xref: /openbmc/linux/include/net/bluetooth/hci_core.h (revision 7b6d864b)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4 
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10 
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24 
25 #ifndef __HCI_CORE_H
26 #define __HCI_CORE_H
27 
28 #include <net/bluetooth/hci.h>
29 
30 /* HCI priority */
31 #define HCI_PRIO_MAX	7
32 
33 /* HCI Core structures */
34 struct inquiry_data {
35 	bdaddr_t	bdaddr;
36 	__u8		pscan_rep_mode;
37 	__u8		pscan_period_mode;
38 	__u8		pscan_mode;
39 	__u8		dev_class[3];
40 	__le16		clock_offset;
41 	__s8		rssi;
42 	__u8		ssp_mode;
43 };
44 
45 struct inquiry_entry {
46 	struct list_head	all;		/* inq_cache.all */
47 	struct list_head	list;		/* unknown or resolve */
48 	enum {
49 		NAME_NOT_KNOWN,
50 		NAME_NEEDED,
51 		NAME_PENDING,
52 		NAME_KNOWN,
53 	} name_state;
54 	__u32			timestamp;
55 	struct inquiry_data	data;
56 };
57 
58 struct discovery_state {
59 	int			type;
60 	enum {
61 		DISCOVERY_STOPPED,
62 		DISCOVERY_STARTING,
63 		DISCOVERY_FINDING,
64 		DISCOVERY_RESOLVING,
65 		DISCOVERY_STOPPING,
66 	} state;
67 	struct list_head	all;	/* All devices found during inquiry */
68 	struct list_head	unknown;	/* Name state not known */
69 	struct list_head	resolve;	/* Name needs to be resolved */
70 	__u32			timestamp;
71 };
72 
73 struct hci_conn_hash {
74 	struct list_head list;
75 	unsigned int     acl_num;
76 	unsigned int     amp_num;
77 	unsigned int     sco_num;
78 	unsigned int     le_num;
79 };
80 
81 struct bdaddr_list {
82 	struct list_head list;
83 	bdaddr_t bdaddr;
84 };
85 
86 struct bt_uuid {
87 	struct list_head list;
88 	u8 uuid[16];
89 	u8 size;
90 	u8 svc_hint;
91 };
92 
93 struct smp_ltk {
94 	struct list_head list;
95 	bdaddr_t bdaddr;
96 	u8 bdaddr_type;
97 	u8 authenticated;
98 	u8 type;
99 	u8 enc_size;
100 	__le16 ediv;
101 	u8 rand[8];
102 	u8 val[16];
103 } __packed;
104 
105 struct link_key {
106 	struct list_head list;
107 	bdaddr_t bdaddr;
108 	u8 type;
109 	u8 val[HCI_LINK_KEY_SIZE];
110 	u8 pin_len;
111 };
112 
113 struct oob_data {
114 	struct list_head list;
115 	bdaddr_t bdaddr;
116 	u8 hash[16];
117 	u8 randomizer[16];
118 };
119 
120 struct le_scan_params {
121 	u8 type;
122 	u16 interval;
123 	u16 window;
124 	int timeout;
125 };
126 
127 #define HCI_MAX_SHORT_NAME_LENGTH	10
128 
129 struct amp_assoc {
130 	__u16	len;
131 	__u16	offset;
132 	__u16	rem_len;
133 	__u16	len_so_far;
134 	__u8	data[HCI_MAX_AMP_ASSOC_SIZE];
135 };
136 
137 #define HCI_MAX_PAGES	3
138 
139 #define NUM_REASSEMBLY 4
140 struct hci_dev {
141 	struct list_head list;
142 	struct mutex	lock;
143 
144 	char		name[8];
145 	unsigned long	flags;
146 	__u16		id;
147 	__u8		bus;
148 	__u8		dev_type;
149 	bdaddr_t	bdaddr;
150 	__u8		dev_name[HCI_MAX_NAME_LENGTH];
151 	__u8		short_name[HCI_MAX_SHORT_NAME_LENGTH];
152 	__u8		eir[HCI_MAX_EIR_LENGTH];
153 	__u8		dev_class[3];
154 	__u8		major_class;
155 	__u8		minor_class;
156 	__u8		max_page;
157 	__u8		features[HCI_MAX_PAGES][8];
158 	__u8		le_features[8];
159 	__u8		le_white_list_size;
160 	__u8		le_states[8];
161 	__u8		commands[64];
162 	__u8		hci_ver;
163 	__u16		hci_rev;
164 	__u8		lmp_ver;
165 	__u16		manufacturer;
166 	__u16		lmp_subver;
167 	__u16		voice_setting;
168 	__u8		io_capability;
169 	__s8		inq_tx_power;
170 	__u16		page_scan_interval;
171 	__u16		page_scan_window;
172 	__u8		page_scan_type;
173 
174 	__u16		devid_source;
175 	__u16		devid_vendor;
176 	__u16		devid_product;
177 	__u16		devid_version;
178 
179 	__u16		pkt_type;
180 	__u16		esco_type;
181 	__u16		link_policy;
182 	__u16		link_mode;
183 
184 	__u32		idle_timeout;
185 	__u16		sniff_min_interval;
186 	__u16		sniff_max_interval;
187 
188 	__u8		amp_status;
189 	__u32		amp_total_bw;
190 	__u32		amp_max_bw;
191 	__u32		amp_min_latency;
192 	__u32		amp_max_pdu;
193 	__u8		amp_type;
194 	__u16		amp_pal_cap;
195 	__u16		amp_assoc_size;
196 	__u32		amp_max_flush_to;
197 	__u32		amp_be_flush_to;
198 
199 	struct amp_assoc	loc_assoc;
200 
201 	__u8		flow_ctl_mode;
202 
203 	unsigned int	auto_accept_delay;
204 
205 	unsigned long	quirks;
206 
207 	atomic_t	cmd_cnt;
208 	unsigned int	acl_cnt;
209 	unsigned int	sco_cnt;
210 	unsigned int	le_cnt;
211 
212 	unsigned int	acl_mtu;
213 	unsigned int	sco_mtu;
214 	unsigned int	le_mtu;
215 	unsigned int	acl_pkts;
216 	unsigned int	sco_pkts;
217 	unsigned int	le_pkts;
218 
219 	__u16		block_len;
220 	__u16		block_mtu;
221 	__u16		num_blocks;
222 	__u16		block_cnt;
223 
224 	unsigned long	acl_last_tx;
225 	unsigned long	sco_last_tx;
226 	unsigned long	le_last_tx;
227 
228 	struct workqueue_struct	*workqueue;
229 	struct workqueue_struct	*req_workqueue;
230 
231 	struct work_struct	power_on;
232 	struct delayed_work	power_off;
233 
234 	__u16			discov_timeout;
235 	struct delayed_work	discov_off;
236 
237 	struct delayed_work	service_cache;
238 
239 	struct timer_list	cmd_timer;
240 
241 	struct work_struct	rx_work;
242 	struct work_struct	cmd_work;
243 	struct work_struct	tx_work;
244 
245 	struct sk_buff_head	rx_q;
246 	struct sk_buff_head	raw_q;
247 	struct sk_buff_head	cmd_q;
248 
249 	struct sk_buff		*recv_evt;
250 	struct sk_buff		*sent_cmd;
251 	struct sk_buff		*reassembly[NUM_REASSEMBLY];
252 
253 	struct mutex		req_lock;
254 	wait_queue_head_t	req_wait_q;
255 	__u32			req_status;
256 	__u32			req_result;
257 
258 	struct list_head	mgmt_pending;
259 
260 	struct discovery_state	discovery;
261 	struct hci_conn_hash	conn_hash;
262 	struct list_head	blacklist;
263 
264 	struct list_head	uuids;
265 
266 	struct list_head	link_keys;
267 
268 	struct list_head	long_term_keys;
269 
270 	struct list_head	remote_oob_data;
271 
272 	struct hci_dev_stats	stat;
273 
274 	atomic_t		promisc;
275 
276 	struct dentry		*debugfs;
277 
278 	struct device		dev;
279 
280 	struct rfkill		*rfkill;
281 
282 	unsigned long		dev_flags;
283 
284 	struct delayed_work	le_scan_disable;
285 
286 	struct work_struct	le_scan;
287 	struct le_scan_params	le_scan_params;
288 
289 	__s8			adv_tx_power;
290 	__u8			adv_data[HCI_MAX_AD_LENGTH];
291 	__u8			adv_data_len;
292 
293 	int (*open)(struct hci_dev *hdev);
294 	int (*close)(struct hci_dev *hdev);
295 	int (*flush)(struct hci_dev *hdev);
296 	int (*setup)(struct hci_dev *hdev);
297 	int (*send)(struct sk_buff *skb);
298 	void (*notify)(struct hci_dev *hdev, unsigned int evt);
299 	int (*ioctl)(struct hci_dev *hdev, unsigned int cmd, unsigned long arg);
300 };
301 
302 #define HCI_PHY_HANDLE(handle)	(handle & 0xff)
303 
304 struct hci_conn {
305 	struct list_head list;
306 
307 	atomic_t	refcnt;
308 
309 	bdaddr_t	dst;
310 	__u8		dst_type;
311 	__u16		handle;
312 	__u16		state;
313 	__u8		mode;
314 	__u8		type;
315 	bool		out;
316 	__u8		attempt;
317 	__u8		dev_class[3];
318 	__u8		features[HCI_MAX_PAGES][8];
319 	__u16		interval;
320 	__u16		pkt_type;
321 	__u16		link_policy;
322 	__u32		link_mode;
323 	__u8		key_type;
324 	__u8		auth_type;
325 	__u8		sec_level;
326 	__u8		pending_sec_level;
327 	__u8		pin_length;
328 	__u8		enc_key_size;
329 	__u8		io_capability;
330 	__u32		passkey_notify;
331 	__u8		passkey_entered;
332 	__u16		disc_timeout;
333 	unsigned long	flags;
334 
335 	__u8		remote_cap;
336 	__u8		remote_auth;
337 	__u8		remote_id;
338 	bool		flush_key;
339 
340 	unsigned int	sent;
341 
342 	struct sk_buff_head data_q;
343 	struct list_head chan_list;
344 
345 	struct delayed_work disc_work;
346 	struct timer_list idle_timer;
347 	struct timer_list auto_accept_timer;
348 
349 	struct device	dev;
350 
351 	struct hci_dev	*hdev;
352 	void		*l2cap_data;
353 	void		*sco_data;
354 	void		*smp_conn;
355 	struct amp_mgr	*amp_mgr;
356 
357 	struct hci_conn	*link;
358 
359 	void (*connect_cfm_cb)	(struct hci_conn *conn, u8 status);
360 	void (*security_cfm_cb)	(struct hci_conn *conn, u8 status);
361 	void (*disconn_cfm_cb)	(struct hci_conn *conn, u8 reason);
362 };
363 
364 struct hci_chan {
365 	struct list_head list;
366 	__u16 handle;
367 	struct hci_conn *conn;
368 	struct sk_buff_head data_q;
369 	unsigned int	sent;
370 	__u8		state;
371 };
372 
373 extern struct list_head hci_dev_list;
374 extern struct list_head hci_cb_list;
375 extern rwlock_t hci_dev_list_lock;
376 extern rwlock_t hci_cb_list_lock;
377 
378 /* ----- HCI interface to upper protocols ----- */
379 extern int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
380 extern void l2cap_connect_cfm(struct hci_conn *hcon, u8 status);
381 extern int l2cap_disconn_ind(struct hci_conn *hcon);
382 extern void l2cap_disconn_cfm(struct hci_conn *hcon, u8 reason);
383 extern int l2cap_security_cfm(struct hci_conn *hcon, u8 status, u8 encrypt);
384 extern int l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb,
385 			      u16 flags);
386 
387 extern int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags);
388 extern void sco_connect_cfm(struct hci_conn *hcon, __u8 status);
389 extern void sco_disconn_cfm(struct hci_conn *hcon, __u8 reason);
390 extern int sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb);
391 
392 /* ----- Inquiry cache ----- */
393 #define INQUIRY_CACHE_AGE_MAX   (HZ*30)   /* 30 seconds */
394 #define INQUIRY_ENTRY_AGE_MAX   (HZ*60)   /* 60 seconds */
395 
396 static inline void discovery_init(struct hci_dev *hdev)
397 {
398 	hdev->discovery.state = DISCOVERY_STOPPED;
399 	INIT_LIST_HEAD(&hdev->discovery.all);
400 	INIT_LIST_HEAD(&hdev->discovery.unknown);
401 	INIT_LIST_HEAD(&hdev->discovery.resolve);
402 }
403 
404 bool hci_discovery_active(struct hci_dev *hdev);
405 
406 void hci_discovery_set_state(struct hci_dev *hdev, int state);
407 
408 static inline int inquiry_cache_empty(struct hci_dev *hdev)
409 {
410 	return list_empty(&hdev->discovery.all);
411 }
412 
413 static inline long inquiry_cache_age(struct hci_dev *hdev)
414 {
415 	struct discovery_state *c = &hdev->discovery;
416 	return jiffies - c->timestamp;
417 }
418 
419 static inline long inquiry_entry_age(struct inquiry_entry *e)
420 {
421 	return jiffies - e->timestamp;
422 }
423 
424 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
425 					       bdaddr_t *bdaddr);
426 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
427 						       bdaddr_t *bdaddr);
428 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
429 						       bdaddr_t *bdaddr,
430 						       int state);
431 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
432 				      struct inquiry_entry *ie);
433 bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
434 			      bool name_known, bool *ssp);
435 
436 /* ----- HCI Connections ----- */
437 enum {
438 	HCI_CONN_AUTH_PEND,
439 	HCI_CONN_REAUTH_PEND,
440 	HCI_CONN_ENCRYPT_PEND,
441 	HCI_CONN_RSWITCH_PEND,
442 	HCI_CONN_MODE_CHANGE_PEND,
443 	HCI_CONN_SCO_SETUP_PEND,
444 	HCI_CONN_LE_SMP_PEND,
445 	HCI_CONN_MGMT_CONNECTED,
446 	HCI_CONN_SSP_ENABLED,
447 	HCI_CONN_POWER_SAVE,
448 	HCI_CONN_REMOTE_OOB,
449 };
450 
451 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn)
452 {
453 	struct hci_dev *hdev = conn->hdev;
454 	return test_bit(HCI_SSP_ENABLED, &hdev->dev_flags) &&
455 	       test_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
456 }
457 
458 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c)
459 {
460 	struct hci_conn_hash *h = &hdev->conn_hash;
461 	list_add_rcu(&c->list, &h->list);
462 	switch (c->type) {
463 	case ACL_LINK:
464 		h->acl_num++;
465 		break;
466 	case AMP_LINK:
467 		h->amp_num++;
468 		break;
469 	case LE_LINK:
470 		h->le_num++;
471 		break;
472 	case SCO_LINK:
473 	case ESCO_LINK:
474 		h->sco_num++;
475 		break;
476 	}
477 }
478 
479 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c)
480 {
481 	struct hci_conn_hash *h = &hdev->conn_hash;
482 
483 	list_del_rcu(&c->list);
484 	synchronize_rcu();
485 
486 	switch (c->type) {
487 	case ACL_LINK:
488 		h->acl_num--;
489 		break;
490 	case AMP_LINK:
491 		h->amp_num--;
492 		break;
493 	case LE_LINK:
494 		h->le_num--;
495 		break;
496 	case SCO_LINK:
497 	case ESCO_LINK:
498 		h->sco_num--;
499 		break;
500 	}
501 }
502 
503 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type)
504 {
505 	struct hci_conn_hash *h = &hdev->conn_hash;
506 	switch (type) {
507 	case ACL_LINK:
508 		return h->acl_num;
509 	case AMP_LINK:
510 		return h->amp_num;
511 	case LE_LINK:
512 		return h->le_num;
513 	case SCO_LINK:
514 	case ESCO_LINK:
515 		return h->sco_num;
516 	default:
517 		return 0;
518 	}
519 }
520 
521 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev,
522 								__u16 handle)
523 {
524 	struct hci_conn_hash *h = &hdev->conn_hash;
525 	struct hci_conn  *c;
526 
527 	rcu_read_lock();
528 
529 	list_for_each_entry_rcu(c, &h->list, list) {
530 		if (c->handle == handle) {
531 			rcu_read_unlock();
532 			return c;
533 		}
534 	}
535 	rcu_read_unlock();
536 
537 	return NULL;
538 }
539 
540 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev,
541 							__u8 type, bdaddr_t *ba)
542 {
543 	struct hci_conn_hash *h = &hdev->conn_hash;
544 	struct hci_conn  *c;
545 
546 	rcu_read_lock();
547 
548 	list_for_each_entry_rcu(c, &h->list, list) {
549 		if (c->type == type && !bacmp(&c->dst, ba)) {
550 			rcu_read_unlock();
551 			return c;
552 		}
553 	}
554 
555 	rcu_read_unlock();
556 
557 	return NULL;
558 }
559 
560 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev,
561 							__u8 type, __u16 state)
562 {
563 	struct hci_conn_hash *h = &hdev->conn_hash;
564 	struct hci_conn  *c;
565 
566 	rcu_read_lock();
567 
568 	list_for_each_entry_rcu(c, &h->list, list) {
569 		if (c->type == type && c->state == state) {
570 			rcu_read_unlock();
571 			return c;
572 		}
573 	}
574 
575 	rcu_read_unlock();
576 
577 	return NULL;
578 }
579 
580 void hci_disconnect(struct hci_conn *conn, __u8 reason);
581 void hci_setup_sync(struct hci_conn *conn, __u16 handle);
582 void hci_sco_setup(struct hci_conn *conn, __u8 status);
583 
584 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst);
585 int hci_conn_del(struct hci_conn *conn);
586 void hci_conn_hash_flush(struct hci_dev *hdev);
587 void hci_conn_check_pending(struct hci_dev *hdev);
588 
589 struct hci_chan *hci_chan_create(struct hci_conn *conn);
590 void hci_chan_del(struct hci_chan *chan);
591 void hci_chan_list_flush(struct hci_conn *conn);
592 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle);
593 
594 struct hci_conn *hci_connect(struct hci_dev *hdev, int type, bdaddr_t *dst,
595 			     __u8 dst_type, __u8 sec_level, __u8 auth_type);
596 int hci_conn_check_link_mode(struct hci_conn *conn);
597 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level);
598 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type);
599 int hci_conn_change_link_key(struct hci_conn *conn);
600 int hci_conn_switch_role(struct hci_conn *conn, __u8 role);
601 
602 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active);
603 
604 /*
605  * hci_conn_get() and hci_conn_put() are used to control the life-time of an
606  * "hci_conn" object. They do not guarantee that the hci_conn object is running,
607  * working or anything else. They just guarantee that the object is available
608  * and can be dereferenced. So you can use its locks, local variables and any
609  * other constant data.
610  * Before accessing runtime data, you _must_ lock the object and then check that
611  * it is still running. As soon as you release the locks, the connection might
612  * get dropped, though.
613  *
614  * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control
615  * how long the underlying connection is held. So every channel that runs on the
616  * hci_conn object calls this to prevent the connection from disappearing. As
617  * long as you hold a device, you must also guarantee that you have a valid
618  * reference to the device via hci_conn_get() (or the initial reference from
619  * hci_conn_add()).
620  * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't
621  * break because nobody cares for that. But this means, we cannot use
622  * _get()/_drop() in it, but require the caller to have a valid ref (FIXME).
623  */
624 
625 static inline void hci_conn_get(struct hci_conn *conn)
626 {
627 	get_device(&conn->dev);
628 }
629 
630 static inline void hci_conn_put(struct hci_conn *conn)
631 {
632 	put_device(&conn->dev);
633 }
634 
635 static inline void hci_conn_hold(struct hci_conn *conn)
636 {
637 	BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
638 
639 	atomic_inc(&conn->refcnt);
640 	cancel_delayed_work(&conn->disc_work);
641 }
642 
643 static inline void hci_conn_drop(struct hci_conn *conn)
644 {
645 	BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
646 
647 	if (atomic_dec_and_test(&conn->refcnt)) {
648 		unsigned long timeo;
649 
650 		switch (conn->type) {
651 		case ACL_LINK:
652 		case LE_LINK:
653 			del_timer(&conn->idle_timer);
654 			if (conn->state == BT_CONNECTED) {
655 				timeo = conn->disc_timeout;
656 				if (!conn->out)
657 					timeo *= 2;
658 			} else {
659 				timeo = msecs_to_jiffies(10);
660 			}
661 			break;
662 
663 		case AMP_LINK:
664 			timeo = conn->disc_timeout;
665 			break;
666 
667 		default:
668 			timeo = msecs_to_jiffies(10);
669 			break;
670 		}
671 
672 		cancel_delayed_work(&conn->disc_work);
673 		queue_delayed_work(conn->hdev->workqueue,
674 				   &conn->disc_work, timeo);
675 	}
676 }
677 
678 /* ----- HCI Devices ----- */
679 static inline void hci_dev_put(struct hci_dev *d)
680 {
681 	BT_DBG("%s orig refcnt %d", d->name,
682 	       atomic_read(&d->dev.kobj.kref.refcount));
683 
684 	put_device(&d->dev);
685 }
686 
687 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d)
688 {
689 	BT_DBG("%s orig refcnt %d", d->name,
690 	       atomic_read(&d->dev.kobj.kref.refcount));
691 
692 	get_device(&d->dev);
693 	return d;
694 }
695 
696 #define hci_dev_lock(d)		mutex_lock(&d->lock)
697 #define hci_dev_unlock(d)	mutex_unlock(&d->lock)
698 
699 #define to_hci_dev(d) container_of(d, struct hci_dev, dev)
700 #define to_hci_conn(c) container_of(c, struct hci_conn, dev)
701 
702 static inline void *hci_get_drvdata(struct hci_dev *hdev)
703 {
704 	return dev_get_drvdata(&hdev->dev);
705 }
706 
707 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data)
708 {
709 	dev_set_drvdata(&hdev->dev, data);
710 }
711 
712 /* hci_dev_list shall be locked */
713 static inline uint8_t __hci_num_ctrl(void)
714 {
715 	uint8_t count = 0;
716 	struct list_head *p;
717 
718 	list_for_each(p, &hci_dev_list) {
719 		count++;
720 	}
721 
722 	return count;
723 }
724 
725 struct hci_dev *hci_dev_get(int index);
726 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src);
727 
728 struct hci_dev *hci_alloc_dev(void);
729 void hci_free_dev(struct hci_dev *hdev);
730 int hci_register_dev(struct hci_dev *hdev);
731 void hci_unregister_dev(struct hci_dev *hdev);
732 int hci_suspend_dev(struct hci_dev *hdev);
733 int hci_resume_dev(struct hci_dev *hdev);
734 int hci_dev_open(__u16 dev);
735 int hci_dev_close(__u16 dev);
736 int hci_dev_reset(__u16 dev);
737 int hci_dev_reset_stat(__u16 dev);
738 int hci_dev_cmd(unsigned int cmd, void __user *arg);
739 int hci_get_dev_list(void __user *arg);
740 int hci_get_dev_info(void __user *arg);
741 int hci_get_conn_list(void __user *arg);
742 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg);
743 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg);
744 int hci_inquiry(void __user *arg);
745 
746 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
747 					 bdaddr_t *bdaddr);
748 int hci_blacklist_clear(struct hci_dev *hdev);
749 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
750 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
751 
752 int hci_uuids_clear(struct hci_dev *hdev);
753 
754 int hci_link_keys_clear(struct hci_dev *hdev);
755 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
756 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
757 		     bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len);
758 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8]);
759 int hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type,
760 		int new_key, u8 authenticated, u8 tk[16], u8 enc_size,
761 		__le16 ediv, u8 rand[8]);
762 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
763 				     u8 addr_type);
764 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr);
765 int hci_smp_ltks_clear(struct hci_dev *hdev);
766 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
767 
768 int hci_remote_oob_data_clear(struct hci_dev *hdev);
769 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
770 							bdaddr_t *bdaddr);
771 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
772 								u8 *randomizer);
773 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr);
774 
775 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);
776 
777 int hci_recv_frame(struct sk_buff *skb);
778 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count);
779 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count);
780 
781 void hci_init_sysfs(struct hci_dev *hdev);
782 int hci_add_sysfs(struct hci_dev *hdev);
783 void hci_del_sysfs(struct hci_dev *hdev);
784 void hci_conn_init_sysfs(struct hci_conn *conn);
785 void hci_conn_add_sysfs(struct hci_conn *conn);
786 void hci_conn_del_sysfs(struct hci_conn *conn);
787 
788 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev))
789 
790 /* ----- LMP capabilities ----- */
791 #define lmp_encrypt_capable(dev)   ((dev)->features[0][0] & LMP_ENCRYPT)
792 #define lmp_rswitch_capable(dev)   ((dev)->features[0][0] & LMP_RSWITCH)
793 #define lmp_hold_capable(dev)      ((dev)->features[0][0] & LMP_HOLD)
794 #define lmp_sniff_capable(dev)     ((dev)->features[0][0] & LMP_SNIFF)
795 #define lmp_park_capable(dev)      ((dev)->features[0][1] & LMP_PARK)
796 #define lmp_inq_rssi_capable(dev)  ((dev)->features[0][3] & LMP_RSSI_INQ)
797 #define lmp_esco_capable(dev)      ((dev)->features[0][3] & LMP_ESCO)
798 #define lmp_bredr_capable(dev)     (!((dev)->features[0][4] & LMP_NO_BREDR))
799 #define lmp_le_capable(dev)        ((dev)->features[0][4] & LMP_LE)
800 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR)
801 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC)
802 #define lmp_ext_inq_capable(dev)   ((dev)->features[0][6] & LMP_EXT_INQ)
803 #define lmp_le_br_capable(dev)     (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR))
804 #define lmp_ssp_capable(dev)       ((dev)->features[0][6] & LMP_SIMPLE_PAIR)
805 #define lmp_no_flush_capable(dev)  ((dev)->features[0][6] & LMP_NO_FLUSH)
806 #define lmp_lsto_capable(dev)      ((dev)->features[0][7] & LMP_LSTO)
807 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR)
808 #define lmp_ext_feat_capable(dev)  ((dev)->features[0][7] & LMP_EXTFEATURES)
809 
810 /* ----- Extended LMP capabilities ----- */
811 #define lmp_host_ssp_capable(dev)  ((dev)->features[1][0] & LMP_HOST_SSP)
812 #define lmp_host_le_capable(dev)   (!!((dev)->features[1][0] & LMP_HOST_LE))
813 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR))
814 
815 /* returns true if at least one AMP active */
816 static inline bool hci_amp_capable(void)
817 {
818 	struct hci_dev *hdev;
819 	bool ret = false;
820 
821 	read_lock(&hci_dev_list_lock);
822 	list_for_each_entry(hdev, &hci_dev_list, list)
823 		if (hdev->amp_type == HCI_AMP &&
824 		    test_bit(HCI_UP, &hdev->flags))
825 			ret = true;
826 	read_unlock(&hci_dev_list_lock);
827 
828 	return ret;
829 }
830 
831 /* ----- HCI protocols ----- */
832 #define HCI_PROTO_DEFER             0x01
833 
834 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
835 					__u8 type, __u8 *flags)
836 {
837 	switch (type) {
838 	case ACL_LINK:
839 		return l2cap_connect_ind(hdev, bdaddr);
840 
841 	case SCO_LINK:
842 	case ESCO_LINK:
843 		return sco_connect_ind(hdev, bdaddr, flags);
844 
845 	default:
846 		BT_ERR("unknown link type %d", type);
847 		return -EINVAL;
848 	}
849 }
850 
851 static inline void hci_proto_connect_cfm(struct hci_conn *conn, __u8 status)
852 {
853 	switch (conn->type) {
854 	case ACL_LINK:
855 	case LE_LINK:
856 		l2cap_connect_cfm(conn, status);
857 		break;
858 
859 	case SCO_LINK:
860 	case ESCO_LINK:
861 		sco_connect_cfm(conn, status);
862 		break;
863 
864 	default:
865 		BT_ERR("unknown link type %d", conn->type);
866 		break;
867 	}
868 
869 	if (conn->connect_cfm_cb)
870 		conn->connect_cfm_cb(conn, status);
871 }
872 
873 static inline int hci_proto_disconn_ind(struct hci_conn *conn)
874 {
875 	if (conn->type != ACL_LINK && conn->type != LE_LINK)
876 		return HCI_ERROR_REMOTE_USER_TERM;
877 
878 	return l2cap_disconn_ind(conn);
879 }
880 
881 static inline void hci_proto_disconn_cfm(struct hci_conn *conn, __u8 reason)
882 {
883 	switch (conn->type) {
884 	case ACL_LINK:
885 	case LE_LINK:
886 		l2cap_disconn_cfm(conn, reason);
887 		break;
888 
889 	case SCO_LINK:
890 	case ESCO_LINK:
891 		sco_disconn_cfm(conn, reason);
892 		break;
893 
894 	/* L2CAP would be handled for BREDR chan */
895 	case AMP_LINK:
896 		break;
897 
898 	default:
899 		BT_ERR("unknown link type %d", conn->type);
900 		break;
901 	}
902 
903 	if (conn->disconn_cfm_cb)
904 		conn->disconn_cfm_cb(conn, reason);
905 }
906 
907 static inline void hci_proto_auth_cfm(struct hci_conn *conn, __u8 status)
908 {
909 	__u8 encrypt;
910 
911 	if (conn->type != ACL_LINK && conn->type != LE_LINK)
912 		return;
913 
914 	if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
915 		return;
916 
917 	encrypt = (conn->link_mode & HCI_LM_ENCRYPT) ? 0x01 : 0x00;
918 	l2cap_security_cfm(conn, status, encrypt);
919 
920 	if (conn->security_cfm_cb)
921 		conn->security_cfm_cb(conn, status);
922 }
923 
924 static inline void hci_proto_encrypt_cfm(struct hci_conn *conn, __u8 status,
925 								__u8 encrypt)
926 {
927 	if (conn->type != ACL_LINK && conn->type != LE_LINK)
928 		return;
929 
930 	l2cap_security_cfm(conn, status, encrypt);
931 
932 	if (conn->security_cfm_cb)
933 		conn->security_cfm_cb(conn, status);
934 }
935 
936 /* ----- HCI callbacks ----- */
937 struct hci_cb {
938 	struct list_head list;
939 
940 	char *name;
941 
942 	void (*security_cfm)	(struct hci_conn *conn, __u8 status,
943 								__u8 encrypt);
944 	void (*key_change_cfm)	(struct hci_conn *conn, __u8 status);
945 	void (*role_switch_cfm)	(struct hci_conn *conn, __u8 status, __u8 role);
946 };
947 
948 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status)
949 {
950 	struct hci_cb *cb;
951 	__u8 encrypt;
952 
953 	hci_proto_auth_cfm(conn, status);
954 
955 	if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
956 		return;
957 
958 	encrypt = (conn->link_mode & HCI_LM_ENCRYPT) ? 0x01 : 0x00;
959 
960 	read_lock(&hci_cb_list_lock);
961 	list_for_each_entry(cb, &hci_cb_list, list) {
962 		if (cb->security_cfm)
963 			cb->security_cfm(conn, status, encrypt);
964 	}
965 	read_unlock(&hci_cb_list_lock);
966 }
967 
968 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status,
969 								__u8 encrypt)
970 {
971 	struct hci_cb *cb;
972 
973 	if (conn->sec_level == BT_SECURITY_SDP)
974 		conn->sec_level = BT_SECURITY_LOW;
975 
976 	if (conn->pending_sec_level > conn->sec_level)
977 		conn->sec_level = conn->pending_sec_level;
978 
979 	hci_proto_encrypt_cfm(conn, status, encrypt);
980 
981 	read_lock(&hci_cb_list_lock);
982 	list_for_each_entry(cb, &hci_cb_list, list) {
983 		if (cb->security_cfm)
984 			cb->security_cfm(conn, status, encrypt);
985 	}
986 	read_unlock(&hci_cb_list_lock);
987 }
988 
989 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status)
990 {
991 	struct hci_cb *cb;
992 
993 	read_lock(&hci_cb_list_lock);
994 	list_for_each_entry(cb, &hci_cb_list, list) {
995 		if (cb->key_change_cfm)
996 			cb->key_change_cfm(conn, status);
997 	}
998 	read_unlock(&hci_cb_list_lock);
999 }
1000 
1001 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status,
1002 								__u8 role)
1003 {
1004 	struct hci_cb *cb;
1005 
1006 	read_lock(&hci_cb_list_lock);
1007 	list_for_each_entry(cb, &hci_cb_list, list) {
1008 		if (cb->role_switch_cfm)
1009 			cb->role_switch_cfm(conn, status, role);
1010 	}
1011 	read_unlock(&hci_cb_list_lock);
1012 }
1013 
1014 static inline bool eir_has_data_type(u8 *data, size_t data_len, u8 type)
1015 {
1016 	size_t parsed = 0;
1017 
1018 	if (data_len < 2)
1019 		return false;
1020 
1021 	while (parsed < data_len - 1) {
1022 		u8 field_len = data[0];
1023 
1024 		if (field_len == 0)
1025 			break;
1026 
1027 		parsed += field_len + 1;
1028 
1029 		if (parsed > data_len)
1030 			break;
1031 
1032 		if (data[1] == type)
1033 			return true;
1034 
1035 		data += field_len + 1;
1036 	}
1037 
1038 	return false;
1039 }
1040 
1041 static inline size_t eir_get_length(u8 *eir, size_t eir_len)
1042 {
1043 	size_t parsed = 0;
1044 
1045 	while (parsed < eir_len) {
1046 		u8 field_len = eir[0];
1047 
1048 		if (field_len == 0)
1049 			return parsed;
1050 
1051 		parsed += field_len + 1;
1052 		eir += field_len + 1;
1053 	}
1054 
1055 	return eir_len;
1056 }
1057 
1058 static inline u16 eir_append_data(u8 *eir, u16 eir_len, u8 type, u8 *data,
1059 				  u8 data_len)
1060 {
1061 	eir[eir_len++] = sizeof(type) + data_len;
1062 	eir[eir_len++] = type;
1063 	memcpy(&eir[eir_len], data, data_len);
1064 	eir_len += data_len;
1065 
1066 	return eir_len;
1067 }
1068 
1069 int hci_register_cb(struct hci_cb *hcb);
1070 int hci_unregister_cb(struct hci_cb *hcb);
1071 
1072 struct hci_request {
1073 	struct hci_dev		*hdev;
1074 	struct sk_buff_head	cmd_q;
1075 
1076 	/* If something goes wrong when building the HCI request, the error
1077 	 * value is stored in this field.
1078 	 */
1079 	int			err;
1080 };
1081 
1082 void hci_req_init(struct hci_request *req, struct hci_dev *hdev);
1083 int hci_req_run(struct hci_request *req, hci_req_complete_t complete);
1084 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
1085 		 const void *param);
1086 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
1087 		    const void *param, u8 event);
1088 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status);
1089 
1090 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1091 			       const void *param, u32 timeout);
1092 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1093 				  const void *param, u8 event, u32 timeout);
1094 
1095 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
1096 		 const void *param);
1097 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags);
1098 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb);
1099 
1100 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode);
1101 
1102 /* ----- HCI Sockets ----- */
1103 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb);
1104 void hci_send_to_control(struct sk_buff *skb, struct sock *skip_sk);
1105 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb);
1106 
1107 void hci_sock_dev_event(struct hci_dev *hdev, int event);
1108 
1109 /* Management interface */
1110 #define DISCOV_TYPE_BREDR		(BIT(BDADDR_BREDR))
1111 #define DISCOV_TYPE_LE			(BIT(BDADDR_LE_PUBLIC) | \
1112 					 BIT(BDADDR_LE_RANDOM))
1113 #define DISCOV_TYPE_INTERLEAVED		(BIT(BDADDR_BREDR) | \
1114 					 BIT(BDADDR_LE_PUBLIC) | \
1115 					 BIT(BDADDR_LE_RANDOM))
1116 
1117 int mgmt_control(struct sock *sk, struct msghdr *msg, size_t len);
1118 int mgmt_index_added(struct hci_dev *hdev);
1119 int mgmt_index_removed(struct hci_dev *hdev);
1120 int mgmt_set_powered_failed(struct hci_dev *hdev, int err);
1121 int mgmt_powered(struct hci_dev *hdev, u8 powered);
1122 int mgmt_discoverable(struct hci_dev *hdev, u8 discoverable);
1123 int mgmt_connectable(struct hci_dev *hdev, u8 connectable);
1124 int mgmt_write_scan_failed(struct hci_dev *hdev, u8 scan, u8 status);
1125 int mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key,
1126 		      bool persistent);
1127 int mgmt_device_connected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1128 			  u8 addr_type, u32 flags, u8 *name, u8 name_len,
1129 			  u8 *dev_class);
1130 int mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr,
1131 			     u8 link_type, u8 addr_type, u8 reason);
1132 int mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr,
1133 			   u8 link_type, u8 addr_type, u8 status);
1134 int mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1135 			u8 addr_type, u8 status);
1136 int mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure);
1137 int mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1138 				 u8 status);
1139 int mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1140 				     u8 status);
1141 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1142 			      u8 link_type, u8 addr_type, __le32 value,
1143 			      u8 confirm_hint);
1144 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1145 				     u8 link_type, u8 addr_type, u8 status);
1146 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1147 					 u8 link_type, u8 addr_type, u8 status);
1148 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1149 			      u8 link_type, u8 addr_type);
1150 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1151 				     u8 link_type, u8 addr_type, u8 status);
1152 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1153 					 u8 link_type, u8 addr_type, u8 status);
1154 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr,
1155 			     u8 link_type, u8 addr_type, u32 passkey,
1156 			     u8 entered);
1157 int mgmt_auth_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1158 		     u8 addr_type, u8 status);
1159 int mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status);
1160 int mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1161 int mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class,
1162 				   u8 status);
1163 int mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status);
1164 int mgmt_read_local_oob_data_reply_complete(struct hci_dev *hdev, u8 *hash,
1165 					    u8 *randomizer, u8 status);
1166 int mgmt_le_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1167 int mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1168 		      u8 addr_type, u8 *dev_class, s8 rssi, u8 cfm_name,
1169 		      u8 ssp, u8 *eir, u16 eir_len);
1170 int mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1171 		     u8 addr_type, s8 rssi, u8 *name, u8 name_len);
1172 int mgmt_start_discovery_failed(struct hci_dev *hdev, u8 status);
1173 int mgmt_stop_discovery_failed(struct hci_dev *hdev, u8 status);
1174 int mgmt_discovering(struct hci_dev *hdev, u8 discovering);
1175 int mgmt_interleaved_discovery(struct hci_dev *hdev);
1176 int mgmt_device_blocked(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
1177 int mgmt_device_unblocked(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
1178 bool mgmt_valid_hdev(struct hci_dev *hdev);
1179 int mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, u8 persistent);
1180 
1181 /* HCI info for socket */
1182 #define hci_pi(sk) ((struct hci_pinfo *) sk)
1183 
1184 struct hci_pinfo {
1185 	struct bt_sock    bt;
1186 	struct hci_dev    *hdev;
1187 	struct hci_filter filter;
1188 	__u32             cmsg_mask;
1189 	unsigned short   channel;
1190 };
1191 
1192 /* HCI security filter */
1193 #define HCI_SFLT_MAX_OGF  5
1194 
1195 struct hci_sec_filter {
1196 	__u32 type_mask;
1197 	__u32 event_mask[2];
1198 	__u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4];
1199 };
1200 
1201 /* ----- HCI requests ----- */
1202 #define HCI_REQ_DONE	  0
1203 #define HCI_REQ_PEND	  1
1204 #define HCI_REQ_CANCELED  2
1205 
1206 #define hci_req_lock(d)		mutex_lock(&d->req_lock)
1207 #define hci_req_unlock(d)	mutex_unlock(&d->req_lock)
1208 
1209 void hci_update_ad(struct hci_request *req);
1210 
1211 void hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max,
1212 					u16 latency, u16 to_multiplier);
1213 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __u8 rand[8],
1214 							__u8 ltk[16]);
1215 int hci_do_inquiry(struct hci_dev *hdev, u8 length);
1216 int hci_cancel_inquiry(struct hci_dev *hdev);
1217 int hci_le_scan(struct hci_dev *hdev, u8 type, u16 interval, u16 window,
1218 		int timeout);
1219 int hci_cancel_le_scan(struct hci_dev *hdev);
1220 
1221 u8 bdaddr_to_le(u8 bdaddr_type);
1222 
1223 #endif /* __HCI_CORE_H */
1224