 953 } 954 955 static inline void hci_conn_hold(struct hci_conn *conn) 956 { 957 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 958 959 atomic_inc(&conn->refcnt); 960 cancel_delayed_work(&conn->disc_work); 961 } 962 963 static inline void hci_conn_drop(struct hci_conn *conn) 964 { 965 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 966 967 if (atomic_dec_and_test(&conn->refcnt)) { 968 unsigned long timeo; 969 970 switch (conn->type) { 971 case ACL_LINK: 972 case LE_LINK: 973 cancel_delayed_work(&conn->idle_work); 974 if (conn->state == BT_CONNECTED) { 975 timeo = conn->disc_timeout; 976 if (!conn->out) 977 timeo *= 2; 978 } else { 979 timeo = 0; 980 } 981 break; 982 983 case AMP_LINK: 984 timeo = conn->disc_timeout; 985 break; 986 987 default: 988 timeo = 0; 989 break; 990 } 991 992 cancel_delayed_work(&conn->disc_work); 993 queue_delayed_work(conn->hdev->workqueue, 994 &conn->disc_work, timeo); 995 } 996 } 997 998 /* ----- HCI Devices ----- */ 999 static inline void hci_dev_put(struct hci_dev *d) 1000 { 1001 BT_DBG("%s orig refcnt %d", d->name, 1002 kref_read(&d->dev.kobj.kref)); 1003 1004 put_device(&d->dev); 1005 } 1006 1007 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d) 1008 { 1009 BT_DBG("%s orig refcnt %d", d->name, 1010 kref_read(&d->dev.kobj.kref)); 1011 1012 get_device(&d->dev); 1013 return d; 1014 } 1015 1016 #define hci_dev_lock(d) mutex_lock(&d->lock) 1017 #define hci_dev_unlock(d) mutex_unlock(&d->lock) 1018 1019 #define to_hci_dev(d) container_of(d, struct hci_dev, dev) 1020 #define to_hci_conn(c) container_of(c, struct hci_conn, dev) 1021 1022 static inline void *hci_get_drvdata(struct hci_dev *hdev) 1023 { 1024 return dev_get_drvdata(&hdev->dev); 1025 } 1026 1027 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data) 1028 { 1029 dev_set_drvdata(&hdev->dev, data); 1030 } 1031 1032 struct hci_dev *hci_dev_get(int index); 1033 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, u8 src_type); 1034 1035 struct hci_dev *hci_alloc_dev(void); 1036 void hci_free_dev(struct hci_dev *hdev); 1037 int hci_register_dev(struct hci_dev *hdev); 1038 void hci_unregister_dev(struct hci_dev *hdev); 1039 int hci_suspend_dev(struct hci_dev *hdev); 1040 int hci_resume_dev(struct hci_dev *hdev); 1041 int hci_reset_dev(struct hci_dev *hdev); 1042 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb); 1043 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb); 1044 __printf(2, 3) void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...); 1045 __printf(2, 3) void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...); 1046 int hci_dev_open(__u16 dev); 1047 int hci_dev_close(__u16 dev); 1048 int hci_dev_do_close(struct hci_dev *hdev); 1049 int hci_dev_reset(__u16 dev); 1050 int hci_dev_reset_stat(__u16 dev); 1051 int hci_dev_cmd(unsigned int cmd, void __user *arg); 1052 int hci_get_dev_list(void __user *arg); 1053 int hci_get_dev_info(void __user *arg); 1054 int hci_get_conn_list(void __user *arg); 1055 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg); 1056 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg); 1057 int hci_inquiry(void __user *arg); 1058 1059 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list, 1060 bdaddr_t *bdaddr, u8 type); 1061 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1062 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1063 void hci_bdaddr_list_clear(struct list_head *list); 1064 1065 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 1066 bdaddr_t *addr, u8 addr_type); 1067 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 1068 bdaddr_t *addr, u8 addr_type); 1069 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); 1070 void hci_conn_params_clear_disabled(struct hci_dev *hdev); 1071 1072 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 1073 bdaddr_t *addr, 1074 u8 addr_type); 1075 1076 void hci_uuids_clear(struct hci_dev *hdev); 1077 1078 void hci_link_keys_clear(struct hci_dev *hdev); 1079 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1080 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1081 bdaddr_t *bdaddr, u8 *val, u8 type, 1082 u8 pin_len, bool *persistent); 1083 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1084 u8 addr_type, u8 type, u8 authenticated, 1085 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand); 1086 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1087 u8 addr_type, u8 role); 1088 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); 1089 void hci_smp_ltks_clear(struct hci_dev *hdev); 1090 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1091 1092 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa); 1093 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1094 u8 addr_type); 1095 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1096 u8 addr_type, u8 val[16], bdaddr_t *rpa); 1097 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); 1098 void hci_smp_irks_clear(struct hci_dev *hdev); 1099 1100 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 1101 1102 void hci_remote_oob_data_clear(struct hci_dev *hdev); 1103 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1104 bdaddr_t *bdaddr, u8 bdaddr_type); 1105 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1106 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1107 u8 *hash256, u8 *rand256); 1108 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1109 u8 bdaddr_type); 1110 1111 void hci_adv_instances_clear(struct hci_dev *hdev); 1112 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance); 1113 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance); 1114 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, 1115 u16 adv_data_len, u8 *adv_data, 1116 u16 scan_rsp_len, u8 *scan_rsp_data, 1117 u16 timeout, u16 duration); 1118 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance); 1119 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired); 1120 1121 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb); 1122 1123 void hci_init_sysfs(struct hci_dev *hdev); 1124 void hci_conn_init_sysfs(struct hci_conn *conn); 1125 void hci_conn_add_sysfs(struct hci_conn *conn); 1126 void hci_conn_del_sysfs(struct hci_conn *conn); 1127 1128 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev)) 1129 1130 /* ----- LMP capabilities ----- */ 1131 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT) 1132 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH) 1133 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD) 1134 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF) 1135 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK) 1136 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ) 1137 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO) 1138 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR)) 1139 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE) 1140 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR) 1141 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC) 1142 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ) 1143 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR)) 1144 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR) 1145 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH) 1146 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO) 1147 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR) 1148 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES) 1149 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT) 1150 #define lmp_edr_2m_capable(dev) ((dev)->features[0][3] & LMP_EDR_2M) 1151 #define lmp_edr_3m_capable(dev) ((dev)->features[0][3] & LMP_EDR_3M) 1152 #define lmp_edr_3slot_capable(dev) ((dev)->features[0][4] & LMP_EDR_3SLOT) 1153 #define lmp_edr_5slot_capable(dev) ((dev)->features[0][5] & LMP_EDR_5SLOT) 1154 1155 /* ----- Extended LMP capabilities ----- */ 1156 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER) 1157 #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE) 1158 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN) 1159 #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN) 1160 #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC) 1161 #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING) 1162 1163 /* ----- Host capabilities ----- */ 1164 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP) 1165 #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC) 1166 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE)) 1167 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR)) 1168 1169 #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \ 1170 !hci_dev_test_flag(dev, HCI_AUTO_OFF)) 1171 #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \ 1172 hci_dev_test_flag(dev, HCI_SC_ENABLED)) 1173 1174 #define scan_1m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_1M) || \ 1175 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_1M)) 1176 1177 #define scan_2m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_2M) || \ 1178 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_2M)) 1179 1180 #define scan_coded(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_CODED) || \ 1181 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_CODED)) 1182 1183 /* Use ext scanning if set ext scan param and ext scan enable is supported */ 1184 #define use_ext_scan(dev) (((dev)->commands[37] & 0x20) && \ 1185 ((dev)->commands[37] & 0x40)) 1186 /* Use ext create connection if command is supported */ 1187 #define use_ext_conn(dev) ((dev)->commands[37] & 0x80) 1188 1189 /* Extended advertising support */ 1190 #define ext_adv_capable(dev) (((dev)->le_features[1] & HCI_LE_EXT_ADV)) 1191 1192 /* ----- HCI protocols ----- */ 1193 #define HCI_PROTO_DEFER 0x01 1194 1195 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 1196 __u8 type, __u8 *flags) 1197 { 1198 switch (type) { 1199 case ACL_LINK: 1200 return l2cap_connect_ind(hdev, bdaddr); 1201 1202 case SCO_LINK: 1203 case ESCO_LINK: 1204 return sco_connect_ind(hdev, bdaddr, flags); 1205 1206 default: 1207 BT_ERR("unknown link type %d", type); 1208 return -EINVAL; 1209 } 1210 } 1211 1212 static inline int hci_proto_disconn_ind(struct hci_conn *conn) 1213 { 1214 if (conn->type != ACL_LINK && conn->type != LE_LINK) 1215 return HCI_ERROR_REMOTE_USER_TERM; 1216 1217 return l2cap_disconn_ind(conn); 1218 } 1219 1220 /* ----- HCI callbacks ----- */ 1221 struct hci_cb { 1222 struct list_head list; 1223 1224 char *name; 1225 1226 void (*connect_cfm) (struct hci_conn *conn, __u8 status); 1227 void (*disconn_cfm) (struct hci_conn *conn, __u8 status); 1228 void (*security_cfm) (struct hci_conn *conn, __u8 status, 1229 __u8 encrypt); 1230 void (*key_change_cfm) (struct hci_conn *conn, __u8 status); 1231 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role); 1232 }; 1233 1234 static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status) 1235 { 1236 struct hci_cb *cb; 1237 1238 mutex_lock(&hci_cb_list_lock); 1239 list_for_each_entry(cb, &hci_cb_list, list) { 1240 if (cb->connect_cfm) 1241 cb->connect_cfm(conn, status); 1242 } 1243 mutex_unlock(&hci_cb_list_lock); 1244 1245 if (conn->connect_cfm_cb) 1246 conn->connect_cfm_cb(conn, status); 1247 } 1248 1249 static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason) 1250 { 1251 struct hci_cb *cb; 1252 1253 mutex_lock(&hci_cb_list_lock); 1254 list_for_each_entry(cb, &hci_cb_list, list) { 1255 if (cb->disconn_cfm) 1256 cb->disconn_cfm(conn, reason); 1257 } 1258 mutex_unlock(&hci_cb_list_lock); 1259 1260 if (conn->disconn_cfm_cb) 1261 conn->disconn_cfm_cb(conn, reason); 1262 } 1263 1264 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status) 1265 { 1266 struct hci_cb *cb; 1267 __u8 encrypt; 1268 1269 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1270 return; 1271 1272 encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00; 1273 1274 mutex_lock(&hci_cb_list_lock); 1275 list_for_each_entry(cb, &hci_cb_list, list) { 1276 if (cb->security_cfm) 1277 cb->security_cfm(conn, status, encrypt); 1278 } 1279 mutex_unlock(&hci_cb_list_lock); 1280 1281 if (conn->security_cfm_cb) 1282 conn->security_cfm_cb(conn, status); 1283 } 1284 1285 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status, 1286 __u8 encrypt) 1287 { 1288 struct hci_cb *cb; 1289 1290 if (conn->sec_level == BT_SECURITY_SDP) 1291 conn->sec_level = BT_SECURITY_LOW; 1292 1293 if (conn->pending_sec_level > conn->sec_level) 1294 conn->sec_level = conn->pending_sec_level; 1295 1296 mutex_lock(&hci_cb_list_lock); 1297 list_for_each_entry(cb, &hci_cb_list, list) { 1298 if (cb->security_cfm) 1299 cb->security_cfm(conn, status, encrypt); 1300 } 1301 mutex_unlock(&hci_cb_list_lock); 1302 1303 if (conn->security_cfm_cb) 1304 conn->security_cfm_cb(conn, status); 1305 } 1306 1307 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status) 1308 { 1309 struct hci_cb *cb; 1310 1311 mutex_lock(&hci_cb_list_lock); 1312 list_for_each_entry(cb, &hci_cb_list, list) { 1313 if (cb->key_change_cfm) 1314 cb->key_change_cfm(conn, status); 1315 } 1316 mutex_unlock(&hci_cb_list_lock); 1317 } 1318 1319 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status, 1320 __u8 role) 1321 { 1322 struct hci_cb *cb; 1323 1324 mutex_lock(&hci_cb_list_lock); 1325 list_for_each_entry(cb, &hci_cb_list, list) { 1326 if (cb->role_switch_cfm) 1327 cb->role_switch_cfm(conn, status, role); 1328 } 1329 mutex_unlock(&hci_cb_list_lock); 1330 } 1331 1332 static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type, 1333 size_t *data_len) 1334 { 1335 size_t parsed = 0; 1336 1337 if (eir_len < 2) 1338 return NULL; 1339 1340 while (parsed < eir_len - 1) { 1341 u8 field_len = eir[0]; 1342 1343 if (field_len == 0) 1344 break; 1345 1346 parsed += field_len + 1; 1347 1348 if (parsed > eir_len) 1349 break; 1350 1351 if (eir[1] != type) { 1352 eir += field_len + 1; 1353 continue; 1354 } 1355 1356 /* Zero length data */ 1357 if (field_len == 1) 1358 return NULL; 1359 1360 if (data_len) 1361 *data_len = field_len - 1; 1362 1363 return &eir[2]; 1364 } 1365 1366 return NULL; 1367 } 1368 1369 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type) 1370 { 1371 if (addr_type != ADDR_LE_DEV_RANDOM) 1372 return false; 1373 1374 if ((bdaddr->b[5] & 0xc0) == 0x40) 1375 return true; 1376 1377 return false; 1378 } 1379 1380 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type) 1381 { 1382 if (addr_type == ADDR_LE_DEV_PUBLIC) 1383 return true; 1384 1385 /* Check for Random Static address type */ 1386 if ((addr->b[5] & 0xc0) == 0xc0) 1387 return true; 1388 1389 return false; 1390 } 1391 1392 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev, 1393 bdaddr_t *bdaddr, u8 addr_type) 1394 { 1395 if (!hci_bdaddr_is_rpa(bdaddr, addr_type)) 1396 return NULL; 1397 1398 return hci_find_irk_by_rpa(hdev, bdaddr); 1399 } 1400 1401 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency, 1402 u16 to_multiplier) 1403 { 1404 u16 max_latency; 1405 1406 if (min > max || min < 6 || max > 3200) 1407 return -EINVAL; 1408 1409 if (to_multiplier < 10 || to_multiplier > 3200) 1410 return -EINVAL; 1411 1412 if (max >= to_multiplier * 8) 1413 return -EINVAL; 1414 1415 max_latency = (to_multiplier * 4 / max) - 1; 1416 if (latency > 499 || latency > max_latency) 1417 return -EINVAL; 1418 1419 return 0; 1420 } 1421 1422 int hci_register_cb(struct hci_cb *hcb); 1423 int hci_unregister_cb(struct hci_cb *hcb); 1424 1425 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1426 const void *param, u32 timeout); 1427 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 1428 const void *param, u8 event, u32 timeout); 1429 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 1430 const void *param); 1431 1432 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 1433 const void *param); 1434 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags); 1435 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb); 1436 1437 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode); 1438 1439 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1440 const void *param, u32 timeout); 1441 1442 /* ----- HCI Sockets ----- */ 1443 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb); 1444 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 1445 int flag, struct sock *skip_sk); 1446 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb); 1447 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, 1448 void *data, u16 data_len, ktime_t tstamp, 1449 int flag, struct sock *skip_sk); 1450 1451 void hci_sock_dev_event(struct hci_dev *hdev, int event); 1452 1453 #define HCI_MGMT_VAR_LEN BIT(0) 1454 #define HCI_MGMT_NO_HDEV BIT(1) 1455 #define HCI_MGMT_UNTRUSTED BIT(2) 1456 #define HCI_MGMT_UNCONFIGURED BIT(3) 1457 1458 struct hci_mgmt_handler { 1459 int (*func) (struct sock *sk, struct hci_dev *hdev, void *data, 1460 u16 data_len); 1461 size_t data_len; 1462 unsigned long flags; 1463 }; 1464 1465 struct hci_mgmt_chan { 1466 struct list_head list; 1467 unsigned short channel; 1468 size_t handler_count; 1469 const struct hci_mgmt_handler *handlers; 1470 void (*hdev_init) (struct sock *sk, struct hci_dev *hdev); 1471 }; 1472 1473 int hci_mgmt_chan_register(struct hci_mgmt_chan *c); 1474 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c); 1475 1476 /* Management interface */ 1477 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR)) 1478 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \ 1479 BIT(BDADDR_LE_RANDOM)) 1480 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \ 1481 BIT(BDADDR_LE_PUBLIC) | \ 1482 BIT(BDADDR_LE_RANDOM)) 1483 1484 /* These LE scan and inquiry parameters were chosen according to LE General 1485 * Discovery Procedure specification. 1486 */ 1487 #define DISCOV_LE_SCAN_WIN 0x12 1488 #define DISCOV_LE_SCAN_INT 0x12 1489 #define DISCOV_LE_TIMEOUT 10240 /* msec */ 1490 #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */ 1491 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04 1492 #define DISCOV_BREDR_INQUIRY_LEN 0x08 1493 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */ 1494 1495 void mgmt_fill_version_info(void *ver); 1496 int mgmt_new_settings(struct hci_dev *hdev); 1497 void mgmt_index_added(struct hci_dev *hdev); 1498 void mgmt_index_removed(struct hci_dev *hdev); 1499 void mgmt_set_powered_failed(struct hci_dev *hdev, int err); 1500 void mgmt_power_on(struct hci_dev *hdev, int err); 1501 void __mgmt_power_off(struct hci_dev *hdev); 1502 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, 1503 bool persistent); 1504 void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn, 1505 u32 flags, u8 *name, u8 name_len); 1506 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, 1507 u8 link_type, u8 addr_type, u8 reason, 1508 bool mgmt_connected); 1509 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, 1510 u8 link_type, u8 addr_type, u8 status); 1511 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1512 u8 addr_type, u8 status); 1513 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure); 1514 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1515 u8 status); 1516 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1517 u8 status); 1518 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1519 u8 link_type, u8 addr_type, u32 value, 1520 u8 confirm_hint); 1521 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1522 u8 link_type, u8 addr_type, u8 status); 1523 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1524 u8 link_type, u8 addr_type, u8 status); 1525 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1526 u8 link_type, u8 addr_type); 1527 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1528 u8 link_type, u8 addr_type, u8 status); 1529 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1530 u8 link_type, u8 addr_type, u8 status); 1531 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, 1532 u8 link_type, u8 addr_type, u32 passkey, 1533 u8 entered); 1534 void mgmt_auth_failed(struct hci_conn *conn, u8 status); 1535 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status); 1536 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); 1537 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, 1538 u8 status); 1539 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status); 1540 void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status); 1541 void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status); 1542 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1543 u8 addr_type, u8 *dev_class, s8 rssi, u32 flags, 1544 u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len); 1545 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1546 u8 addr_type, s8 rssi, u8 *name, u8 name_len); 1547 void mgmt_discovering(struct hci_dev *hdev, u8 discovering); 1548 bool mgmt_powering_down(struct hci_dev *hdev); 1549 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent); 1550 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent); 1551 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk, 1552 bool persistent); 1553 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr, 1554 u8 bdaddr_type, u8 store_hint, u16 min_interval, 1555 u16 max_interval, u16 latency, u16 timeout); 1556 void mgmt_smp_complete(struct hci_conn *conn, bool complete); 1557 bool mgmt_get_connectable(struct hci_dev *hdev); 1558 void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status); 1559 void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status); 1560 u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev); 1561 void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev, 1562 u8 instance); 1563 void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev, 1564 u8 instance); 1565 int mgmt_phy_configuration_changed(struct hci_dev *hdev, struct sock *skip); 1566 1567 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 1568 u16 to_multiplier); 1569 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 1570 __u8 ltk[16], __u8 key_size); 1571 1572 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 1573 u8 *bdaddr_type); 1574 1575 #define SCO_AIRMODE_MASK 0x0003 1576 #define SCO_AIRMODE_CVSD 0x0000 1577 #define SCO_AIRMODE_TRANSP 0x0003 1578 1579 #endif /* __HCI_CORE_H */ 1580