1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 #ifndef __HCI_CORE_H 26 #define __HCI_CORE_H 27 28 #include <linux/leds.h> 29 #include <linux/rculist.h> 30 31 #include <net/bluetooth/hci.h> 32 #include <net/bluetooth/hci_sock.h> 33 34 /* HCI priority */ 35 #define HCI_PRIO_MAX 7 36 37 /* HCI Core structures */ 38 struct inquiry_data { 39 bdaddr_t bdaddr; 40 __u8 pscan_rep_mode; 41 __u8 pscan_period_mode; 42 __u8 pscan_mode; 43 __u8 dev_class[3]; 44 __le16 clock_offset; 45 __s8 rssi; 46 __u8 ssp_mode; 47 }; 48 49 struct inquiry_entry { 50 struct list_head all; /* inq_cache.all */ 51 struct list_head list; /* unknown or resolve */ 52 enum { 53 NAME_NOT_KNOWN, 54 NAME_NEEDED, 55 NAME_PENDING, 56 NAME_KNOWN, 57 } name_state; 58 __u32 timestamp; 59 struct inquiry_data data; 60 }; 61 62 struct discovery_state { 63 int type; 64 enum { 65 DISCOVERY_STOPPED, 66 DISCOVERY_STARTING, 67 DISCOVERY_FINDING, 68 DISCOVERY_RESOLVING, 69 DISCOVERY_STOPPING, 70 } state; 71 struct list_head all; /* All devices found during inquiry */ 72 struct list_head unknown; /* Name state not known */ 73 struct list_head resolve; /* Name needs to be resolved */ 74 __u32 timestamp; 75 bdaddr_t last_adv_addr; 76 u8 last_adv_addr_type; 77 s8 last_adv_rssi; 78 u32 last_adv_flags; 79 u8 last_adv_data[HCI_MAX_AD_LENGTH]; 80 u8 last_adv_data_len; 81 bool report_invalid_rssi; 82 bool result_filtering; 83 bool limited; 84 s8 rssi; 85 u16 uuid_count; 86 u8 (*uuids)[16]; 87 unsigned long scan_start; 88 unsigned long scan_duration; 89 }; 90 91 #define SUSPEND_NOTIFIER_TIMEOUT msecs_to_jiffies(2000) /* 2 seconds */ 92 93 enum suspend_tasks { 94 SUSPEND_PAUSE_DISCOVERY, 95 SUSPEND_UNPAUSE_DISCOVERY, 96 97 SUSPEND_PAUSE_ADVERTISING, 98 SUSPEND_UNPAUSE_ADVERTISING, 99 100 SUSPEND_SCAN_DISABLE, 101 SUSPEND_SCAN_ENABLE, 102 SUSPEND_DISCONNECTING, 103 104 SUSPEND_POWERING_DOWN, 105 106 SUSPEND_PREPARE_NOTIFIER, 107 __SUSPEND_NUM_TASKS 108 }; 109 110 enum suspended_state { 111 BT_RUNNING = 0, 112 BT_SUSPEND_DISCONNECT, 113 BT_SUSPEND_CONFIGURE_WAKE, 114 }; 115 116 struct hci_conn_hash { 117 struct list_head list; 118 unsigned int acl_num; 119 unsigned int amp_num; 120 unsigned int sco_num; 121 unsigned int le_num; 122 unsigned int le_num_slave; 123 }; 124 125 struct bdaddr_list { 126 struct list_head list; 127 bdaddr_t bdaddr; 128 u8 bdaddr_type; 129 }; 130 131 struct bdaddr_list_with_irk { 132 struct list_head list; 133 bdaddr_t bdaddr; 134 u8 bdaddr_type; 135 u8 peer_irk[16]; 136 u8 local_irk[16]; 137 }; 138 139 struct bt_uuid { 140 struct list_head list; 141 u8 uuid[16]; 142 u8 size; 143 u8 svc_hint; 144 }; 145 146 struct blocked_key { 147 struct list_head list; 148 struct rcu_head rcu; 149 u8 type; 150 u8 val[16]; 151 }; 152 153 struct smp_csrk { 154 bdaddr_t bdaddr; 155 u8 bdaddr_type; 156 u8 type; 157 u8 val[16]; 158 }; 159 160 struct smp_ltk { 161 struct list_head list; 162 struct rcu_head rcu; 163 bdaddr_t bdaddr; 164 u8 bdaddr_type; 165 u8 authenticated; 166 u8 type; 167 u8 enc_size; 168 __le16 ediv; 169 __le64 rand; 170 u8 val[16]; 171 }; 172 173 struct smp_irk { 174 struct list_head list; 175 struct rcu_head rcu; 176 bdaddr_t rpa; 177 bdaddr_t bdaddr; 178 u8 addr_type; 179 u8 val[16]; 180 }; 181 182 struct link_key { 183 struct list_head list; 184 struct rcu_head rcu; 185 bdaddr_t bdaddr; 186 u8 type; 187 u8 val[HCI_LINK_KEY_SIZE]; 188 u8 pin_len; 189 }; 190 191 struct oob_data { 192 struct list_head list; 193 bdaddr_t bdaddr; 194 u8 bdaddr_type; 195 u8 present; 196 u8 hash192[16]; 197 u8 rand192[16]; 198 u8 hash256[16]; 199 u8 rand256[16]; 200 }; 201 202 struct adv_info { 203 struct list_head list; 204 bool pending; 205 __u8 instance; 206 __u32 flags; 207 __u16 timeout; 208 __u16 remaining_time; 209 __u16 duration; 210 __u16 adv_data_len; 211 __u8 adv_data[HCI_MAX_AD_LENGTH]; 212 __u16 scan_rsp_len; 213 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH]; 214 __s8 tx_power; 215 bdaddr_t random_addr; 216 bool rpa_expired; 217 struct delayed_work rpa_expired_cb; 218 }; 219 220 #define HCI_MAX_ADV_INSTANCES 5 221 #define HCI_DEFAULT_ADV_DURATION 2 222 223 #define HCI_MAX_SHORT_NAME_LENGTH 10 224 225 /* Min encryption key size to match with SMP */ 226 #define HCI_MIN_ENC_KEY_SIZE 7 227 228 /* Default LE RPA expiry time, 15 minutes */ 229 #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60) 230 231 /* Default min/max age of connection information (1s/3s) */ 232 #define DEFAULT_CONN_INFO_MIN_AGE 1000 233 #define DEFAULT_CONN_INFO_MAX_AGE 3000 234 /* Default authenticated payload timeout 30s */ 235 #define DEFAULT_AUTH_PAYLOAD_TIMEOUT 0x0bb8 236 237 struct amp_assoc { 238 __u16 len; 239 __u16 offset; 240 __u16 rem_len; 241 __u16 len_so_far; 242 __u8 data[HCI_MAX_AMP_ASSOC_SIZE]; 243 }; 244 245 #define HCI_MAX_PAGES 3 246 247 struct hci_dev { 248 struct list_head list; 249 struct mutex lock; 250 251 char name[8]; 252 unsigned long flags; 253 __u16 id; 254 __u8 bus; 255 __u8 dev_type; 256 bdaddr_t bdaddr; 257 bdaddr_t setup_addr; 258 bdaddr_t public_addr; 259 bdaddr_t random_addr; 260 bdaddr_t static_addr; 261 __u8 adv_addr_type; 262 __u8 dev_name[HCI_MAX_NAME_LENGTH]; 263 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH]; 264 __u8 eir[HCI_MAX_EIR_LENGTH]; 265 __u16 appearance; 266 __u8 dev_class[3]; 267 __u8 major_class; 268 __u8 minor_class; 269 __u8 max_page; 270 __u8 features[HCI_MAX_PAGES][8]; 271 __u8 le_features[8]; 272 __u8 le_white_list_size; 273 __u8 le_resolv_list_size; 274 __u8 le_num_of_adv_sets; 275 __u8 le_states[8]; 276 __u8 commands[64]; 277 __u8 hci_ver; 278 __u16 hci_rev; 279 __u8 lmp_ver; 280 __u16 manufacturer; 281 __u16 lmp_subver; 282 __u16 voice_setting; 283 __u8 num_iac; 284 __u8 stored_max_keys; 285 __u8 stored_num_keys; 286 __u8 io_capability; 287 __s8 inq_tx_power; 288 __u8 err_data_reporting; 289 __u16 page_scan_interval; 290 __u16 page_scan_window; 291 __u8 page_scan_type; 292 __u8 le_adv_channel_map; 293 __u16 le_adv_min_interval; 294 __u16 le_adv_max_interval; 295 __u8 le_scan_type; 296 __u16 le_scan_interval; 297 __u16 le_scan_window; 298 __u16 le_conn_min_interval; 299 __u16 le_conn_max_interval; 300 __u16 le_conn_latency; 301 __u16 le_supv_timeout; 302 __u16 le_def_tx_len; 303 __u16 le_def_tx_time; 304 __u16 le_max_tx_len; 305 __u16 le_max_tx_time; 306 __u16 le_max_rx_len; 307 __u16 le_max_rx_time; 308 __u8 le_max_key_size; 309 __u8 le_min_key_size; 310 __u16 discov_interleaved_timeout; 311 __u16 conn_info_min_age; 312 __u16 conn_info_max_age; 313 __u16 auth_payload_timeout; 314 __u8 min_enc_key_size; 315 __u8 max_enc_key_size; 316 __u8 pairing_opts; 317 __u8 ssp_debug_mode; 318 __u8 hw_error_code; 319 __u32 clock; 320 321 __u16 devid_source; 322 __u16 devid_vendor; 323 __u16 devid_product; 324 __u16 devid_version; 325 326 __u16 pkt_type; 327 __u16 esco_type; 328 __u16 link_policy; 329 __u16 link_mode; 330 331 __u32 idle_timeout; 332 __u16 sniff_min_interval; 333 __u16 sniff_max_interval; 334 335 __u8 amp_status; 336 __u32 amp_total_bw; 337 __u32 amp_max_bw; 338 __u32 amp_min_latency; 339 __u32 amp_max_pdu; 340 __u8 amp_type; 341 __u16 amp_pal_cap; 342 __u16 amp_assoc_size; 343 __u32 amp_max_flush_to; 344 __u32 amp_be_flush_to; 345 346 struct amp_assoc loc_assoc; 347 348 __u8 flow_ctl_mode; 349 350 unsigned int auto_accept_delay; 351 352 unsigned long quirks; 353 354 atomic_t cmd_cnt; 355 unsigned int acl_cnt; 356 unsigned int sco_cnt; 357 unsigned int le_cnt; 358 359 unsigned int acl_mtu; 360 unsigned int sco_mtu; 361 unsigned int le_mtu; 362 unsigned int acl_pkts; 363 unsigned int sco_pkts; 364 unsigned int le_pkts; 365 366 __u16 block_len; 367 __u16 block_mtu; 368 __u16 num_blocks; 369 __u16 block_cnt; 370 371 unsigned long acl_last_tx; 372 unsigned long sco_last_tx; 373 unsigned long le_last_tx; 374 375 __u8 le_tx_def_phys; 376 __u8 le_rx_def_phys; 377 378 struct workqueue_struct *workqueue; 379 struct workqueue_struct *req_workqueue; 380 381 struct work_struct power_on; 382 struct delayed_work power_off; 383 struct work_struct error_reset; 384 385 __u16 discov_timeout; 386 struct delayed_work discov_off; 387 388 struct delayed_work service_cache; 389 390 struct delayed_work cmd_timer; 391 392 struct work_struct rx_work; 393 struct work_struct cmd_work; 394 struct work_struct tx_work; 395 396 struct work_struct discov_update; 397 struct work_struct bg_scan_update; 398 struct work_struct scan_update; 399 struct work_struct connectable_update; 400 struct work_struct discoverable_update; 401 struct delayed_work le_scan_disable; 402 struct delayed_work le_scan_restart; 403 404 struct sk_buff_head rx_q; 405 struct sk_buff_head raw_q; 406 struct sk_buff_head cmd_q; 407 408 struct sk_buff *sent_cmd; 409 410 struct mutex req_lock; 411 wait_queue_head_t req_wait_q; 412 __u32 req_status; 413 __u32 req_result; 414 struct sk_buff *req_skb; 415 416 void *smp_data; 417 void *smp_bredr_data; 418 419 struct discovery_state discovery; 420 421 int discovery_old_state; 422 bool discovery_paused; 423 int advertising_old_state; 424 bool advertising_paused; 425 426 struct notifier_block suspend_notifier; 427 struct work_struct suspend_prepare; 428 enum suspended_state suspend_state_next; 429 enum suspended_state suspend_state; 430 bool scanning_paused; 431 bool suspended; 432 433 wait_queue_head_t suspend_wait_q; 434 DECLARE_BITMAP(suspend_tasks, __SUSPEND_NUM_TASKS); 435 436 struct hci_conn_hash conn_hash; 437 438 struct list_head mgmt_pending; 439 struct list_head blacklist; 440 struct list_head whitelist; 441 struct list_head wakeable; 442 struct list_head uuids; 443 struct list_head link_keys; 444 struct list_head long_term_keys; 445 struct list_head identity_resolving_keys; 446 struct list_head remote_oob_data; 447 struct list_head le_white_list; 448 struct list_head le_resolv_list; 449 struct list_head le_conn_params; 450 struct list_head pend_le_conns; 451 struct list_head pend_le_reports; 452 struct list_head blocked_keys; 453 454 struct hci_dev_stats stat; 455 456 atomic_t promisc; 457 458 const char *hw_info; 459 const char *fw_info; 460 struct dentry *debugfs; 461 462 struct device dev; 463 464 struct rfkill *rfkill; 465 466 DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS); 467 468 __s8 adv_tx_power; 469 __u8 adv_data[HCI_MAX_AD_LENGTH]; 470 __u8 adv_data_len; 471 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH]; 472 __u8 scan_rsp_data_len; 473 474 struct list_head adv_instances; 475 unsigned int adv_instance_cnt; 476 __u8 cur_adv_instance; 477 __u16 adv_instance_timeout; 478 struct delayed_work adv_instance_expire; 479 480 __u8 irk[16]; 481 __u32 rpa_timeout; 482 struct delayed_work rpa_expired; 483 bdaddr_t rpa; 484 485 #if IS_ENABLED(CONFIG_BT_LEDS) 486 struct led_trigger *power_led; 487 #endif 488 489 #if IS_ENABLED(CONFIG_BT_MSFTEXT) 490 __u16 msft_opcode; 491 void *msft_data; 492 #endif 493 494 int (*open)(struct hci_dev *hdev); 495 int (*close)(struct hci_dev *hdev); 496 int (*flush)(struct hci_dev *hdev); 497 int (*setup)(struct hci_dev *hdev); 498 int (*shutdown)(struct hci_dev *hdev); 499 int (*send)(struct hci_dev *hdev, struct sk_buff *skb); 500 void (*notify)(struct hci_dev *hdev, unsigned int evt); 501 void (*hw_error)(struct hci_dev *hdev, u8 code); 502 int (*post_init)(struct hci_dev *hdev); 503 int (*set_diag)(struct hci_dev *hdev, bool enable); 504 int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr); 505 void (*cmd_timeout)(struct hci_dev *hdev); 506 bool (*prevent_wake)(struct hci_dev *hdev); 507 }; 508 509 #define HCI_PHY_HANDLE(handle) (handle & 0xff) 510 511 struct hci_conn { 512 struct list_head list; 513 514 atomic_t refcnt; 515 516 bdaddr_t dst; 517 __u8 dst_type; 518 bdaddr_t src; 519 __u8 src_type; 520 bdaddr_t init_addr; 521 __u8 init_addr_type; 522 bdaddr_t resp_addr; 523 __u8 resp_addr_type; 524 __u16 handle; 525 __u16 state; 526 __u8 mode; 527 __u8 type; 528 __u8 role; 529 bool out; 530 __u8 attempt; 531 __u8 dev_class[3]; 532 __u8 features[HCI_MAX_PAGES][8]; 533 __u16 pkt_type; 534 __u16 link_policy; 535 __u8 key_type; 536 __u8 auth_type; 537 __u8 sec_level; 538 __u8 pending_sec_level; 539 __u8 pin_length; 540 __u8 enc_key_size; 541 __u8 io_capability; 542 __u32 passkey_notify; 543 __u8 passkey_entered; 544 __u16 disc_timeout; 545 __u16 conn_timeout; 546 __u16 setting; 547 __u16 auth_payload_timeout; 548 __u16 le_conn_min_interval; 549 __u16 le_conn_max_interval; 550 __u16 le_conn_interval; 551 __u16 le_conn_latency; 552 __u16 le_supv_timeout; 553 __u8 le_adv_data[HCI_MAX_AD_LENGTH]; 554 __u8 le_adv_data_len; 555 __u8 le_tx_phy; 556 __u8 le_rx_phy; 557 __s8 rssi; 558 __s8 tx_power; 559 __s8 max_tx_power; 560 unsigned long flags; 561 562 __u32 clock; 563 __u16 clock_accuracy; 564 565 unsigned long conn_info_timestamp; 566 567 __u8 remote_cap; 568 __u8 remote_auth; 569 __u8 remote_id; 570 571 unsigned int sent; 572 573 struct sk_buff_head data_q; 574 struct list_head chan_list; 575 576 struct delayed_work disc_work; 577 struct delayed_work auto_accept_work; 578 struct delayed_work idle_work; 579 struct delayed_work le_conn_timeout; 580 struct work_struct le_scan_cleanup; 581 582 struct device dev; 583 struct dentry *debugfs; 584 585 struct hci_dev *hdev; 586 void *l2cap_data; 587 void *sco_data; 588 struct amp_mgr *amp_mgr; 589 590 struct hci_conn *link; 591 592 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status); 593 void (*security_cfm_cb) (struct hci_conn *conn, u8 status); 594 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason); 595 }; 596 597 struct hci_chan { 598 struct list_head list; 599 __u16 handle; 600 struct hci_conn *conn; 601 struct sk_buff_head data_q; 602 unsigned int sent; 603 __u8 state; 604 }; 605 606 struct hci_conn_params { 607 struct list_head list; 608 struct list_head action; 609 610 bdaddr_t addr; 611 u8 addr_type; 612 613 u16 conn_min_interval; 614 u16 conn_max_interval; 615 u16 conn_latency; 616 u16 supervision_timeout; 617 618 enum { 619 HCI_AUTO_CONN_DISABLED, 620 HCI_AUTO_CONN_REPORT, 621 HCI_AUTO_CONN_DIRECT, 622 HCI_AUTO_CONN_ALWAYS, 623 HCI_AUTO_CONN_LINK_LOSS, 624 HCI_AUTO_CONN_EXPLICIT, 625 } auto_connect; 626 627 struct hci_conn *conn; 628 bool explicit_connect; 629 bool wakeable; 630 }; 631 632 extern struct list_head hci_dev_list; 633 extern struct list_head hci_cb_list; 634 extern rwlock_t hci_dev_list_lock; 635 extern struct mutex hci_cb_list_lock; 636 637 #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags) 638 #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags) 639 #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags) 640 #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags) 641 #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags) 642 #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags) 643 #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags) 644 645 #define hci_dev_clear_volatile_flags(hdev) \ 646 do { \ 647 hci_dev_clear_flag(hdev, HCI_LE_SCAN); \ 648 hci_dev_clear_flag(hdev, HCI_LE_ADV); \ 649 hci_dev_clear_flag(hdev, HCI_LL_RPA_RESOLUTION);\ 650 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \ 651 } while (0) 652 653 /* ----- HCI interface to upper protocols ----- */ 654 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr); 655 int l2cap_disconn_ind(struct hci_conn *hcon); 656 void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags); 657 658 #if IS_ENABLED(CONFIG_BT_BREDR) 659 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); 660 void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb); 661 #else 662 static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 663 __u8 *flags) 664 { 665 return 0; 666 } 667 668 static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb) 669 { 670 } 671 #endif 672 673 /* ----- Inquiry cache ----- */ 674 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */ 675 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */ 676 677 static inline void discovery_init(struct hci_dev *hdev) 678 { 679 hdev->discovery.state = DISCOVERY_STOPPED; 680 INIT_LIST_HEAD(&hdev->discovery.all); 681 INIT_LIST_HEAD(&hdev->discovery.unknown); 682 INIT_LIST_HEAD(&hdev->discovery.resolve); 683 hdev->discovery.report_invalid_rssi = true; 684 hdev->discovery.rssi = HCI_RSSI_INVALID; 685 } 686 687 static inline void hci_discovery_filter_clear(struct hci_dev *hdev) 688 { 689 hdev->discovery.result_filtering = false; 690 hdev->discovery.report_invalid_rssi = true; 691 hdev->discovery.rssi = HCI_RSSI_INVALID; 692 hdev->discovery.uuid_count = 0; 693 kfree(hdev->discovery.uuids); 694 hdev->discovery.uuids = NULL; 695 hdev->discovery.scan_start = 0; 696 hdev->discovery.scan_duration = 0; 697 } 698 699 bool hci_discovery_active(struct hci_dev *hdev); 700 701 void hci_discovery_set_state(struct hci_dev *hdev, int state); 702 703 static inline int inquiry_cache_empty(struct hci_dev *hdev) 704 { 705 return list_empty(&hdev->discovery.all); 706 } 707 708 static inline long inquiry_cache_age(struct hci_dev *hdev) 709 { 710 struct discovery_state *c = &hdev->discovery; 711 return jiffies - c->timestamp; 712 } 713 714 static inline long inquiry_entry_age(struct inquiry_entry *e) 715 { 716 return jiffies - e->timestamp; 717 } 718 719 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 720 bdaddr_t *bdaddr); 721 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 722 bdaddr_t *bdaddr); 723 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 724 bdaddr_t *bdaddr, 725 int state); 726 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 727 struct inquiry_entry *ie); 728 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 729 bool name_known); 730 void hci_inquiry_cache_flush(struct hci_dev *hdev); 731 732 /* ----- HCI Connections ----- */ 733 enum { 734 HCI_CONN_AUTH_PEND, 735 HCI_CONN_REAUTH_PEND, 736 HCI_CONN_ENCRYPT_PEND, 737 HCI_CONN_RSWITCH_PEND, 738 HCI_CONN_MODE_CHANGE_PEND, 739 HCI_CONN_SCO_SETUP_PEND, 740 HCI_CONN_MGMT_CONNECTED, 741 HCI_CONN_SSP_ENABLED, 742 HCI_CONN_SC_ENABLED, 743 HCI_CONN_AES_CCM, 744 HCI_CONN_POWER_SAVE, 745 HCI_CONN_FLUSH_KEY, 746 HCI_CONN_ENCRYPT, 747 HCI_CONN_AUTH, 748 HCI_CONN_SECURE, 749 HCI_CONN_FIPS, 750 HCI_CONN_STK_ENCRYPT, 751 HCI_CONN_AUTH_INITIATOR, 752 HCI_CONN_DROP, 753 HCI_CONN_PARAM_REMOVAL_PEND, 754 HCI_CONN_NEW_LINK_KEY, 755 HCI_CONN_SCANNING, 756 HCI_CONN_AUTH_FAILURE, 757 }; 758 759 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn) 760 { 761 struct hci_dev *hdev = conn->hdev; 762 return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 763 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 764 } 765 766 static inline bool hci_conn_sc_enabled(struct hci_conn *conn) 767 { 768 struct hci_dev *hdev = conn->hdev; 769 return hci_dev_test_flag(hdev, HCI_SC_ENABLED) && 770 test_bit(HCI_CONN_SC_ENABLED, &conn->flags); 771 } 772 773 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c) 774 { 775 struct hci_conn_hash *h = &hdev->conn_hash; 776 list_add_rcu(&c->list, &h->list); 777 switch (c->type) { 778 case ACL_LINK: 779 h->acl_num++; 780 break; 781 case AMP_LINK: 782 h->amp_num++; 783 break; 784 case LE_LINK: 785 h->le_num++; 786 if (c->role == HCI_ROLE_SLAVE) 787 h->le_num_slave++; 788 break; 789 case SCO_LINK: 790 case ESCO_LINK: 791 h->sco_num++; 792 break; 793 } 794 } 795 796 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c) 797 { 798 struct hci_conn_hash *h = &hdev->conn_hash; 799 800 list_del_rcu(&c->list); 801 synchronize_rcu(); 802 803 switch (c->type) { 804 case ACL_LINK: 805 h->acl_num--; 806 break; 807 case AMP_LINK: 808 h->amp_num--; 809 break; 810 case LE_LINK: 811 h->le_num--; 812 if (c->role == HCI_ROLE_SLAVE) 813 h->le_num_slave--; 814 break; 815 case SCO_LINK: 816 case ESCO_LINK: 817 h->sco_num--; 818 break; 819 } 820 } 821 822 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type) 823 { 824 struct hci_conn_hash *h = &hdev->conn_hash; 825 switch (type) { 826 case ACL_LINK: 827 return h->acl_num; 828 case AMP_LINK: 829 return h->amp_num; 830 case LE_LINK: 831 return h->le_num; 832 case SCO_LINK: 833 case ESCO_LINK: 834 return h->sco_num; 835 default: 836 return 0; 837 } 838 } 839 840 static inline unsigned int hci_conn_count(struct hci_dev *hdev) 841 { 842 struct hci_conn_hash *c = &hdev->conn_hash; 843 844 return c->acl_num + c->amp_num + c->sco_num + c->le_num; 845 } 846 847 static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle) 848 { 849 struct hci_conn_hash *h = &hdev->conn_hash; 850 struct hci_conn *c; 851 __u8 type = INVALID_LINK; 852 853 rcu_read_lock(); 854 855 list_for_each_entry_rcu(c, &h->list, list) { 856 if (c->handle == handle) { 857 type = c->type; 858 break; 859 } 860 } 861 862 rcu_read_unlock(); 863 864 return type; 865 } 866 867 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev, 868 __u16 handle) 869 { 870 struct hci_conn_hash *h = &hdev->conn_hash; 871 struct hci_conn *c; 872 873 rcu_read_lock(); 874 875 list_for_each_entry_rcu(c, &h->list, list) { 876 if (c->handle == handle) { 877 rcu_read_unlock(); 878 return c; 879 } 880 } 881 rcu_read_unlock(); 882 883 return NULL; 884 } 885 886 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev, 887 __u8 type, bdaddr_t *ba) 888 { 889 struct hci_conn_hash *h = &hdev->conn_hash; 890 struct hci_conn *c; 891 892 rcu_read_lock(); 893 894 list_for_each_entry_rcu(c, &h->list, list) { 895 if (c->type == type && !bacmp(&c->dst, ba)) { 896 rcu_read_unlock(); 897 return c; 898 } 899 } 900 901 rcu_read_unlock(); 902 903 return NULL; 904 } 905 906 static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev, 907 bdaddr_t *ba, 908 __u8 ba_type) 909 { 910 struct hci_conn_hash *h = &hdev->conn_hash; 911 struct hci_conn *c; 912 913 rcu_read_lock(); 914 915 list_for_each_entry_rcu(c, &h->list, list) { 916 if (c->type != LE_LINK) 917 continue; 918 919 if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) { 920 rcu_read_unlock(); 921 return c; 922 } 923 } 924 925 rcu_read_unlock(); 926 927 return NULL; 928 } 929 930 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev, 931 __u8 type, __u16 state) 932 { 933 struct hci_conn_hash *h = &hdev->conn_hash; 934 struct hci_conn *c; 935 936 rcu_read_lock(); 937 938 list_for_each_entry_rcu(c, &h->list, list) { 939 if (c->type == type && c->state == state) { 940 rcu_read_unlock(); 941 return c; 942 } 943 } 944 945 rcu_read_unlock(); 946 947 return NULL; 948 } 949 950 static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev) 951 { 952 struct hci_conn_hash *h = &hdev->conn_hash; 953 struct hci_conn *c; 954 955 rcu_read_lock(); 956 957 list_for_each_entry_rcu(c, &h->list, list) { 958 if (c->type == LE_LINK && c->state == BT_CONNECT && 959 !test_bit(HCI_CONN_SCANNING, &c->flags)) { 960 rcu_read_unlock(); 961 return c; 962 } 963 } 964 965 rcu_read_unlock(); 966 967 return NULL; 968 } 969 970 int hci_disconnect(struct hci_conn *conn, __u8 reason); 971 bool hci_setup_sync(struct hci_conn *conn, __u16 handle); 972 void hci_sco_setup(struct hci_conn *conn, __u8 status); 973 974 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 975 u8 role); 976 int hci_conn_del(struct hci_conn *conn); 977 void hci_conn_hash_flush(struct hci_dev *hdev); 978 void hci_conn_check_pending(struct hci_dev *hdev); 979 980 struct hci_chan *hci_chan_create(struct hci_conn *conn); 981 void hci_chan_del(struct hci_chan *chan); 982 void hci_chan_list_flush(struct hci_conn *conn); 983 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle); 984 985 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 986 u8 dst_type, u8 sec_level, 987 u16 conn_timeout); 988 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 989 u8 dst_type, u8 sec_level, u16 conn_timeout, 990 u8 role, bdaddr_t *direct_rpa); 991 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 992 u8 sec_level, u8 auth_type); 993 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 994 __u16 setting); 995 int hci_conn_check_link_mode(struct hci_conn *conn); 996 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level); 997 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 998 bool initiator); 999 int hci_conn_switch_role(struct hci_conn *conn, __u8 role); 1000 1001 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active); 1002 1003 void hci_le_conn_failed(struct hci_conn *conn, u8 status); 1004 1005 /* 1006 * hci_conn_get() and hci_conn_put() are used to control the life-time of an 1007 * "hci_conn" object. They do not guarantee that the hci_conn object is running, 1008 * working or anything else. They just guarantee that the object is available 1009 * and can be dereferenced. So you can use its locks, local variables and any 1010 * other constant data. 1011 * Before accessing runtime data, you _must_ lock the object and then check that 1012 * it is still running. As soon as you release the locks, the connection might 1013 * get dropped, though. 1014 * 1015 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control 1016 * how long the underlying connection is held. So every channel that runs on the 1017 * hci_conn object calls this to prevent the connection from disappearing. As 1018 * long as you hold a device, you must also guarantee that you have a valid 1019 * reference to the device via hci_conn_get() (or the initial reference from 1020 * hci_conn_add()). 1021 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't 1022 * break because nobody cares for that. But this means, we cannot use 1023 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME). 1024 */ 1025 1026 static inline struct hci_conn *hci_conn_get(struct hci_conn *conn) 1027 { 1028 get_device(&conn->dev); 1029 return conn; 1030 } 1031 1032 static inline void hci_conn_put(struct hci_conn *conn) 1033 { 1034 put_device(&conn->dev); 1035 } 1036 1037 static inline void hci_conn_hold(struct hci_conn *conn) 1038 { 1039 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 1040 1041 atomic_inc(&conn->refcnt); 1042 cancel_delayed_work(&conn->disc_work); 1043 } 1044 1045 static inline void hci_conn_drop(struct hci_conn *conn) 1046 { 1047 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 1048 1049 if (atomic_dec_and_test(&conn->refcnt)) { 1050 unsigned long timeo; 1051 1052 switch (conn->type) { 1053 case ACL_LINK: 1054 case LE_LINK: 1055 cancel_delayed_work(&conn->idle_work); 1056 if (conn->state == BT_CONNECTED) { 1057 timeo = conn->disc_timeout; 1058 if (!conn->out) 1059 timeo *= 2; 1060 } else { 1061 timeo = 0; 1062 } 1063 break; 1064 1065 case AMP_LINK: 1066 timeo = conn->disc_timeout; 1067 break; 1068 1069 default: 1070 timeo = 0; 1071 break; 1072 } 1073 1074 cancel_delayed_work(&conn->disc_work); 1075 queue_delayed_work(conn->hdev->workqueue, 1076 &conn->disc_work, timeo); 1077 } 1078 } 1079 1080 /* ----- HCI Devices ----- */ 1081 static inline void hci_dev_put(struct hci_dev *d) 1082 { 1083 BT_DBG("%s orig refcnt %d", d->name, 1084 kref_read(&d->dev.kobj.kref)); 1085 1086 put_device(&d->dev); 1087 } 1088 1089 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d) 1090 { 1091 BT_DBG("%s orig refcnt %d", d->name, 1092 kref_read(&d->dev.kobj.kref)); 1093 1094 get_device(&d->dev); 1095 return d; 1096 } 1097 1098 #define hci_dev_lock(d) mutex_lock(&d->lock) 1099 #define hci_dev_unlock(d) mutex_unlock(&d->lock) 1100 1101 #define to_hci_dev(d) container_of(d, struct hci_dev, dev) 1102 #define to_hci_conn(c) container_of(c, struct hci_conn, dev) 1103 1104 static inline void *hci_get_drvdata(struct hci_dev *hdev) 1105 { 1106 return dev_get_drvdata(&hdev->dev); 1107 } 1108 1109 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data) 1110 { 1111 dev_set_drvdata(&hdev->dev, data); 1112 } 1113 1114 struct hci_dev *hci_dev_get(int index); 1115 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, u8 src_type); 1116 1117 struct hci_dev *hci_alloc_dev(void); 1118 void hci_free_dev(struct hci_dev *hdev); 1119 int hci_register_dev(struct hci_dev *hdev); 1120 void hci_unregister_dev(struct hci_dev *hdev); 1121 int hci_suspend_dev(struct hci_dev *hdev); 1122 int hci_resume_dev(struct hci_dev *hdev); 1123 int hci_reset_dev(struct hci_dev *hdev); 1124 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb); 1125 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb); 1126 __printf(2, 3) void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...); 1127 __printf(2, 3) void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...); 1128 1129 static inline void hci_set_msft_opcode(struct hci_dev *hdev, __u16 opcode) 1130 { 1131 #if IS_ENABLED(CONFIG_BT_MSFTEXT) 1132 hdev->msft_opcode = opcode; 1133 #endif 1134 } 1135 1136 int hci_dev_open(__u16 dev); 1137 int hci_dev_close(__u16 dev); 1138 int hci_dev_do_close(struct hci_dev *hdev); 1139 int hci_dev_reset(__u16 dev); 1140 int hci_dev_reset_stat(__u16 dev); 1141 int hci_dev_cmd(unsigned int cmd, void __user *arg); 1142 int hci_get_dev_list(void __user *arg); 1143 int hci_get_dev_info(void __user *arg); 1144 int hci_get_conn_list(void __user *arg); 1145 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg); 1146 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg); 1147 int hci_inquiry(void __user *arg); 1148 1149 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list, 1150 bdaddr_t *bdaddr, u8 type); 1151 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 1152 struct list_head *list, bdaddr_t *bdaddr, 1153 u8 type); 1154 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1155 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 1156 u8 type, u8 *peer_irk, u8 *local_irk); 1157 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1158 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 1159 u8 type); 1160 void hci_bdaddr_list_clear(struct list_head *list); 1161 1162 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 1163 bdaddr_t *addr, u8 addr_type); 1164 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 1165 bdaddr_t *addr, u8 addr_type); 1166 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); 1167 void hci_conn_params_clear_disabled(struct hci_dev *hdev); 1168 1169 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 1170 bdaddr_t *addr, 1171 u8 addr_type); 1172 1173 void hci_uuids_clear(struct hci_dev *hdev); 1174 1175 void hci_link_keys_clear(struct hci_dev *hdev); 1176 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1177 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1178 bdaddr_t *bdaddr, u8 *val, u8 type, 1179 u8 pin_len, bool *persistent); 1180 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1181 u8 addr_type, u8 type, u8 authenticated, 1182 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand); 1183 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1184 u8 addr_type, u8 role); 1185 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); 1186 void hci_smp_ltks_clear(struct hci_dev *hdev); 1187 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1188 1189 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa); 1190 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1191 u8 addr_type); 1192 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1193 u8 addr_type, u8 val[16], bdaddr_t *rpa); 1194 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); 1195 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]); 1196 void hci_blocked_keys_clear(struct hci_dev *hdev); 1197 void hci_smp_irks_clear(struct hci_dev *hdev); 1198 1199 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 1200 1201 void hci_remote_oob_data_clear(struct hci_dev *hdev); 1202 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1203 bdaddr_t *bdaddr, u8 bdaddr_type); 1204 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1205 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1206 u8 *hash256, u8 *rand256); 1207 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1208 u8 bdaddr_type); 1209 1210 void hci_adv_instances_clear(struct hci_dev *hdev); 1211 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance); 1212 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance); 1213 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, 1214 u16 adv_data_len, u8 *adv_data, 1215 u16 scan_rsp_len, u8 *scan_rsp_data, 1216 u16 timeout, u16 duration); 1217 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance); 1218 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired); 1219 1220 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb); 1221 1222 void hci_init_sysfs(struct hci_dev *hdev); 1223 void hci_conn_init_sysfs(struct hci_conn *conn); 1224 void hci_conn_add_sysfs(struct hci_conn *conn); 1225 void hci_conn_del_sysfs(struct hci_conn *conn); 1226 1227 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev)) 1228 1229 /* ----- LMP capabilities ----- */ 1230 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT) 1231 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH) 1232 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD) 1233 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF) 1234 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK) 1235 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ) 1236 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO) 1237 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR)) 1238 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE) 1239 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR) 1240 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC) 1241 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ) 1242 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR)) 1243 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR) 1244 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH) 1245 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO) 1246 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR) 1247 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES) 1248 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT) 1249 #define lmp_edr_2m_capable(dev) ((dev)->features[0][3] & LMP_EDR_2M) 1250 #define lmp_edr_3m_capable(dev) ((dev)->features[0][3] & LMP_EDR_3M) 1251 #define lmp_edr_3slot_capable(dev) ((dev)->features[0][4] & LMP_EDR_3SLOT) 1252 #define lmp_edr_5slot_capable(dev) ((dev)->features[0][5] & LMP_EDR_5SLOT) 1253 1254 /* ----- Extended LMP capabilities ----- */ 1255 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER) 1256 #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE) 1257 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN) 1258 #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN) 1259 #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC) 1260 #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING) 1261 1262 /* ----- Host capabilities ----- */ 1263 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP) 1264 #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC) 1265 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE)) 1266 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR)) 1267 1268 #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \ 1269 !hci_dev_test_flag(dev, HCI_AUTO_OFF)) 1270 #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \ 1271 hci_dev_test_flag(dev, HCI_SC_ENABLED)) 1272 1273 #define scan_1m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_1M) || \ 1274 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_1M)) 1275 1276 #define scan_2m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_2M) || \ 1277 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_2M)) 1278 1279 #define scan_coded(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_CODED) || \ 1280 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_CODED)) 1281 1282 /* Use ext scanning if set ext scan param and ext scan enable is supported */ 1283 #define use_ext_scan(dev) (((dev)->commands[37] & 0x20) && \ 1284 ((dev)->commands[37] & 0x40)) 1285 /* Use ext create connection if command is supported */ 1286 #define use_ext_conn(dev) ((dev)->commands[37] & 0x80) 1287 1288 /* Extended advertising support */ 1289 #define ext_adv_capable(dev) (((dev)->le_features[1] & HCI_LE_EXT_ADV)) 1290 1291 /* ----- HCI protocols ----- */ 1292 #define HCI_PROTO_DEFER 0x01 1293 1294 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 1295 __u8 type, __u8 *flags) 1296 { 1297 switch (type) { 1298 case ACL_LINK: 1299 return l2cap_connect_ind(hdev, bdaddr); 1300 1301 case SCO_LINK: 1302 case ESCO_LINK: 1303 return sco_connect_ind(hdev, bdaddr, flags); 1304 1305 default: 1306 BT_ERR("unknown link type %d", type); 1307 return -EINVAL; 1308 } 1309 } 1310 1311 static inline int hci_proto_disconn_ind(struct hci_conn *conn) 1312 { 1313 if (conn->type != ACL_LINK && conn->type != LE_LINK) 1314 return HCI_ERROR_REMOTE_USER_TERM; 1315 1316 return l2cap_disconn_ind(conn); 1317 } 1318 1319 /* ----- HCI callbacks ----- */ 1320 struct hci_cb { 1321 struct list_head list; 1322 1323 char *name; 1324 1325 void (*connect_cfm) (struct hci_conn *conn, __u8 status); 1326 void (*disconn_cfm) (struct hci_conn *conn, __u8 status); 1327 void (*security_cfm) (struct hci_conn *conn, __u8 status, 1328 __u8 encrypt); 1329 void (*key_change_cfm) (struct hci_conn *conn, __u8 status); 1330 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role); 1331 }; 1332 1333 static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status) 1334 { 1335 struct hci_cb *cb; 1336 1337 mutex_lock(&hci_cb_list_lock); 1338 list_for_each_entry(cb, &hci_cb_list, list) { 1339 if (cb->connect_cfm) 1340 cb->connect_cfm(conn, status); 1341 } 1342 mutex_unlock(&hci_cb_list_lock); 1343 1344 if (conn->connect_cfm_cb) 1345 conn->connect_cfm_cb(conn, status); 1346 } 1347 1348 static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason) 1349 { 1350 struct hci_cb *cb; 1351 1352 mutex_lock(&hci_cb_list_lock); 1353 list_for_each_entry(cb, &hci_cb_list, list) { 1354 if (cb->disconn_cfm) 1355 cb->disconn_cfm(conn, reason); 1356 } 1357 mutex_unlock(&hci_cb_list_lock); 1358 1359 if (conn->disconn_cfm_cb) 1360 conn->disconn_cfm_cb(conn, reason); 1361 } 1362 1363 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status) 1364 { 1365 struct hci_cb *cb; 1366 __u8 encrypt; 1367 1368 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1369 return; 1370 1371 encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00; 1372 1373 mutex_lock(&hci_cb_list_lock); 1374 list_for_each_entry(cb, &hci_cb_list, list) { 1375 if (cb->security_cfm) 1376 cb->security_cfm(conn, status, encrypt); 1377 } 1378 mutex_unlock(&hci_cb_list_lock); 1379 1380 if (conn->security_cfm_cb) 1381 conn->security_cfm_cb(conn, status); 1382 } 1383 1384 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status) 1385 { 1386 struct hci_cb *cb; 1387 __u8 encrypt; 1388 1389 if (conn->state == BT_CONFIG) { 1390 if (status) 1391 conn->state = BT_CONNECTED; 1392 1393 hci_connect_cfm(conn, status); 1394 hci_conn_drop(conn); 1395 return; 1396 } 1397 1398 if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1399 encrypt = 0x00; 1400 else if (test_bit(HCI_CONN_AES_CCM, &conn->flags)) 1401 encrypt = 0x02; 1402 else 1403 encrypt = 0x01; 1404 1405 if (conn->sec_level == BT_SECURITY_SDP) 1406 conn->sec_level = BT_SECURITY_LOW; 1407 1408 if (conn->pending_sec_level > conn->sec_level) 1409 conn->sec_level = conn->pending_sec_level; 1410 1411 mutex_lock(&hci_cb_list_lock); 1412 list_for_each_entry(cb, &hci_cb_list, list) { 1413 if (cb->security_cfm) 1414 cb->security_cfm(conn, status, encrypt); 1415 } 1416 mutex_unlock(&hci_cb_list_lock); 1417 1418 if (conn->security_cfm_cb) 1419 conn->security_cfm_cb(conn, status); 1420 } 1421 1422 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status) 1423 { 1424 struct hci_cb *cb; 1425 1426 mutex_lock(&hci_cb_list_lock); 1427 list_for_each_entry(cb, &hci_cb_list, list) { 1428 if (cb->key_change_cfm) 1429 cb->key_change_cfm(conn, status); 1430 } 1431 mutex_unlock(&hci_cb_list_lock); 1432 } 1433 1434 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status, 1435 __u8 role) 1436 { 1437 struct hci_cb *cb; 1438 1439 mutex_lock(&hci_cb_list_lock); 1440 list_for_each_entry(cb, &hci_cb_list, list) { 1441 if (cb->role_switch_cfm) 1442 cb->role_switch_cfm(conn, status, role); 1443 } 1444 mutex_unlock(&hci_cb_list_lock); 1445 } 1446 1447 static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type, 1448 size_t *data_len) 1449 { 1450 size_t parsed = 0; 1451 1452 if (eir_len < 2) 1453 return NULL; 1454 1455 while (parsed < eir_len - 1) { 1456 u8 field_len = eir[0]; 1457 1458 if (field_len == 0) 1459 break; 1460 1461 parsed += field_len + 1; 1462 1463 if (parsed > eir_len) 1464 break; 1465 1466 if (eir[1] != type) { 1467 eir += field_len + 1; 1468 continue; 1469 } 1470 1471 /* Zero length data */ 1472 if (field_len == 1) 1473 return NULL; 1474 1475 if (data_len) 1476 *data_len = field_len - 1; 1477 1478 return &eir[2]; 1479 } 1480 1481 return NULL; 1482 } 1483 1484 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type) 1485 { 1486 if (addr_type != ADDR_LE_DEV_RANDOM) 1487 return false; 1488 1489 if ((bdaddr->b[5] & 0xc0) == 0x40) 1490 return true; 1491 1492 return false; 1493 } 1494 1495 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type) 1496 { 1497 if (addr_type == ADDR_LE_DEV_PUBLIC) 1498 return true; 1499 1500 /* Check for Random Static address type */ 1501 if ((addr->b[5] & 0xc0) == 0xc0) 1502 return true; 1503 1504 return false; 1505 } 1506 1507 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev, 1508 bdaddr_t *bdaddr, u8 addr_type) 1509 { 1510 if (!hci_bdaddr_is_rpa(bdaddr, addr_type)) 1511 return NULL; 1512 1513 return hci_find_irk_by_rpa(hdev, bdaddr); 1514 } 1515 1516 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency, 1517 u16 to_multiplier) 1518 { 1519 u16 max_latency; 1520 1521 if (min > max || min < 6 || max > 3200) 1522 return -EINVAL; 1523 1524 if (to_multiplier < 10 || to_multiplier > 3200) 1525 return -EINVAL; 1526 1527 if (max >= to_multiplier * 8) 1528 return -EINVAL; 1529 1530 max_latency = (to_multiplier * 4 / max) - 1; 1531 if (latency > 499 || latency > max_latency) 1532 return -EINVAL; 1533 1534 return 0; 1535 } 1536 1537 int hci_register_cb(struct hci_cb *hcb); 1538 int hci_unregister_cb(struct hci_cb *hcb); 1539 1540 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1541 const void *param, u32 timeout); 1542 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 1543 const void *param, u8 event, u32 timeout); 1544 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 1545 const void *param); 1546 1547 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 1548 const void *param); 1549 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags); 1550 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb); 1551 1552 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode); 1553 1554 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1555 const void *param, u32 timeout); 1556 1557 u32 hci_conn_get_phy(struct hci_conn *conn); 1558 1559 /* ----- HCI Sockets ----- */ 1560 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb); 1561 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 1562 int flag, struct sock *skip_sk); 1563 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb); 1564 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, 1565 void *data, u16 data_len, ktime_t tstamp, 1566 int flag, struct sock *skip_sk); 1567 1568 void hci_sock_dev_event(struct hci_dev *hdev, int event); 1569 1570 #define HCI_MGMT_VAR_LEN BIT(0) 1571 #define HCI_MGMT_NO_HDEV BIT(1) 1572 #define HCI_MGMT_UNTRUSTED BIT(2) 1573 #define HCI_MGMT_UNCONFIGURED BIT(3) 1574 #define HCI_MGMT_HDEV_OPTIONAL BIT(4) 1575 1576 struct hci_mgmt_handler { 1577 int (*func) (struct sock *sk, struct hci_dev *hdev, void *data, 1578 u16 data_len); 1579 size_t data_len; 1580 unsigned long flags; 1581 }; 1582 1583 struct hci_mgmt_chan { 1584 struct list_head list; 1585 unsigned short channel; 1586 size_t handler_count; 1587 const struct hci_mgmt_handler *handlers; 1588 void (*hdev_init) (struct sock *sk, struct hci_dev *hdev); 1589 }; 1590 1591 int hci_mgmt_chan_register(struct hci_mgmt_chan *c); 1592 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c); 1593 1594 /* Management interface */ 1595 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR)) 1596 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \ 1597 BIT(BDADDR_LE_RANDOM)) 1598 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \ 1599 BIT(BDADDR_LE_PUBLIC) | \ 1600 BIT(BDADDR_LE_RANDOM)) 1601 1602 /* These LE scan and inquiry parameters were chosen according to LE General 1603 * Discovery Procedure specification. 1604 */ 1605 #define DISCOV_LE_SCAN_WIN 0x12 1606 #define DISCOV_LE_SCAN_INT 0x12 1607 #define DISCOV_LE_TIMEOUT 10240 /* msec */ 1608 #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */ 1609 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04 1610 #define DISCOV_BREDR_INQUIRY_LEN 0x08 1611 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */ 1612 #define DISCOV_LE_FAST_ADV_INT_MIN 100 /* msec */ 1613 #define DISCOV_LE_FAST_ADV_INT_MAX 150 /* msec */ 1614 1615 void mgmt_fill_version_info(void *ver); 1616 int mgmt_new_settings(struct hci_dev *hdev); 1617 void mgmt_index_added(struct hci_dev *hdev); 1618 void mgmt_index_removed(struct hci_dev *hdev); 1619 void mgmt_set_powered_failed(struct hci_dev *hdev, int err); 1620 void mgmt_power_on(struct hci_dev *hdev, int err); 1621 void __mgmt_power_off(struct hci_dev *hdev); 1622 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, 1623 bool persistent); 1624 void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn, 1625 u32 flags, u8 *name, u8 name_len); 1626 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, 1627 u8 link_type, u8 addr_type, u8 reason, 1628 bool mgmt_connected); 1629 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, 1630 u8 link_type, u8 addr_type, u8 status); 1631 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1632 u8 addr_type, u8 status); 1633 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure); 1634 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1635 u8 status); 1636 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1637 u8 status); 1638 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1639 u8 link_type, u8 addr_type, u32 value, 1640 u8 confirm_hint); 1641 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1642 u8 link_type, u8 addr_type, u8 status); 1643 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1644 u8 link_type, u8 addr_type, u8 status); 1645 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1646 u8 link_type, u8 addr_type); 1647 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1648 u8 link_type, u8 addr_type, u8 status); 1649 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1650 u8 link_type, u8 addr_type, u8 status); 1651 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, 1652 u8 link_type, u8 addr_type, u32 passkey, 1653 u8 entered); 1654 void mgmt_auth_failed(struct hci_conn *conn, u8 status); 1655 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status); 1656 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); 1657 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, 1658 u8 status); 1659 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status); 1660 void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status); 1661 void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status); 1662 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1663 u8 addr_type, u8 *dev_class, s8 rssi, u32 flags, 1664 u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len); 1665 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1666 u8 addr_type, s8 rssi, u8 *name, u8 name_len); 1667 void mgmt_discovering(struct hci_dev *hdev, u8 discovering); 1668 bool mgmt_powering_down(struct hci_dev *hdev); 1669 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent); 1670 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent); 1671 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk, 1672 bool persistent); 1673 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr, 1674 u8 bdaddr_type, u8 store_hint, u16 min_interval, 1675 u16 max_interval, u16 latency, u16 timeout); 1676 void mgmt_smp_complete(struct hci_conn *conn, bool complete); 1677 bool mgmt_get_connectable(struct hci_dev *hdev); 1678 void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status); 1679 void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status); 1680 u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev); 1681 void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev, 1682 u8 instance); 1683 void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev, 1684 u8 instance); 1685 int mgmt_phy_configuration_changed(struct hci_dev *hdev, struct sock *skip); 1686 1687 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 1688 u16 to_multiplier); 1689 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 1690 __u8 ltk[16], __u8 key_size); 1691 1692 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 1693 u8 *bdaddr_type); 1694 1695 #define SCO_AIRMODE_MASK 0x0003 1696 #define SCO_AIRMODE_CVSD 0x0000 1697 #define SCO_AIRMODE_TRANSP 0x0003 1698 1699 #endif /* __HCI_CORE_H */ 1700