1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 #ifndef __HCI_CORE_H 26 #define __HCI_CORE_H 27 28 #include <net/bluetooth/hci.h> 29 30 /* HCI priority */ 31 #define HCI_PRIO_MAX 7 32 33 /* HCI Core structures */ 34 struct inquiry_data { 35 bdaddr_t bdaddr; 36 __u8 pscan_rep_mode; 37 __u8 pscan_period_mode; 38 __u8 pscan_mode; 39 __u8 dev_class[3]; 40 __le16 clock_offset; 41 __s8 rssi; 42 __u8 ssp_mode; 43 }; 44 45 struct inquiry_entry { 46 struct list_head all; /* inq_cache.all */ 47 struct list_head list; /* unknown or resolve */ 48 enum { 49 NAME_NOT_KNOWN, 50 NAME_NEEDED, 51 NAME_PENDING, 52 NAME_KNOWN, 53 } name_state; 54 __u32 timestamp; 55 struct inquiry_data data; 56 }; 57 58 struct discovery_state { 59 int type; 60 enum { 61 DISCOVERY_STOPPED, 62 DISCOVERY_STARTING, 63 DISCOVERY_FINDING, 64 DISCOVERY_RESOLVING, 65 DISCOVERY_STOPPING, 66 } state; 67 struct list_head all; /* All devices found during inquiry */ 68 struct list_head unknown; /* Name state not known */ 69 struct list_head resolve; /* Name needs to be resolved */ 70 __u32 timestamp; 71 }; 72 73 struct hci_conn_hash { 74 struct list_head list; 75 unsigned int acl_num; 76 unsigned int amp_num; 77 unsigned int sco_num; 78 unsigned int le_num; 79 }; 80 81 struct bdaddr_list { 82 struct list_head list; 83 bdaddr_t bdaddr; 84 }; 85 86 struct bt_uuid { 87 struct list_head list; 88 u8 uuid[16]; 89 u8 size; 90 u8 svc_hint; 91 }; 92 93 struct smp_ltk { 94 struct list_head list; 95 bdaddr_t bdaddr; 96 u8 bdaddr_type; 97 u8 authenticated; 98 u8 type; 99 u8 enc_size; 100 __le16 ediv; 101 u8 rand[8]; 102 u8 val[16]; 103 } __packed; 104 105 struct link_key { 106 struct list_head list; 107 bdaddr_t bdaddr; 108 u8 type; 109 u8 val[HCI_LINK_KEY_SIZE]; 110 u8 pin_len; 111 }; 112 113 struct oob_data { 114 struct list_head list; 115 bdaddr_t bdaddr; 116 u8 hash[16]; 117 u8 randomizer[16]; 118 }; 119 120 #define HCI_MAX_SHORT_NAME_LENGTH 10 121 122 struct amp_assoc { 123 __u16 len; 124 __u16 offset; 125 __u16 rem_len; 126 __u16 len_so_far; 127 __u8 data[HCI_MAX_AMP_ASSOC_SIZE]; 128 }; 129 130 #define HCI_MAX_PAGES 3 131 132 #define NUM_REASSEMBLY 4 133 struct hci_dev { 134 struct list_head list; 135 struct mutex lock; 136 137 char name[8]; 138 unsigned long flags; 139 __u16 id; 140 __u8 bus; 141 __u8 dev_type; 142 bdaddr_t bdaddr; 143 __u8 dev_name[HCI_MAX_NAME_LENGTH]; 144 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH]; 145 __u8 eir[HCI_MAX_EIR_LENGTH]; 146 __u8 dev_class[3]; 147 __u8 major_class; 148 __u8 minor_class; 149 __u8 max_page; 150 __u8 features[HCI_MAX_PAGES][8]; 151 __u8 le_features[8]; 152 __u8 le_white_list_size; 153 __u8 le_states[8]; 154 __u8 commands[64]; 155 __u8 hci_ver; 156 __u16 hci_rev; 157 __u8 lmp_ver; 158 __u16 manufacturer; 159 __u16 lmp_subver; 160 __u16 voice_setting; 161 __u8 io_capability; 162 __s8 inq_tx_power; 163 __u16 page_scan_interval; 164 __u16 page_scan_window; 165 __u8 page_scan_type; 166 167 __u16 devid_source; 168 __u16 devid_vendor; 169 __u16 devid_product; 170 __u16 devid_version; 171 172 __u16 pkt_type; 173 __u16 esco_type; 174 __u16 link_policy; 175 __u16 link_mode; 176 177 __u32 idle_timeout; 178 __u16 sniff_min_interval; 179 __u16 sniff_max_interval; 180 181 __u8 amp_status; 182 __u32 amp_total_bw; 183 __u32 amp_max_bw; 184 __u32 amp_min_latency; 185 __u32 amp_max_pdu; 186 __u8 amp_type; 187 __u16 amp_pal_cap; 188 __u16 amp_assoc_size; 189 __u32 amp_max_flush_to; 190 __u32 amp_be_flush_to; 191 192 struct amp_assoc loc_assoc; 193 194 __u8 flow_ctl_mode; 195 196 unsigned int auto_accept_delay; 197 198 unsigned long quirks; 199 200 atomic_t cmd_cnt; 201 unsigned int acl_cnt; 202 unsigned int sco_cnt; 203 unsigned int le_cnt; 204 205 unsigned int acl_mtu; 206 unsigned int sco_mtu; 207 unsigned int le_mtu; 208 unsigned int acl_pkts; 209 unsigned int sco_pkts; 210 unsigned int le_pkts; 211 212 __u16 block_len; 213 __u16 block_mtu; 214 __u16 num_blocks; 215 __u16 block_cnt; 216 217 unsigned long acl_last_tx; 218 unsigned long sco_last_tx; 219 unsigned long le_last_tx; 220 221 struct workqueue_struct *workqueue; 222 struct workqueue_struct *req_workqueue; 223 224 struct work_struct power_on; 225 struct delayed_work power_off; 226 227 __u16 discov_timeout; 228 struct delayed_work discov_off; 229 230 struct delayed_work service_cache; 231 232 struct timer_list cmd_timer; 233 234 struct work_struct rx_work; 235 struct work_struct cmd_work; 236 struct work_struct tx_work; 237 238 struct sk_buff_head rx_q; 239 struct sk_buff_head raw_q; 240 struct sk_buff_head cmd_q; 241 242 struct sk_buff *recv_evt; 243 struct sk_buff *sent_cmd; 244 struct sk_buff *reassembly[NUM_REASSEMBLY]; 245 246 struct mutex req_lock; 247 wait_queue_head_t req_wait_q; 248 __u32 req_status; 249 __u32 req_result; 250 251 struct list_head mgmt_pending; 252 253 struct discovery_state discovery; 254 struct hci_conn_hash conn_hash; 255 struct list_head blacklist; 256 257 struct list_head uuids; 258 259 struct list_head link_keys; 260 261 struct list_head long_term_keys; 262 263 struct list_head remote_oob_data; 264 265 struct hci_dev_stats stat; 266 267 atomic_t promisc; 268 269 struct dentry *debugfs; 270 271 struct device dev; 272 273 struct rfkill *rfkill; 274 275 unsigned long dev_flags; 276 277 struct delayed_work le_scan_disable; 278 279 __s8 adv_tx_power; 280 __u8 adv_data[HCI_MAX_AD_LENGTH]; 281 __u8 adv_data_len; 282 283 int (*open)(struct hci_dev *hdev); 284 int (*close)(struct hci_dev *hdev); 285 int (*flush)(struct hci_dev *hdev); 286 int (*setup)(struct hci_dev *hdev); 287 int (*send)(struct sk_buff *skb); 288 void (*notify)(struct hci_dev *hdev, unsigned int evt); 289 int (*ioctl)(struct hci_dev *hdev, unsigned int cmd, unsigned long arg); 290 }; 291 292 #define HCI_PHY_HANDLE(handle) (handle & 0xff) 293 294 struct hci_conn { 295 struct list_head list; 296 297 atomic_t refcnt; 298 299 bdaddr_t dst; 300 __u8 dst_type; 301 __u16 handle; 302 __u16 state; 303 __u8 mode; 304 __u8 type; 305 bool out; 306 __u8 attempt; 307 __u8 dev_class[3]; 308 __u8 features[HCI_MAX_PAGES][8]; 309 __u16 interval; 310 __u16 pkt_type; 311 __u16 link_policy; 312 __u32 link_mode; 313 __u8 key_type; 314 __u8 auth_type; 315 __u8 sec_level; 316 __u8 pending_sec_level; 317 __u8 pin_length; 318 __u8 enc_key_size; 319 __u8 io_capability; 320 __u32 passkey_notify; 321 __u8 passkey_entered; 322 __u16 disc_timeout; 323 __u16 setting; 324 unsigned long flags; 325 326 __u8 remote_cap; 327 __u8 remote_auth; 328 __u8 remote_id; 329 bool flush_key; 330 331 unsigned int sent; 332 333 struct sk_buff_head data_q; 334 struct list_head chan_list; 335 336 struct delayed_work disc_work; 337 struct timer_list idle_timer; 338 struct timer_list auto_accept_timer; 339 340 struct device dev; 341 342 struct hci_dev *hdev; 343 void *l2cap_data; 344 void *sco_data; 345 void *smp_conn; 346 struct amp_mgr *amp_mgr; 347 348 struct hci_conn *link; 349 350 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status); 351 void (*security_cfm_cb) (struct hci_conn *conn, u8 status); 352 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason); 353 }; 354 355 struct hci_chan { 356 struct list_head list; 357 __u16 handle; 358 struct hci_conn *conn; 359 struct sk_buff_head data_q; 360 unsigned int sent; 361 __u8 state; 362 }; 363 364 extern struct list_head hci_dev_list; 365 extern struct list_head hci_cb_list; 366 extern rwlock_t hci_dev_list_lock; 367 extern rwlock_t hci_cb_list_lock; 368 369 /* ----- HCI interface to upper protocols ----- */ 370 extern int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr); 371 extern void l2cap_connect_cfm(struct hci_conn *hcon, u8 status); 372 extern int l2cap_disconn_ind(struct hci_conn *hcon); 373 extern void l2cap_disconn_cfm(struct hci_conn *hcon, u8 reason); 374 extern int l2cap_security_cfm(struct hci_conn *hcon, u8 status, u8 encrypt); 375 extern int l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, 376 u16 flags); 377 378 extern int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); 379 extern void sco_connect_cfm(struct hci_conn *hcon, __u8 status); 380 extern void sco_disconn_cfm(struct hci_conn *hcon, __u8 reason); 381 extern int sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb); 382 383 /* ----- Inquiry cache ----- */ 384 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */ 385 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */ 386 387 static inline void discovery_init(struct hci_dev *hdev) 388 { 389 hdev->discovery.state = DISCOVERY_STOPPED; 390 INIT_LIST_HEAD(&hdev->discovery.all); 391 INIT_LIST_HEAD(&hdev->discovery.unknown); 392 INIT_LIST_HEAD(&hdev->discovery.resolve); 393 } 394 395 bool hci_discovery_active(struct hci_dev *hdev); 396 397 void hci_discovery_set_state(struct hci_dev *hdev, int state); 398 399 static inline int inquiry_cache_empty(struct hci_dev *hdev) 400 { 401 return list_empty(&hdev->discovery.all); 402 } 403 404 static inline long inquiry_cache_age(struct hci_dev *hdev) 405 { 406 struct discovery_state *c = &hdev->discovery; 407 return jiffies - c->timestamp; 408 } 409 410 static inline long inquiry_entry_age(struct inquiry_entry *e) 411 { 412 return jiffies - e->timestamp; 413 } 414 415 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 416 bdaddr_t *bdaddr); 417 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 418 bdaddr_t *bdaddr); 419 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 420 bdaddr_t *bdaddr, 421 int state); 422 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 423 struct inquiry_entry *ie); 424 bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 425 bool name_known, bool *ssp); 426 void hci_inquiry_cache_flush(struct hci_dev *hdev); 427 428 /* ----- HCI Connections ----- */ 429 enum { 430 HCI_CONN_AUTH_PEND, 431 HCI_CONN_REAUTH_PEND, 432 HCI_CONN_ENCRYPT_PEND, 433 HCI_CONN_RSWITCH_PEND, 434 HCI_CONN_MODE_CHANGE_PEND, 435 HCI_CONN_SCO_SETUP_PEND, 436 HCI_CONN_LE_SMP_PEND, 437 HCI_CONN_MGMT_CONNECTED, 438 HCI_CONN_SSP_ENABLED, 439 HCI_CONN_POWER_SAVE, 440 HCI_CONN_REMOTE_OOB, 441 }; 442 443 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn) 444 { 445 struct hci_dev *hdev = conn->hdev; 446 return test_bit(HCI_SSP_ENABLED, &hdev->dev_flags) && 447 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 448 } 449 450 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c) 451 { 452 struct hci_conn_hash *h = &hdev->conn_hash; 453 list_add_rcu(&c->list, &h->list); 454 switch (c->type) { 455 case ACL_LINK: 456 h->acl_num++; 457 break; 458 case AMP_LINK: 459 h->amp_num++; 460 break; 461 case LE_LINK: 462 h->le_num++; 463 break; 464 case SCO_LINK: 465 case ESCO_LINK: 466 h->sco_num++; 467 break; 468 } 469 } 470 471 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c) 472 { 473 struct hci_conn_hash *h = &hdev->conn_hash; 474 475 list_del_rcu(&c->list); 476 synchronize_rcu(); 477 478 switch (c->type) { 479 case ACL_LINK: 480 h->acl_num--; 481 break; 482 case AMP_LINK: 483 h->amp_num--; 484 break; 485 case LE_LINK: 486 h->le_num--; 487 break; 488 case SCO_LINK: 489 case ESCO_LINK: 490 h->sco_num--; 491 break; 492 } 493 } 494 495 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type) 496 { 497 struct hci_conn_hash *h = &hdev->conn_hash; 498 switch (type) { 499 case ACL_LINK: 500 return h->acl_num; 501 case AMP_LINK: 502 return h->amp_num; 503 case LE_LINK: 504 return h->le_num; 505 case SCO_LINK: 506 case ESCO_LINK: 507 return h->sco_num; 508 default: 509 return 0; 510 } 511 } 512 513 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev, 514 __u16 handle) 515 { 516 struct hci_conn_hash *h = &hdev->conn_hash; 517 struct hci_conn *c; 518 519 rcu_read_lock(); 520 521 list_for_each_entry_rcu(c, &h->list, list) { 522 if (c->handle == handle) { 523 rcu_read_unlock(); 524 return c; 525 } 526 } 527 rcu_read_unlock(); 528 529 return NULL; 530 } 531 532 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev, 533 __u8 type, bdaddr_t *ba) 534 { 535 struct hci_conn_hash *h = &hdev->conn_hash; 536 struct hci_conn *c; 537 538 rcu_read_lock(); 539 540 list_for_each_entry_rcu(c, &h->list, list) { 541 if (c->type == type && !bacmp(&c->dst, ba)) { 542 rcu_read_unlock(); 543 return c; 544 } 545 } 546 547 rcu_read_unlock(); 548 549 return NULL; 550 } 551 552 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev, 553 __u8 type, __u16 state) 554 { 555 struct hci_conn_hash *h = &hdev->conn_hash; 556 struct hci_conn *c; 557 558 rcu_read_lock(); 559 560 list_for_each_entry_rcu(c, &h->list, list) { 561 if (c->type == type && c->state == state) { 562 rcu_read_unlock(); 563 return c; 564 } 565 } 566 567 rcu_read_unlock(); 568 569 return NULL; 570 } 571 572 void hci_disconnect(struct hci_conn *conn, __u8 reason); 573 bool hci_setup_sync(struct hci_conn *conn, __u16 handle); 574 void hci_sco_setup(struct hci_conn *conn, __u8 status); 575 576 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst); 577 int hci_conn_del(struct hci_conn *conn); 578 void hci_conn_hash_flush(struct hci_dev *hdev); 579 void hci_conn_check_pending(struct hci_dev *hdev); 580 581 struct hci_chan *hci_chan_create(struct hci_conn *conn); 582 void hci_chan_del(struct hci_chan *chan); 583 void hci_chan_list_flush(struct hci_conn *conn); 584 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle); 585 586 struct hci_conn *hci_connect(struct hci_dev *hdev, int type, bdaddr_t *dst, 587 __u8 dst_type, __u8 sec_level, __u8 auth_type); 588 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 589 __u16 setting); 590 int hci_conn_check_link_mode(struct hci_conn *conn); 591 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level); 592 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type); 593 int hci_conn_change_link_key(struct hci_conn *conn); 594 int hci_conn_switch_role(struct hci_conn *conn, __u8 role); 595 596 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active); 597 598 /* 599 * hci_conn_get() and hci_conn_put() are used to control the life-time of an 600 * "hci_conn" object. They do not guarantee that the hci_conn object is running, 601 * working or anything else. They just guarantee that the object is available 602 * and can be dereferenced. So you can use its locks, local variables and any 603 * other constant data. 604 * Before accessing runtime data, you _must_ lock the object and then check that 605 * it is still running. As soon as you release the locks, the connection might 606 * get dropped, though. 607 * 608 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control 609 * how long the underlying connection is held. So every channel that runs on the 610 * hci_conn object calls this to prevent the connection from disappearing. As 611 * long as you hold a device, you must also guarantee that you have a valid 612 * reference to the device via hci_conn_get() (or the initial reference from 613 * hci_conn_add()). 614 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't 615 * break because nobody cares for that. But this means, we cannot use 616 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME). 617 */ 618 619 static inline void hci_conn_get(struct hci_conn *conn) 620 { 621 get_device(&conn->dev); 622 } 623 624 static inline void hci_conn_put(struct hci_conn *conn) 625 { 626 put_device(&conn->dev); 627 } 628 629 static inline void hci_conn_hold(struct hci_conn *conn) 630 { 631 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 632 633 atomic_inc(&conn->refcnt); 634 cancel_delayed_work(&conn->disc_work); 635 } 636 637 static inline void hci_conn_drop(struct hci_conn *conn) 638 { 639 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); 640 641 if (atomic_dec_and_test(&conn->refcnt)) { 642 unsigned long timeo; 643 644 switch (conn->type) { 645 case ACL_LINK: 646 case LE_LINK: 647 del_timer(&conn->idle_timer); 648 if (conn->state == BT_CONNECTED) { 649 timeo = conn->disc_timeout; 650 if (!conn->out) 651 timeo *= 2; 652 } else { 653 timeo = msecs_to_jiffies(10); 654 } 655 break; 656 657 case AMP_LINK: 658 timeo = conn->disc_timeout; 659 break; 660 661 default: 662 timeo = msecs_to_jiffies(10); 663 break; 664 } 665 666 cancel_delayed_work(&conn->disc_work); 667 queue_delayed_work(conn->hdev->workqueue, 668 &conn->disc_work, timeo); 669 } 670 } 671 672 /* ----- HCI Devices ----- */ 673 static inline void hci_dev_put(struct hci_dev *d) 674 { 675 BT_DBG("%s orig refcnt %d", d->name, 676 atomic_read(&d->dev.kobj.kref.refcount)); 677 678 put_device(&d->dev); 679 } 680 681 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d) 682 { 683 BT_DBG("%s orig refcnt %d", d->name, 684 atomic_read(&d->dev.kobj.kref.refcount)); 685 686 get_device(&d->dev); 687 return d; 688 } 689 690 #define hci_dev_lock(d) mutex_lock(&d->lock) 691 #define hci_dev_unlock(d) mutex_unlock(&d->lock) 692 693 #define to_hci_dev(d) container_of(d, struct hci_dev, dev) 694 #define to_hci_conn(c) container_of(c, struct hci_conn, dev) 695 696 static inline void *hci_get_drvdata(struct hci_dev *hdev) 697 { 698 return dev_get_drvdata(&hdev->dev); 699 } 700 701 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data) 702 { 703 dev_set_drvdata(&hdev->dev, data); 704 } 705 706 /* hci_dev_list shall be locked */ 707 static inline uint8_t __hci_num_ctrl(void) 708 { 709 uint8_t count = 0; 710 struct list_head *p; 711 712 list_for_each(p, &hci_dev_list) { 713 count++; 714 } 715 716 return count; 717 } 718 719 struct hci_dev *hci_dev_get(int index); 720 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src); 721 722 struct hci_dev *hci_alloc_dev(void); 723 void hci_free_dev(struct hci_dev *hdev); 724 int hci_register_dev(struct hci_dev *hdev); 725 void hci_unregister_dev(struct hci_dev *hdev); 726 int hci_suspend_dev(struct hci_dev *hdev); 727 int hci_resume_dev(struct hci_dev *hdev); 728 int hci_dev_open(__u16 dev); 729 int hci_dev_close(__u16 dev); 730 int hci_dev_reset(__u16 dev); 731 int hci_dev_reset_stat(__u16 dev); 732 int hci_dev_cmd(unsigned int cmd, void __user *arg); 733 int hci_get_dev_list(void __user *arg); 734 int hci_get_dev_info(void __user *arg); 735 int hci_get_conn_list(void __user *arg); 736 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg); 737 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg); 738 int hci_inquiry(void __user *arg); 739 740 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev, 741 bdaddr_t *bdaddr); 742 int hci_blacklist_clear(struct hci_dev *hdev); 743 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 744 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 745 746 int hci_uuids_clear(struct hci_dev *hdev); 747 748 int hci_link_keys_clear(struct hci_dev *hdev); 749 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 750 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key, 751 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len); 752 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8]); 753 int hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type, 754 int new_key, u8 authenticated, u8 tk[16], u8 enc_size, 755 __le16 ediv, u8 rand[8]); 756 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 757 u8 addr_type); 758 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr); 759 int hci_smp_ltks_clear(struct hci_dev *hdev); 760 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); 761 762 int hci_remote_oob_data_clear(struct hci_dev *hdev); 763 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 764 bdaddr_t *bdaddr); 765 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash, 766 u8 *randomizer); 767 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr); 768 769 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb); 770 771 int hci_recv_frame(struct sk_buff *skb); 772 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count); 773 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count); 774 775 void hci_init_sysfs(struct hci_dev *hdev); 776 int hci_add_sysfs(struct hci_dev *hdev); 777 void hci_del_sysfs(struct hci_dev *hdev); 778 void hci_conn_init_sysfs(struct hci_conn *conn); 779 void hci_conn_add_sysfs(struct hci_conn *conn); 780 void hci_conn_del_sysfs(struct hci_conn *conn); 781 782 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev)) 783 784 /* ----- LMP capabilities ----- */ 785 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT) 786 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH) 787 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD) 788 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF) 789 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK) 790 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ) 791 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO) 792 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR)) 793 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE) 794 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR) 795 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC) 796 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ) 797 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR)) 798 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR) 799 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH) 800 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO) 801 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR) 802 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES) 803 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT) 804 805 /* ----- Extended LMP capabilities ----- */ 806 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP) 807 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE)) 808 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR)) 809 810 /* returns true if at least one AMP active */ 811 static inline bool hci_amp_capable(void) 812 { 813 struct hci_dev *hdev; 814 bool ret = false; 815 816 read_lock(&hci_dev_list_lock); 817 list_for_each_entry(hdev, &hci_dev_list, list) 818 if (hdev->amp_type == HCI_AMP && 819 test_bit(HCI_UP, &hdev->flags)) 820 ret = true; 821 read_unlock(&hci_dev_list_lock); 822 823 return ret; 824 } 825 826 /* ----- HCI protocols ----- */ 827 #define HCI_PROTO_DEFER 0x01 828 829 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, 830 __u8 type, __u8 *flags) 831 { 832 switch (type) { 833 case ACL_LINK: 834 return l2cap_connect_ind(hdev, bdaddr); 835 836 case SCO_LINK: 837 case ESCO_LINK: 838 return sco_connect_ind(hdev, bdaddr, flags); 839 840 default: 841 BT_ERR("unknown link type %d", type); 842 return -EINVAL; 843 } 844 } 845 846 static inline void hci_proto_connect_cfm(struct hci_conn *conn, __u8 status) 847 { 848 switch (conn->type) { 849 case ACL_LINK: 850 case LE_LINK: 851 l2cap_connect_cfm(conn, status); 852 break; 853 854 case SCO_LINK: 855 case ESCO_LINK: 856 sco_connect_cfm(conn, status); 857 break; 858 859 default: 860 BT_ERR("unknown link type %d", conn->type); 861 break; 862 } 863 864 if (conn->connect_cfm_cb) 865 conn->connect_cfm_cb(conn, status); 866 } 867 868 static inline int hci_proto_disconn_ind(struct hci_conn *conn) 869 { 870 if (conn->type != ACL_LINK && conn->type != LE_LINK) 871 return HCI_ERROR_REMOTE_USER_TERM; 872 873 return l2cap_disconn_ind(conn); 874 } 875 876 static inline void hci_proto_disconn_cfm(struct hci_conn *conn, __u8 reason) 877 { 878 switch (conn->type) { 879 case ACL_LINK: 880 case LE_LINK: 881 l2cap_disconn_cfm(conn, reason); 882 break; 883 884 case SCO_LINK: 885 case ESCO_LINK: 886 sco_disconn_cfm(conn, reason); 887 break; 888 889 /* L2CAP would be handled for BREDR chan */ 890 case AMP_LINK: 891 break; 892 893 default: 894 BT_ERR("unknown link type %d", conn->type); 895 break; 896 } 897 898 if (conn->disconn_cfm_cb) 899 conn->disconn_cfm_cb(conn, reason); 900 } 901 902 static inline void hci_proto_auth_cfm(struct hci_conn *conn, __u8 status) 903 { 904 __u8 encrypt; 905 906 if (conn->type != ACL_LINK && conn->type != LE_LINK) 907 return; 908 909 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 910 return; 911 912 encrypt = (conn->link_mode & HCI_LM_ENCRYPT) ? 0x01 : 0x00; 913 l2cap_security_cfm(conn, status, encrypt); 914 915 if (conn->security_cfm_cb) 916 conn->security_cfm_cb(conn, status); 917 } 918 919 static inline void hci_proto_encrypt_cfm(struct hci_conn *conn, __u8 status, 920 __u8 encrypt) 921 { 922 if (conn->type != ACL_LINK && conn->type != LE_LINK) 923 return; 924 925 l2cap_security_cfm(conn, status, encrypt); 926 927 if (conn->security_cfm_cb) 928 conn->security_cfm_cb(conn, status); 929 } 930 931 /* ----- HCI callbacks ----- */ 932 struct hci_cb { 933 struct list_head list; 934 935 char *name; 936 937 void (*security_cfm) (struct hci_conn *conn, __u8 status, 938 __u8 encrypt); 939 void (*key_change_cfm) (struct hci_conn *conn, __u8 status); 940 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role); 941 }; 942 943 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status) 944 { 945 struct hci_cb *cb; 946 __u8 encrypt; 947 948 hci_proto_auth_cfm(conn, status); 949 950 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 951 return; 952 953 encrypt = (conn->link_mode & HCI_LM_ENCRYPT) ? 0x01 : 0x00; 954 955 read_lock(&hci_cb_list_lock); 956 list_for_each_entry(cb, &hci_cb_list, list) { 957 if (cb->security_cfm) 958 cb->security_cfm(conn, status, encrypt); 959 } 960 read_unlock(&hci_cb_list_lock); 961 } 962 963 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status, 964 __u8 encrypt) 965 { 966 struct hci_cb *cb; 967 968 if (conn->sec_level == BT_SECURITY_SDP) 969 conn->sec_level = BT_SECURITY_LOW; 970 971 if (conn->pending_sec_level > conn->sec_level) 972 conn->sec_level = conn->pending_sec_level; 973 974 hci_proto_encrypt_cfm(conn, status, encrypt); 975 976 read_lock(&hci_cb_list_lock); 977 list_for_each_entry(cb, &hci_cb_list, list) { 978 if (cb->security_cfm) 979 cb->security_cfm(conn, status, encrypt); 980 } 981 read_unlock(&hci_cb_list_lock); 982 } 983 984 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status) 985 { 986 struct hci_cb *cb; 987 988 read_lock(&hci_cb_list_lock); 989 list_for_each_entry(cb, &hci_cb_list, list) { 990 if (cb->key_change_cfm) 991 cb->key_change_cfm(conn, status); 992 } 993 read_unlock(&hci_cb_list_lock); 994 } 995 996 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status, 997 __u8 role) 998 { 999 struct hci_cb *cb; 1000 1001 read_lock(&hci_cb_list_lock); 1002 list_for_each_entry(cb, &hci_cb_list, list) { 1003 if (cb->role_switch_cfm) 1004 cb->role_switch_cfm(conn, status, role); 1005 } 1006 read_unlock(&hci_cb_list_lock); 1007 } 1008 1009 static inline bool eir_has_data_type(u8 *data, size_t data_len, u8 type) 1010 { 1011 size_t parsed = 0; 1012 1013 if (data_len < 2) 1014 return false; 1015 1016 while (parsed < data_len - 1) { 1017 u8 field_len = data[0]; 1018 1019 if (field_len == 0) 1020 break; 1021 1022 parsed += field_len + 1; 1023 1024 if (parsed > data_len) 1025 break; 1026 1027 if (data[1] == type) 1028 return true; 1029 1030 data += field_len + 1; 1031 } 1032 1033 return false; 1034 } 1035 1036 static inline size_t eir_get_length(u8 *eir, size_t eir_len) 1037 { 1038 size_t parsed = 0; 1039 1040 while (parsed < eir_len) { 1041 u8 field_len = eir[0]; 1042 1043 if (field_len == 0) 1044 return parsed; 1045 1046 parsed += field_len + 1; 1047 eir += field_len + 1; 1048 } 1049 1050 return eir_len; 1051 } 1052 1053 static inline u16 eir_append_data(u8 *eir, u16 eir_len, u8 type, u8 *data, 1054 u8 data_len) 1055 { 1056 eir[eir_len++] = sizeof(type) + data_len; 1057 eir[eir_len++] = type; 1058 memcpy(&eir[eir_len], data, data_len); 1059 eir_len += data_len; 1060 1061 return eir_len; 1062 } 1063 1064 int hci_register_cb(struct hci_cb *hcb); 1065 int hci_unregister_cb(struct hci_cb *hcb); 1066 1067 struct hci_request { 1068 struct hci_dev *hdev; 1069 struct sk_buff_head cmd_q; 1070 1071 /* If something goes wrong when building the HCI request, the error 1072 * value is stored in this field. 1073 */ 1074 int err; 1075 }; 1076 1077 void hci_req_init(struct hci_request *req, struct hci_dev *hdev); 1078 int hci_req_run(struct hci_request *req, hci_req_complete_t complete); 1079 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, 1080 const void *param); 1081 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, 1082 const void *param, u8 event); 1083 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status); 1084 1085 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1086 const void *param, u32 timeout); 1087 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 1088 const void *param, u8 event, u32 timeout); 1089 1090 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 1091 const void *param); 1092 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags); 1093 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb); 1094 1095 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode); 1096 1097 /* ----- HCI Sockets ----- */ 1098 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb); 1099 void hci_send_to_control(struct sk_buff *skb, struct sock *skip_sk); 1100 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb); 1101 1102 void hci_sock_dev_event(struct hci_dev *hdev, int event); 1103 1104 /* Management interface */ 1105 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR)) 1106 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \ 1107 BIT(BDADDR_LE_RANDOM)) 1108 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \ 1109 BIT(BDADDR_LE_PUBLIC) | \ 1110 BIT(BDADDR_LE_RANDOM)) 1111 1112 /* These LE scan and inquiry parameters were chosen according to LE General 1113 * Discovery Procedure specification. 1114 */ 1115 #define DISCOV_LE_SCAN_WIN 0x12 1116 #define DISCOV_LE_SCAN_INT 0x12 1117 #define DISCOV_LE_TIMEOUT msecs_to_jiffies(10240) 1118 #define DISCOV_INTERLEAVED_TIMEOUT msecs_to_jiffies(5120) 1119 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04 1120 #define DISCOV_BREDR_INQUIRY_LEN 0x08 1121 1122 int mgmt_control(struct sock *sk, struct msghdr *msg, size_t len); 1123 int mgmt_index_added(struct hci_dev *hdev); 1124 int mgmt_index_removed(struct hci_dev *hdev); 1125 int mgmt_set_powered_failed(struct hci_dev *hdev, int err); 1126 int mgmt_powered(struct hci_dev *hdev, u8 powered); 1127 int mgmt_discoverable(struct hci_dev *hdev, u8 discoverable); 1128 int mgmt_connectable(struct hci_dev *hdev, u8 connectable); 1129 int mgmt_write_scan_failed(struct hci_dev *hdev, u8 scan, u8 status); 1130 int mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, 1131 bool persistent); 1132 int mgmt_device_connected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1133 u8 addr_type, u32 flags, u8 *name, u8 name_len, 1134 u8 *dev_class); 1135 int mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, 1136 u8 link_type, u8 addr_type, u8 reason); 1137 int mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, 1138 u8 link_type, u8 addr_type, u8 status); 1139 int mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1140 u8 addr_type, u8 status); 1141 int mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure); 1142 int mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1143 u8 status); 1144 int mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1145 u8 status); 1146 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1147 u8 link_type, u8 addr_type, __le32 value, 1148 u8 confirm_hint); 1149 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1150 u8 link_type, u8 addr_type, u8 status); 1151 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1152 u8 link_type, u8 addr_type, u8 status); 1153 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, 1154 u8 link_type, u8 addr_type); 1155 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1156 u8 link_type, u8 addr_type, u8 status); 1157 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, 1158 u8 link_type, u8 addr_type, u8 status); 1159 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, 1160 u8 link_type, u8 addr_type, u32 passkey, 1161 u8 entered); 1162 int mgmt_auth_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1163 u8 addr_type, u8 status); 1164 int mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status); 1165 int mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); 1166 int mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, 1167 u8 status); 1168 int mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status); 1169 int mgmt_read_local_oob_data_reply_complete(struct hci_dev *hdev, u8 *hash, 1170 u8 *randomizer, u8 status); 1171 int mgmt_le_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); 1172 int mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1173 u8 addr_type, u8 *dev_class, s8 rssi, u8 cfm_name, 1174 u8 ssp, u8 *eir, u16 eir_len); 1175 int mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, 1176 u8 addr_type, s8 rssi, u8 *name, u8 name_len); 1177 int mgmt_discovering(struct hci_dev *hdev, u8 discovering); 1178 int mgmt_device_blocked(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 1179 int mgmt_device_unblocked(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); 1180 bool mgmt_valid_hdev(struct hci_dev *hdev); 1181 int mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, u8 persistent); 1182 1183 /* HCI info for socket */ 1184 #define hci_pi(sk) ((struct hci_pinfo *) sk) 1185 1186 struct hci_pinfo { 1187 struct bt_sock bt; 1188 struct hci_dev *hdev; 1189 struct hci_filter filter; 1190 __u32 cmsg_mask; 1191 unsigned short channel; 1192 }; 1193 1194 /* HCI security filter */ 1195 #define HCI_SFLT_MAX_OGF 5 1196 1197 struct hci_sec_filter { 1198 __u32 type_mask; 1199 __u32 event_mask[2]; 1200 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4]; 1201 }; 1202 1203 /* ----- HCI requests ----- */ 1204 #define HCI_REQ_DONE 0 1205 #define HCI_REQ_PEND 1 1206 #define HCI_REQ_CANCELED 2 1207 1208 #define hci_req_lock(d) mutex_lock(&d->req_lock) 1209 #define hci_req_unlock(d) mutex_unlock(&d->req_lock) 1210 1211 void hci_update_ad(struct hci_request *req); 1212 1213 void hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, 1214 u16 latency, u16 to_multiplier); 1215 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __u8 rand[8], 1216 __u8 ltk[16]); 1217 1218 u8 bdaddr_to_le(u8 bdaddr_type); 1219 1220 #define SCO_AIRMODE_MASK 0x0003 1221 #define SCO_AIRMODE_CVSD 0x0000 1222 #define SCO_AIRMODE_TRANSP 0x0003 1223 1224 #endif /* __HCI_CORE_H */ 1225