1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 #ifndef __HCI_CORE_H 26 #define __HCI_CORE_H 27 28 #include <net/bluetooth/hci.h> 29 30 /* HCI priority */ 31 #define HCI_PRIO_MAX 7 32 33 /* HCI Core structures */ 34 struct inquiry_data { 35 bdaddr_t bdaddr; 36 __u8 pscan_rep_mode; 37 __u8 pscan_period_mode; 38 __u8 pscan_mode; 39 __u8 dev_class[3]; 40 __le16 clock_offset; 41 __s8 rssi; 42 __u8 ssp_mode; 43 }; 44 45 struct inquiry_entry { 46 struct list_head all; /* inq_cache.all */ 47 struct list_head list; /* unknown or resolve */ 48 enum { 49 NAME_NOT_KNOWN, 50 NAME_NEEDED, 51 NAME_PENDING, 52 NAME_KNOWN, 53 } name_state; 54 __u32 timestamp; 55 struct inquiry_data data; 56 }; 57 58 struct discovery_state { 59 int type; 60 enum { 61 DISCOVERY_STOPPED, 62 DISCOVERY_STARTING, 63 DISCOVERY_FINDING, 64 DISCOVERY_RESOLVING, 65 DISCOVERY_STOPPING, 66 } state; 67 struct list_head all; /* All devices found during inquiry */ 68 struct list_head unknown; /* Name state not known */ 69 struct list_head resolve; /* Name needs to be resolved */ 70 __u32 timestamp; 71 }; 72 73 struct hci_conn_hash { 74 struct list_head list; 75 unsigned int acl_num; 76 unsigned int amp_num; 77 unsigned int sco_num; 78 unsigned int le_num; 79 }; 80 81 struct bdaddr_list { 82 struct list_head list; 83 bdaddr_t bdaddr; 84 u8 bdaddr_type; 85 }; 86 87 struct bt_uuid { 88 struct list_head list; 89 u8 uuid[16]; 90 u8 size; 91 u8 svc_hint; 92 }; 93 94 struct smp_ltk { 95 struct list_head list; 96 bdaddr_t bdaddr; 97 u8 bdaddr_type; 98 u8 authenticated; 99 u8 type; 100 u8 enc_size; 101 __le16 ediv; 102 u8 rand[8]; 103 u8 val[16]; 104 } __packed; 105 106 struct link_key { 107 struct list_head list; 108 bdaddr_t bdaddr; 109 u8 type; 110 u8 val[HCI_LINK_KEY_SIZE]; 111 u8 pin_len; 112 }; 113 114 struct oob_data { 115 struct list_head list; 116 bdaddr_t bdaddr; 117 u8 hash[16]; 118 u8 randomizer[16]; 119 }; 120 121 #define HCI_MAX_SHORT_NAME_LENGTH 10 122 123 struct amp_assoc { 124 __u16 len; 125 __u16 offset; 126 __u16 rem_len; 127 __u16 len_so_far; 128 __u8 data[HCI_MAX_AMP_ASSOC_SIZE]; 129 }; 130 131 #define HCI_MAX_PAGES 3 132 133 #define NUM_REASSEMBLY 4 134 struct hci_dev { 135 struct list_head list; 136 struct mutex lock; 137 138 char name[8]; 139 unsigned long flags; 140 __u16 id; 141 __u8 bus; 142 __u8 dev_type; 143 bdaddr_t bdaddr; 144 bdaddr_t static_addr; 145 __u8 own_addr_type; 146 __u8 dev_name[HCI_MAX_NAME_LENGTH]; 147 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH]; 148 __u8 eir[HCI_MAX_EIR_LENGTH]; 149 __u8 dev_class[3]; 150 __u8 major_class; 151 __u8 minor_class; 152 __u8 max_page; 153 __u8 features[HCI_MAX_PAGES][8]; 154 __u8 le_features[8]; 155 __u8 le_white_list_size; 156 __u8 le_states[8]; 157 __u8 commands[64]; 158 __u8 hci_ver; 159 __u16 hci_rev; 160 __u8 lmp_ver; 161 __u16 manufacturer; 162 __u16 lmp_subver; 163 __u16 voice_setting; 164 __u8 num_iac; 165 __u8 io_capability; 166 __s8 inq_tx_power; 167 __u16 page_scan_interval; 168 __u16 page_scan_window; 169 __u8 page_scan_type; 170 __u16 le_scan_interval; 171 __u16 le_scan_window; 172 __u16 le_conn_min_interval; 173 __u16 le_conn_max_interval; 174 __u8 ssp_debug_mode; 175 176 __u16 devid_source; 177 __u16 devid_vendor; 178 __u16 devid_product; 179 __u16 devid_version; 180 181 __u16 pkt_type; 182 __u16 esco_type; 183 __u16 link_policy; 184 __u16 link_mode; 185 186 __u32 idle_timeout; 187 __u16 sniff_min_interval; 188 __u16 sniff_max_interval; 189 190 __u8 amp_status; 191 __u32 amp_total_bw; 192 __u32 amp_max_bw; 193 __u32 amp_min_latency; 194 __u32 amp_max_pdu; 195 __u8 amp_type; 196 __u16 amp_pal_cap; 197 __u16 amp_assoc_size; 198 __u32 amp_max_flush_to; 199 __u32 amp_be_flush_to; 200 201 struct amp_assoc loc_assoc; 202 203 __u8 flow_ctl_mode; 204 205 unsigned int auto_accept_delay; 206 207 unsigned long quirks; 208 209 atomic_t cmd_cnt; 210 unsigned int acl_cnt; 211 unsigned int sco_cnt; 212 unsigned int le_cnt; 213 214 unsigned int acl_mtu; 215 unsigned int sco_mtu; 216 unsigned int le_mtu; 217 unsigned int acl_pkts; 218 unsigned int sco_pkts; 219 unsigned int le_pkts; 220 221 __u16 block_len; 222 __u16 block_mtu; 223 __u16 num_blocks; 224 __u16 block_cnt; 225 226 unsigned long acl_last_tx; 227 unsigned long sco_last_tx; 228 unsigned long le_last_tx; 229 230 struct workqueue_struct *workqueue; 231 struct workqueue_struct *req_workqueue; 232 233 struct work_struct power_on; 234 struct delayed_work power_off; 235 236 __u16 discov_timeout; 237 struct delayed_work discov_off; 238 239 struct delayed_work service_cache; 240 241 struct timer_list cmd_timer; 242 243 struct work_struct rx_work; 244 struct work_struct cmd_work; 245 struct work_struct tx_work; 246 247 struct sk_buff_head rx_q; 248 struct sk_buff_head raw_q; 249 struct sk_buff_head cmd_q; 250 251 struct sk_buff *recv_evt; 252 struct sk_buff *sent_cmd; 253 struct sk_buff *reassembly[NUM_REASSEMBLY]; 254 255 struct mutex req_lock; 256 wait_queue_head_t req_wait_q; 257 __u32 req_status; 258 __u32 req_result; 259 260 struct list_head mgmt_pending; 261 262 struct discovery_state discovery; 263 struct hci_conn_hash conn_hash; 264 struct list_head blacklist; 265 266 struct list_head uuids; 267 268 struct list_head link_keys; 269 270 struct list_head long_term_keys; 271 272 struct list_head remote_oob_data; 273 274 struct hci_dev_stats stat; 275 276 atomic_t promisc; 277 278 struct dentry *debugfs; 279 280 struct device dev; 281 282 struct rfkill *rfkill; 283 284 unsigned long dev_flags; 285 286 struct delayed_work le_scan_disable; 287 288 __s8 adv_tx_power; 289 __u8 adv_data[HCI_MAX_AD_LENGTH]; 290 __u8 adv_data_len; 291 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH]; 292 __u8 scan_rsp_data_len; 293 294 int (*open)(struct hci_dev *hdev); 295 int (*close)(struct hci_dev *hdev); 296 int (*flush)(struct hci_dev *hdev); 297 int (*setup)(struct hci_dev *hdev); 298 int (*send)(struct hci_dev *hdev, struct sk_buff *skb); 299 void (*notify)(struct hci_dev *hdev, unsigned int evt); 300 }; 301 302 #define HCI_PHY_HANDLE(handle) (handle & 0xff) 303 304 struct hci_conn { 305 struct list_head list; 306 307 atomic_t refcnt; 308 309 bdaddr_t dst; 310 __u8 dst_type; 311 bdaddr_t src; 312 __u8 src_type; 313 __u16 handle; 314 __u16 state; 315 __u8 mode; 316 __u8 type; 317 bool out; 318 __u8 attempt; 319 __u8 dev_class[3]; 320 __u8 features[HCI_MAX_PAGES][8]; 321 __u16 pkt_type; 322 __u16 link_policy; 323 __u32 link_mode; 324 __u8 key_type; 325 __u8 auth_type; 326 __u8 sec_level; 327 __u8 pending_sec_level; 328 __u8 pin_length; 329 __u8 enc_key_size; 330 __u8 io_capability; 331 __u32 passkey_notify; 332 __u8 passkey_entered; 333 __u16 disc_timeout; 334 __u16 setting; 335 unsigned long flags; 336 337 __u8 remote_cap; 338 __u8 remote_auth; 339 __u8 remote_id; 340 bool flush_key; 341 342 unsigned int sent; 343 344 struct sk_buff_head data_q; 345 struct list_head chan_list; 346 347 struct delayed_work disc_work; 348 struct delayed_work auto_accept_work; 349 struct delayed_work idle_work; 350 351 struct device dev; 352 353 struct hci_dev *hdev; 354 void *l2cap_data; 355 void *sco_data; 356 void *smp_conn; 357 struct amp_mgr *amp_mgr; 358 359 struct hci_conn *link; 360 361 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status); 362 void (*security_cfm_cb) (struct hci_conn *conn, u8 status); 363 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason); 364 }; 365 366 struct hci_chan { 367 struct list_head list; 368 __u16 handle; 369 struct hci_conn *conn; 370 struct sk_buff_head data_q; 371 unsigned int sent; 372 __u8 state; 373 }; 374 375 extern struct list_head hci_dev_list; 376 extern struct list_head hci_cb_list; 377 extern rwlock_t hci_dev_list_lock; 378 extern rwlock_t hci_cb_list_lock; 379 380 /* ----- HCI interface to upper protocols ----- */ 381 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr); 382 void l2cap_connect_cfm(struct hci_conn *hcon, u8 status); 383 int l2cap_disconn_ind(struct hci_conn *hcon); 384 void l2cap_disconn_cfm(struct hci_conn *hcon, u8 reason); 385 int l2cap_security_cfm(struct hci_conn *hcon, u8 status, u8 encrypt); 386 int l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags); 387 388 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); 389 void sco_connect_cfm(struct hci_conn *hcon, __u8 status); 390 void sco_disconn_cfm(struct hci_conn *hcon, __u8 reason); 391 int sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb); 392 393 /* ----- Inquiry cache ----- */ 394 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */ 395 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */ 396 397 static inline void discovery_init(struct hci_dev *hdev) 398 { 399 hdev->discovery.state = DISCOVERY_STOPPED; 400 INIT_LIST_HEAD(&hdev->discovery.all); 401 INIT_LIST_HEAD(&hdev->discovery.unknown); 402 INIT_LIST_HEAD(&hdev->discovery.resolve); 403 } 404 405 bool hci_discovery_active(struct hci_dev *hdev); 406 407 void hci_discovery_set_state(struct hci_dev *hdev, int state); 408 409 static inline int inquiry_cache_empty(struct hci_dev *hdev) 410 { 411 return list_empty(&hdev->discovery.all); 412 } 413 414 static inline long inquiry_cache_age(struct hci_dev *hdev) 415 { 416 struct discovery_state *c = &hdev->discovery; 417 return jiffies - c->timestamp; 418 } 419 420 static inline long inquiry_entry_age(struct inquiry_entry *e) 421 { 422 return jiffies - e->timestamp; 423 } 424 425 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 426 bdaddr_t *bdaddr); 427 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 428 bdaddr_t *bdaddr); 429 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 430 bdaddr_t *bdaddr, 431 int state); 432 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 433 struct inquiry_entry *ie); 434 bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 435 bool name_known, bool *ssp); 436 void hci_inquiry_cache_flush(struct hci_dev *hdev); 437 438 /* ----- HCI Connections ----- */ 439 enum { 440 HCI_CONN_AUTH_PEND, 441 HCI_CONN_REAUTH_PEND, 442 HCI_CONN_ENCRYPT_PEND, 443 HCI_CONN_RSWITCH_PEND, 444 HCI_CONN_MODE_CHANGE_PEND, 445 HCI_CONN_SCO_SETUP_PEND, 446 HCI_CONN_LE_SMP_PEND, 447 HCI_CONN_MGMT_CONNECTED, 448 HCI_CONN_SSP_ENABLED, 449 HCI_CONN_POWER_SAVE, 450 HCI_CONN_REMOTE_OOB, 451 HCI_CONN_6LOWPAN, 452 }; 453 454 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn) 455 { 456 struct hci_dev *hdev = conn->hdev; 457 return test_bit(HCI_SSP_ENABLED, &hdev->dev_flags) && 458 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 459 } 460 461 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c) 462 { 463 struct hci_conn_hash *h = &hdev->conn_hash; 464 list_add_rcu(&c->list, &h->list); 465 switch (c->type) { 466 case ACL_LINK: 467 h->acl_num++; 468 break; 469 case AMP_LINK: 470 h->amp_num++; 471 break; 472 case LE_LINK: 473 h->le_num++; 474 break; 475 case SCO_LINK: 476 case ESCO_LINK: 477 h->sco_num++; 478 break; 479 } 480 } 481 482 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c) 483 { 484 struct hci_conn_hash *h = &hdev->conn_hash; 485 486 list_del_rcu(&c->list); 487 synchronize_rcu(); 488 489 switch (c->type) { 490 case ACL_LINK: 491 h->acl_num--; 492 break; 493 case AMP_LINK: 494 h->amp_num--; 495 break; 496 case LE_LINK: 497 h->le_num--; 498 break; 499 case SCO_LINK: 500 case ESCO_LINK: 501 h->sco_num--; 502 break; 503 } 504 } 505 506 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type) 507 { 508 struct hci_conn_hash *h = &hdev->conn_hash; 509 switch (type) { 510 case ACL_LINK: 511 return h->acl_num; 512 case AMP_LINK: 513 return h->amp_num; 514 case LE_LINK: 515 return h->le_num; 516 case SCO_LINK: 517 case ESCO_LINK: 518 return h->sco_num; 519 default: 520 return 0; 521 } 522 } 523 524 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev, 525 __u16 handle) 526 { 527 struct hci_conn_hash *h = &hdev->conn_hash; 528 struct hci_conn *c; 529 530 rcu_read_lock(); 531 532 list_for_each_entry_rcu(c, &h->list, list) { 533 if (c->handle == handle) { 534 rcu_read_unlock(); 535 return c; 536 } 537 } 538 rcu_read_unlock(); 539 540 return NULL; 541 } 542 543 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev, 544 __u8 type, bdaddr_t *ba) 545 { 546 struct hci_conn_hash *h = &hdev->conn_hash; 547 struct hci_conn *c; 548 549 rcu_read_lock(); 550 551 list_for_each_entry_rcu(c, &h->list, list) { 552 if (c->type == type && !bacmp(&c->dst, ba)) { 553 rcu_read_unlock(); 554 return c; 555 } 556 } 557 558 rcu_read_unlock(); 559 560 return NULL; 561 } 562 563 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev, 564 __u8 type, __u16 state) 565 { 566 struct hci_conn_hash *h = &hdev->conn_hash; 567 struct hci_conn *c; 568 569 rcu_read_lock(); 570 571 list_for_each_entry_rcu(c, &h->list, list) { 572 if (c->type == type && c->state == state) { 573 rcu_read_unlock(); 574 return c; 575 } 576 } 577 578 rcu_read_unlock(); 579 580 return NULL; 581 } 582 583 void hci_disconnect(struct hci_conn *conn, __u8 reason); 584 bool hci_setup_sync(struct hci_conn *conn, __u16 handle); 585 void hci_sco_setup(struct hci_conn *conn, __u8 status); 586 587 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst); 588 int hci_conn_del(struct hci_conn *conn); 589 void hci_conn_hash_flush(struct hci_dev *hdev); 590 void hci_conn_check_pending(struct hci_dev *hdev); 591 592 struct hci_chan *hci_chan_create(struct hci_conn *conn); 593 void hci_chan_del(struct hci_chan *chan); 594 void hci_chan_list_flush(struct hci_conn *conn); 595 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle); 596 597 struct hci_conn *hci_connect(struct hci_dev *hdev, int type, bdaddr_t *dst, 598 __u8 dst_type, __u8 sec_level, __u8 auth_type); 599 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 600 __u16 setting); 601 int hci_conn_check_link_mode(struct hci_conn *conn); 602 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level); 603 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type); 604 int hci_conn_change_link_key(struct hci_conn *conn); 605 int hci_conn_switch_role(struct hci_conn *conn, __u8 role); 606 607 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active); 608 609 /* 610 * hci_conn_get() and hci_conn_put() are used to control the life-time of an 611 * "hci_conn" object. They do not guarantee that the hci_conn object is running, 612 * working or anything else. They just guarantee that the object is available 613 * and can be dereferenced. So you can use its locks, local variables and any 614 * other constant data. 615 * Before accessing runtime data, you _must_ lock the object and then check that 616 * it is still running. As soon as you release the locks, the connection might 617 * get dropped, though. 618 * 619 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control 620 * how long the underlying connection is held. So every channel that runs on the 621 * hci_conn object calls this to prevent the connection from disappearing. As 622 * long as you hold a device, you must also guarantee that you have a valid 623 * reference to the device via hci_conn_get() (or the initial reference from 624 * hci_conn_add()). 625 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't 626 * break because nobody cares for that. But this means, we cannot use 627 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME). 628 */ 629 630 static inline void hci_conn_get(struct hci_conn *conn) 631 { 632 get_device(&conn->dev); 633 } 634 635 static inline void hci_conn_put(struct hci_conn *conn) 636 { 637 put_device(&conn->dev); 638 } 639 640 static inline void hci_conn_hold(struct hci_conn *conn) 641 { 642 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 643 644 atomic_inc(&conn->refcnt); 645 cancel_delayed_work(&conn->disc_work); 646 } 647 648 static inline void hci_conn_drop(struct hci_conn *conn) 649 { 650 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 651 652 if (atomic_dec_and_test(&conn->refcnt)) { 653 unsigned long timeo; 654 655 switch (conn->type) { 656 case ACL_LINK: 657 case LE_LINK: 658 cancel_delayed_work(&conn->idle_work); 659 if (conn->state == BT_CONNECTED) { 660 timeo = conn->disc_timeout; 661 if (!conn->out) 662 timeo *= 2; 663 } else { 664 timeo = msecs_to_jiffies(10); 665 } 666 break; 667 668 case AMP_LINK: 669 timeo = conn->disc_timeout; 670 break; 671 672 default: 673 timeo = msecs_to_jiffies(10); 674 break; 675 } 676 677 cancel_delayed_work(&conn->disc_work); 678 queue_delayed_work(conn->hdev->workqueue, 679 &conn->disc_work, timeo); 680 } 681 } 682 683 /* ----- HCI Devices ----- */ 684 static inline void hci_dev_put(struct hci_dev *d) 685 { 686 BT_DBG("%s orig refcnt %d", d->name, 687 atomic_read(&d->dev.kobj.kref.refcount)); 688 689 put_device(&d->dev); 690 } 691 692 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d) 693 { 694 BT_DBG("%s orig refcnt %d", d->name, 695 atomic_read(&d->dev.kobj.kref.refcount)); 696 697 get_device(&d->dev); 698 return d; 699 } 700 701 #define hci_dev_lock(d) mutex_lock(&d->lock) 702 #define hci_dev_unlock(d) mutex_unlock(&d->lock) 703 704 #define to_hci_dev(d) container_of(d, struct hci_dev, dev) 705 #define to_hci_conn(c) container_of(c, struct hci_conn, dev) 706 707 static inline void *hci_get_drvdata(struct hci_dev *hdev) 708 { 709 return dev_get_drvdata(&hdev->dev); 710 } 711 712 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data) 713 { 714 dev_set_drvdata(&hdev->dev, data); 715 } 716 717 struct hci_dev *hci_dev_get(int index); 718 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src); 719 720 struct hci_dev *hci_alloc_dev(void); 721 void hci_free_dev(struct hci_dev *hdev); 722 int hci_register_dev(struct hci_dev *hdev); 723 void hci_unregister_dev(struct hci_dev *hdev); 724 int hci_suspend_dev(struct hci_dev *hdev); 725 int hci_resume_dev(struct hci_dev *hdev); 726 int hci_dev_open(__u16 dev); 727 int hci_dev_close(__u16 dev); 728 int hci_dev_reset(__u16 dev); 729 int hci_dev_reset_stat(__u16 dev); 730 int hci_dev_cmd(unsigned int cmd, void __user *arg); 731 int hci_get_dev_list(void __user *arg); 732 int hci_get_dev_info(void __user *arg); 733 int hci_get_conn_list(void __user *arg); 734 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg); 735 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg); 736 int hci_inquiry(void __user *arg); 737 738 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev, 739 bdaddr_t *bdaddr, u8 type); 740 int hci_blacklist_clear(struct hci_dev *hdev); 741 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 742 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 743 744 int hci_uuids_clear(struct hci_dev *hdev); 745 746 int hci_link_keys_clear(struct hci_dev *hdev); 747 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 748 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key, 749 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len); 750 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8]); 751 int hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type, 752 int new_key, u8 authenticated, u8 tk[16], u8 enc_size, 753 __le16 ediv, u8 rand[8]); 754 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 755 u8 addr_type); 756 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr); 757 int hci_smp_ltks_clear(struct hci_dev *hdev); 758 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 759 760 int hci_remote_oob_data_clear(struct hci_dev *hdev); 761 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 762 bdaddr_t *bdaddr); 763 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash, 764 u8 *randomizer); 765 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr); 766 767 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb); 768 769 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb); 770 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count); 771 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count); 772 773 void hci_init_sysfs(struct hci_dev *hdev); 774 void hci_conn_init_sysfs(struct hci_conn *conn); 775 void hci_conn_add_sysfs(struct hci_conn *conn); 776 void hci_conn_del_sysfs(struct hci_conn *conn); 777 778 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev)) 779 780 /* ----- LMP capabilities ----- */ 781 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT) 782 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH) 783 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD) 784 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF) 785 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK) 786 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ) 787 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO) 788 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR)) 789 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE) 790 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR) 791 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC) 792 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ) 793 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR)) 794 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR) 795 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH) 796 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO) 797 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR) 798 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES) 799 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT) 800 801 /* ----- Extended LMP capabilities ----- */ 802 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER) 803 #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE) 804 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN) 805 #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN) 806 807 /* ----- Host capabilities ----- */ 808 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP) 809 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE)) 810 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR)) 811 812 /* ----- HCI protocols ----- */ 813 #define HCI_PROTO_DEFER 0x01 814 815 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 816 __u8 type, __u8 *flags) 817 { 818 switch (type) { 819 case ACL_LINK: 820 return l2cap_connect_ind(hdev, bdaddr); 821 822 case SCO_LINK: 823 case ESCO_LINK: 824 return sco_connect_ind(hdev, bdaddr, flags); 825 826 default: 827 BT_ERR("unknown link type %d", type); 828 return -EINVAL; 829 } 830 } 831 832 static inline void hci_proto_connect_cfm(struct hci_conn *conn, __u8 status) 833 { 834 switch (conn->type) { 835 case ACL_LINK: 836 case LE_LINK: 837 l2cap_connect_cfm(conn, status); 838 break; 839 840 case SCO_LINK: 841 case ESCO_LINK: 842 sco_connect_cfm(conn, status); 843 break; 844 845 default: 846 BT_ERR("unknown link type %d", conn->type); 847 break; 848 } 849 850 if (conn->connect_cfm_cb) 851 conn->connect_cfm_cb(conn, status); 852 } 853 854 static inline int hci_proto_disconn_ind(struct hci_conn *conn) 855 { 856 if (conn->type != ACL_LINK && conn->type != LE_LINK) 857 return HCI_ERROR_REMOTE_USER_TERM; 858 859 return l2cap_disconn_ind(conn); 860 } 861 862 static inline void hci_proto_disconn_cfm(struct hci_conn *conn, __u8 reason) 863 { 864 switch (conn->type) { 865 case ACL_LINK: 866 case LE_LINK: 867 l2cap_disconn_cfm(conn, reason); 868 break; 869 870 case SCO_LINK: 871 case ESCO_LINK: 872 sco_disconn_cfm(conn, reason); 873 break; 874 875 /* L2CAP would be handled for BREDR chan */ 876 case AMP_LINK: 877 break; 878 879 default: 880 BT_ERR("unknown link type %d", conn->type); 881 break; 882 } 883 884 if (conn->disconn_cfm_cb) 885 conn->disconn_cfm_cb(conn, reason); 886 } 887 888 static inline void hci_proto_auth_cfm(struct hci_conn *conn, __u8 status) 889 { 890 __u8 encrypt; 891 892 if (conn->type != ACL_LINK && conn->type != LE_LINK) 893 return; 894 895 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 896 return; 897 898 encrypt = (conn->link_mode & HCI_LM_ENCRYPT) ? 0x01 : 0x00; 899 l2cap_security_cfm(conn, status, encrypt); 900 901 if (conn->security_cfm_cb) 902 conn->security_cfm_cb(conn, status); 903 } 904 905 static inline void hci_proto_encrypt_cfm(struct hci_conn *conn, __u8 status, 906 __u8 encrypt) 907 { 908 if (conn->type != ACL_LINK && conn->type != LE_LINK) 909 return; 910 911 l2cap_security_cfm(conn, status, encrypt); 912 913 if (conn->security_cfm_cb) 914 conn->security_cfm_cb(conn, status); 915 } 916 917 /* ----- HCI callbacks ----- */ 918 struct hci_cb { 919 struct list_head list; 920 921 char *name; 922 923 void (*security_cfm) (struct hci_conn *conn, __u8 status, 924 __u8 encrypt); 925 void (*key_change_cfm) (struct hci_conn *conn, __u8 status); 926 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role); 927 }; 928 929 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status) 930 { 931 struct hci_cb *cb; 932 __u8 encrypt; 933 934 hci_proto_auth_cfm(conn, status); 935 936 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 937 return; 938 939 encrypt = (conn->link_mode & HCI_LM_ENCRYPT) ? 0x01 : 0x00; 940 941 read_lock(&hci_cb_list_lock); 942 list_for_each_entry(cb, &hci_cb_list, list) { 943 if (cb->security_cfm) 944 cb->security_cfm(conn, status, encrypt); 945 } 946 read_unlock(&hci_cb_list_lock); 947 } 948 949 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status, 950 __u8 encrypt) 951 { 952 struct hci_cb *cb; 953 954 if (conn->sec_level == BT_SECURITY_SDP) 955 conn->sec_level = BT_SECURITY_LOW; 956 957 if (conn->pending_sec_level > conn->sec_level) 958 conn->sec_level = conn->pending_sec_level; 959 960 hci_proto_encrypt_cfm(conn, status, encrypt); 961 962 read_lock(&hci_cb_list_lock); 963 list_for_each_entry(cb, &hci_cb_list, list) { 964 if (cb->security_cfm) 965 cb->security_cfm(conn, status, encrypt); 966 } 967 read_unlock(&hci_cb_list_lock); 968 } 969 970 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status) 971 { 972 struct hci_cb *cb; 973 974 read_lock(&hci_cb_list_lock); 975 list_for_each_entry(cb, &hci_cb_list, list) { 976 if (cb->key_change_cfm) 977 cb->key_change_cfm(conn, status); 978 } 979 read_unlock(&hci_cb_list_lock); 980 } 981 982 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status, 983 __u8 role) 984 { 985 struct hci_cb *cb; 986 987 read_lock(&hci_cb_list_lock); 988 list_for_each_entry(cb, &hci_cb_list, list) { 989 if (cb->role_switch_cfm) 990 cb->role_switch_cfm(conn, status, role); 991 } 992 read_unlock(&hci_cb_list_lock); 993 } 994 995 static inline bool eir_has_data_type(u8 *data, size_t data_len, u8 type) 996 { 997 size_t parsed = 0; 998 999 if (data_len < 2) 1000 return false; 1001 1002 while (parsed < data_len - 1) { 1003 u8 field_len = data[0]; 1004 1005 if (field_len == 0) 1006 break; 1007 1008 parsed += field_len + 1; 1009 1010 if (parsed > data_len) 1011 break; 1012 1013 if (data[1] == type) 1014 return true; 1015 1016 data += field_len + 1; 1017 } 1018 1019 return false; 1020 } 1021 1022 int hci_register_cb(struct hci_cb *hcb); 1023 int hci_unregister_cb(struct hci_cb *hcb); 1024 1025 struct hci_request { 1026 struct hci_dev *hdev; 1027 struct sk_buff_head cmd_q; 1028 1029 /* If something goes wrong when building the HCI request, the error 1030 * value is stored in this field. 1031 */ 1032 int err; 1033 }; 1034 1035 void hci_req_init(struct hci_request *req, struct hci_dev *hdev); 1036 int hci_req_run(struct hci_request *req, hci_req_complete_t complete); 1037 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, 1038 const void *param); 1039 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, 1040 const void *param, u8 event); 1041 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status); 1042 1043 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1044 const void *param, u32 timeout); 1045 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 1046 const void *param, u8 event, u32 timeout); 1047 1048 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 1049 const void *param); 1050 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags); 1051 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb); 1052 1053 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode); 1054 1055 /* ----- HCI Sockets ----- */ 1056 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb); 1057 void hci_send_to_control(struct sk_buff *skb, struct sock *skip_sk); 1058 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb); 1059 1060 void hci_sock_dev_event(struct hci_dev *hdev, int event); 1061 1062 /* Management interface */ 1063 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR)) 1064 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \ 1065 BIT(BDADDR_LE_RANDOM)) 1066 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \ 1067 BIT(BDADDR_LE_PUBLIC) | \ 1068 BIT(BDADDR_LE_RANDOM)) 1069 1070 /* These LE scan and inquiry parameters were chosen according to LE General 1071 * Discovery Procedure specification. 1072 */ 1073 #define DISCOV_LE_SCAN_WIN 0x12 1074 #define DISCOV_LE_SCAN_INT 0x12 1075 #define DISCOV_LE_TIMEOUT msecs_to_jiffies(10240) 1076 #define DISCOV_INTERLEAVED_TIMEOUT msecs_to_jiffies(5120) 1077 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04 1078 #define DISCOV_BREDR_INQUIRY_LEN 0x08 1079 1080 int mgmt_control(struct sock *sk, struct msghdr *msg, size_t len); 1081 void mgmt_index_added(struct hci_dev *hdev); 1082 void mgmt_index_removed(struct hci_dev *hdev); 1083 void mgmt_set_powered_failed(struct hci_dev *hdev, int err); 1084 int mgmt_powered(struct hci_dev *hdev, u8 powered); 1085 void mgmt_discoverable_timeout(struct hci_dev *hdev); 1086 void mgmt_discoverable(struct hci_dev *hdev, u8 discoverable); 1087 void mgmt_connectable(struct hci_dev *hdev, u8 connectable); 1088 void mgmt_write_scan_failed(struct hci_dev *hdev, u8 scan, u8 status); 1089 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, 1090 bool persistent); 1091 void mgmt_device_connected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1092 u8 addr_type, u32 flags, u8 *name, u8 name_len, 1093 u8 *dev_class); 1094 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, 1095 u8 link_type, u8 addr_type, u8 reason); 1096 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, 1097 u8 link_type, u8 addr_type, u8 status); 1098 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1099 u8 addr_type, u8 status); 1100 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure); 1101 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1102 u8 status); 1103 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1104 u8 status); 1105 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1106 u8 link_type, u8 addr_type, __le32 value, 1107 u8 confirm_hint); 1108 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1109 u8 link_type, u8 addr_type, u8 status); 1110 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1111 u8 link_type, u8 addr_type, u8 status); 1112 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1113 u8 link_type, u8 addr_type); 1114 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1115 u8 link_type, u8 addr_type, u8 status); 1116 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1117 u8 link_type, u8 addr_type, u8 status); 1118 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, 1119 u8 link_type, u8 addr_type, u32 passkey, 1120 u8 entered); 1121 void mgmt_auth_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1122 u8 addr_type, u8 status); 1123 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status); 1124 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); 1125 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, 1126 u8 status); 1127 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status); 1128 void mgmt_read_local_oob_data_reply_complete(struct hci_dev *hdev, u8 *hash, 1129 u8 *randomizer, u8 status); 1130 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1131 u8 addr_type, u8 *dev_class, s8 rssi, u8 cfm_name, 1132 u8 ssp, u8 *eir, u16 eir_len); 1133 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1134 u8 addr_type, s8 rssi, u8 *name, u8 name_len); 1135 void mgmt_discovering(struct hci_dev *hdev, u8 discovering); 1136 int mgmt_device_blocked(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 1137 int mgmt_device_unblocked(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 1138 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, u8 persistent); 1139 void mgmt_reenable_advertising(struct hci_dev *hdev); 1140 1141 /* HCI info for socket */ 1142 #define hci_pi(sk) ((struct hci_pinfo *) sk) 1143 1144 struct hci_pinfo { 1145 struct bt_sock bt; 1146 struct hci_dev *hdev; 1147 struct hci_filter filter; 1148 __u32 cmsg_mask; 1149 unsigned short channel; 1150 }; 1151 1152 /* HCI security filter */ 1153 #define HCI_SFLT_MAX_OGF 5 1154 1155 struct hci_sec_filter { 1156 __u32 type_mask; 1157 __u32 event_mask[2]; 1158 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4]; 1159 }; 1160 1161 /* ----- HCI requests ----- */ 1162 #define HCI_REQ_DONE 0 1163 #define HCI_REQ_PEND 1 1164 #define HCI_REQ_CANCELED 2 1165 1166 #define hci_req_lock(d) mutex_lock(&d->req_lock) 1167 #define hci_req_unlock(d) mutex_unlock(&d->req_lock) 1168 1169 void hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, 1170 u16 latency, u16 to_multiplier); 1171 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __u8 rand[8], 1172 __u8 ltk[16]); 1173 1174 #define SCO_AIRMODE_MASK 0x0003 1175 #define SCO_AIRMODE_CVSD 0x0000 1176 #define SCO_AIRMODE_TRANSP 0x0003 1177 1178 #endif /* __HCI_CORE_H */ 1179