xref: /openbmc/linux/include/net/bluetooth/hci_core.h (revision 33ac9dba)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4 
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10 
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24 
25 #ifndef __HCI_CORE_H
26 #define __HCI_CORE_H
27 
28 #include <net/bluetooth/hci.h>
29 #include <net/bluetooth/hci_sock.h>
30 
31 /* HCI priority */
32 #define HCI_PRIO_MAX	7
33 
34 /* HCI Core structures */
35 struct inquiry_data {
36 	bdaddr_t	bdaddr;
37 	__u8		pscan_rep_mode;
38 	__u8		pscan_period_mode;
39 	__u8		pscan_mode;
40 	__u8		dev_class[3];
41 	__le16		clock_offset;
42 	__s8		rssi;
43 	__u8		ssp_mode;
44 };
45 
46 struct inquiry_entry {
47 	struct list_head	all;		/* inq_cache.all */
48 	struct list_head	list;		/* unknown or resolve */
49 	enum {
50 		NAME_NOT_KNOWN,
51 		NAME_NEEDED,
52 		NAME_PENDING,
53 		NAME_KNOWN,
54 	} name_state;
55 	__u32			timestamp;
56 	struct inquiry_data	data;
57 };
58 
59 struct discovery_state {
60 	int			type;
61 	enum {
62 		DISCOVERY_STOPPED,
63 		DISCOVERY_STARTING,
64 		DISCOVERY_FINDING,
65 		DISCOVERY_RESOLVING,
66 		DISCOVERY_STOPPING,
67 	} state;
68 	struct list_head	all;	/* All devices found during inquiry */
69 	struct list_head	unknown;	/* Name state not known */
70 	struct list_head	resolve;	/* Name needs to be resolved */
71 	__u32			timestamp;
72 	bdaddr_t		last_adv_addr;
73 	u8			last_adv_addr_type;
74 	s8			last_adv_rssi;
75 	u32			last_adv_flags;
76 	u8			last_adv_data[HCI_MAX_AD_LENGTH];
77 	u8			last_adv_data_len;
78 };
79 
80 struct hci_conn_hash {
81 	struct list_head list;
82 	unsigned int     acl_num;
83 	unsigned int     amp_num;
84 	unsigned int     sco_num;
85 	unsigned int     le_num;
86 	unsigned int     le_num_slave;
87 };
88 
89 struct bdaddr_list {
90 	struct list_head list;
91 	bdaddr_t bdaddr;
92 	u8 bdaddr_type;
93 };
94 
95 struct bt_uuid {
96 	struct list_head list;
97 	u8 uuid[16];
98 	u8 size;
99 	u8 svc_hint;
100 };
101 
102 struct smp_csrk {
103 	bdaddr_t bdaddr;
104 	u8 bdaddr_type;
105 	u8 master;
106 	u8 val[16];
107 };
108 
109 struct smp_ltk {
110 	struct list_head list;
111 	bdaddr_t bdaddr;
112 	u8 bdaddr_type;
113 	u8 authenticated;
114 	u8 type;
115 	u8 enc_size;
116 	__le16 ediv;
117 	__le64 rand;
118 	u8 val[16];
119 };
120 
121 struct smp_irk {
122 	struct list_head list;
123 	bdaddr_t rpa;
124 	bdaddr_t bdaddr;
125 	u8 addr_type;
126 	u8 val[16];
127 };
128 
129 struct link_key {
130 	struct list_head list;
131 	bdaddr_t bdaddr;
132 	u8 type;
133 	u8 val[HCI_LINK_KEY_SIZE];
134 	u8 pin_len;
135 };
136 
137 struct oob_data {
138 	struct list_head list;
139 	bdaddr_t bdaddr;
140 	u8 hash192[16];
141 	u8 randomizer192[16];
142 	u8 hash256[16];
143 	u8 randomizer256[16];
144 };
145 
146 #define HCI_MAX_SHORT_NAME_LENGTH	10
147 
148 /* Default LE RPA expiry time, 15 minutes */
149 #define HCI_DEFAULT_RPA_TIMEOUT		(15 * 60)
150 
151 /* Default min/max age of connection information (1s/3s) */
152 #define DEFAULT_CONN_INFO_MIN_AGE	1000
153 #define DEFAULT_CONN_INFO_MAX_AGE	3000
154 
155 struct amp_assoc {
156 	__u16	len;
157 	__u16	offset;
158 	__u16	rem_len;
159 	__u16	len_so_far;
160 	__u8	data[HCI_MAX_AMP_ASSOC_SIZE];
161 };
162 
163 #define HCI_MAX_PAGES	3
164 
165 #define NUM_REASSEMBLY 4
166 struct hci_dev {
167 	struct list_head list;
168 	struct mutex	lock;
169 
170 	char		name[8];
171 	unsigned long	flags;
172 	__u16		id;
173 	__u8		bus;
174 	__u8		dev_type;
175 	bdaddr_t	bdaddr;
176 	bdaddr_t	setup_addr;
177 	bdaddr_t	public_addr;
178 	bdaddr_t	random_addr;
179 	bdaddr_t	static_addr;
180 	__u8		adv_addr_type;
181 	__u8		dev_name[HCI_MAX_NAME_LENGTH];
182 	__u8		short_name[HCI_MAX_SHORT_NAME_LENGTH];
183 	__u8		eir[HCI_MAX_EIR_LENGTH];
184 	__u8		dev_class[3];
185 	__u8		major_class;
186 	__u8		minor_class;
187 	__u8		max_page;
188 	__u8		features[HCI_MAX_PAGES][8];
189 	__u8		le_features[8];
190 	__u8		le_white_list_size;
191 	__u8		le_states[8];
192 	__u8		commands[64];
193 	__u8		hci_ver;
194 	__u16		hci_rev;
195 	__u8		lmp_ver;
196 	__u16		manufacturer;
197 	__u16		lmp_subver;
198 	__u16		voice_setting;
199 	__u8		num_iac;
200 	__u8		io_capability;
201 	__s8		inq_tx_power;
202 	__u16		page_scan_interval;
203 	__u16		page_scan_window;
204 	__u8		page_scan_type;
205 	__u8		le_adv_channel_map;
206 	__u16		le_adv_min_interval;
207 	__u16		le_adv_max_interval;
208 	__u8		le_scan_type;
209 	__u16		le_scan_interval;
210 	__u16		le_scan_window;
211 	__u16		le_conn_min_interval;
212 	__u16		le_conn_max_interval;
213 	__u16		le_conn_latency;
214 	__u16		le_supv_timeout;
215 	__u16		discov_interleaved_timeout;
216 	__u16		conn_info_min_age;
217 	__u16		conn_info_max_age;
218 	__u8		ssp_debug_mode;
219 	__u32		clock;
220 
221 	__u16		devid_source;
222 	__u16		devid_vendor;
223 	__u16		devid_product;
224 	__u16		devid_version;
225 
226 	__u16		pkt_type;
227 	__u16		esco_type;
228 	__u16		link_policy;
229 	__u16		link_mode;
230 
231 	__u32		idle_timeout;
232 	__u16		sniff_min_interval;
233 	__u16		sniff_max_interval;
234 
235 	__u8		amp_status;
236 	__u32		amp_total_bw;
237 	__u32		amp_max_bw;
238 	__u32		amp_min_latency;
239 	__u32		amp_max_pdu;
240 	__u8		amp_type;
241 	__u16		amp_pal_cap;
242 	__u16		amp_assoc_size;
243 	__u32		amp_max_flush_to;
244 	__u32		amp_be_flush_to;
245 
246 	struct amp_assoc	loc_assoc;
247 
248 	__u8		flow_ctl_mode;
249 
250 	unsigned int	auto_accept_delay;
251 
252 	unsigned long	quirks;
253 
254 	atomic_t	cmd_cnt;
255 	unsigned int	acl_cnt;
256 	unsigned int	sco_cnt;
257 	unsigned int	le_cnt;
258 
259 	unsigned int	acl_mtu;
260 	unsigned int	sco_mtu;
261 	unsigned int	le_mtu;
262 	unsigned int	acl_pkts;
263 	unsigned int	sco_pkts;
264 	unsigned int	le_pkts;
265 
266 	__u16		block_len;
267 	__u16		block_mtu;
268 	__u16		num_blocks;
269 	__u16		block_cnt;
270 
271 	unsigned long	acl_last_tx;
272 	unsigned long	sco_last_tx;
273 	unsigned long	le_last_tx;
274 
275 	struct workqueue_struct	*workqueue;
276 	struct workqueue_struct	*req_workqueue;
277 
278 	struct work_struct	power_on;
279 	struct delayed_work	power_off;
280 
281 	__u16			discov_timeout;
282 	struct delayed_work	discov_off;
283 
284 	struct delayed_work	service_cache;
285 
286 	struct delayed_work	cmd_timer;
287 
288 	struct work_struct	rx_work;
289 	struct work_struct	cmd_work;
290 	struct work_struct	tx_work;
291 
292 	struct sk_buff_head	rx_q;
293 	struct sk_buff_head	raw_q;
294 	struct sk_buff_head	cmd_q;
295 
296 	struct sk_buff		*recv_evt;
297 	struct sk_buff		*sent_cmd;
298 	struct sk_buff		*reassembly[NUM_REASSEMBLY];
299 
300 	struct mutex		req_lock;
301 	wait_queue_head_t	req_wait_q;
302 	__u32			req_status;
303 	__u32			req_result;
304 
305 	struct crypto_blkcipher	*tfm_aes;
306 
307 	struct discovery_state	discovery;
308 	struct hci_conn_hash	conn_hash;
309 
310 	struct list_head	mgmt_pending;
311 	struct list_head	blacklist;
312 	struct list_head	whitelist;
313 	struct list_head	uuids;
314 	struct list_head	link_keys;
315 	struct list_head	long_term_keys;
316 	struct list_head	identity_resolving_keys;
317 	struct list_head	remote_oob_data;
318 	struct list_head	le_white_list;
319 	struct list_head	le_conn_params;
320 	struct list_head	pend_le_conns;
321 	struct list_head	pend_le_reports;
322 
323 	struct hci_dev_stats	stat;
324 
325 	atomic_t		promisc;
326 
327 	struct dentry		*debugfs;
328 
329 	struct device		dev;
330 
331 	struct rfkill		*rfkill;
332 
333 	unsigned long		dbg_flags;
334 	unsigned long		dev_flags;
335 
336 	struct delayed_work	le_scan_disable;
337 
338 	__s8			adv_tx_power;
339 	__u8			adv_data[HCI_MAX_AD_LENGTH];
340 	__u8			adv_data_len;
341 	__u8			scan_rsp_data[HCI_MAX_AD_LENGTH];
342 	__u8			scan_rsp_data_len;
343 
344 	__u8			irk[16];
345 	__u32			rpa_timeout;
346 	struct delayed_work	rpa_expired;
347 	bdaddr_t		rpa;
348 
349 	int (*open)(struct hci_dev *hdev);
350 	int (*close)(struct hci_dev *hdev);
351 	int (*flush)(struct hci_dev *hdev);
352 	int (*setup)(struct hci_dev *hdev);
353 	int (*send)(struct hci_dev *hdev, struct sk_buff *skb);
354 	void (*notify)(struct hci_dev *hdev, unsigned int evt);
355 	int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr);
356 };
357 
358 #define HCI_PHY_HANDLE(handle)	(handle & 0xff)
359 
360 struct hci_conn {
361 	struct list_head list;
362 
363 	atomic_t	refcnt;
364 
365 	bdaddr_t	dst;
366 	__u8		dst_type;
367 	bdaddr_t	src;
368 	__u8		src_type;
369 	bdaddr_t	init_addr;
370 	__u8		init_addr_type;
371 	bdaddr_t	resp_addr;
372 	__u8		resp_addr_type;
373 	__u16		handle;
374 	__u16		state;
375 	__u8		mode;
376 	__u8		type;
377 	__u8		role;
378 	bool		out;
379 	__u8		attempt;
380 	__u8		dev_class[3];
381 	__u8		features[HCI_MAX_PAGES][8];
382 	__u16		pkt_type;
383 	__u16		link_policy;
384 	__u8		key_type;
385 	__u8		auth_type;
386 	__u8		sec_level;
387 	__u8		pending_sec_level;
388 	__u8		pin_length;
389 	__u8		enc_key_size;
390 	__u8		io_capability;
391 	__u32		passkey_notify;
392 	__u8		passkey_entered;
393 	__u16		disc_timeout;
394 	__u16		conn_timeout;
395 	__u16		setting;
396 	__u16		le_conn_min_interval;
397 	__u16		le_conn_max_interval;
398 	__u16		le_conn_interval;
399 	__u16		le_conn_latency;
400 	__u16		le_supv_timeout;
401 	__s8		rssi;
402 	__s8		tx_power;
403 	__s8		max_tx_power;
404 	unsigned long	flags;
405 
406 	__u32		clock;
407 	__u16		clock_accuracy;
408 
409 	unsigned long	conn_info_timestamp;
410 
411 	__u8		remote_cap;
412 	__u8		remote_auth;
413 	__u8		remote_id;
414 
415 	unsigned int	sent;
416 
417 	struct sk_buff_head data_q;
418 	struct list_head chan_list;
419 
420 	struct delayed_work disc_work;
421 	struct delayed_work auto_accept_work;
422 	struct delayed_work idle_work;
423 	struct delayed_work le_conn_timeout;
424 
425 	struct device	dev;
426 
427 	struct hci_dev	*hdev;
428 	void		*l2cap_data;
429 	void		*sco_data;
430 	struct amp_mgr	*amp_mgr;
431 
432 	struct hci_conn	*link;
433 
434 	void (*connect_cfm_cb)	(struct hci_conn *conn, u8 status);
435 	void (*security_cfm_cb)	(struct hci_conn *conn, u8 status);
436 	void (*disconn_cfm_cb)	(struct hci_conn *conn, u8 reason);
437 };
438 
439 struct hci_chan {
440 	struct list_head list;
441 	__u16 handle;
442 	struct hci_conn *conn;
443 	struct sk_buff_head data_q;
444 	unsigned int	sent;
445 	__u8		state;
446 };
447 
448 struct hci_conn_params {
449 	struct list_head list;
450 	struct list_head action;
451 
452 	bdaddr_t addr;
453 	u8 addr_type;
454 
455 	u16 conn_min_interval;
456 	u16 conn_max_interval;
457 	u16 conn_latency;
458 	u16 supervision_timeout;
459 
460 	enum {
461 		HCI_AUTO_CONN_DISABLED,
462 		HCI_AUTO_CONN_REPORT,
463 		HCI_AUTO_CONN_DIRECT,
464 		HCI_AUTO_CONN_ALWAYS,
465 		HCI_AUTO_CONN_LINK_LOSS,
466 	} auto_connect;
467 };
468 
469 extern struct list_head hci_dev_list;
470 extern struct list_head hci_cb_list;
471 extern rwlock_t hci_dev_list_lock;
472 extern rwlock_t hci_cb_list_lock;
473 
474 /* ----- HCI interface to upper protocols ----- */
475 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
476 void l2cap_connect_cfm(struct hci_conn *hcon, u8 status);
477 int l2cap_disconn_ind(struct hci_conn *hcon);
478 void l2cap_disconn_cfm(struct hci_conn *hcon, u8 reason);
479 int l2cap_security_cfm(struct hci_conn *hcon, u8 status, u8 encrypt);
480 int l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags);
481 
482 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags);
483 void sco_connect_cfm(struct hci_conn *hcon, __u8 status);
484 void sco_disconn_cfm(struct hci_conn *hcon, __u8 reason);
485 int sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb);
486 
487 /* ----- Inquiry cache ----- */
488 #define INQUIRY_CACHE_AGE_MAX   (HZ*30)   /* 30 seconds */
489 #define INQUIRY_ENTRY_AGE_MAX   (HZ*60)   /* 60 seconds */
490 
491 static inline void discovery_init(struct hci_dev *hdev)
492 {
493 	hdev->discovery.state = DISCOVERY_STOPPED;
494 	INIT_LIST_HEAD(&hdev->discovery.all);
495 	INIT_LIST_HEAD(&hdev->discovery.unknown);
496 	INIT_LIST_HEAD(&hdev->discovery.resolve);
497 }
498 
499 bool hci_discovery_active(struct hci_dev *hdev);
500 
501 void hci_discovery_set_state(struct hci_dev *hdev, int state);
502 
503 static inline int inquiry_cache_empty(struct hci_dev *hdev)
504 {
505 	return list_empty(&hdev->discovery.all);
506 }
507 
508 static inline long inquiry_cache_age(struct hci_dev *hdev)
509 {
510 	struct discovery_state *c = &hdev->discovery;
511 	return jiffies - c->timestamp;
512 }
513 
514 static inline long inquiry_entry_age(struct inquiry_entry *e)
515 {
516 	return jiffies - e->timestamp;
517 }
518 
519 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
520 					       bdaddr_t *bdaddr);
521 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
522 						       bdaddr_t *bdaddr);
523 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
524 						       bdaddr_t *bdaddr,
525 						       int state);
526 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
527 				      struct inquiry_entry *ie);
528 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
529 			     bool name_known);
530 void hci_inquiry_cache_flush(struct hci_dev *hdev);
531 
532 /* ----- HCI Connections ----- */
533 enum {
534 	HCI_CONN_AUTH_PEND,
535 	HCI_CONN_REAUTH_PEND,
536 	HCI_CONN_ENCRYPT_PEND,
537 	HCI_CONN_RSWITCH_PEND,
538 	HCI_CONN_MODE_CHANGE_PEND,
539 	HCI_CONN_SCO_SETUP_PEND,
540 	HCI_CONN_LE_SMP_PEND,
541 	HCI_CONN_MGMT_CONNECTED,
542 	HCI_CONN_SSP_ENABLED,
543 	HCI_CONN_SC_ENABLED,
544 	HCI_CONN_AES_CCM,
545 	HCI_CONN_POWER_SAVE,
546 	HCI_CONN_REMOTE_OOB,
547 	HCI_CONN_FLUSH_KEY,
548 	HCI_CONN_ENCRYPT,
549 	HCI_CONN_AUTH,
550 	HCI_CONN_SECURE,
551 	HCI_CONN_FIPS,
552 	HCI_CONN_STK_ENCRYPT,
553 	HCI_CONN_AUTH_INITIATOR,
554 };
555 
556 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn)
557 {
558 	struct hci_dev *hdev = conn->hdev;
559 	return test_bit(HCI_SSP_ENABLED, &hdev->dev_flags) &&
560 	       test_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
561 }
562 
563 static inline bool hci_conn_sc_enabled(struct hci_conn *conn)
564 {
565 	struct hci_dev *hdev = conn->hdev;
566 	return test_bit(HCI_SC_ENABLED, &hdev->dev_flags) &&
567 	       test_bit(HCI_CONN_SC_ENABLED, &conn->flags);
568 }
569 
570 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c)
571 {
572 	struct hci_conn_hash *h = &hdev->conn_hash;
573 	list_add_rcu(&c->list, &h->list);
574 	switch (c->type) {
575 	case ACL_LINK:
576 		h->acl_num++;
577 		break;
578 	case AMP_LINK:
579 		h->amp_num++;
580 		break;
581 	case LE_LINK:
582 		h->le_num++;
583 		if (c->role == HCI_ROLE_SLAVE)
584 			h->le_num_slave++;
585 		break;
586 	case SCO_LINK:
587 	case ESCO_LINK:
588 		h->sco_num++;
589 		break;
590 	}
591 }
592 
593 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c)
594 {
595 	struct hci_conn_hash *h = &hdev->conn_hash;
596 
597 	list_del_rcu(&c->list);
598 	synchronize_rcu();
599 
600 	switch (c->type) {
601 	case ACL_LINK:
602 		h->acl_num--;
603 		break;
604 	case AMP_LINK:
605 		h->amp_num--;
606 		break;
607 	case LE_LINK:
608 		h->le_num--;
609 		if (c->role == HCI_ROLE_SLAVE)
610 			h->le_num_slave--;
611 		break;
612 	case SCO_LINK:
613 	case ESCO_LINK:
614 		h->sco_num--;
615 		break;
616 	}
617 }
618 
619 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type)
620 {
621 	struct hci_conn_hash *h = &hdev->conn_hash;
622 	switch (type) {
623 	case ACL_LINK:
624 		return h->acl_num;
625 	case AMP_LINK:
626 		return h->amp_num;
627 	case LE_LINK:
628 		return h->le_num;
629 	case SCO_LINK:
630 	case ESCO_LINK:
631 		return h->sco_num;
632 	default:
633 		return 0;
634 	}
635 }
636 
637 static inline unsigned int hci_conn_count(struct hci_dev *hdev)
638 {
639 	struct hci_conn_hash *c = &hdev->conn_hash;
640 
641 	return c->acl_num + c->amp_num + c->sco_num + c->le_num;
642 }
643 
644 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev,
645 								__u16 handle)
646 {
647 	struct hci_conn_hash *h = &hdev->conn_hash;
648 	struct hci_conn  *c;
649 
650 	rcu_read_lock();
651 
652 	list_for_each_entry_rcu(c, &h->list, list) {
653 		if (c->handle == handle) {
654 			rcu_read_unlock();
655 			return c;
656 		}
657 	}
658 	rcu_read_unlock();
659 
660 	return NULL;
661 }
662 
663 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev,
664 							__u8 type, bdaddr_t *ba)
665 {
666 	struct hci_conn_hash *h = &hdev->conn_hash;
667 	struct hci_conn  *c;
668 
669 	rcu_read_lock();
670 
671 	list_for_each_entry_rcu(c, &h->list, list) {
672 		if (c->type == type && !bacmp(&c->dst, ba)) {
673 			rcu_read_unlock();
674 			return c;
675 		}
676 	}
677 
678 	rcu_read_unlock();
679 
680 	return NULL;
681 }
682 
683 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev,
684 							__u8 type, __u16 state)
685 {
686 	struct hci_conn_hash *h = &hdev->conn_hash;
687 	struct hci_conn  *c;
688 
689 	rcu_read_lock();
690 
691 	list_for_each_entry_rcu(c, &h->list, list) {
692 		if (c->type == type && c->state == state) {
693 			rcu_read_unlock();
694 			return c;
695 		}
696 	}
697 
698 	rcu_read_unlock();
699 
700 	return NULL;
701 }
702 
703 void hci_disconnect(struct hci_conn *conn, __u8 reason);
704 bool hci_setup_sync(struct hci_conn *conn, __u16 handle);
705 void hci_sco_setup(struct hci_conn *conn, __u8 status);
706 
707 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
708 			      u8 role);
709 int hci_conn_del(struct hci_conn *conn);
710 void hci_conn_hash_flush(struct hci_dev *hdev);
711 void hci_conn_check_pending(struct hci_dev *hdev);
712 
713 struct hci_chan *hci_chan_create(struct hci_conn *conn);
714 void hci_chan_del(struct hci_chan *chan);
715 void hci_chan_list_flush(struct hci_conn *conn);
716 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle);
717 
718 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
719 				u8 dst_type, u8 sec_level, u16 conn_timeout,
720 				u8 role);
721 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
722 				 u8 sec_level, u8 auth_type);
723 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
724 				 __u16 setting);
725 int hci_conn_check_link_mode(struct hci_conn *conn);
726 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level);
727 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
728 		      bool initiator);
729 int hci_conn_change_link_key(struct hci_conn *conn);
730 int hci_conn_switch_role(struct hci_conn *conn, __u8 role);
731 
732 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active);
733 
734 void hci_le_conn_failed(struct hci_conn *conn, u8 status);
735 
736 /*
737  * hci_conn_get() and hci_conn_put() are used to control the life-time of an
738  * "hci_conn" object. They do not guarantee that the hci_conn object is running,
739  * working or anything else. They just guarantee that the object is available
740  * and can be dereferenced. So you can use its locks, local variables and any
741  * other constant data.
742  * Before accessing runtime data, you _must_ lock the object and then check that
743  * it is still running. As soon as you release the locks, the connection might
744  * get dropped, though.
745  *
746  * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control
747  * how long the underlying connection is held. So every channel that runs on the
748  * hci_conn object calls this to prevent the connection from disappearing. As
749  * long as you hold a device, you must also guarantee that you have a valid
750  * reference to the device via hci_conn_get() (or the initial reference from
751  * hci_conn_add()).
752  * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't
753  * break because nobody cares for that. But this means, we cannot use
754  * _get()/_drop() in it, but require the caller to have a valid ref (FIXME).
755  */
756 
757 static inline void hci_conn_get(struct hci_conn *conn)
758 {
759 	get_device(&conn->dev);
760 }
761 
762 static inline void hci_conn_put(struct hci_conn *conn)
763 {
764 	put_device(&conn->dev);
765 }
766 
767 static inline void hci_conn_hold(struct hci_conn *conn)
768 {
769 	BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
770 
771 	atomic_inc(&conn->refcnt);
772 	cancel_delayed_work(&conn->disc_work);
773 }
774 
775 static inline void hci_conn_drop(struct hci_conn *conn)
776 {
777 	BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
778 
779 	if (atomic_dec_and_test(&conn->refcnt)) {
780 		unsigned long timeo;
781 
782 		switch (conn->type) {
783 		case ACL_LINK:
784 		case LE_LINK:
785 			cancel_delayed_work(&conn->idle_work);
786 			if (conn->state == BT_CONNECTED) {
787 				timeo = conn->disc_timeout;
788 				if (!conn->out)
789 					timeo *= 2;
790 			} else {
791 				timeo = msecs_to_jiffies(10);
792 			}
793 			break;
794 
795 		case AMP_LINK:
796 			timeo = conn->disc_timeout;
797 			break;
798 
799 		default:
800 			timeo = msecs_to_jiffies(10);
801 			break;
802 		}
803 
804 		cancel_delayed_work(&conn->disc_work);
805 		queue_delayed_work(conn->hdev->workqueue,
806 				   &conn->disc_work, timeo);
807 	}
808 }
809 
810 /* ----- HCI Devices ----- */
811 static inline void hci_dev_put(struct hci_dev *d)
812 {
813 	BT_DBG("%s orig refcnt %d", d->name,
814 	       atomic_read(&d->dev.kobj.kref.refcount));
815 
816 	put_device(&d->dev);
817 }
818 
819 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d)
820 {
821 	BT_DBG("%s orig refcnt %d", d->name,
822 	       atomic_read(&d->dev.kobj.kref.refcount));
823 
824 	get_device(&d->dev);
825 	return d;
826 }
827 
828 #define hci_dev_lock(d)		mutex_lock(&d->lock)
829 #define hci_dev_unlock(d)	mutex_unlock(&d->lock)
830 
831 #define to_hci_dev(d) container_of(d, struct hci_dev, dev)
832 #define to_hci_conn(c) container_of(c, struct hci_conn, dev)
833 
834 static inline void *hci_get_drvdata(struct hci_dev *hdev)
835 {
836 	return dev_get_drvdata(&hdev->dev);
837 }
838 
839 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data)
840 {
841 	dev_set_drvdata(&hdev->dev, data);
842 }
843 
844 struct hci_dev *hci_dev_get(int index);
845 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src);
846 
847 struct hci_dev *hci_alloc_dev(void);
848 void hci_free_dev(struct hci_dev *hdev);
849 int hci_register_dev(struct hci_dev *hdev);
850 void hci_unregister_dev(struct hci_dev *hdev);
851 int hci_suspend_dev(struct hci_dev *hdev);
852 int hci_resume_dev(struct hci_dev *hdev);
853 int hci_dev_open(__u16 dev);
854 int hci_dev_close(__u16 dev);
855 int hci_dev_reset(__u16 dev);
856 int hci_dev_reset_stat(__u16 dev);
857 int hci_dev_cmd(unsigned int cmd, void __user *arg);
858 int hci_get_dev_list(void __user *arg);
859 int hci_get_dev_info(void __user *arg);
860 int hci_get_conn_list(void __user *arg);
861 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg);
862 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg);
863 int hci_inquiry(void __user *arg);
864 
865 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list,
866 					   bdaddr_t *bdaddr, u8 type);
867 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type);
868 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type);
869 void hci_bdaddr_list_clear(struct list_head *list);
870 
871 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
872 					       bdaddr_t *addr, u8 addr_type);
873 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
874 					    bdaddr_t *addr, u8 addr_type);
875 int hci_conn_params_set(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type,
876 			u8 auto_connect);
877 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type);
878 void hci_conn_params_clear_all(struct hci_dev *hdev);
879 void hci_conn_params_clear_disabled(struct hci_dev *hdev);
880 
881 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
882 						  bdaddr_t *addr,
883 						  u8 addr_type);
884 
885 void hci_update_background_scan(struct hci_dev *hdev);
886 
887 void hci_uuids_clear(struct hci_dev *hdev);
888 
889 void hci_link_keys_clear(struct hci_dev *hdev);
890 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
891 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
892 				  bdaddr_t *bdaddr, u8 *val, u8 type,
893 				  u8 pin_len, bool *persistent);
894 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, __le64 rand,
895 			     u8 role);
896 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
897 			    u8 addr_type, u8 type, u8 authenticated,
898 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand);
899 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
900 				     u8 addr_type, u8 role);
901 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type);
902 void hci_smp_ltks_clear(struct hci_dev *hdev);
903 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
904 
905 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa);
906 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
907 				     u8 addr_type);
908 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
909 			    u8 addr_type, u8 val[16], bdaddr_t *rpa);
910 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type);
911 void hci_smp_irks_clear(struct hci_dev *hdev);
912 
913 void hci_remote_oob_data_clear(struct hci_dev *hdev);
914 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
915 					  bdaddr_t *bdaddr);
916 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
917 			    u8 *hash, u8 *randomizer);
918 int hci_add_remote_oob_ext_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
919 				u8 *hash192, u8 *randomizer192,
920 				u8 *hash256, u8 *randomizer256);
921 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr);
922 
923 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);
924 
925 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb);
926 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count);
927 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count);
928 
929 void hci_init_sysfs(struct hci_dev *hdev);
930 void hci_conn_init_sysfs(struct hci_conn *conn);
931 void hci_conn_add_sysfs(struct hci_conn *conn);
932 void hci_conn_del_sysfs(struct hci_conn *conn);
933 
934 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev))
935 
936 /* ----- LMP capabilities ----- */
937 #define lmp_encrypt_capable(dev)   ((dev)->features[0][0] & LMP_ENCRYPT)
938 #define lmp_rswitch_capable(dev)   ((dev)->features[0][0] & LMP_RSWITCH)
939 #define lmp_hold_capable(dev)      ((dev)->features[0][0] & LMP_HOLD)
940 #define lmp_sniff_capable(dev)     ((dev)->features[0][0] & LMP_SNIFF)
941 #define lmp_park_capable(dev)      ((dev)->features[0][1] & LMP_PARK)
942 #define lmp_inq_rssi_capable(dev)  ((dev)->features[0][3] & LMP_RSSI_INQ)
943 #define lmp_esco_capable(dev)      ((dev)->features[0][3] & LMP_ESCO)
944 #define lmp_bredr_capable(dev)     (!((dev)->features[0][4] & LMP_NO_BREDR))
945 #define lmp_le_capable(dev)        ((dev)->features[0][4] & LMP_LE)
946 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR)
947 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC)
948 #define lmp_ext_inq_capable(dev)   ((dev)->features[0][6] & LMP_EXT_INQ)
949 #define lmp_le_br_capable(dev)     (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR))
950 #define lmp_ssp_capable(dev)       ((dev)->features[0][6] & LMP_SIMPLE_PAIR)
951 #define lmp_no_flush_capable(dev)  ((dev)->features[0][6] & LMP_NO_FLUSH)
952 #define lmp_lsto_capable(dev)      ((dev)->features[0][7] & LMP_LSTO)
953 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR)
954 #define lmp_ext_feat_capable(dev)  ((dev)->features[0][7] & LMP_EXTFEATURES)
955 #define lmp_transp_capable(dev)    ((dev)->features[0][2] & LMP_TRANSPARENT)
956 
957 /* ----- Extended LMP capabilities ----- */
958 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER)
959 #define lmp_csb_slave_capable(dev)  ((dev)->features[2][0] & LMP_CSB_SLAVE)
960 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN)
961 #define lmp_sync_scan_capable(dev)  ((dev)->features[2][0] & LMP_SYNC_SCAN)
962 #define lmp_sc_capable(dev)         ((dev)->features[2][1] & LMP_SC)
963 #define lmp_ping_capable(dev)       ((dev)->features[2][1] & LMP_PING)
964 
965 /* ----- Host capabilities ----- */
966 #define lmp_host_ssp_capable(dev)  ((dev)->features[1][0] & LMP_HOST_SSP)
967 #define lmp_host_sc_capable(dev)   ((dev)->features[1][0] & LMP_HOST_SC)
968 #define lmp_host_le_capable(dev)   (!!((dev)->features[1][0] & LMP_HOST_LE))
969 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR))
970 
971 /* ----- HCI protocols ----- */
972 #define HCI_PROTO_DEFER             0x01
973 
974 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
975 					__u8 type, __u8 *flags)
976 {
977 	switch (type) {
978 	case ACL_LINK:
979 		return l2cap_connect_ind(hdev, bdaddr);
980 
981 	case SCO_LINK:
982 	case ESCO_LINK:
983 		return sco_connect_ind(hdev, bdaddr, flags);
984 
985 	default:
986 		BT_ERR("unknown link type %d", type);
987 		return -EINVAL;
988 	}
989 }
990 
991 static inline void hci_proto_connect_cfm(struct hci_conn *conn, __u8 status)
992 {
993 	switch (conn->type) {
994 	case ACL_LINK:
995 	case LE_LINK:
996 		l2cap_connect_cfm(conn, status);
997 		break;
998 
999 	case SCO_LINK:
1000 	case ESCO_LINK:
1001 		sco_connect_cfm(conn, status);
1002 		break;
1003 
1004 	default:
1005 		BT_ERR("unknown link type %d", conn->type);
1006 		break;
1007 	}
1008 
1009 	if (conn->connect_cfm_cb)
1010 		conn->connect_cfm_cb(conn, status);
1011 }
1012 
1013 static inline int hci_proto_disconn_ind(struct hci_conn *conn)
1014 {
1015 	if (conn->type != ACL_LINK && conn->type != LE_LINK)
1016 		return HCI_ERROR_REMOTE_USER_TERM;
1017 
1018 	return l2cap_disconn_ind(conn);
1019 }
1020 
1021 static inline void hci_proto_disconn_cfm(struct hci_conn *conn, __u8 reason)
1022 {
1023 	switch (conn->type) {
1024 	case ACL_LINK:
1025 	case LE_LINK:
1026 		l2cap_disconn_cfm(conn, reason);
1027 		break;
1028 
1029 	case SCO_LINK:
1030 	case ESCO_LINK:
1031 		sco_disconn_cfm(conn, reason);
1032 		break;
1033 
1034 	/* L2CAP would be handled for BREDR chan */
1035 	case AMP_LINK:
1036 		break;
1037 
1038 	default:
1039 		BT_ERR("unknown link type %d", conn->type);
1040 		break;
1041 	}
1042 
1043 	if (conn->disconn_cfm_cb)
1044 		conn->disconn_cfm_cb(conn, reason);
1045 }
1046 
1047 static inline void hci_proto_auth_cfm(struct hci_conn *conn, __u8 status)
1048 {
1049 	__u8 encrypt;
1050 
1051 	if (conn->type != ACL_LINK && conn->type != LE_LINK)
1052 		return;
1053 
1054 	if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1055 		return;
1056 
1057 	encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00;
1058 	l2cap_security_cfm(conn, status, encrypt);
1059 
1060 	if (conn->security_cfm_cb)
1061 		conn->security_cfm_cb(conn, status);
1062 }
1063 
1064 static inline void hci_proto_encrypt_cfm(struct hci_conn *conn, __u8 status,
1065 								__u8 encrypt)
1066 {
1067 	if (conn->type != ACL_LINK && conn->type != LE_LINK)
1068 		return;
1069 
1070 	l2cap_security_cfm(conn, status, encrypt);
1071 
1072 	if (conn->security_cfm_cb)
1073 		conn->security_cfm_cb(conn, status);
1074 }
1075 
1076 /* ----- HCI callbacks ----- */
1077 struct hci_cb {
1078 	struct list_head list;
1079 
1080 	char *name;
1081 
1082 	void (*security_cfm)	(struct hci_conn *conn, __u8 status,
1083 								__u8 encrypt);
1084 	void (*key_change_cfm)	(struct hci_conn *conn, __u8 status);
1085 	void (*role_switch_cfm)	(struct hci_conn *conn, __u8 status, __u8 role);
1086 };
1087 
1088 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status)
1089 {
1090 	struct hci_cb *cb;
1091 	__u8 encrypt;
1092 
1093 	hci_proto_auth_cfm(conn, status);
1094 
1095 	if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1096 		return;
1097 
1098 	encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00;
1099 
1100 	read_lock(&hci_cb_list_lock);
1101 	list_for_each_entry(cb, &hci_cb_list, list) {
1102 		if (cb->security_cfm)
1103 			cb->security_cfm(conn, status, encrypt);
1104 	}
1105 	read_unlock(&hci_cb_list_lock);
1106 }
1107 
1108 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status,
1109 								__u8 encrypt)
1110 {
1111 	struct hci_cb *cb;
1112 
1113 	if (conn->sec_level == BT_SECURITY_SDP)
1114 		conn->sec_level = BT_SECURITY_LOW;
1115 
1116 	if (conn->pending_sec_level > conn->sec_level)
1117 		conn->sec_level = conn->pending_sec_level;
1118 
1119 	hci_proto_encrypt_cfm(conn, status, encrypt);
1120 
1121 	read_lock(&hci_cb_list_lock);
1122 	list_for_each_entry(cb, &hci_cb_list, list) {
1123 		if (cb->security_cfm)
1124 			cb->security_cfm(conn, status, encrypt);
1125 	}
1126 	read_unlock(&hci_cb_list_lock);
1127 }
1128 
1129 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status)
1130 {
1131 	struct hci_cb *cb;
1132 
1133 	read_lock(&hci_cb_list_lock);
1134 	list_for_each_entry(cb, &hci_cb_list, list) {
1135 		if (cb->key_change_cfm)
1136 			cb->key_change_cfm(conn, status);
1137 	}
1138 	read_unlock(&hci_cb_list_lock);
1139 }
1140 
1141 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status,
1142 								__u8 role)
1143 {
1144 	struct hci_cb *cb;
1145 
1146 	read_lock(&hci_cb_list_lock);
1147 	list_for_each_entry(cb, &hci_cb_list, list) {
1148 		if (cb->role_switch_cfm)
1149 			cb->role_switch_cfm(conn, status, role);
1150 	}
1151 	read_unlock(&hci_cb_list_lock);
1152 }
1153 
1154 static inline bool eir_has_data_type(u8 *data, size_t data_len, u8 type)
1155 {
1156 	size_t parsed = 0;
1157 
1158 	if (data_len < 2)
1159 		return false;
1160 
1161 	while (parsed < data_len - 1) {
1162 		u8 field_len = data[0];
1163 
1164 		if (field_len == 0)
1165 			break;
1166 
1167 		parsed += field_len + 1;
1168 
1169 		if (parsed > data_len)
1170 			break;
1171 
1172 		if (data[1] == type)
1173 			return true;
1174 
1175 		data += field_len + 1;
1176 	}
1177 
1178 	return false;
1179 }
1180 
1181 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type)
1182 {
1183 	if (addr_type != ADDR_LE_DEV_RANDOM)
1184 		return false;
1185 
1186 	if ((bdaddr->b[5] & 0xc0) == 0x40)
1187 	       return true;
1188 
1189 	return false;
1190 }
1191 
1192 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type)
1193 {
1194 	if (addr_type == ADDR_LE_DEV_PUBLIC)
1195 		return true;
1196 
1197 	/* Check for Random Static address type */
1198 	if ((addr->b[5] & 0xc0) == 0xc0)
1199 		return true;
1200 
1201 	return false;
1202 }
1203 
1204 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev,
1205 					  bdaddr_t *bdaddr, u8 addr_type)
1206 {
1207 	if (!hci_bdaddr_is_rpa(bdaddr, addr_type))
1208 		return NULL;
1209 
1210 	return hci_find_irk_by_rpa(hdev, bdaddr);
1211 }
1212 
1213 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency,
1214 					u16 to_multiplier)
1215 {
1216 	u16 max_latency;
1217 
1218 	if (min > max || min < 6 || max > 3200)
1219 		return -EINVAL;
1220 
1221 	if (to_multiplier < 10 || to_multiplier > 3200)
1222 		return -EINVAL;
1223 
1224 	if (max >= to_multiplier * 8)
1225 		return -EINVAL;
1226 
1227 	max_latency = (to_multiplier * 8 / max) - 1;
1228 	if (latency > 499 || latency > max_latency)
1229 		return -EINVAL;
1230 
1231 	return 0;
1232 }
1233 
1234 int hci_register_cb(struct hci_cb *hcb);
1235 int hci_unregister_cb(struct hci_cb *hcb);
1236 
1237 struct hci_request {
1238 	struct hci_dev		*hdev;
1239 	struct sk_buff_head	cmd_q;
1240 
1241 	/* If something goes wrong when building the HCI request, the error
1242 	 * value is stored in this field.
1243 	 */
1244 	int			err;
1245 };
1246 
1247 void hci_req_init(struct hci_request *req, struct hci_dev *hdev);
1248 int hci_req_run(struct hci_request *req, hci_req_complete_t complete);
1249 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
1250 		 const void *param);
1251 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
1252 		    const void *param, u8 event);
1253 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status);
1254 bool hci_req_pending(struct hci_dev *hdev);
1255 
1256 void hci_req_add_le_scan_disable(struct hci_request *req);
1257 void hci_req_add_le_passive_scan(struct hci_request *req);
1258 
1259 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1260 			       const void *param, u32 timeout);
1261 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1262 				  const void *param, u8 event, u32 timeout);
1263 
1264 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
1265 		 const void *param);
1266 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags);
1267 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb);
1268 
1269 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode);
1270 
1271 /* ----- HCI Sockets ----- */
1272 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb);
1273 void hci_send_to_control(struct sk_buff *skb, struct sock *skip_sk);
1274 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb);
1275 
1276 void hci_sock_dev_event(struct hci_dev *hdev, int event);
1277 
1278 /* Management interface */
1279 #define DISCOV_TYPE_BREDR		(BIT(BDADDR_BREDR))
1280 #define DISCOV_TYPE_LE			(BIT(BDADDR_LE_PUBLIC) | \
1281 					 BIT(BDADDR_LE_RANDOM))
1282 #define DISCOV_TYPE_INTERLEAVED		(BIT(BDADDR_BREDR) | \
1283 					 BIT(BDADDR_LE_PUBLIC) | \
1284 					 BIT(BDADDR_LE_RANDOM))
1285 
1286 /* These LE scan and inquiry parameters were chosen according to LE General
1287  * Discovery Procedure specification.
1288  */
1289 #define DISCOV_LE_SCAN_WIN		0x12
1290 #define DISCOV_LE_SCAN_INT		0x12
1291 #define DISCOV_LE_TIMEOUT		10240	/* msec */
1292 #define DISCOV_INTERLEAVED_TIMEOUT	5120	/* msec */
1293 #define DISCOV_INTERLEAVED_INQUIRY_LEN	0x04
1294 #define DISCOV_BREDR_INQUIRY_LEN	0x08
1295 
1296 int mgmt_control(struct sock *sk, struct msghdr *msg, size_t len);
1297 int mgmt_new_settings(struct hci_dev *hdev);
1298 void mgmt_index_added(struct hci_dev *hdev);
1299 void mgmt_index_removed(struct hci_dev *hdev);
1300 void mgmt_set_powered_failed(struct hci_dev *hdev, int err);
1301 int mgmt_powered(struct hci_dev *hdev, u8 powered);
1302 int mgmt_update_adv_data(struct hci_dev *hdev);
1303 void mgmt_discoverable_timeout(struct hci_dev *hdev);
1304 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key,
1305 		       bool persistent);
1306 void mgmt_device_connected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1307 			   u8 addr_type, u32 flags, u8 *name, u8 name_len,
1308 			   u8 *dev_class);
1309 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr,
1310 			      u8 link_type, u8 addr_type, u8 reason,
1311 			      bool mgmt_connected);
1312 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr,
1313 			    u8 link_type, u8 addr_type, u8 status);
1314 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1315 			 u8 addr_type, u8 status);
1316 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure);
1317 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1318 				  u8 status);
1319 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1320 				      u8 status);
1321 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1322 			      u8 link_type, u8 addr_type, u32 value,
1323 			      u8 confirm_hint);
1324 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1325 				     u8 link_type, u8 addr_type, u8 status);
1326 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1327 					 u8 link_type, u8 addr_type, u8 status);
1328 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1329 			      u8 link_type, u8 addr_type);
1330 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1331 				     u8 link_type, u8 addr_type, u8 status);
1332 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1333 					 u8 link_type, u8 addr_type, u8 status);
1334 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr,
1335 			     u8 link_type, u8 addr_type, u32 passkey,
1336 			     u8 entered);
1337 void mgmt_auth_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1338 		      u8 addr_type, u8 status);
1339 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status);
1340 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1341 void mgmt_sc_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1342 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class,
1343 				    u8 status);
1344 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status);
1345 void mgmt_read_local_oob_data_complete(struct hci_dev *hdev, u8 *hash192,
1346 				       u8 *randomizer192, u8 *hash256,
1347 				       u8 *randomizer256, u8 status);
1348 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1349 		       u8 addr_type, u8 *dev_class, s8 rssi, u32 flags,
1350 		       u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len);
1351 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1352 		      u8 addr_type, s8 rssi, u8 *name, u8 name_len);
1353 void mgmt_discovering(struct hci_dev *hdev, u8 discovering);
1354 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent);
1355 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk);
1356 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk,
1357 		   bool persistent);
1358 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr,
1359 			 u8 bdaddr_type, u8 store_hint, u16 min_interval,
1360 			 u16 max_interval, u16 latency, u16 timeout);
1361 void mgmt_reenable_advertising(struct hci_dev *hdev);
1362 void mgmt_smp_complete(struct hci_conn *conn, bool complete);
1363 
1364 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
1365 		      u16 to_multiplier);
1366 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
1367 							__u8 ltk[16]);
1368 
1369 int hci_update_random_address(struct hci_request *req, bool require_privacy,
1370 			      u8 *own_addr_type);
1371 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
1372 			       u8 *bdaddr_type);
1373 
1374 #define SCO_AIRMODE_MASK       0x0003
1375 #define SCO_AIRMODE_CVSD       0x0000
1376 #define SCO_AIRMODE_TRANSP     0x0003
1377 
1378 #endif /* __HCI_CORE_H */
1379