1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 #ifndef __HCI_CORE_H 26 #define __HCI_CORE_H 27 28 #include <linux/idr.h> 29 #include <linux/leds.h> 30 #include <linux/rculist.h> 31 32 #include <net/bluetooth/hci.h> 33 #include <net/bluetooth/hci_sock.h> 34 35 /* HCI priority */ 36 #define HCI_PRIO_MAX 7 37 38 /* HCI Core structures */ 39 struct inquiry_data { 40 bdaddr_t bdaddr; 41 __u8 pscan_rep_mode; 42 __u8 pscan_period_mode; 43 __u8 pscan_mode; 44 __u8 dev_class[3]; 45 __le16 clock_offset; 46 __s8 rssi; 47 __u8 ssp_mode; 48 }; 49 50 struct inquiry_entry { 51 struct list_head all; /* inq_cache.all */ 52 struct list_head list; /* unknown or resolve */ 53 enum { 54 NAME_NOT_KNOWN, 55 NAME_NEEDED, 56 NAME_PENDING, 57 NAME_KNOWN, 58 } name_state; 59 __u32 timestamp; 60 struct inquiry_data data; 61 }; 62 63 struct discovery_state { 64 int type; 65 enum { 66 DISCOVERY_STOPPED, 67 DISCOVERY_STARTING, 68 DISCOVERY_FINDING, 69 DISCOVERY_RESOLVING, 70 DISCOVERY_STOPPING, 71 } state; 72 struct list_head all; /* All devices found during inquiry */ 73 struct list_head unknown; /* Name state not known */ 74 struct list_head resolve; /* Name needs to be resolved */ 75 __u32 timestamp; 76 bdaddr_t last_adv_addr; 77 u8 last_adv_addr_type; 78 s8 last_adv_rssi; 79 u32 last_adv_flags; 80 u8 last_adv_data[HCI_MAX_AD_LENGTH]; 81 u8 last_adv_data_len; 82 bool report_invalid_rssi; 83 bool result_filtering; 84 bool limited; 85 s8 rssi; 86 u16 uuid_count; 87 u8 (*uuids)[16]; 88 unsigned long scan_start; 89 unsigned long scan_duration; 90 }; 91 92 #define SUSPEND_NOTIFIER_TIMEOUT msecs_to_jiffies(2000) /* 2 seconds */ 93 94 enum suspend_tasks { 95 SUSPEND_PAUSE_DISCOVERY, 96 SUSPEND_UNPAUSE_DISCOVERY, 97 98 SUSPEND_PAUSE_ADVERTISING, 99 SUSPEND_UNPAUSE_ADVERTISING, 100 101 SUSPEND_SCAN_DISABLE, 102 SUSPEND_SCAN_ENABLE, 103 SUSPEND_DISCONNECTING, 104 105 SUSPEND_POWERING_DOWN, 106 107 SUSPEND_PREPARE_NOTIFIER, 108 __SUSPEND_NUM_TASKS 109 }; 110 111 enum suspended_state { 112 BT_RUNNING = 0, 113 BT_SUSPEND_DISCONNECT, 114 BT_SUSPEND_CONFIGURE_WAKE, 115 }; 116 117 struct hci_conn_hash { 118 struct list_head list; 119 unsigned int acl_num; 120 unsigned int amp_num; 121 unsigned int sco_num; 122 unsigned int le_num; 123 unsigned int le_num_slave; 124 }; 125 126 struct bdaddr_list { 127 struct list_head list; 128 bdaddr_t bdaddr; 129 u8 bdaddr_type; 130 }; 131 132 struct bdaddr_list_with_irk { 133 struct list_head list; 134 bdaddr_t bdaddr; 135 u8 bdaddr_type; 136 u8 peer_irk[16]; 137 u8 local_irk[16]; 138 }; 139 140 struct bdaddr_list_with_flags { 141 struct list_head list; 142 bdaddr_t bdaddr; 143 u8 bdaddr_type; 144 u32 current_flags; 145 }; 146 147 enum hci_conn_flags { 148 HCI_CONN_FLAG_REMOTE_WAKEUP, 149 HCI_CONN_FLAG_MAX 150 }; 151 152 #define hci_conn_test_flag(nr, flags) ((flags) & (1U << nr)) 153 154 /* Make sure number of flags doesn't exceed sizeof(current_flags) */ 155 static_assert(HCI_CONN_FLAG_MAX < 32); 156 157 struct bt_uuid { 158 struct list_head list; 159 u8 uuid[16]; 160 u8 size; 161 u8 svc_hint; 162 }; 163 164 struct blocked_key { 165 struct list_head list; 166 struct rcu_head rcu; 167 u8 type; 168 u8 val[16]; 169 }; 170 171 struct smp_csrk { 172 bdaddr_t bdaddr; 173 u8 bdaddr_type; 174 u8 type; 175 u8 val[16]; 176 }; 177 178 struct smp_ltk { 179 struct list_head list; 180 struct rcu_head rcu; 181 bdaddr_t bdaddr; 182 u8 bdaddr_type; 183 u8 authenticated; 184 u8 type; 185 u8 enc_size; 186 __le16 ediv; 187 __le64 rand; 188 u8 val[16]; 189 }; 190 191 struct smp_irk { 192 struct list_head list; 193 struct rcu_head rcu; 194 bdaddr_t rpa; 195 bdaddr_t bdaddr; 196 u8 addr_type; 197 u8 val[16]; 198 }; 199 200 struct link_key { 201 struct list_head list; 202 struct rcu_head rcu; 203 bdaddr_t bdaddr; 204 u8 type; 205 u8 val[HCI_LINK_KEY_SIZE]; 206 u8 pin_len; 207 }; 208 209 struct oob_data { 210 struct list_head list; 211 bdaddr_t bdaddr; 212 u8 bdaddr_type; 213 u8 present; 214 u8 hash192[16]; 215 u8 rand192[16]; 216 u8 hash256[16]; 217 u8 rand256[16]; 218 }; 219 220 struct adv_info { 221 struct list_head list; 222 bool pending; 223 __u8 instance; 224 __u32 flags; 225 __u16 timeout; 226 __u16 remaining_time; 227 __u16 duration; 228 __u16 adv_data_len; 229 __u8 adv_data[HCI_MAX_AD_LENGTH]; 230 __u16 scan_rsp_len; 231 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH]; 232 __s8 tx_power; 233 bdaddr_t random_addr; 234 bool rpa_expired; 235 struct delayed_work rpa_expired_cb; 236 }; 237 238 #define HCI_MAX_ADV_INSTANCES 5 239 #define HCI_DEFAULT_ADV_DURATION 2 240 241 struct adv_pattern { 242 struct list_head list; 243 __u8 ad_type; 244 __u8 offset; 245 __u8 length; 246 __u8 value[HCI_MAX_AD_LENGTH]; 247 }; 248 249 struct adv_monitor { 250 struct list_head patterns; 251 bool active; 252 __u16 handle; 253 }; 254 255 #define HCI_MIN_ADV_MONITOR_HANDLE 1 256 #define HCI_MAX_ADV_MONITOR_NUM_HANDLES 32 257 #define HCI_MAX_ADV_MONITOR_NUM_PATTERNS 16 258 259 #define HCI_MAX_SHORT_NAME_LENGTH 10 260 261 /* Min encryption key size to match with SMP */ 262 #define HCI_MIN_ENC_KEY_SIZE 7 263 264 /* Default LE RPA expiry time, 15 minutes */ 265 #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60) 266 267 /* Default min/max age of connection information (1s/3s) */ 268 #define DEFAULT_CONN_INFO_MIN_AGE 1000 269 #define DEFAULT_CONN_INFO_MAX_AGE 3000 270 /* Default authenticated payload timeout 30s */ 271 #define DEFAULT_AUTH_PAYLOAD_TIMEOUT 0x0bb8 272 273 struct amp_assoc { 274 __u16 len; 275 __u16 offset; 276 __u16 rem_len; 277 __u16 len_so_far; 278 __u8 data[HCI_MAX_AMP_ASSOC_SIZE]; 279 }; 280 281 #define HCI_MAX_PAGES 3 282 283 struct hci_dev { 284 struct list_head list; 285 struct mutex lock; 286 287 char name[8]; 288 unsigned long flags; 289 __u16 id; 290 __u8 bus; 291 __u8 dev_type; 292 bdaddr_t bdaddr; 293 bdaddr_t setup_addr; 294 bdaddr_t public_addr; 295 bdaddr_t random_addr; 296 bdaddr_t static_addr; 297 __u8 adv_addr_type; 298 __u8 dev_name[HCI_MAX_NAME_LENGTH]; 299 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH]; 300 __u8 eir[HCI_MAX_EIR_LENGTH]; 301 __u16 appearance; 302 __u8 dev_class[3]; 303 __u8 major_class; 304 __u8 minor_class; 305 __u8 max_page; 306 __u8 features[HCI_MAX_PAGES][8]; 307 __u8 le_features[8]; 308 __u8 le_white_list_size; 309 __u8 le_resolv_list_size; 310 __u8 le_num_of_adv_sets; 311 __u8 le_states[8]; 312 __u8 commands[64]; 313 __u8 hci_ver; 314 __u16 hci_rev; 315 __u8 lmp_ver; 316 __u16 manufacturer; 317 __u16 lmp_subver; 318 __u16 voice_setting; 319 __u8 num_iac; 320 __u8 stored_max_keys; 321 __u8 stored_num_keys; 322 __u8 io_capability; 323 __s8 inq_tx_power; 324 __u8 err_data_reporting; 325 __u16 page_scan_interval; 326 __u16 page_scan_window; 327 __u8 page_scan_type; 328 __u8 le_adv_channel_map; 329 __u16 le_adv_min_interval; 330 __u16 le_adv_max_interval; 331 __u8 le_scan_type; 332 __u16 le_scan_interval; 333 __u16 le_scan_window; 334 __u16 le_scan_int_suspend; 335 __u16 le_scan_window_suspend; 336 __u16 le_scan_int_discovery; 337 __u16 le_scan_window_discovery; 338 __u16 le_scan_int_adv_monitor; 339 __u16 le_scan_window_adv_monitor; 340 __u16 le_scan_int_connect; 341 __u16 le_scan_window_connect; 342 __u16 le_conn_min_interval; 343 __u16 le_conn_max_interval; 344 __u16 le_conn_latency; 345 __u16 le_supv_timeout; 346 __u16 le_def_tx_len; 347 __u16 le_def_tx_time; 348 __u16 le_max_tx_len; 349 __u16 le_max_tx_time; 350 __u16 le_max_rx_len; 351 __u16 le_max_rx_time; 352 __u8 le_max_key_size; 353 __u8 le_min_key_size; 354 __u16 discov_interleaved_timeout; 355 __u16 conn_info_min_age; 356 __u16 conn_info_max_age; 357 __u16 auth_payload_timeout; 358 __u8 min_enc_key_size; 359 __u8 max_enc_key_size; 360 __u8 pairing_opts; 361 __u8 ssp_debug_mode; 362 __u8 hw_error_code; 363 __u32 clock; 364 365 __u16 devid_source; 366 __u16 devid_vendor; 367 __u16 devid_product; 368 __u16 devid_version; 369 370 __u8 def_page_scan_type; 371 __u16 def_page_scan_int; 372 __u16 def_page_scan_window; 373 __u8 def_inq_scan_type; 374 __u16 def_inq_scan_int; 375 __u16 def_inq_scan_window; 376 __u16 def_br_lsto; 377 __u16 def_page_timeout; 378 __u16 def_multi_adv_rotation_duration; 379 __u16 def_le_autoconnect_timeout; 380 381 __u16 pkt_type; 382 __u16 esco_type; 383 __u16 link_policy; 384 __u16 link_mode; 385 386 __u32 idle_timeout; 387 __u16 sniff_min_interval; 388 __u16 sniff_max_interval; 389 390 __u8 amp_status; 391 __u32 amp_total_bw; 392 __u32 amp_max_bw; 393 __u32 amp_min_latency; 394 __u32 amp_max_pdu; 395 __u8 amp_type; 396 __u16 amp_pal_cap; 397 __u16 amp_assoc_size; 398 __u32 amp_max_flush_to; 399 __u32 amp_be_flush_to; 400 401 struct amp_assoc loc_assoc; 402 403 __u8 flow_ctl_mode; 404 405 unsigned int auto_accept_delay; 406 407 unsigned long quirks; 408 409 atomic_t cmd_cnt; 410 unsigned int acl_cnt; 411 unsigned int sco_cnt; 412 unsigned int le_cnt; 413 414 unsigned int acl_mtu; 415 unsigned int sco_mtu; 416 unsigned int le_mtu; 417 unsigned int acl_pkts; 418 unsigned int sco_pkts; 419 unsigned int le_pkts; 420 421 __u16 block_len; 422 __u16 block_mtu; 423 __u16 num_blocks; 424 __u16 block_cnt; 425 426 unsigned long acl_last_tx; 427 unsigned long sco_last_tx; 428 unsigned long le_last_tx; 429 430 __u8 le_tx_def_phys; 431 __u8 le_rx_def_phys; 432 433 struct workqueue_struct *workqueue; 434 struct workqueue_struct *req_workqueue; 435 436 struct work_struct power_on; 437 struct delayed_work power_off; 438 struct work_struct error_reset; 439 440 __u16 discov_timeout; 441 struct delayed_work discov_off; 442 443 struct delayed_work service_cache; 444 445 struct delayed_work cmd_timer; 446 447 struct work_struct rx_work; 448 struct work_struct cmd_work; 449 struct work_struct tx_work; 450 451 struct work_struct discov_update; 452 struct work_struct bg_scan_update; 453 struct work_struct scan_update; 454 struct work_struct connectable_update; 455 struct work_struct discoverable_update; 456 struct delayed_work le_scan_disable; 457 struct delayed_work le_scan_restart; 458 459 struct sk_buff_head rx_q; 460 struct sk_buff_head raw_q; 461 struct sk_buff_head cmd_q; 462 463 struct sk_buff *sent_cmd; 464 465 struct mutex req_lock; 466 wait_queue_head_t req_wait_q; 467 __u32 req_status; 468 __u32 req_result; 469 struct sk_buff *req_skb; 470 471 void *smp_data; 472 void *smp_bredr_data; 473 474 struct discovery_state discovery; 475 476 int discovery_old_state; 477 bool discovery_paused; 478 int advertising_old_state; 479 bool advertising_paused; 480 481 struct notifier_block suspend_notifier; 482 struct work_struct suspend_prepare; 483 enum suspended_state suspend_state_next; 484 enum suspended_state suspend_state; 485 bool scanning_paused; 486 bool suspended; 487 488 wait_queue_head_t suspend_wait_q; 489 DECLARE_BITMAP(suspend_tasks, __SUSPEND_NUM_TASKS); 490 491 struct hci_conn_hash conn_hash; 492 493 struct list_head mgmt_pending; 494 struct list_head blacklist; 495 struct list_head whitelist; 496 struct list_head uuids; 497 struct list_head link_keys; 498 struct list_head long_term_keys; 499 struct list_head identity_resolving_keys; 500 struct list_head remote_oob_data; 501 struct list_head le_white_list; 502 struct list_head le_resolv_list; 503 struct list_head le_conn_params; 504 struct list_head pend_le_conns; 505 struct list_head pend_le_reports; 506 struct list_head blocked_keys; 507 508 struct hci_dev_stats stat; 509 510 atomic_t promisc; 511 512 const char *hw_info; 513 const char *fw_info; 514 struct dentry *debugfs; 515 516 struct device dev; 517 518 struct rfkill *rfkill; 519 520 DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS); 521 522 __s8 adv_tx_power; 523 __u8 adv_data[HCI_MAX_AD_LENGTH]; 524 __u8 adv_data_len; 525 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH]; 526 __u8 scan_rsp_data_len; 527 528 struct list_head adv_instances; 529 unsigned int adv_instance_cnt; 530 __u8 cur_adv_instance; 531 __u16 adv_instance_timeout; 532 struct delayed_work adv_instance_expire; 533 534 struct idr adv_monitors_idr; 535 unsigned int adv_monitors_cnt; 536 537 __u8 irk[16]; 538 __u32 rpa_timeout; 539 struct delayed_work rpa_expired; 540 bdaddr_t rpa; 541 542 #if IS_ENABLED(CONFIG_BT_LEDS) 543 struct led_trigger *power_led; 544 #endif 545 546 #if IS_ENABLED(CONFIG_BT_MSFTEXT) 547 __u16 msft_opcode; 548 void *msft_data; 549 #endif 550 551 int (*open)(struct hci_dev *hdev); 552 int (*close)(struct hci_dev *hdev); 553 int (*flush)(struct hci_dev *hdev); 554 int (*setup)(struct hci_dev *hdev); 555 int (*shutdown)(struct hci_dev *hdev); 556 int (*send)(struct hci_dev *hdev, struct sk_buff *skb); 557 void (*notify)(struct hci_dev *hdev, unsigned int evt); 558 void (*hw_error)(struct hci_dev *hdev, u8 code); 559 int (*post_init)(struct hci_dev *hdev); 560 int (*set_diag)(struct hci_dev *hdev, bool enable); 561 int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr); 562 void (*cmd_timeout)(struct hci_dev *hdev); 563 bool (*prevent_wake)(struct hci_dev *hdev); 564 }; 565 566 #define HCI_PHY_HANDLE(handle) (handle & 0xff) 567 568 enum conn_reasons { 569 CONN_REASON_PAIR_DEVICE, 570 CONN_REASON_L2CAP_CHAN, 571 CONN_REASON_SCO_CONNECT, 572 }; 573 574 struct hci_conn { 575 struct list_head list; 576 577 atomic_t refcnt; 578 579 bdaddr_t dst; 580 __u8 dst_type; 581 bdaddr_t src; 582 __u8 src_type; 583 bdaddr_t init_addr; 584 __u8 init_addr_type; 585 bdaddr_t resp_addr; 586 __u8 resp_addr_type; 587 __u16 handle; 588 __u16 state; 589 __u8 mode; 590 __u8 type; 591 __u8 role; 592 bool out; 593 __u8 attempt; 594 __u8 dev_class[3]; 595 __u8 features[HCI_MAX_PAGES][8]; 596 __u16 pkt_type; 597 __u16 link_policy; 598 __u8 key_type; 599 __u8 auth_type; 600 __u8 sec_level; 601 __u8 pending_sec_level; 602 __u8 pin_length; 603 __u8 enc_key_size; 604 __u8 io_capability; 605 __u32 passkey_notify; 606 __u8 passkey_entered; 607 __u16 disc_timeout; 608 __u16 conn_timeout; 609 __u16 setting; 610 __u16 auth_payload_timeout; 611 __u16 le_conn_min_interval; 612 __u16 le_conn_max_interval; 613 __u16 le_conn_interval; 614 __u16 le_conn_latency; 615 __u16 le_supv_timeout; 616 __u8 le_adv_data[HCI_MAX_AD_LENGTH]; 617 __u8 le_adv_data_len; 618 __u8 le_tx_phy; 619 __u8 le_rx_phy; 620 __s8 rssi; 621 __s8 tx_power; 622 __s8 max_tx_power; 623 unsigned long flags; 624 625 enum conn_reasons conn_reason; 626 627 __u32 clock; 628 __u16 clock_accuracy; 629 630 unsigned long conn_info_timestamp; 631 632 __u8 remote_cap; 633 __u8 remote_auth; 634 __u8 remote_id; 635 636 unsigned int sent; 637 638 struct sk_buff_head data_q; 639 struct list_head chan_list; 640 641 struct delayed_work disc_work; 642 struct delayed_work auto_accept_work; 643 struct delayed_work idle_work; 644 struct delayed_work le_conn_timeout; 645 struct work_struct le_scan_cleanup; 646 647 struct device dev; 648 struct dentry *debugfs; 649 650 struct hci_dev *hdev; 651 void *l2cap_data; 652 void *sco_data; 653 struct amp_mgr *amp_mgr; 654 655 struct hci_conn *link; 656 657 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status); 658 void (*security_cfm_cb) (struct hci_conn *conn, u8 status); 659 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason); 660 }; 661 662 struct hci_chan { 663 struct list_head list; 664 __u16 handle; 665 struct hci_conn *conn; 666 struct sk_buff_head data_q; 667 unsigned int sent; 668 __u8 state; 669 }; 670 671 struct hci_conn_params { 672 struct list_head list; 673 struct list_head action; 674 675 bdaddr_t addr; 676 u8 addr_type; 677 678 u16 conn_min_interval; 679 u16 conn_max_interval; 680 u16 conn_latency; 681 u16 supervision_timeout; 682 683 enum { 684 HCI_AUTO_CONN_DISABLED, 685 HCI_AUTO_CONN_REPORT, 686 HCI_AUTO_CONN_DIRECT, 687 HCI_AUTO_CONN_ALWAYS, 688 HCI_AUTO_CONN_LINK_LOSS, 689 HCI_AUTO_CONN_EXPLICIT, 690 } auto_connect; 691 692 struct hci_conn *conn; 693 bool explicit_connect; 694 u32 current_flags; 695 }; 696 697 extern struct list_head hci_dev_list; 698 extern struct list_head hci_cb_list; 699 extern rwlock_t hci_dev_list_lock; 700 extern struct mutex hci_cb_list_lock; 701 702 #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags) 703 #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags) 704 #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags) 705 #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags) 706 #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags) 707 #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags) 708 #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags) 709 710 #define hci_dev_clear_volatile_flags(hdev) \ 711 do { \ 712 hci_dev_clear_flag(hdev, HCI_LE_SCAN); \ 713 hci_dev_clear_flag(hdev, HCI_LE_ADV); \ 714 hci_dev_clear_flag(hdev, HCI_LL_RPA_RESOLUTION);\ 715 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \ 716 } while (0) 717 718 /* ----- HCI interface to upper protocols ----- */ 719 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr); 720 int l2cap_disconn_ind(struct hci_conn *hcon); 721 void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags); 722 723 #if IS_ENABLED(CONFIG_BT_BREDR) 724 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); 725 void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb); 726 #else 727 static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 728 __u8 *flags) 729 { 730 return 0; 731 } 732 733 static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb) 734 { 735 } 736 #endif 737 738 /* ----- Inquiry cache ----- */ 739 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */ 740 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */ 741 742 static inline void discovery_init(struct hci_dev *hdev) 743 { 744 hdev->discovery.state = DISCOVERY_STOPPED; 745 INIT_LIST_HEAD(&hdev->discovery.all); 746 INIT_LIST_HEAD(&hdev->discovery.unknown); 747 INIT_LIST_HEAD(&hdev->discovery.resolve); 748 hdev->discovery.report_invalid_rssi = true; 749 hdev->discovery.rssi = HCI_RSSI_INVALID; 750 } 751 752 static inline void hci_discovery_filter_clear(struct hci_dev *hdev) 753 { 754 hdev->discovery.result_filtering = false; 755 hdev->discovery.report_invalid_rssi = true; 756 hdev->discovery.rssi = HCI_RSSI_INVALID; 757 hdev->discovery.uuid_count = 0; 758 kfree(hdev->discovery.uuids); 759 hdev->discovery.uuids = NULL; 760 hdev->discovery.scan_start = 0; 761 hdev->discovery.scan_duration = 0; 762 } 763 764 bool hci_discovery_active(struct hci_dev *hdev); 765 766 void hci_discovery_set_state(struct hci_dev *hdev, int state); 767 768 static inline int inquiry_cache_empty(struct hci_dev *hdev) 769 { 770 return list_empty(&hdev->discovery.all); 771 } 772 773 static inline long inquiry_cache_age(struct hci_dev *hdev) 774 { 775 struct discovery_state *c = &hdev->discovery; 776 return jiffies - c->timestamp; 777 } 778 779 static inline long inquiry_entry_age(struct inquiry_entry *e) 780 { 781 return jiffies - e->timestamp; 782 } 783 784 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 785 bdaddr_t *bdaddr); 786 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 787 bdaddr_t *bdaddr); 788 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 789 bdaddr_t *bdaddr, 790 int state); 791 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 792 struct inquiry_entry *ie); 793 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 794 bool name_known); 795 void hci_inquiry_cache_flush(struct hci_dev *hdev); 796 797 /* ----- HCI Connections ----- */ 798 enum { 799 HCI_CONN_AUTH_PEND, 800 HCI_CONN_REAUTH_PEND, 801 HCI_CONN_ENCRYPT_PEND, 802 HCI_CONN_RSWITCH_PEND, 803 HCI_CONN_MODE_CHANGE_PEND, 804 HCI_CONN_SCO_SETUP_PEND, 805 HCI_CONN_MGMT_CONNECTED, 806 HCI_CONN_SSP_ENABLED, 807 HCI_CONN_SC_ENABLED, 808 HCI_CONN_AES_CCM, 809 HCI_CONN_POWER_SAVE, 810 HCI_CONN_FLUSH_KEY, 811 HCI_CONN_ENCRYPT, 812 HCI_CONN_AUTH, 813 HCI_CONN_SECURE, 814 HCI_CONN_FIPS, 815 HCI_CONN_STK_ENCRYPT, 816 HCI_CONN_AUTH_INITIATOR, 817 HCI_CONN_DROP, 818 HCI_CONN_PARAM_REMOVAL_PEND, 819 HCI_CONN_NEW_LINK_KEY, 820 HCI_CONN_SCANNING, 821 HCI_CONN_AUTH_FAILURE, 822 }; 823 824 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn) 825 { 826 struct hci_dev *hdev = conn->hdev; 827 return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 828 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 829 } 830 831 static inline bool hci_conn_sc_enabled(struct hci_conn *conn) 832 { 833 struct hci_dev *hdev = conn->hdev; 834 return hci_dev_test_flag(hdev, HCI_SC_ENABLED) && 835 test_bit(HCI_CONN_SC_ENABLED, &conn->flags); 836 } 837 838 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c) 839 { 840 struct hci_conn_hash *h = &hdev->conn_hash; 841 list_add_rcu(&c->list, &h->list); 842 switch (c->type) { 843 case ACL_LINK: 844 h->acl_num++; 845 break; 846 case AMP_LINK: 847 h->amp_num++; 848 break; 849 case LE_LINK: 850 h->le_num++; 851 if (c->role == HCI_ROLE_SLAVE) 852 h->le_num_slave++; 853 break; 854 case SCO_LINK: 855 case ESCO_LINK: 856 h->sco_num++; 857 break; 858 } 859 } 860 861 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c) 862 { 863 struct hci_conn_hash *h = &hdev->conn_hash; 864 865 list_del_rcu(&c->list); 866 synchronize_rcu(); 867 868 switch (c->type) { 869 case ACL_LINK: 870 h->acl_num--; 871 break; 872 case AMP_LINK: 873 h->amp_num--; 874 break; 875 case LE_LINK: 876 h->le_num--; 877 if (c->role == HCI_ROLE_SLAVE) 878 h->le_num_slave--; 879 break; 880 case SCO_LINK: 881 case ESCO_LINK: 882 h->sco_num--; 883 break; 884 } 885 } 886 887 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type) 888 { 889 struct hci_conn_hash *h = &hdev->conn_hash; 890 switch (type) { 891 case ACL_LINK: 892 return h->acl_num; 893 case AMP_LINK: 894 return h->amp_num; 895 case LE_LINK: 896 return h->le_num; 897 case SCO_LINK: 898 case ESCO_LINK: 899 return h->sco_num; 900 default: 901 return 0; 902 } 903 } 904 905 static inline unsigned int hci_conn_count(struct hci_dev *hdev) 906 { 907 struct hci_conn_hash *c = &hdev->conn_hash; 908 909 return c->acl_num + c->amp_num + c->sco_num + c->le_num; 910 } 911 912 static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle) 913 { 914 struct hci_conn_hash *h = &hdev->conn_hash; 915 struct hci_conn *c; 916 __u8 type = INVALID_LINK; 917 918 rcu_read_lock(); 919 920 list_for_each_entry_rcu(c, &h->list, list) { 921 if (c->handle == handle) { 922 type = c->type; 923 break; 924 } 925 } 926 927 rcu_read_unlock(); 928 929 return type; 930 } 931 932 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev, 933 __u16 handle) 934 { 935 struct hci_conn_hash *h = &hdev->conn_hash; 936 struct hci_conn *c; 937 938 rcu_read_lock(); 939 940 list_for_each_entry_rcu(c, &h->list, list) { 941 if (c->handle == handle) { 942 rcu_read_unlock(); 943 return c; 944 } 945 } 946 rcu_read_unlock(); 947 948 return NULL; 949 } 950 951 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev, 952 __u8 type, bdaddr_t *ba) 953 { 954 struct hci_conn_hash *h = &hdev->conn_hash; 955 struct hci_conn *c; 956 957 rcu_read_lock(); 958 959 list_for_each_entry_rcu(c, &h->list, list) { 960 if (c->type == type && !bacmp(&c->dst, ba)) { 961 rcu_read_unlock(); 962 return c; 963 } 964 } 965 966 rcu_read_unlock(); 967 968 return NULL; 969 } 970 971 static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev, 972 bdaddr_t *ba, 973 __u8 ba_type) 974 { 975 struct hci_conn_hash *h = &hdev->conn_hash; 976 struct hci_conn *c; 977 978 rcu_read_lock(); 979 980 list_for_each_entry_rcu(c, &h->list, list) { 981 if (c->type != LE_LINK) 982 continue; 983 984 if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) { 985 rcu_read_unlock(); 986 return c; 987 } 988 } 989 990 rcu_read_unlock(); 991 992 return NULL; 993 } 994 995 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev, 996 __u8 type, __u16 state) 997 { 998 struct hci_conn_hash *h = &hdev->conn_hash; 999 struct hci_conn *c; 1000 1001 rcu_read_lock(); 1002 1003 list_for_each_entry_rcu(c, &h->list, list) { 1004 if (c->type == type && c->state == state) { 1005 rcu_read_unlock(); 1006 return c; 1007 } 1008 } 1009 1010 rcu_read_unlock(); 1011 1012 return NULL; 1013 } 1014 1015 static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev) 1016 { 1017 struct hci_conn_hash *h = &hdev->conn_hash; 1018 struct hci_conn *c; 1019 1020 rcu_read_lock(); 1021 1022 list_for_each_entry_rcu(c, &h->list, list) { 1023 if (c->type == LE_LINK && c->state == BT_CONNECT && 1024 !test_bit(HCI_CONN_SCANNING, &c->flags)) { 1025 rcu_read_unlock(); 1026 return c; 1027 } 1028 } 1029 1030 rcu_read_unlock(); 1031 1032 return NULL; 1033 } 1034 1035 int hci_disconnect(struct hci_conn *conn, __u8 reason); 1036 bool hci_setup_sync(struct hci_conn *conn, __u16 handle); 1037 void hci_sco_setup(struct hci_conn *conn, __u8 status); 1038 1039 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 1040 u8 role); 1041 int hci_conn_del(struct hci_conn *conn); 1042 void hci_conn_hash_flush(struct hci_dev *hdev); 1043 void hci_conn_check_pending(struct hci_dev *hdev); 1044 1045 struct hci_chan *hci_chan_create(struct hci_conn *conn); 1046 void hci_chan_del(struct hci_chan *chan); 1047 void hci_chan_list_flush(struct hci_conn *conn); 1048 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle); 1049 1050 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1051 u8 dst_type, u8 sec_level, 1052 u16 conn_timeout, 1053 enum conn_reasons conn_reason); 1054 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 1055 u8 dst_type, u8 sec_level, u16 conn_timeout, 1056 u8 role, bdaddr_t *direct_rpa); 1057 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1058 u8 sec_level, u8 auth_type, 1059 enum conn_reasons conn_reason); 1060 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1061 __u16 setting); 1062 int hci_conn_check_link_mode(struct hci_conn *conn); 1063 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level); 1064 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 1065 bool initiator); 1066 int hci_conn_switch_role(struct hci_conn *conn, __u8 role); 1067 1068 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active); 1069 1070 void hci_le_conn_failed(struct hci_conn *conn, u8 status); 1071 1072 /* 1073 * hci_conn_get() and hci_conn_put() are used to control the life-time of an 1074 * "hci_conn" object. They do not guarantee that the hci_conn object is running, 1075 * working or anything else. They just guarantee that the object is available 1076 * and can be dereferenced. So you can use its locks, local variables and any 1077 * other constant data. 1078 * Before accessing runtime data, you _must_ lock the object and then check that 1079 * it is still running. As soon as you release the locks, the connection might 1080 * get dropped, though. 1081 * 1082 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control 1083 * how long the underlying connection is held. So every channel that runs on the 1084 * hci_conn object calls this to prevent the connection from disappearing. As 1085 * long as you hold a device, you must also guarantee that you have a valid 1086 * reference to the device via hci_conn_get() (or the initial reference from 1087 * hci_conn_add()). 1088 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't 1089 * break because nobody cares for that. But this means, we cannot use 1090 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME). 1091 */ 1092 1093 static inline struct hci_conn *hci_conn_get(struct hci_conn *conn) 1094 { 1095 get_device(&conn->dev); 1096 return conn; 1097 } 1098 1099 static inline void hci_conn_put(struct hci_conn *conn) 1100 { 1101 put_device(&conn->dev); 1102 } 1103 1104 static inline void hci_conn_hold(struct hci_conn *conn) 1105 { 1106 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 1107 1108 atomic_inc(&conn->refcnt); 1109 cancel_delayed_work(&conn->disc_work); 1110 } 1111 1112 static inline void hci_conn_drop(struct hci_conn *conn) 1113 { 1114 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 1115 1116 if (atomic_dec_and_test(&conn->refcnt)) { 1117 unsigned long timeo; 1118 1119 switch (conn->type) { 1120 case ACL_LINK: 1121 case LE_LINK: 1122 cancel_delayed_work(&conn->idle_work); 1123 if (conn->state == BT_CONNECTED) { 1124 timeo = conn->disc_timeout; 1125 if (!conn->out) 1126 timeo *= 2; 1127 } else { 1128 timeo = 0; 1129 } 1130 break; 1131 1132 case AMP_LINK: 1133 timeo = conn->disc_timeout; 1134 break; 1135 1136 default: 1137 timeo = 0; 1138 break; 1139 } 1140 1141 cancel_delayed_work(&conn->disc_work); 1142 queue_delayed_work(conn->hdev->workqueue, 1143 &conn->disc_work, timeo); 1144 } 1145 } 1146 1147 /* ----- HCI Devices ----- */ 1148 static inline void hci_dev_put(struct hci_dev *d) 1149 { 1150 BT_DBG("%s orig refcnt %d", d->name, 1151 kref_read(&d->dev.kobj.kref)); 1152 1153 put_device(&d->dev); 1154 } 1155 1156 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d) 1157 { 1158 BT_DBG("%s orig refcnt %d", d->name, 1159 kref_read(&d->dev.kobj.kref)); 1160 1161 get_device(&d->dev); 1162 return d; 1163 } 1164 1165 #define hci_dev_lock(d) mutex_lock(&d->lock) 1166 #define hci_dev_unlock(d) mutex_unlock(&d->lock) 1167 1168 #define to_hci_dev(d) container_of(d, struct hci_dev, dev) 1169 #define to_hci_conn(c) container_of(c, struct hci_conn, dev) 1170 1171 static inline void *hci_get_drvdata(struct hci_dev *hdev) 1172 { 1173 return dev_get_drvdata(&hdev->dev); 1174 } 1175 1176 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data) 1177 { 1178 dev_set_drvdata(&hdev->dev, data); 1179 } 1180 1181 struct hci_dev *hci_dev_get(int index); 1182 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, u8 src_type); 1183 1184 struct hci_dev *hci_alloc_dev(void); 1185 void hci_free_dev(struct hci_dev *hdev); 1186 int hci_register_dev(struct hci_dev *hdev); 1187 void hci_unregister_dev(struct hci_dev *hdev); 1188 int hci_suspend_dev(struct hci_dev *hdev); 1189 int hci_resume_dev(struct hci_dev *hdev); 1190 int hci_reset_dev(struct hci_dev *hdev); 1191 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb); 1192 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb); 1193 __printf(2, 3) void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...); 1194 __printf(2, 3) void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...); 1195 1196 static inline void hci_set_msft_opcode(struct hci_dev *hdev, __u16 opcode) 1197 { 1198 #if IS_ENABLED(CONFIG_BT_MSFTEXT) 1199 hdev->msft_opcode = opcode; 1200 #endif 1201 } 1202 1203 int hci_dev_open(__u16 dev); 1204 int hci_dev_close(__u16 dev); 1205 int hci_dev_do_close(struct hci_dev *hdev); 1206 int hci_dev_reset(__u16 dev); 1207 int hci_dev_reset_stat(__u16 dev); 1208 int hci_dev_cmd(unsigned int cmd, void __user *arg); 1209 int hci_get_dev_list(void __user *arg); 1210 int hci_get_dev_info(void __user *arg); 1211 int hci_get_conn_list(void __user *arg); 1212 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg); 1213 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg); 1214 int hci_inquiry(void __user *arg); 1215 1216 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list, 1217 bdaddr_t *bdaddr, u8 type); 1218 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 1219 struct list_head *list, bdaddr_t *bdaddr, 1220 u8 type); 1221 struct bdaddr_list_with_flags * 1222 hci_bdaddr_list_lookup_with_flags(struct list_head *list, bdaddr_t *bdaddr, 1223 u8 type); 1224 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1225 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 1226 u8 type, u8 *peer_irk, u8 *local_irk); 1227 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, 1228 u8 type, u32 flags); 1229 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type); 1230 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 1231 u8 type); 1232 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, 1233 u8 type); 1234 void hci_bdaddr_list_clear(struct list_head *list); 1235 1236 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 1237 bdaddr_t *addr, u8 addr_type); 1238 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 1239 bdaddr_t *addr, u8 addr_type); 1240 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); 1241 void hci_conn_params_clear_disabled(struct hci_dev *hdev); 1242 1243 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 1244 bdaddr_t *addr, 1245 u8 addr_type); 1246 1247 void hci_uuids_clear(struct hci_dev *hdev); 1248 1249 void hci_link_keys_clear(struct hci_dev *hdev); 1250 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1251 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1252 bdaddr_t *bdaddr, u8 *val, u8 type, 1253 u8 pin_len, bool *persistent); 1254 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1255 u8 addr_type, u8 type, u8 authenticated, 1256 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand); 1257 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1258 u8 addr_type, u8 role); 1259 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); 1260 void hci_smp_ltks_clear(struct hci_dev *hdev); 1261 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 1262 1263 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa); 1264 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1265 u8 addr_type); 1266 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1267 u8 addr_type, u8 val[16], bdaddr_t *rpa); 1268 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); 1269 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]); 1270 void hci_blocked_keys_clear(struct hci_dev *hdev); 1271 void hci_smp_irks_clear(struct hci_dev *hdev); 1272 1273 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 1274 1275 void hci_remote_oob_data_clear(struct hci_dev *hdev); 1276 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1277 bdaddr_t *bdaddr, u8 bdaddr_type); 1278 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1279 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1280 u8 *hash256, u8 *rand256); 1281 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1282 u8 bdaddr_type); 1283 1284 void hci_adv_instances_clear(struct hci_dev *hdev); 1285 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance); 1286 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance); 1287 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, 1288 u16 adv_data_len, u8 *adv_data, 1289 u16 scan_rsp_len, u8 *scan_rsp_data, 1290 u16 timeout, u16 duration); 1291 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance); 1292 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired); 1293 1294 void hci_adv_monitors_clear(struct hci_dev *hdev); 1295 void hci_free_adv_monitor(struct adv_monitor *monitor); 1296 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor); 1297 int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle); 1298 bool hci_is_adv_monitoring(struct hci_dev *hdev); 1299 1300 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb); 1301 1302 void hci_init_sysfs(struct hci_dev *hdev); 1303 void hci_conn_init_sysfs(struct hci_conn *conn); 1304 void hci_conn_add_sysfs(struct hci_conn *conn); 1305 void hci_conn_del_sysfs(struct hci_conn *conn); 1306 1307 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev)) 1308 1309 /* ----- LMP capabilities ----- */ 1310 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT) 1311 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH) 1312 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD) 1313 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF) 1314 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK) 1315 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ) 1316 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO) 1317 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR)) 1318 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE) 1319 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR) 1320 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC) 1321 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ) 1322 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR)) 1323 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR) 1324 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH) 1325 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO) 1326 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR) 1327 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES) 1328 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT) 1329 #define lmp_edr_2m_capable(dev) ((dev)->features[0][3] & LMP_EDR_2M) 1330 #define lmp_edr_3m_capable(dev) ((dev)->features[0][3] & LMP_EDR_3M) 1331 #define lmp_edr_3slot_capable(dev) ((dev)->features[0][4] & LMP_EDR_3SLOT) 1332 #define lmp_edr_5slot_capable(dev) ((dev)->features[0][5] & LMP_EDR_5SLOT) 1333 1334 /* ----- Extended LMP capabilities ----- */ 1335 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER) 1336 #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE) 1337 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN) 1338 #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN) 1339 #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC) 1340 #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING) 1341 1342 /* ----- Host capabilities ----- */ 1343 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP) 1344 #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC) 1345 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE)) 1346 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR)) 1347 1348 #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \ 1349 !hci_dev_test_flag(dev, HCI_AUTO_OFF)) 1350 #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \ 1351 hci_dev_test_flag(dev, HCI_SC_ENABLED)) 1352 1353 #define scan_1m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_1M) || \ 1354 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_1M)) 1355 1356 #define scan_2m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_2M) || \ 1357 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_2M)) 1358 1359 #define scan_coded(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_CODED) || \ 1360 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_CODED)) 1361 1362 /* Use LL Privacy based address resolution if supported */ 1363 #define use_ll_privacy(dev) ((dev)->le_features[0] & HCI_LE_LL_PRIVACY) 1364 1365 /* Use ext scanning if set ext scan param and ext scan enable is supported */ 1366 #define use_ext_scan(dev) (((dev)->commands[37] & 0x20) && \ 1367 ((dev)->commands[37] & 0x40)) 1368 /* Use ext create connection if command is supported */ 1369 #define use_ext_conn(dev) ((dev)->commands[37] & 0x80) 1370 1371 /* Extended advertising support */ 1372 #define ext_adv_capable(dev) (((dev)->le_features[1] & HCI_LE_EXT_ADV)) 1373 1374 /* ----- HCI protocols ----- */ 1375 #define HCI_PROTO_DEFER 0x01 1376 1377 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 1378 __u8 type, __u8 *flags) 1379 { 1380 switch (type) { 1381 case ACL_LINK: 1382 return l2cap_connect_ind(hdev, bdaddr); 1383 1384 case SCO_LINK: 1385 case ESCO_LINK: 1386 return sco_connect_ind(hdev, bdaddr, flags); 1387 1388 default: 1389 BT_ERR("unknown link type %d", type); 1390 return -EINVAL; 1391 } 1392 } 1393 1394 static inline int hci_proto_disconn_ind(struct hci_conn *conn) 1395 { 1396 if (conn->type != ACL_LINK && conn->type != LE_LINK) 1397 return HCI_ERROR_REMOTE_USER_TERM; 1398 1399 return l2cap_disconn_ind(conn); 1400 } 1401 1402 /* ----- HCI callbacks ----- */ 1403 struct hci_cb { 1404 struct list_head list; 1405 1406 char *name; 1407 1408 void (*connect_cfm) (struct hci_conn *conn, __u8 status); 1409 void (*disconn_cfm) (struct hci_conn *conn, __u8 status); 1410 void (*security_cfm) (struct hci_conn *conn, __u8 status, 1411 __u8 encrypt); 1412 void (*key_change_cfm) (struct hci_conn *conn, __u8 status); 1413 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role); 1414 }; 1415 1416 static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status) 1417 { 1418 struct hci_cb *cb; 1419 1420 mutex_lock(&hci_cb_list_lock); 1421 list_for_each_entry(cb, &hci_cb_list, list) { 1422 if (cb->connect_cfm) 1423 cb->connect_cfm(conn, status); 1424 } 1425 mutex_unlock(&hci_cb_list_lock); 1426 1427 if (conn->connect_cfm_cb) 1428 conn->connect_cfm_cb(conn, status); 1429 } 1430 1431 static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason) 1432 { 1433 struct hci_cb *cb; 1434 1435 mutex_lock(&hci_cb_list_lock); 1436 list_for_each_entry(cb, &hci_cb_list, list) { 1437 if (cb->disconn_cfm) 1438 cb->disconn_cfm(conn, reason); 1439 } 1440 mutex_unlock(&hci_cb_list_lock); 1441 1442 if (conn->disconn_cfm_cb) 1443 conn->disconn_cfm_cb(conn, reason); 1444 } 1445 1446 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status) 1447 { 1448 struct hci_cb *cb; 1449 __u8 encrypt; 1450 1451 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1452 return; 1453 1454 encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00; 1455 1456 mutex_lock(&hci_cb_list_lock); 1457 list_for_each_entry(cb, &hci_cb_list, list) { 1458 if (cb->security_cfm) 1459 cb->security_cfm(conn, status, encrypt); 1460 } 1461 mutex_unlock(&hci_cb_list_lock); 1462 1463 if (conn->security_cfm_cb) 1464 conn->security_cfm_cb(conn, status); 1465 } 1466 1467 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status) 1468 { 1469 struct hci_cb *cb; 1470 __u8 encrypt; 1471 1472 if (conn->state == BT_CONFIG) { 1473 if (!status) 1474 conn->state = BT_CONNECTED; 1475 1476 hci_connect_cfm(conn, status); 1477 hci_conn_drop(conn); 1478 return; 1479 } 1480 1481 if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1482 encrypt = 0x00; 1483 else if (test_bit(HCI_CONN_AES_CCM, &conn->flags)) 1484 encrypt = 0x02; 1485 else 1486 encrypt = 0x01; 1487 1488 if (!status) { 1489 if (conn->sec_level == BT_SECURITY_SDP) 1490 conn->sec_level = BT_SECURITY_LOW; 1491 1492 if (conn->pending_sec_level > conn->sec_level) 1493 conn->sec_level = conn->pending_sec_level; 1494 } 1495 1496 mutex_lock(&hci_cb_list_lock); 1497 list_for_each_entry(cb, &hci_cb_list, list) { 1498 if (cb->security_cfm) 1499 cb->security_cfm(conn, status, encrypt); 1500 } 1501 mutex_unlock(&hci_cb_list_lock); 1502 1503 if (conn->security_cfm_cb) 1504 conn->security_cfm_cb(conn, status); 1505 } 1506 1507 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status) 1508 { 1509 struct hci_cb *cb; 1510 1511 mutex_lock(&hci_cb_list_lock); 1512 list_for_each_entry(cb, &hci_cb_list, list) { 1513 if (cb->key_change_cfm) 1514 cb->key_change_cfm(conn, status); 1515 } 1516 mutex_unlock(&hci_cb_list_lock); 1517 } 1518 1519 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status, 1520 __u8 role) 1521 { 1522 struct hci_cb *cb; 1523 1524 mutex_lock(&hci_cb_list_lock); 1525 list_for_each_entry(cb, &hci_cb_list, list) { 1526 if (cb->role_switch_cfm) 1527 cb->role_switch_cfm(conn, status, role); 1528 } 1529 mutex_unlock(&hci_cb_list_lock); 1530 } 1531 1532 static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type, 1533 size_t *data_len) 1534 { 1535 size_t parsed = 0; 1536 1537 if (eir_len < 2) 1538 return NULL; 1539 1540 while (parsed < eir_len - 1) { 1541 u8 field_len = eir[0]; 1542 1543 if (field_len == 0) 1544 break; 1545 1546 parsed += field_len + 1; 1547 1548 if (parsed > eir_len) 1549 break; 1550 1551 if (eir[1] != type) { 1552 eir += field_len + 1; 1553 continue; 1554 } 1555 1556 /* Zero length data */ 1557 if (field_len == 1) 1558 return NULL; 1559 1560 if (data_len) 1561 *data_len = field_len - 1; 1562 1563 return &eir[2]; 1564 } 1565 1566 return NULL; 1567 } 1568 1569 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type) 1570 { 1571 if (addr_type != ADDR_LE_DEV_RANDOM) 1572 return false; 1573 1574 if ((bdaddr->b[5] & 0xc0) == 0x40) 1575 return true; 1576 1577 return false; 1578 } 1579 1580 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type) 1581 { 1582 if (addr_type == ADDR_LE_DEV_PUBLIC) 1583 return true; 1584 1585 /* Check for Random Static address type */ 1586 if ((addr->b[5] & 0xc0) == 0xc0) 1587 return true; 1588 1589 return false; 1590 } 1591 1592 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev, 1593 bdaddr_t *bdaddr, u8 addr_type) 1594 { 1595 if (!hci_bdaddr_is_rpa(bdaddr, addr_type)) 1596 return NULL; 1597 1598 return hci_find_irk_by_rpa(hdev, bdaddr); 1599 } 1600 1601 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency, 1602 u16 to_multiplier) 1603 { 1604 u16 max_latency; 1605 1606 if (min > max || min < 6 || max > 3200) 1607 return -EINVAL; 1608 1609 if (to_multiplier < 10 || to_multiplier > 3200) 1610 return -EINVAL; 1611 1612 if (max >= to_multiplier * 8) 1613 return -EINVAL; 1614 1615 max_latency = (to_multiplier * 4 / max) - 1; 1616 if (latency > 499 || latency > max_latency) 1617 return -EINVAL; 1618 1619 return 0; 1620 } 1621 1622 int hci_register_cb(struct hci_cb *hcb); 1623 int hci_unregister_cb(struct hci_cb *hcb); 1624 1625 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1626 const void *param, u32 timeout); 1627 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 1628 const void *param, u8 event, u32 timeout); 1629 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 1630 const void *param); 1631 1632 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 1633 const void *param); 1634 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags); 1635 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb); 1636 1637 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode); 1638 1639 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1640 const void *param, u32 timeout); 1641 1642 u32 hci_conn_get_phy(struct hci_conn *conn); 1643 1644 /* ----- HCI Sockets ----- */ 1645 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb); 1646 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 1647 int flag, struct sock *skip_sk); 1648 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb); 1649 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, 1650 void *data, u16 data_len, ktime_t tstamp, 1651 int flag, struct sock *skip_sk); 1652 1653 void hci_sock_dev_event(struct hci_dev *hdev, int event); 1654 1655 #define HCI_MGMT_VAR_LEN BIT(0) 1656 #define HCI_MGMT_NO_HDEV BIT(1) 1657 #define HCI_MGMT_UNTRUSTED BIT(2) 1658 #define HCI_MGMT_UNCONFIGURED BIT(3) 1659 #define HCI_MGMT_HDEV_OPTIONAL BIT(4) 1660 1661 struct hci_mgmt_handler { 1662 int (*func) (struct sock *sk, struct hci_dev *hdev, void *data, 1663 u16 data_len); 1664 size_t data_len; 1665 unsigned long flags; 1666 }; 1667 1668 struct hci_mgmt_chan { 1669 struct list_head list; 1670 unsigned short channel; 1671 size_t handler_count; 1672 const struct hci_mgmt_handler *handlers; 1673 void (*hdev_init) (struct sock *sk, struct hci_dev *hdev); 1674 }; 1675 1676 int hci_mgmt_chan_register(struct hci_mgmt_chan *c); 1677 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c); 1678 1679 /* Management interface */ 1680 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR)) 1681 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \ 1682 BIT(BDADDR_LE_RANDOM)) 1683 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \ 1684 BIT(BDADDR_LE_PUBLIC) | \ 1685 BIT(BDADDR_LE_RANDOM)) 1686 1687 /* These LE scan and inquiry parameters were chosen according to LE General 1688 * Discovery Procedure specification. 1689 */ 1690 #define DISCOV_LE_SCAN_WIN 0x12 1691 #define DISCOV_LE_SCAN_INT 0x12 1692 #define DISCOV_LE_TIMEOUT 10240 /* msec */ 1693 #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */ 1694 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04 1695 #define DISCOV_BREDR_INQUIRY_LEN 0x08 1696 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */ 1697 #define DISCOV_LE_FAST_ADV_INT_MIN 100 /* msec */ 1698 #define DISCOV_LE_FAST_ADV_INT_MAX 150 /* msec */ 1699 1700 void mgmt_fill_version_info(void *ver); 1701 int mgmt_new_settings(struct hci_dev *hdev); 1702 void mgmt_index_added(struct hci_dev *hdev); 1703 void mgmt_index_removed(struct hci_dev *hdev); 1704 void mgmt_set_powered_failed(struct hci_dev *hdev, int err); 1705 void mgmt_power_on(struct hci_dev *hdev, int err); 1706 void __mgmt_power_off(struct hci_dev *hdev); 1707 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, 1708 bool persistent); 1709 void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn, 1710 u32 flags, u8 *name, u8 name_len); 1711 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, 1712 u8 link_type, u8 addr_type, u8 reason, 1713 bool mgmt_connected); 1714 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, 1715 u8 link_type, u8 addr_type, u8 status); 1716 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1717 u8 addr_type, u8 status); 1718 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure); 1719 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1720 u8 status); 1721 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1722 u8 status); 1723 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1724 u8 link_type, u8 addr_type, u32 value, 1725 u8 confirm_hint); 1726 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1727 u8 link_type, u8 addr_type, u8 status); 1728 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1729 u8 link_type, u8 addr_type, u8 status); 1730 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1731 u8 link_type, u8 addr_type); 1732 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1733 u8 link_type, u8 addr_type, u8 status); 1734 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1735 u8 link_type, u8 addr_type, u8 status); 1736 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, 1737 u8 link_type, u8 addr_type, u32 passkey, 1738 u8 entered); 1739 void mgmt_auth_failed(struct hci_conn *conn, u8 status); 1740 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status); 1741 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); 1742 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, 1743 u8 status); 1744 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status); 1745 void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status); 1746 void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status); 1747 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1748 u8 addr_type, u8 *dev_class, s8 rssi, u32 flags, 1749 u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len); 1750 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1751 u8 addr_type, s8 rssi, u8 *name, u8 name_len); 1752 void mgmt_discovering(struct hci_dev *hdev, u8 discovering); 1753 bool mgmt_powering_down(struct hci_dev *hdev); 1754 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent); 1755 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent); 1756 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk, 1757 bool persistent); 1758 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr, 1759 u8 bdaddr_type, u8 store_hint, u16 min_interval, 1760 u16 max_interval, u16 latency, u16 timeout); 1761 void mgmt_smp_complete(struct hci_conn *conn, bool complete); 1762 bool mgmt_get_connectable(struct hci_dev *hdev); 1763 void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status); 1764 void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status); 1765 u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev); 1766 void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev, 1767 u8 instance); 1768 void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev, 1769 u8 instance); 1770 int mgmt_phy_configuration_changed(struct hci_dev *hdev, struct sock *skip); 1771 1772 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 1773 u16 to_multiplier); 1774 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 1775 __u8 ltk[16], __u8 key_size); 1776 1777 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 1778 u8 *bdaddr_type); 1779 1780 #define SCO_AIRMODE_MASK 0x0003 1781 #define SCO_AIRMODE_CVSD 0x0000 1782 #define SCO_AIRMODE_TRANSP 0x0003 1783 1784 #endif /* __HCI_CORE_H */ 1785