1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 #ifndef __HCI_CORE_H 26 #define __HCI_CORE_H 27 28 #include <linux/idr.h> 29 #include <linux/leds.h> 30 #include <linux/rculist.h> 31 32 #include <net/bluetooth/hci.h> 33 #include <net/bluetooth/hci_sock.h> 34 35 /* HCI priority */ 36 #define HCI_PRIO_MAX 7 37 38 /* HCI Core structures */ 39 struct inquiry_data { 40 bdaddr_t bdaddr; 41 __u8 pscan_rep_mode; 42 __u8 pscan_period_mode; 43 __u8 pscan_mode; 44 __u8 dev_class[3]; 45 __le16 clock_offset; 46 __s8 rssi; 47 __u8 ssp_mode; 48 }; 49 50 struct inquiry_entry { 51 struct list_head all; /* inq_cache.all */ 52 struct list_head list; /* unknown or resolve */ 53 enum { 54 NAME_NOT_KNOWN, 55 NAME_NEEDED, 56 NAME_PENDING, 57 NAME_KNOWN, 58 } name_state; 59 __u32 timestamp; 60 struct inquiry_data data; 61 }; 62 63 struct discovery_state { 64 int type; 65 enum { 66 DISCOVERY_STOPPED, 67 DISCOVERY_STARTING, 68 DISCOVERY_FINDING, 69 DISCOVERY_RESOLVING, 70 DISCOVERY_STOPPING, 71 } state; 72 struct list_head all; /* All devices found during inquiry */ 73 struct list_head unknown; /* Name state not known */ 74 struct list_head resolve; /* Name needs to be resolved */ 75 __u32 timestamp; 76 bdaddr_t last_adv_addr; 77 u8 last_adv_addr_type; 78 s8 last_adv_rssi; 79 u32 last_adv_flags; 80 u8 last_adv_data[HCI_MAX_AD_LENGTH]; 81 u8 last_adv_data_len; 82 bool report_invalid_rssi; 83 bool result_filtering; 84 bool limited; 85 s8 rssi; 86 u16 uuid_count; 87 u8 (*uuids)[16]; 88 unsigned long scan_start; 89 unsigned long scan_duration; 90 }; 91 92 #define SUSPEND_NOTIFIER_TIMEOUT msecs_to_jiffies(2000) /* 2 seconds */ 93 94 enum suspend_tasks { 95 SUSPEND_PAUSE_DISCOVERY, 96 SUSPEND_UNPAUSE_DISCOVERY, 97 98 SUSPEND_PAUSE_ADVERTISING, 99 SUSPEND_UNPAUSE_ADVERTISING, 100 101 SUSPEND_SCAN_DISABLE, 102 SUSPEND_SCAN_ENABLE, 103 SUSPEND_DISCONNECTING, 104 105 SUSPEND_POWERING_DOWN, 106 107 SUSPEND_PREPARE_NOTIFIER, 108 __SUSPEND_NUM_TASKS 109 }; 110 111 enum suspended_state { 112 BT_RUNNING = 0, 113 BT_SUSPEND_DISCONNECT, 114 BT_SUSPEND_CONFIGURE_WAKE, 115 }; 116 117 struct hci_conn_hash { 118 struct list_head list; 119 unsigned int acl_num; 120 unsigned int amp_num; 121 unsigned int sco_num; 122 unsigned int le_num; 123 unsigned int le_num_slave; 124 }; 125 126 struct bdaddr_list { 127 struct list_head list; 128 bdaddr_t bdaddr; 129 u8 bdaddr_type; 130 }; 131 132 struct bdaddr_list_with_irk { 133 struct list_head list; 134 bdaddr_t bdaddr; 135 u8 bdaddr_type; 136 u8 peer_irk[16]; 137 u8 local_irk[16]; 138 }; 139 140 struct bdaddr_list_with_flags { 141 struct list_head list; 142 bdaddr_t bdaddr; 143 u8 bdaddr_type; 144 u32 current_flags; 145 }; 146 147 enum hci_conn_flags { 148 HCI_CONN_FLAG_REMOTE_WAKEUP, 149 HCI_CONN_FLAG_MAX 150 }; 151 152 #define hci_conn_test_flag(nr, flags) ((flags) & (1U << nr)) 153 154 /* Make sure number of flags doesn't exceed sizeof(current_flags) */ 155 static_assert(HCI_CONN_FLAG_MAX < 32); 156 157 struct bt_uuid { 158 struct list_head list; 159 u8 uuid[16]; 160 u8 size; 161 u8 svc_hint; 162 }; 163 164 struct blocked_key { 165 struct list_head list; 166 struct rcu_head rcu; 167 u8 type; 168 u8 val[16]; 169 }; 170 171 struct smp_csrk { 172 bdaddr_t bdaddr; 173 u8 bdaddr_type; 174 u8 type; 175 u8 val[16]; 176 }; 177 178 struct smp_ltk { 179 struct list_head list; 180 struct rcu_head rcu; 181 bdaddr_t bdaddr; 182 u8 bdaddr_type; 183 u8 authenticated; 184 u8 type; 185 u8 enc_size; 186 __le16 ediv; 187 __le64 rand; 188 u8 val[16]; 189 }; 190 191 struct smp_irk { 192 struct list_head list; 193 struct rcu_head rcu; 194 bdaddr_t rpa; 195 bdaddr_t bdaddr; 196 u8 addr_type; 197 u8 val[16]; 198 }; 199 200 struct link_key { 201 struct list_head list; 202 struct rcu_head rcu; 203 bdaddr_t bdaddr; 204 u8 type; 205 u8 val[HCI_LINK_KEY_SIZE]; 206 u8 pin_len; 207 }; 208 209 struct oob_data { 210 struct list_head list; 211 bdaddr_t bdaddr; 212 u8 bdaddr_type; 213 u8 present; 214 u8 hash192[16]; 215 u8 rand192[16]; 216 u8 hash256[16]; 217 u8 rand256[16]; 218 }; 219 220 struct adv_info { 221 struct list_head list; 222 bool pending; 223 __u8 instance; 224 __u32 flags; 225 __u16 timeout; 226 __u16 remaining_time; 227 __u16 duration; 228 __u16 adv_data_len; 229 __u8 adv_data[HCI_MAX_AD_LENGTH]; 230 __u16 scan_rsp_len; 231 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH]; 232 __s8 tx_power; 233 __u32 min_interval; 234 __u32 max_interval; 235 bdaddr_t random_addr; 236 bool rpa_expired; 237 struct delayed_work rpa_expired_cb; 238 }; 239 240 #define HCI_MAX_ADV_INSTANCES 5 241 #define HCI_DEFAULT_ADV_DURATION 2 242 243 #define HCI_ADV_TX_POWER_NO_PREFERENCE 0x7F 244 245 struct adv_pattern { 246 struct list_head list; 247 __u8 ad_type; 248 __u8 offset; 249 __u8 length; 250 __u8 value[HCI_MAX_AD_LENGTH]; 251 }; 252 253 struct adv_monitor { 254 struct list_head patterns; 255 bool active; 256 __u16 handle; 257 }; 258 259 #define HCI_MIN_ADV_MONITOR_HANDLE 1 260 #define HCI_MAX_ADV_MONITOR_NUM_HANDLES 32 261 #define HCI_MAX_ADV_MONITOR_NUM_PATTERNS 16 262 263 #define HCI_MAX_SHORT_NAME_LENGTH 10 264 265 /* Min encryption key size to match with SMP */ 266 #define HCI_MIN_ENC_KEY_SIZE 7 267 268 /* Default LE RPA expiry time, 15 minutes */ 269 #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60) 270 271 /* Default min/max age of connection information (1s/3s) */ 272 #define DEFAULT_CONN_INFO_MIN_AGE 1000 273 #define DEFAULT_CONN_INFO_MAX_AGE 3000 274 /* Default authenticated payload timeout 30s */ 275 #define DEFAULT_AUTH_PAYLOAD_TIMEOUT 0x0bb8 276 277 struct amp_assoc { 278 __u16 len; 279 __u16 offset; 280 __u16 rem_len; 281 __u16 len_so_far; 282 __u8 data[HCI_MAX_AMP_ASSOC_SIZE]; 283 }; 284 285 #define HCI_MAX_PAGES 3 286 287 struct hci_dev { 288 struct list_head list; 289 struct mutex lock; 290 291 char name[8]; 292 unsigned long flags; 293 __u16 id; 294 __u8 bus; 295 __u8 dev_type; 296 bdaddr_t bdaddr; 297 bdaddr_t setup_addr; 298 bdaddr_t public_addr; 299 bdaddr_t random_addr; 300 bdaddr_t static_addr; 301 __u8 adv_addr_type; 302 __u8 dev_name[HCI_MAX_NAME_LENGTH]; 303 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH]; 304 __u8 eir[HCI_MAX_EIR_LENGTH]; 305 __u16 appearance; 306 __u8 dev_class[3]; 307 __u8 major_class; 308 __u8 minor_class; 309 __u8 max_page; 310 __u8 features[HCI_MAX_PAGES][8]; 311 __u8 le_features[8]; 312 __u8 le_white_list_size; 313 __u8 le_resolv_list_size; 314 __u8 le_num_of_adv_sets; 315 __u8 le_states[8]; 316 __u8 commands[64]; 317 __u8 hci_ver; 318 __u16 hci_rev; 319 __u8 lmp_ver; 320 __u16 manufacturer; 321 __u16 lmp_subver; 322 __u16 voice_setting; 323 __u8 num_iac; 324 __u8 stored_max_keys; 325 __u8 stored_num_keys; 326 __u8 io_capability; 327 __s8 inq_tx_power; 328 __u8 err_data_reporting; 329 __u16 page_scan_interval; 330 __u16 page_scan_window; 331 __u8 page_scan_type; 332 __u8 le_adv_channel_map; 333 __u16 le_adv_min_interval; 334 __u16 le_adv_max_interval; 335 __u8 le_scan_type; 336 __u16 le_scan_interval; 337 __u16 le_scan_window; 338 __u16 le_scan_int_suspend; 339 __u16 le_scan_window_suspend; 340 __u16 le_scan_int_discovery; 341 __u16 le_scan_window_discovery; 342 __u16 le_scan_int_adv_monitor; 343 __u16 le_scan_window_adv_monitor; 344 __u16 le_scan_int_connect; 345 __u16 le_scan_window_connect; 346 __u16 le_conn_min_interval; 347 __u16 le_conn_max_interval; 348 __u16 le_conn_latency; 349 __u16 le_supv_timeout; 350 __u16 le_def_tx_len; 351 __u16 le_def_tx_time; 352 __u16 le_max_tx_len; 353 __u16 le_max_tx_time; 354 __u16 le_max_rx_len; 355 __u16 le_max_rx_time; 356 __u8 le_max_key_size; 357 __u8 le_min_key_size; 358 __u16 discov_interleaved_timeout; 359 __u16 conn_info_min_age; 360 __u16 conn_info_max_age; 361 __u16 auth_payload_timeout; 362 __u8 min_enc_key_size; 363 __u8 max_enc_key_size; 364 __u8 pairing_opts; 365 __u8 ssp_debug_mode; 366 __u8 hw_error_code; 367 __u32 clock; 368 __u16 advmon_allowlist_duration; 369 __u16 advmon_no_filter_duration; 370 __u8 enable_advmon_interleave_scan; 371 372 __u16 devid_source; 373 __u16 devid_vendor; 374 __u16 devid_product; 375 __u16 devid_version; 376 377 __u8 def_page_scan_type; 378 __u16 def_page_scan_int; 379 __u16 def_page_scan_window; 380 __u8 def_inq_scan_type; 381 __u16 def_inq_scan_int; 382 __u16 def_inq_scan_window; 383 __u16 def_br_lsto; 384 __u16 def_page_timeout; 385 __u16 def_multi_adv_rotation_duration; 386 __u16 def_le_autoconnect_timeout; 387 __s8 min_le_tx_power; 388 __s8 max_le_tx_power; 389 390 __u16 pkt_type; 391 __u16 esco_type; 392 __u16 link_policy; 393 __u16 link_mode; 394 395 __u32 idle_timeout; 396 __u16 sniff_min_interval; 397 __u16 sniff_max_interval; 398 399 __u8 amp_status; 400 __u32 amp_total_bw; 401 __u32 amp_max_bw; 402 __u32 amp_min_latency; 403 __u32 amp_max_pdu; 404 __u8 amp_type; 405 __u16 amp_pal_cap; 406 __u16 amp_assoc_size; 407 __u32 amp_max_flush_to; 408 __u32 amp_be_flush_to; 409 410 struct amp_assoc loc_assoc; 411 412 __u8 flow_ctl_mode; 413 414 unsigned int auto_accept_delay; 415 416 unsigned long quirks; 417 418 atomic_t cmd_cnt; 419 unsigned int acl_cnt; 420 unsigned int sco_cnt; 421 unsigned int le_cnt; 422 423 unsigned int acl_mtu; 424 unsigned int sco_mtu; 425 unsigned int le_mtu; 426 unsigned int acl_pkts; 427 unsigned int sco_pkts; 428 unsigned int le_pkts; 429 430 __u16 block_len; 431 __u16 block_mtu; 432 __u16 num_blocks; 433 __u16 block_cnt; 434 435 unsigned long acl_last_tx; 436 unsigned long sco_last_tx; 437 unsigned long le_last_tx; 438 439 __u8 le_tx_def_phys; 440 __u8 le_rx_def_phys; 441 442 struct workqueue_struct *workqueue; 443 struct workqueue_struct *req_workqueue; 444 445 struct work_struct power_on; 446 struct delayed_work power_off; 447 struct work_struct error_reset; 448 449 __u16 discov_timeout; 450 struct delayed_work discov_off; 451 452 struct delayed_work service_cache; 453 454 struct delayed_work cmd_timer; 455 456 struct work_struct rx_work; 457 struct work_struct cmd_work; 458 struct work_struct tx_work; 459 460 struct work_struct discov_update; 461 struct work_struct bg_scan_update; 462 struct work_struct scan_update; 463 struct work_struct connectable_update; 464 struct work_struct discoverable_update; 465 struct delayed_work le_scan_disable; 466 struct delayed_work le_scan_restart; 467 468 struct sk_buff_head rx_q; 469 struct sk_buff_head raw_q; 470 struct sk_buff_head cmd_q; 471 472 struct sk_buff *sent_cmd; 473 474 struct mutex req_lock; 475 wait_queue_head_t req_wait_q; 476 __u32 req_status; 477 __u32 req_result; 478 struct sk_buff *req_skb; 479 480 void *smp_data; 481 void *smp_bredr_data; 482 483 struct discovery_state discovery; 484 485 int discovery_old_state; 486 bool discovery_paused; 487 int advertising_old_state; 488 bool advertising_paused; 489 490 struct notifier_block suspend_notifier; 491 struct work_struct suspend_prepare; 492 enum suspended_state suspend_state_next; 493 enum suspended_state suspend_state; 494 bool scanning_paused; 495 bool suspended; 496 u8 wake_reason; 497 bdaddr_t wake_addr; 498 u8 wake_addr_type; 499 500 wait_queue_head_t suspend_wait_q; 501 DECLARE_BITMAP(suspend_tasks, __SUSPEND_NUM_TASKS); 502 503 struct hci_conn_hash conn_hash; 504 505 struct list_head mgmt_pending; 506 struct list_head blacklist; 507 struct list_head whitelist; 508 struct list_head uuids; 509 struct list_head link_keys; 510 struct list_head long_term_keys; 511 struct list_head identity_resolving_keys; 512 struct list_head remote_oob_data; 513 struct list_head le_white_list; 514 struct list_head le_resolv_list; 515 struct list_head le_conn_params; 516 struct list_head pend_le_conns; 517 struct list_head pend_le_reports; 518 struct list_head blocked_keys; 519 520 struct hci_dev_stats stat; 521 522 atomic_t promisc; 523 524 const char *hw_info; 525 const char *fw_info; 526 struct dentry *debugfs; 527 528 struct device dev; 529 530 struct rfkill *rfkill; 531 532 DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS); 533 534 __s8 adv_tx_power; 535 __u8 adv_data[HCI_MAX_AD_LENGTH]; 536 __u8 adv_data_len; 537 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH]; 538 __u8 scan_rsp_data_len; 539 540 struct list_head adv_instances; 541 unsigned int adv_instance_cnt; 542 __u8 cur_adv_instance; 543 __u16 adv_instance_timeout; 544 struct delayed_work adv_instance_expire; 545 546 struct idr adv_monitors_idr; 547 unsigned int adv_monitors_cnt; 548 549 __u8 irk[16]; 550 __u32 rpa_timeout; 551 struct delayed_work rpa_expired; 552 bdaddr_t rpa; 553 554 enum { 555 INTERLEAVE_SCAN_NONE, 556 INTERLEAVE_SCAN_NO_FILTER, 557 INTERLEAVE_SCAN_ALLOWLIST 558 } interleave_scan_state; 559 560 struct delayed_work interleave_scan; 561 562 #if IS_ENABLED(CONFIG_BT_LEDS) 563 struct led_trigger *power_led; 564 #endif 565 566 #if IS_ENABLED(CONFIG_BT_MSFTEXT) 567 __u16 msft_opcode; 568 void *msft_data; 569 #endif 570 571 int (*open)(struct hci_dev *hdev); 572 int (*close)(struct hci_dev *hdev); 573 int (*flush)(struct hci_dev *hdev); 574 int (*setup)(struct hci_dev *hdev); 575 int (*shutdown)(struct hci_dev *hdev); 576 int (*send)(struct hci_dev *hdev, struct sk_buff *skb); 577 void (*notify)(struct hci_dev *hdev, unsigned int evt); 578 void (*hw_error)(struct hci_dev *hdev, u8 code); 579 int (*post_init)(struct hci_dev *hdev); 580 int (*set_diag)(struct hci_dev *hdev, bool enable); 581 int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr); 582 void (*cmd_timeout)(struct hci_dev *hdev); 583 bool (*prevent_wake)(struct hci_dev *hdev); 584 }; 585 586 #define HCI_PHY_HANDLE(handle) (handle & 0xff) 587 588 enum conn_reasons { 589 CONN_REASON_PAIR_DEVICE, 590 CONN_REASON_L2CAP_CHAN, 591 CONN_REASON_SCO_CONNECT, 592 }; 593 594 struct hci_conn { 595 struct list_head list; 596 597 atomic_t refcnt; 598 599 bdaddr_t dst; 600 __u8 dst_type; 601 bdaddr_t src; 602 __u8 src_type; 603 bdaddr_t init_addr; 604 __u8 init_addr_type; 605 bdaddr_t resp_addr; 606 __u8 resp_addr_type; 607 __u16 handle; 608 __u16 state; 609 __u8 mode; 610 __u8 type; 611 __u8 role; 612 bool out; 613 __u8 attempt; 614 __u8 dev_class[3]; 615 __u8 features[HCI_MAX_PAGES][8]; 616 __u16 pkt_type; 617 __u16 link_policy; 618 __u8 key_type; 619 __u8 auth_type; 620 __u8 sec_level; 621 __u8 pending_sec_level; 622 __u8 pin_length; 623 __u8 enc_key_size; 624 __u8 io_capability; 625 __u32 passkey_notify; 626 __u8 passkey_entered; 627 __u16 disc_timeout; 628 __u16 conn_timeout; 629 __u16 setting; 630 __u16 auth_payload_timeout; 631 __u16 le_conn_min_interval; 632 __u16 le_conn_max_interval; 633 __u16 le_conn_interval; 634 __u16 le_conn_latency; 635 __u16 le_supv_timeout; 636 __u8 le_adv_data[HCI_MAX_AD_LENGTH]; 637 __u8 le_adv_data_len; 638 __u8 le_tx_phy; 639 __u8 le_rx_phy; 640 __s8 rssi; 641 __s8 tx_power; 642 __s8 max_tx_power; 643 unsigned long flags; 644 645 enum conn_reasons conn_reason; 646 647 __u32 clock; 648 __u16 clock_accuracy; 649 650 unsigned long conn_info_timestamp; 651 652 __u8 remote_cap; 653 __u8 remote_auth; 654 __u8 remote_id; 655 656 unsigned int sent; 657 658 struct sk_buff_head data_q; 659 struct list_head chan_list; 660 661 struct delayed_work disc_work; 662 struct delayed_work auto_accept_work; 663 struct delayed_work idle_work; 664 struct delayed_work le_conn_timeout; 665 struct work_struct le_scan_cleanup; 666 667 struct device dev; 668 struct dentry *debugfs; 669 670 struct hci_dev *hdev; 671 void *l2cap_data; 672 void *sco_data; 673 struct amp_mgr *amp_mgr; 674 675 struct hci_conn *link; 676 677 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status); 678 void (*security_cfm_cb) (struct hci_conn *conn, u8 status); 679 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason); 680 }; 681 682 struct hci_chan { 683 struct list_head list; 684 __u16 handle; 685 struct hci_conn *conn; 686 struct sk_buff_head data_q; 687 unsigned int sent; 688 __u8 state; 689 }; 690 691 struct hci_conn_params { 692 struct list_head list; 693 struct list_head action; 694 695 bdaddr_t addr; 696 u8 addr_type; 697 698 u16 conn_min_interval; 699 u16 conn_max_interval; 700 u16 conn_latency; 701 u16 supervision_timeout; 702 703 enum { 704 HCI_AUTO_CONN_DISABLED, 705 HCI_AUTO_CONN_REPORT, 706 HCI_AUTO_CONN_DIRECT, 707 HCI_AUTO_CONN_ALWAYS, 708 HCI_AUTO_CONN_LINK_LOSS, 709 HCI_AUTO_CONN_EXPLICIT, 710 } auto_connect; 711 712 struct hci_conn *conn; 713 bool explicit_connect; 714 u32 current_flags; 715 }; 716 717 extern struct list_head hci_dev_list; 718 extern struct list_head hci_cb_list; 719 extern rwlock_t hci_dev_list_lock; 720 extern struct mutex hci_cb_list_lock; 721 722 #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags) 723 #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags) 724 #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags) 725 #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags) 726 #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags) 727 #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags) 728 #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags) 729 730 #define hci_dev_clear_volatile_flags(hdev) \ 731 do { \ 732 hci_dev_clear_flag(hdev, HCI_LE_SCAN); \ 733 hci_dev_clear_flag(hdev, HCI_LE_ADV); \ 734 hci_dev_clear_flag(hdev, HCI_LL_RPA_RESOLUTION);\ 735 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \ 736 } while (0) 737 738 /* ----- HCI interface to upper protocols ----- */ 739 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr); 740 int l2cap_disconn_ind(struct hci_conn *hcon); 741 void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags); 742 743 #if IS_ENABLED(CONFIG_BT_BREDR) 744 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); 745 void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb); 746 #else 747 static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 748 __u8 *flags) 749 { 750 return 0; 751 } 752 753 static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb) 754 { 755 } 756 #endif 757 758 /* ----- Inquiry cache ----- */ 759 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */ 760 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */ 761 762 static inline void discovery_init(struct hci_dev *hdev) 763 { 764 hdev->discovery.state = DISCOVERY_STOPPED; 765 INIT_LIST_HEAD(&hdev->discovery.all); 766 INIT_LIST_HEAD(&hdev->discovery.unknown); 767 INIT_LIST_HEAD(&hdev->discovery.resolve); 768 hdev->discovery.report_invalid_rssi = true; 769 hdev->discovery.rssi = HCI_RSSI_INVALID; 770 } 771 772 static inline void hci_discovery_filter_clear(struct hci_dev *hdev) 773 { 774 hdev->discovery.result_filtering = false; 775 hdev->discovery.report_invalid_rssi = true; 776 hdev->discovery.rssi = HCI_RSSI_INVALID; 777 hdev->discovery.uuid_count = 0; 778 kfree(hdev->discovery.uuids); 779 hdev->discovery.uuids = NULL; 780 hdev->discovery.scan_start = 0; 781 hdev->discovery.scan_duration = 0; 782 } 783 784 bool hci_discovery_active(struct hci_dev *hdev); 785 786 void hci_discovery_set_state(struct hci_dev *hdev, int state); 787 788 static inline int inquiry_cache_empty(struct hci_dev *hdev) 789 { 790 return list_empty(&hdev->discovery.all); 791 } 792 793 static inline long inquiry_cache_age(struct hci_dev *hdev) 794 { 795 struct discovery_state *c = &hdev->discovery; 796 return jiffies - c->timestamp; 797 } 798 799 static inline long inquiry_entry_age(struct inquiry_entry *e) 800 { 801 return jiffies - e->timestamp; 802 } 803 804 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 805 bdaddr_t *bdaddr); 806 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 807 bdaddr_t *bdaddr); 808 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 809 bdaddr_t *bdaddr, 810 int state); 811 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 812 struct inquiry_entry *ie); 813 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 814 bool name_known); 815 void hci_inquiry_cache_flush(struct hci_dev *hdev); 816 817 /* ----- HCI Connections ----- */ 818 enum { 819 HCI_CONN_AUTH_PEND, 820 HCI_CONN_REAUTH_PEND, 821 HCI_CONN_ENCRYPT_PEND, 822 HCI_CONN_RSWITCH_PEND, 823 HCI_CONN_MODE_CHANGE_PEND, 824 HCI_CONN_SCO_SETUP_PEND, 825 HCI_CONN_MGMT_CONNECTED, 826 HCI_CONN_SSP_ENABLED, 827 HCI_CONN_SC_ENABLED, 828 HCI_CONN_AES_CCM, 829 HCI_CONN_POWER_SAVE, 830 HCI_CONN_FLUSH_KEY, 831 HCI_CONN_ENCRYPT, 832 HCI_CONN_AUTH, 833 HCI_CONN_SECURE, 834 HCI_CONN_FIPS, 835 HCI_CONN_STK_ENCRYPT, 836 HCI_CONN_AUTH_INITIATOR, 837 HCI_CONN_DROP, 838 HCI_CONN_PARAM_REMOVAL_PEND, 839 HCI_CONN_NEW_LINK_KEY, 840 HCI_CONN_SCANNING, 841 HCI_CONN_AUTH_FAILURE, 842 }; 843 844 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn) 845 { 846 struct hci_dev *hdev = conn->hdev; 847 return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 848 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 849 } 850 851 static inline bool hci_conn_sc_enabled(struct hci_conn *conn) 852 { 853 struct hci_dev *hdev = conn->hdev; 854 return hci_dev_test_flag(hdev, HCI_SC_ENABLED) && 855 test_bit(HCI_CONN_SC_ENABLED, &conn->flags); 856 } 857 858 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c) 859 { 860 struct hci_conn_hash *h = &hdev->conn_hash; 861 list_add_rcu(&c->list, &h->list); 862 switch (c->type) { 863 case ACL_LINK: 864 h->acl_num++; 865 break; 866 case AMP_LINK: 867 h->amp_num++; 868 break; 869 case LE_LINK: 870 h->le_num++; 871 if (c->role == HCI_ROLE_SLAVE) 872 h->le_num_slave++; 873 break; 874 case SCO_LINK: 875 case ESCO_LINK: 876 h->sco_num++; 877 break; 878 } 879 } 880 881 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c) 882 { 883 struct hci_conn_hash *h = &hdev->conn_hash; 884 885 list_del_rcu(&c->list); 886 synchronize_rcu(); 887 888 switch (c->type) { 889 case ACL_LINK: 890 h->acl_num--; 891 break; 892 case AMP_LINK: 893 h->amp_num--; 894 break; 895 case LE_LINK: 896 h->le_num--; 897 if (c->role == HCI_ROLE_SLAVE) 898 h->le_num_slave--; 899 break; 900 case SCO_LINK: 901 case ESCO_LINK: 902 h->sco_num--; 903 break; 904 } 905 } 906 907 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type) 908 { 909 struct hci_conn_hash *h = &hdev->conn_hash; 910 switch (type) { 911 case ACL_LINK: 912 return h->acl_num; 913 case AMP_LINK: 914 return h->amp_num; 915 case LE_LINK: 916 return h->le_num; 917 case SCO_LINK: 918 case ESCO_LINK: 919 return h->sco_num; 920 default: 921 return 0; 922 } 923 } 924 925 static inline unsigned int hci_conn_count(struct hci_dev *hdev) 926 { 927 struct hci_conn_hash *c = &hdev->conn_hash; 928 929 return c->acl_num + c->amp_num + c->sco_num + c->le_num; 930 } 931 932 static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle) 933 { 934 struct hci_conn_hash *h = &hdev->conn_hash; 935 struct hci_conn *c; 936 __u8 type = INVALID_LINK; 937 938 rcu_read_lock(); 939 940 list_for_each_entry_rcu(c, &h->list, list) { 941 if (c->handle == handle) { 942 type = c->type; 943 break; 944 } 945 } 946 947 rcu_read_unlock(); 948 949 return type; 950 } 951 952 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev, 953 __u16 handle) 954 { 955 struct hci_conn_hash *h = &hdev->conn_hash; 956 struct hci_conn *c; 957 958 rcu_read_lock(); 959 960 list_for_each_entry_rcu(c, &h->list, list) { 961 if (c->handle == handle) { 962 rcu_read_unlock(); 963 return c; 964 } 965 } 966 rcu_read_unlock(); 967 968 return NULL; 969 } 970 971 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev, 972 __u8 type, bdaddr_t *ba) 973 { 974 struct hci_conn_hash *h = &hdev->conn_hash; 975 struct hci_conn *c; 976 977 rcu_read_lock(); 978 979 list_for_each_entry_rcu(c, &h->list, list) { 980 if (c->type == type && !bacmp(&c->dst, ba)) { 981 rcu_read_unlock(); 982 return c; 983 } 984 } 985 986 rcu_read_unlock(); 987 988 return NULL; 989 } 990 991 static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev, 992 bdaddr_t *ba, 993 __u8 ba_type) 994 { 995 struct hci_conn_hash *h = &hdev->conn_hash; 996 struct hci_conn *c; 997 998 rcu_read_lock(); 999 1000 list_for_each_entry_rcu(c, &h->list, list) { 1001 if (c->type != LE_LINK) 1002 continue; 1003 1004 if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) { 1005 rcu_read_unlock(); 1006 return c; 1007 } 1008 } 1009 1010 rcu_read_unlock(); 1011 1012 return NULL; 1013 } 1014 1015 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev, 1016 __u8 type, __u16 state) 1017 { 1018 struct hci_conn_hash *h = &hdev->conn_hash; 1019 struct hci_conn *c; 1020 1021 rcu_read_lock(); 1022 1023 list_for_each_entry_rcu(c, &h->list, list) { 1024 if (c->type == type && c->state == state) { 1025 rcu_read_unlock(); 1026 return c; 1027 } 1028 } 1029 1030 rcu_read_unlock(); 1031 1032 return NULL; 1033 } 1034 1035 static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev) 1036 { 1037 struct hci_conn_hash *h = &hdev->conn_hash; 1038 struct hci_conn *c; 1039 1040 rcu_read_lock(); 1041 1042 list_for_each_entry_rcu(c, &h->list, list) { 1043 if (c->type == LE_LINK && c->state == BT_CONNECT && 1044 !test_bit(HCI_CONN_SCANNING, &c->flags)) { 1045 rcu_read_unlock(); 1046 return c; 1047 } 1048 } 1049 1050 rcu_read_unlock(); 1051 1052 return NULL; 1053 } 1054 1055 int hci_disconnect(struct hci_conn *conn, __u8 reason); 1056 bool hci_setup_sync(struct hci_conn *conn, __u16 handle); 1057 void hci_sco_setup(struct hci_conn *conn, __u8 status); 1058 1059 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 1060 u8 role); 1061 int hci_conn_del(struct hci_conn *conn); 1062 void hci_conn_hash_flush(struct hci_dev *hdev); 1063 void hci_conn_check_pending(struct hci_dev *hdev); 1064 1065 struct hci_chan *hci_chan_create(struct hci_conn *conn); 1066 void hci_chan_del(struct hci_chan *chan); 1067 void hci_chan_list_flush(struct hci_conn *conn); 1068 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle); 1069 1070 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1071 u8 dst_type, u8 sec_level, 1072 u16 conn_timeout, 1073 enum conn_reasons conn_reason); 1074 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 1075 u8 dst_type, u8 sec_level, u16 conn_timeout, 1076 u8 role, bdaddr_t *direct_rpa); 1077 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1078 u8 sec_level, u8 auth_type, 1079 enum conn_reasons conn_reason); 1080 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1081 __u16 setting); 1082 int hci_conn_check_link_mode(struct hci_conn *conn); 1083 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level); 1084 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 1085 bool initiator); 1086 int hci_conn_switch_role(struct hci_conn *conn, __u8 role); 1087 1088 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active); 1089 1090 void hci_le_conn_failed(struct hci_conn *conn, u8 status); 1091 1092 /* 1093 * hci_conn_get() and hci_conn_put() are used to control the life-time of an 1094 * "hci_conn" object. They do not guarantee that the hci_conn object is running, 1095 * working or anything else. They just guarantee that the object is available 1096 * and can be dereferenced. So you can use its locks, local variables and any 1097 * other constant data. 1098 * Before accessing runtime data, you _must_ lock the object and then check that 1099 * it is still running. As soon as you release the locks, the connection might 1100 * get dropped, though. 1101 * 1102 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control 1103 * how long the underlying connection is held. So every channel that runs on the 1104 * hci_conn object calls this to prevent the connection from disappearing. As 1105 * long as you hold a device, you must also guarantee that you have a valid 1106 * reference to the device via hci_conn_get() (or the initial reference from 1107 * hci_conn_add()). 1108 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't 1109 * break because nobody cares for that. But this means, we cannot use 1110 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME). 1111 */ 1112 1113 static inline struct hci_conn *hci_conn_get(struct hci_conn *conn) 1114 { 1115 get_device(&conn->dev); 1116 return conn; 1117 } 1118 1119 static inline void hci_conn_put(struct hci_conn *conn) 1120 { 1121 put_device(&conn->dev); 1122 } 1123 1124 static inline void hci_conn_hold(struct hci_conn *conn) 1125 { 1126 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 1127 1128 atomic_inc(&conn->refcnt); 1129 cancel_delayed_work(&conn->disc_work); 1130 } 1131 1132 static inline void hci_conn_drop(struct hci_conn *conn) 1133 { 1134 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 1135 1136 if (atomic_dec_and_test(&conn->refcnt)) { 1137 unsigned long timeo; 1138 1139 switch (conn->type) { 1140 case ACL_LINK: 1141 case LE_LINK: 1142 cancel_delayed_work(&conn->idle_work); 1143 if (conn->state == BT_CONNECTED) { 1144 timeo = conn->disc_timeout; 1145 if (!conn->out) 1146 timeo *= 2; 1147 } else { 1148 timeo = 0; 1149 } 1150 break; 1151 1152 case AMP_LINK: 1153 timeo = conn->disc_timeout; 1154 break; 1155 1156 default: 1157 timeo = 0; 1158 break; 1159 } 1160 1161 cancel_delayed_work(&conn->disc_work); 1162 queue_delayed_work(conn->hdev->workqueue, 1163 &conn->disc_work, timeo); 1164 } 1165 } 1166 1167 /* ----- HCI Devices ----- */ 1168 static inline void hci_dev_put(struct hci_dev *d) 1169 { 1170 BT_DBG("%s orig refcnt %d", d->name, 1171 kref_read(&d->dev.kobj.kref)); 1172 1173 put_device(&d->dev); 1174 } 1175 1176 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d) 1177 { 1178 BT_DBG("%s orig refcnt %d", d->name, 1179 kref_read(&d->dev.kobj.kref)); 1180 1181 get_device(&d->dev); 1182 return d; 1183 } 1184 1185 #define hci_dev_lock(d) mutex_lock(&d->lock) 1186 #define hci_dev_unlock(d) mutex_unlock(&d->lock) 1187 1188 #define to_hci_dev(d) container_of(d, struct hci_dev, dev) 1189 #define to_hci_conn(c) container_of(c, struct hci_conn, dev) 1190 1191 static inline void *hci_get_drvdata(struct hci_dev *hdev) 1192 { 1193 return dev_get_drvdata(&hdev->dev); 1194 } 1195 1196 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data) 1197 { 1198 dev_set_drvdata(&hdev->dev, data); 1199 } 1200 1201 struct hci_dev *hci_dev_get(int index); 1202 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, u8 src_type); 1203 1204 struct hci_dev *hci_alloc_dev(void); 1205 void hci_free_dev(struct hci_dev *hdev); 1206 int hci_register_dev(struct hci_dev *hdev); 1207 void hci_unregister_dev(struct hci_dev *hdev); 1208 int hci_suspend_dev(struct hci_dev *hdev); 1209 int hci_resume_dev(struct hci_dev *hdev); 1210 int hci_reset_dev(struct hci_dev *hdev); 1211 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb); 1212 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb); 1213 __printf(2, 3) void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...); 1214 __printf(2, 3) void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...); 1215 1216 static inline void hci_set_msft_opcode(struct hci_dev *hdev, __u16 opcode) 1217 { 1218 #if IS_ENABLED(CONFIG_BT_MSFTEXT) 1219 hdev->msft_opcode = opcode; 1220 #endif 1221 } 1222 1223 int hci_dev_open(__u16 dev); 1224 int hci_dev_close(__u16 dev); 1225 int hci_dev_do_close(struct hci_dev *hdev); 1226 int hci_dev_reset(__u16 dev); 1227 int hci_dev_reset_stat(__u16 dev); 1228 int hci_dev_cmd(unsigned int cmd, void __user *arg); 1229 int hci_get_dev_list(void __user *arg); 1230 int hci_get_dev_info(void __user *arg); 1231 int hci_get_conn_list(void __user *arg); 1232 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg); 1233 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg); 1234 int hci_inquiry(void __user *arg); 1235 1236 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list, 1237 bdaddr_t *bdaddr, u8 type); 1238 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 1239 struct list_head *list, bdaddr_t *bdaddr, 1240 u8 type); 1241 struct bdaddr_list_with_flags * 1242 hci_bdaddr_list_lookup_with_flags(struct list_head *list, bdaddr_t *bdaddr, 1243 u8 type); 1244 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1245 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 1246 u8 type, u8 *peer_irk, u8 *local_irk); 1247 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, 1248 u8 type, u32 flags); 1249 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1250 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 1251 u8 type); 1252 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, 1253 u8 type); 1254 void hci_bdaddr_list_clear(struct list_head *list); 1255 1256 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 1257 bdaddr_t *addr, u8 addr_type); 1258 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 1259 bdaddr_t *addr, u8 addr_type); 1260 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); 1261 void hci_conn_params_clear_disabled(struct hci_dev *hdev); 1262 1263 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 1264 bdaddr_t *addr, 1265 u8 addr_type); 1266 1267 void hci_uuids_clear(struct hci_dev *hdev); 1268 1269 void hci_link_keys_clear(struct hci_dev *hdev); 1270 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1271 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1272 bdaddr_t *bdaddr, u8 *val, u8 type, 1273 u8 pin_len, bool *persistent); 1274 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1275 u8 addr_type, u8 type, u8 authenticated, 1276 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand); 1277 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1278 u8 addr_type, u8 role); 1279 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); 1280 void hci_smp_ltks_clear(struct hci_dev *hdev); 1281 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1282 1283 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa); 1284 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1285 u8 addr_type); 1286 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1287 u8 addr_type, u8 val[16], bdaddr_t *rpa); 1288 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); 1289 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]); 1290 void hci_blocked_keys_clear(struct hci_dev *hdev); 1291 void hci_smp_irks_clear(struct hci_dev *hdev); 1292 1293 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 1294 1295 void hci_remote_oob_data_clear(struct hci_dev *hdev); 1296 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1297 bdaddr_t *bdaddr, u8 bdaddr_type); 1298 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1299 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1300 u8 *hash256, u8 *rand256); 1301 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1302 u8 bdaddr_type); 1303 1304 void hci_adv_instances_clear(struct hci_dev *hdev); 1305 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance); 1306 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance); 1307 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, 1308 u16 adv_data_len, u8 *adv_data, 1309 u16 scan_rsp_len, u8 *scan_rsp_data, 1310 u16 timeout, u16 duration, s8 tx_power, 1311 u32 min_interval, u32 max_interval); 1312 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance, 1313 u16 adv_data_len, u8 *adv_data, 1314 u16 scan_rsp_len, u8 *scan_rsp_data); 1315 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance); 1316 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired); 1317 1318 void hci_adv_monitors_clear(struct hci_dev *hdev); 1319 void hci_free_adv_monitor(struct adv_monitor *monitor); 1320 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor); 1321 int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle); 1322 bool hci_is_adv_monitoring(struct hci_dev *hdev); 1323 1324 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb); 1325 1326 void hci_init_sysfs(struct hci_dev *hdev); 1327 void hci_conn_init_sysfs(struct hci_conn *conn); 1328 void hci_conn_add_sysfs(struct hci_conn *conn); 1329 void hci_conn_del_sysfs(struct hci_conn *conn); 1330 1331 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev)) 1332 1333 /* ----- LMP capabilities ----- */ 1334 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT) 1335 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH) 1336 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD) 1337 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF) 1338 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK) 1339 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ) 1340 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO) 1341 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR)) 1342 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE) 1343 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR) 1344 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC) 1345 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ) 1346 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR)) 1347 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR) 1348 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH) 1349 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO) 1350 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR) 1351 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES) 1352 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT) 1353 #define lmp_edr_2m_capable(dev) ((dev)->features[0][3] & LMP_EDR_2M) 1354 #define lmp_edr_3m_capable(dev) ((dev)->features[0][3] & LMP_EDR_3M) 1355 #define lmp_edr_3slot_capable(dev) ((dev)->features[0][4] & LMP_EDR_3SLOT) 1356 #define lmp_edr_5slot_capable(dev) ((dev)->features[0][5] & LMP_EDR_5SLOT) 1357 1358 /* ----- Extended LMP capabilities ----- */ 1359 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER) 1360 #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE) 1361 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN) 1362 #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN) 1363 #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC) 1364 #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING) 1365 1366 /* ----- Host capabilities ----- */ 1367 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP) 1368 #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC) 1369 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE)) 1370 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR)) 1371 1372 #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \ 1373 !hci_dev_test_flag(dev, HCI_AUTO_OFF)) 1374 #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \ 1375 hci_dev_test_flag(dev, HCI_SC_ENABLED)) 1376 1377 #define scan_1m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_1M) || \ 1378 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_1M)) 1379 1380 #define scan_2m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_2M) || \ 1381 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_2M)) 1382 1383 #define scan_coded(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_CODED) || \ 1384 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_CODED)) 1385 1386 /* Use LL Privacy based address resolution if supported */ 1387 #define use_ll_privacy(dev) ((dev)->le_features[0] & HCI_LE_LL_PRIVACY) 1388 1389 /* Use ext scanning if set ext scan param and ext scan enable is supported */ 1390 #define use_ext_scan(dev) (((dev)->commands[37] & 0x20) && \ 1391 ((dev)->commands[37] & 0x40)) 1392 /* Use ext create connection if command is supported */ 1393 #define use_ext_conn(dev) ((dev)->commands[37] & 0x80) 1394 1395 /* Extended advertising support */ 1396 #define ext_adv_capable(dev) (((dev)->le_features[1] & HCI_LE_EXT_ADV)) 1397 1398 /* ----- HCI protocols ----- */ 1399 #define HCI_PROTO_DEFER 0x01 1400 1401 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 1402 __u8 type, __u8 *flags) 1403 { 1404 switch (type) { 1405 case ACL_LINK: 1406 return l2cap_connect_ind(hdev, bdaddr); 1407 1408 case SCO_LINK: 1409 case ESCO_LINK: 1410 return sco_connect_ind(hdev, bdaddr, flags); 1411 1412 default: 1413 BT_ERR("unknown link type %d", type); 1414 return -EINVAL; 1415 } 1416 } 1417 1418 static inline int hci_proto_disconn_ind(struct hci_conn *conn) 1419 { 1420 if (conn->type != ACL_LINK && conn->type != LE_LINK) 1421 return HCI_ERROR_REMOTE_USER_TERM; 1422 1423 return l2cap_disconn_ind(conn); 1424 } 1425 1426 /* ----- HCI callbacks ----- */ 1427 struct hci_cb { 1428 struct list_head list; 1429 1430 char *name; 1431 1432 void (*connect_cfm) (struct hci_conn *conn, __u8 status); 1433 void (*disconn_cfm) (struct hci_conn *conn, __u8 status); 1434 void (*security_cfm) (struct hci_conn *conn, __u8 status, 1435 __u8 encrypt); 1436 void (*key_change_cfm) (struct hci_conn *conn, __u8 status); 1437 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role); 1438 }; 1439 1440 static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status) 1441 { 1442 struct hci_cb *cb; 1443 1444 mutex_lock(&hci_cb_list_lock); 1445 list_for_each_entry(cb, &hci_cb_list, list) { 1446 if (cb->connect_cfm) 1447 cb->connect_cfm(conn, status); 1448 } 1449 mutex_unlock(&hci_cb_list_lock); 1450 1451 if (conn->connect_cfm_cb) 1452 conn->connect_cfm_cb(conn, status); 1453 } 1454 1455 static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason) 1456 { 1457 struct hci_cb *cb; 1458 1459 mutex_lock(&hci_cb_list_lock); 1460 list_for_each_entry(cb, &hci_cb_list, list) { 1461 if (cb->disconn_cfm) 1462 cb->disconn_cfm(conn, reason); 1463 } 1464 mutex_unlock(&hci_cb_list_lock); 1465 1466 if (conn->disconn_cfm_cb) 1467 conn->disconn_cfm_cb(conn, reason); 1468 } 1469 1470 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status) 1471 { 1472 struct hci_cb *cb; 1473 __u8 encrypt; 1474 1475 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1476 return; 1477 1478 encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00; 1479 1480 mutex_lock(&hci_cb_list_lock); 1481 list_for_each_entry(cb, &hci_cb_list, list) { 1482 if (cb->security_cfm) 1483 cb->security_cfm(conn, status, encrypt); 1484 } 1485 mutex_unlock(&hci_cb_list_lock); 1486 1487 if (conn->security_cfm_cb) 1488 conn->security_cfm_cb(conn, status); 1489 } 1490 1491 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status) 1492 { 1493 struct hci_cb *cb; 1494 __u8 encrypt; 1495 1496 if (conn->state == BT_CONFIG) { 1497 if (!status) 1498 conn->state = BT_CONNECTED; 1499 1500 hci_connect_cfm(conn, status); 1501 hci_conn_drop(conn); 1502 return; 1503 } 1504 1505 if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1506 encrypt = 0x00; 1507 else if (test_bit(HCI_CONN_AES_CCM, &conn->flags)) 1508 encrypt = 0x02; 1509 else 1510 encrypt = 0x01; 1511 1512 if (!status) { 1513 if (conn->sec_level == BT_SECURITY_SDP) 1514 conn->sec_level = BT_SECURITY_LOW; 1515 1516 if (conn->pending_sec_level > conn->sec_level) 1517 conn->sec_level = conn->pending_sec_level; 1518 } 1519 1520 mutex_lock(&hci_cb_list_lock); 1521 list_for_each_entry(cb, &hci_cb_list, list) { 1522 if (cb->security_cfm) 1523 cb->security_cfm(conn, status, encrypt); 1524 } 1525 mutex_unlock(&hci_cb_list_lock); 1526 1527 if (conn->security_cfm_cb) 1528 conn->security_cfm_cb(conn, status); 1529 } 1530 1531 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status) 1532 { 1533 struct hci_cb *cb; 1534 1535 mutex_lock(&hci_cb_list_lock); 1536 list_for_each_entry(cb, &hci_cb_list, list) { 1537 if (cb->key_change_cfm) 1538 cb->key_change_cfm(conn, status); 1539 } 1540 mutex_unlock(&hci_cb_list_lock); 1541 } 1542 1543 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status, 1544 __u8 role) 1545 { 1546 struct hci_cb *cb; 1547 1548 mutex_lock(&hci_cb_list_lock); 1549 list_for_each_entry(cb, &hci_cb_list, list) { 1550 if (cb->role_switch_cfm) 1551 cb->role_switch_cfm(conn, status, role); 1552 } 1553 mutex_unlock(&hci_cb_list_lock); 1554 } 1555 1556 static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type, 1557 size_t *data_len) 1558 { 1559 size_t parsed = 0; 1560 1561 if (eir_len < 2) 1562 return NULL; 1563 1564 while (parsed < eir_len - 1) { 1565 u8 field_len = eir[0]; 1566 1567 if (field_len == 0) 1568 break; 1569 1570 parsed += field_len + 1; 1571 1572 if (parsed > eir_len) 1573 break; 1574 1575 if (eir[1] != type) { 1576 eir += field_len + 1; 1577 continue; 1578 } 1579 1580 /* Zero length data */ 1581 if (field_len == 1) 1582 return NULL; 1583 1584 if (data_len) 1585 *data_len = field_len - 1; 1586 1587 return &eir[2]; 1588 } 1589 1590 return NULL; 1591 } 1592 1593 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type) 1594 { 1595 if (addr_type != ADDR_LE_DEV_RANDOM) 1596 return false; 1597 1598 if ((bdaddr->b[5] & 0xc0) == 0x40) 1599 return true; 1600 1601 return false; 1602 } 1603 1604 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type) 1605 { 1606 if (addr_type == ADDR_LE_DEV_PUBLIC) 1607 return true; 1608 1609 /* Check for Random Static address type */ 1610 if ((addr->b[5] & 0xc0) == 0xc0) 1611 return true; 1612 1613 return false; 1614 } 1615 1616 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev, 1617 bdaddr_t *bdaddr, u8 addr_type) 1618 { 1619 if (!hci_bdaddr_is_rpa(bdaddr, addr_type)) 1620 return NULL; 1621 1622 return hci_find_irk_by_rpa(hdev, bdaddr); 1623 } 1624 1625 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency, 1626 u16 to_multiplier) 1627 { 1628 u16 max_latency; 1629 1630 if (min > max || min < 6 || max > 3200) 1631 return -EINVAL; 1632 1633 if (to_multiplier < 10 || to_multiplier > 3200) 1634 return -EINVAL; 1635 1636 if (max >= to_multiplier * 8) 1637 return -EINVAL; 1638 1639 max_latency = (to_multiplier * 4 / max) - 1; 1640 if (latency > 499 || latency > max_latency) 1641 return -EINVAL; 1642 1643 return 0; 1644 } 1645 1646 int hci_register_cb(struct hci_cb *hcb); 1647 int hci_unregister_cb(struct hci_cb *hcb); 1648 1649 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1650 const void *param, u32 timeout); 1651 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 1652 const void *param, u8 event, u32 timeout); 1653 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 1654 const void *param); 1655 1656 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 1657 const void *param); 1658 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags); 1659 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb); 1660 1661 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode); 1662 1663 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1664 const void *param, u32 timeout); 1665 1666 u32 hci_conn_get_phy(struct hci_conn *conn); 1667 1668 /* ----- HCI Sockets ----- */ 1669 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb); 1670 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 1671 int flag, struct sock *skip_sk); 1672 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb); 1673 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, 1674 void *data, u16 data_len, ktime_t tstamp, 1675 int flag, struct sock *skip_sk); 1676 1677 void hci_sock_dev_event(struct hci_dev *hdev, int event); 1678 1679 #define HCI_MGMT_VAR_LEN BIT(0) 1680 #define HCI_MGMT_NO_HDEV BIT(1) 1681 #define HCI_MGMT_UNTRUSTED BIT(2) 1682 #define HCI_MGMT_UNCONFIGURED BIT(3) 1683 #define HCI_MGMT_HDEV_OPTIONAL BIT(4) 1684 1685 struct hci_mgmt_handler { 1686 int (*func) (struct sock *sk, struct hci_dev *hdev, void *data, 1687 u16 data_len); 1688 size_t data_len; 1689 unsigned long flags; 1690 }; 1691 1692 struct hci_mgmt_chan { 1693 struct list_head list; 1694 unsigned short channel; 1695 size_t handler_count; 1696 const struct hci_mgmt_handler *handlers; 1697 void (*hdev_init) (struct sock *sk, struct hci_dev *hdev); 1698 }; 1699 1700 int hci_mgmt_chan_register(struct hci_mgmt_chan *c); 1701 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c); 1702 1703 /* Management interface */ 1704 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR)) 1705 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \ 1706 BIT(BDADDR_LE_RANDOM)) 1707 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \ 1708 BIT(BDADDR_LE_PUBLIC) | \ 1709 BIT(BDADDR_LE_RANDOM)) 1710 1711 /* These LE scan and inquiry parameters were chosen according to LE General 1712 * Discovery Procedure specification. 1713 */ 1714 #define DISCOV_LE_SCAN_WIN 0x12 1715 #define DISCOV_LE_SCAN_INT 0x12 1716 #define DISCOV_LE_TIMEOUT 10240 /* msec */ 1717 #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */ 1718 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04 1719 #define DISCOV_BREDR_INQUIRY_LEN 0x08 1720 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */ 1721 #define DISCOV_LE_FAST_ADV_INT_MIN 100 /* msec */ 1722 #define DISCOV_LE_FAST_ADV_INT_MAX 150 /* msec */ 1723 1724 void mgmt_fill_version_info(void *ver); 1725 int mgmt_new_settings(struct hci_dev *hdev); 1726 void mgmt_index_added(struct hci_dev *hdev); 1727 void mgmt_index_removed(struct hci_dev *hdev); 1728 void mgmt_set_powered_failed(struct hci_dev *hdev, int err); 1729 void mgmt_power_on(struct hci_dev *hdev, int err); 1730 void __mgmt_power_off(struct hci_dev *hdev); 1731 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, 1732 bool persistent); 1733 void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn, 1734 u32 flags, u8 *name, u8 name_len); 1735 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, 1736 u8 link_type, u8 addr_type, u8 reason, 1737 bool mgmt_connected); 1738 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, 1739 u8 link_type, u8 addr_type, u8 status); 1740 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1741 u8 addr_type, u8 status); 1742 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure); 1743 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1744 u8 status); 1745 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1746 u8 status); 1747 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1748 u8 link_type, u8 addr_type, u32 value, 1749 u8 confirm_hint); 1750 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1751 u8 link_type, u8 addr_type, u8 status); 1752 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1753 u8 link_type, u8 addr_type, u8 status); 1754 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1755 u8 link_type, u8 addr_type); 1756 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1757 u8 link_type, u8 addr_type, u8 status); 1758 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1759 u8 link_type, u8 addr_type, u8 status); 1760 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, 1761 u8 link_type, u8 addr_type, u32 passkey, 1762 u8 entered); 1763 void mgmt_auth_failed(struct hci_conn *conn, u8 status); 1764 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status); 1765 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); 1766 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, 1767 u8 status); 1768 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status); 1769 void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status); 1770 void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status); 1771 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1772 u8 addr_type, u8 *dev_class, s8 rssi, u32 flags, 1773 u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len); 1774 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1775 u8 addr_type, s8 rssi, u8 *name, u8 name_len); 1776 void mgmt_discovering(struct hci_dev *hdev, u8 discovering); 1777 void mgmt_suspending(struct hci_dev *hdev, u8 state); 1778 void mgmt_resuming(struct hci_dev *hdev, u8 reason, bdaddr_t *bdaddr, 1779 u8 addr_type); 1780 bool mgmt_powering_down(struct hci_dev *hdev); 1781 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent); 1782 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent); 1783 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk, 1784 bool persistent); 1785 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr, 1786 u8 bdaddr_type, u8 store_hint, u16 min_interval, 1787 u16 max_interval, u16 latency, u16 timeout); 1788 void mgmt_smp_complete(struct hci_conn *conn, bool complete); 1789 bool mgmt_get_connectable(struct hci_dev *hdev); 1790 void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status); 1791 void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status); 1792 u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev); 1793 void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev, 1794 u8 instance); 1795 void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev, 1796 u8 instance); 1797 int mgmt_phy_configuration_changed(struct hci_dev *hdev, struct sock *skip); 1798 1799 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 1800 u16 to_multiplier); 1801 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 1802 __u8 ltk[16], __u8 key_size); 1803 1804 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 1805 u8 *bdaddr_type); 1806 1807 #define SCO_AIRMODE_MASK 0x0003 1808 #define SCO_AIRMODE_CVSD 0x0000 1809 #define SCO_AIRMODE_TRANSP 0x0003 1810 1811 #endif /* __HCI_CORE_H */ 1812