xref: /openbmc/linux/include/net/bluetooth/hci_core.h (revision 0199e993)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4 
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10 
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24 
25 #ifndef __HCI_CORE_H
26 #define __HCI_CORE_H
27 
28 #include <net/bluetooth/hci.h>
29 #include <net/bluetooth/hci_sock.h>
30 
31 /* HCI priority */
32 #define HCI_PRIO_MAX	7
33 
34 /* HCI Core structures */
35 struct inquiry_data {
36 	bdaddr_t	bdaddr;
37 	__u8		pscan_rep_mode;
38 	__u8		pscan_period_mode;
39 	__u8		pscan_mode;
40 	__u8		dev_class[3];
41 	__le16		clock_offset;
42 	__s8		rssi;
43 	__u8		ssp_mode;
44 };
45 
46 struct inquiry_entry {
47 	struct list_head	all;		/* inq_cache.all */
48 	struct list_head	list;		/* unknown or resolve */
49 	enum {
50 		NAME_NOT_KNOWN,
51 		NAME_NEEDED,
52 		NAME_PENDING,
53 		NAME_KNOWN,
54 	} name_state;
55 	__u32			timestamp;
56 	struct inquiry_data	data;
57 };
58 
59 struct discovery_state {
60 	int			type;
61 	enum {
62 		DISCOVERY_STOPPED,
63 		DISCOVERY_STARTING,
64 		DISCOVERY_FINDING,
65 		DISCOVERY_RESOLVING,
66 		DISCOVERY_STOPPING,
67 	} state;
68 	struct list_head	all;	/* All devices found during inquiry */
69 	struct list_head	unknown;	/* Name state not known */
70 	struct list_head	resolve;	/* Name needs to be resolved */
71 	__u32			timestamp;
72 	bdaddr_t		last_adv_addr;
73 	u8			last_adv_addr_type;
74 	s8			last_adv_rssi;
75 	u32			last_adv_flags;
76 	u8			last_adv_data[HCI_MAX_AD_LENGTH];
77 	u8			last_adv_data_len;
78 };
79 
80 struct hci_conn_hash {
81 	struct list_head list;
82 	unsigned int     acl_num;
83 	unsigned int     amp_num;
84 	unsigned int     sco_num;
85 	unsigned int     le_num;
86 	unsigned int     le_num_slave;
87 };
88 
89 struct bdaddr_list {
90 	struct list_head list;
91 	bdaddr_t bdaddr;
92 	u8 bdaddr_type;
93 };
94 
95 struct bt_uuid {
96 	struct list_head list;
97 	u8 uuid[16];
98 	u8 size;
99 	u8 svc_hint;
100 };
101 
102 struct smp_csrk {
103 	bdaddr_t bdaddr;
104 	u8 bdaddr_type;
105 	u8 master;
106 	u8 val[16];
107 };
108 
109 struct smp_ltk {
110 	struct list_head list;
111 	bdaddr_t bdaddr;
112 	u8 bdaddr_type;
113 	u8 authenticated;
114 	u8 type;
115 	u8 enc_size;
116 	__le16 ediv;
117 	__le64 rand;
118 	u8 val[16];
119 };
120 
121 struct smp_irk {
122 	struct list_head list;
123 	bdaddr_t rpa;
124 	bdaddr_t bdaddr;
125 	u8 addr_type;
126 	u8 val[16];
127 };
128 
129 struct link_key {
130 	struct list_head list;
131 	bdaddr_t bdaddr;
132 	u8 type;
133 	u8 val[HCI_LINK_KEY_SIZE];
134 	u8 pin_len;
135 };
136 
137 struct oob_data {
138 	struct list_head list;
139 	bdaddr_t bdaddr;
140 	u8 hash192[16];
141 	u8 randomizer192[16];
142 	u8 hash256[16];
143 	u8 randomizer256[16];
144 };
145 
146 #define HCI_MAX_SHORT_NAME_LENGTH	10
147 
148 /* Default LE RPA expiry time, 15 minutes */
149 #define HCI_DEFAULT_RPA_TIMEOUT		(15 * 60)
150 
151 /* Default min/max age of connection information (1s/3s) */
152 #define DEFAULT_CONN_INFO_MIN_AGE	1000
153 #define DEFAULT_CONN_INFO_MAX_AGE	3000
154 
155 struct amp_assoc {
156 	__u16	len;
157 	__u16	offset;
158 	__u16	rem_len;
159 	__u16	len_so_far;
160 	__u8	data[HCI_MAX_AMP_ASSOC_SIZE];
161 };
162 
163 #define HCI_MAX_PAGES	3
164 
165 #define NUM_REASSEMBLY 4
166 struct hci_dev {
167 	struct list_head list;
168 	struct mutex	lock;
169 
170 	char		name[8];
171 	unsigned long	flags;
172 	__u16		id;
173 	__u8		bus;
174 	__u8		dev_type;
175 	bdaddr_t	bdaddr;
176 	bdaddr_t	setup_addr;
177 	bdaddr_t	public_addr;
178 	bdaddr_t	random_addr;
179 	bdaddr_t	static_addr;
180 	__u8		adv_addr_type;
181 	__u8		dev_name[HCI_MAX_NAME_LENGTH];
182 	__u8		short_name[HCI_MAX_SHORT_NAME_LENGTH];
183 	__u8		eir[HCI_MAX_EIR_LENGTH];
184 	__u8		dev_class[3];
185 	__u8		major_class;
186 	__u8		minor_class;
187 	__u8		max_page;
188 	__u8		features[HCI_MAX_PAGES][8];
189 	__u8		le_features[8];
190 	__u8		le_white_list_size;
191 	__u8		le_states[8];
192 	__u8		commands[64];
193 	__u8		hci_ver;
194 	__u16		hci_rev;
195 	__u8		lmp_ver;
196 	__u16		manufacturer;
197 	__u16		lmp_subver;
198 	__u16		voice_setting;
199 	__u8		num_iac;
200 	__u8		io_capability;
201 	__s8		inq_tx_power;
202 	__u16		page_scan_interval;
203 	__u16		page_scan_window;
204 	__u8		page_scan_type;
205 	__u8		le_adv_channel_map;
206 	__u16		le_adv_min_interval;
207 	__u16		le_adv_max_interval;
208 	__u8		le_scan_type;
209 	__u16		le_scan_interval;
210 	__u16		le_scan_window;
211 	__u16		le_conn_min_interval;
212 	__u16		le_conn_max_interval;
213 	__u16		le_conn_latency;
214 	__u16		le_supv_timeout;
215 	__u16		discov_interleaved_timeout;
216 	__u16		conn_info_min_age;
217 	__u16		conn_info_max_age;
218 	__u8		ssp_debug_mode;
219 	__u32		clock;
220 
221 	__u16		devid_source;
222 	__u16		devid_vendor;
223 	__u16		devid_product;
224 	__u16		devid_version;
225 
226 	__u16		pkt_type;
227 	__u16		esco_type;
228 	__u16		link_policy;
229 	__u16		link_mode;
230 
231 	__u32		idle_timeout;
232 	__u16		sniff_min_interval;
233 	__u16		sniff_max_interval;
234 
235 	__u8		amp_status;
236 	__u32		amp_total_bw;
237 	__u32		amp_max_bw;
238 	__u32		amp_min_latency;
239 	__u32		amp_max_pdu;
240 	__u8		amp_type;
241 	__u16		amp_pal_cap;
242 	__u16		amp_assoc_size;
243 	__u32		amp_max_flush_to;
244 	__u32		amp_be_flush_to;
245 
246 	struct amp_assoc	loc_assoc;
247 
248 	__u8		flow_ctl_mode;
249 
250 	unsigned int	auto_accept_delay;
251 
252 	unsigned long	quirks;
253 
254 	atomic_t	cmd_cnt;
255 	unsigned int	acl_cnt;
256 	unsigned int	sco_cnt;
257 	unsigned int	le_cnt;
258 
259 	unsigned int	acl_mtu;
260 	unsigned int	sco_mtu;
261 	unsigned int	le_mtu;
262 	unsigned int	acl_pkts;
263 	unsigned int	sco_pkts;
264 	unsigned int	le_pkts;
265 
266 	__u16		block_len;
267 	__u16		block_mtu;
268 	__u16		num_blocks;
269 	__u16		block_cnt;
270 
271 	unsigned long	acl_last_tx;
272 	unsigned long	sco_last_tx;
273 	unsigned long	le_last_tx;
274 
275 	struct workqueue_struct	*workqueue;
276 	struct workqueue_struct	*req_workqueue;
277 
278 	struct work_struct	power_on;
279 	struct delayed_work	power_off;
280 
281 	__u16			discov_timeout;
282 	struct delayed_work	discov_off;
283 
284 	struct delayed_work	service_cache;
285 
286 	struct delayed_work	cmd_timer;
287 
288 	struct work_struct	rx_work;
289 	struct work_struct	cmd_work;
290 	struct work_struct	tx_work;
291 
292 	struct sk_buff_head	rx_q;
293 	struct sk_buff_head	raw_q;
294 	struct sk_buff_head	cmd_q;
295 
296 	struct sk_buff		*recv_evt;
297 	struct sk_buff		*sent_cmd;
298 	struct sk_buff		*reassembly[NUM_REASSEMBLY];
299 
300 	struct mutex		req_lock;
301 	wait_queue_head_t	req_wait_q;
302 	__u32			req_status;
303 	__u32			req_result;
304 
305 	void			*smp_data;
306 
307 	struct discovery_state	discovery;
308 	struct hci_conn_hash	conn_hash;
309 
310 	struct list_head	mgmt_pending;
311 	struct list_head	blacklist;
312 	struct list_head	whitelist;
313 	struct list_head	uuids;
314 	struct list_head	link_keys;
315 	struct list_head	long_term_keys;
316 	struct list_head	identity_resolving_keys;
317 	struct list_head	remote_oob_data;
318 	struct list_head	le_white_list;
319 	struct list_head	le_conn_params;
320 	struct list_head	pend_le_conns;
321 	struct list_head	pend_le_reports;
322 
323 	struct hci_dev_stats	stat;
324 
325 	atomic_t		promisc;
326 
327 	struct dentry		*debugfs;
328 
329 	struct device		dev;
330 
331 	struct rfkill		*rfkill;
332 
333 	unsigned long		dbg_flags;
334 	unsigned long		dev_flags;
335 
336 	struct delayed_work	le_scan_disable;
337 
338 	__s8			adv_tx_power;
339 	__u8			adv_data[HCI_MAX_AD_LENGTH];
340 	__u8			adv_data_len;
341 	__u8			scan_rsp_data[HCI_MAX_AD_LENGTH];
342 	__u8			scan_rsp_data_len;
343 
344 	__u8			irk[16];
345 	__u32			rpa_timeout;
346 	struct delayed_work	rpa_expired;
347 	bdaddr_t		rpa;
348 
349 	int (*open)(struct hci_dev *hdev);
350 	int (*close)(struct hci_dev *hdev);
351 	int (*flush)(struct hci_dev *hdev);
352 	int (*setup)(struct hci_dev *hdev);
353 	int (*send)(struct hci_dev *hdev, struct sk_buff *skb);
354 	void (*notify)(struct hci_dev *hdev, unsigned int evt);
355 	int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr);
356 };
357 
358 #define HCI_PHY_HANDLE(handle)	(handle & 0xff)
359 
360 struct hci_conn {
361 	struct list_head list;
362 
363 	atomic_t	refcnt;
364 
365 	bdaddr_t	dst;
366 	__u8		dst_type;
367 	bdaddr_t	src;
368 	__u8		src_type;
369 	bdaddr_t	init_addr;
370 	__u8		init_addr_type;
371 	bdaddr_t	resp_addr;
372 	__u8		resp_addr_type;
373 	__u16		handle;
374 	__u16		state;
375 	__u8		mode;
376 	__u8		type;
377 	__u8		role;
378 	bool		out;
379 	__u8		attempt;
380 	__u8		dev_class[3];
381 	__u8		features[HCI_MAX_PAGES][8];
382 	__u16		pkt_type;
383 	__u16		link_policy;
384 	__u8		key_type;
385 	__u8		auth_type;
386 	__u8		sec_level;
387 	__u8		pending_sec_level;
388 	__u8		pin_length;
389 	__u8		enc_key_size;
390 	__u8		io_capability;
391 	__u32		passkey_notify;
392 	__u8		passkey_entered;
393 	__u16		disc_timeout;
394 	__u16		conn_timeout;
395 	__u16		setting;
396 	__u16		le_conn_min_interval;
397 	__u16		le_conn_max_interval;
398 	__u16		le_conn_interval;
399 	__u16		le_conn_latency;
400 	__u16		le_supv_timeout;
401 	__s8		rssi;
402 	__s8		tx_power;
403 	__s8		max_tx_power;
404 	unsigned long	flags;
405 
406 	__u32		clock;
407 	__u16		clock_accuracy;
408 
409 	unsigned long	conn_info_timestamp;
410 
411 	__u8		remote_cap;
412 	__u8		remote_auth;
413 	__u8		remote_id;
414 
415 	unsigned int	sent;
416 
417 	struct sk_buff_head data_q;
418 	struct list_head chan_list;
419 
420 	struct delayed_work disc_work;
421 	struct delayed_work auto_accept_work;
422 	struct delayed_work idle_work;
423 	struct delayed_work le_conn_timeout;
424 
425 	struct device	dev;
426 
427 	struct hci_dev	*hdev;
428 	void		*l2cap_data;
429 	void		*sco_data;
430 	struct amp_mgr	*amp_mgr;
431 
432 	struct hci_conn	*link;
433 
434 	void (*connect_cfm_cb)	(struct hci_conn *conn, u8 status);
435 	void (*security_cfm_cb)	(struct hci_conn *conn, u8 status);
436 	void (*disconn_cfm_cb)	(struct hci_conn *conn, u8 reason);
437 };
438 
439 struct hci_chan {
440 	struct list_head list;
441 	__u16 handle;
442 	struct hci_conn *conn;
443 	struct sk_buff_head data_q;
444 	unsigned int	sent;
445 	__u8		state;
446 };
447 
448 struct hci_conn_params {
449 	struct list_head list;
450 	struct list_head action;
451 
452 	bdaddr_t addr;
453 	u8 addr_type;
454 
455 	u16 conn_min_interval;
456 	u16 conn_max_interval;
457 	u16 conn_latency;
458 	u16 supervision_timeout;
459 
460 	enum {
461 		HCI_AUTO_CONN_DISABLED,
462 		HCI_AUTO_CONN_REPORT,
463 		HCI_AUTO_CONN_DIRECT,
464 		HCI_AUTO_CONN_ALWAYS,
465 		HCI_AUTO_CONN_LINK_LOSS,
466 	} auto_connect;
467 
468 	struct hci_conn *conn;
469 };
470 
471 extern struct list_head hci_dev_list;
472 extern struct list_head hci_cb_list;
473 extern rwlock_t hci_dev_list_lock;
474 extern rwlock_t hci_cb_list_lock;
475 
476 /* ----- HCI interface to upper protocols ----- */
477 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
478 void l2cap_connect_cfm(struct hci_conn *hcon, u8 status);
479 int l2cap_disconn_ind(struct hci_conn *hcon);
480 void l2cap_disconn_cfm(struct hci_conn *hcon, u8 reason);
481 int l2cap_security_cfm(struct hci_conn *hcon, u8 status, u8 encrypt);
482 int l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags);
483 
484 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags);
485 void sco_connect_cfm(struct hci_conn *hcon, __u8 status);
486 void sco_disconn_cfm(struct hci_conn *hcon, __u8 reason);
487 int sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb);
488 
489 /* ----- Inquiry cache ----- */
490 #define INQUIRY_CACHE_AGE_MAX   (HZ*30)   /* 30 seconds */
491 #define INQUIRY_ENTRY_AGE_MAX   (HZ*60)   /* 60 seconds */
492 
493 static inline void discovery_init(struct hci_dev *hdev)
494 {
495 	hdev->discovery.state = DISCOVERY_STOPPED;
496 	INIT_LIST_HEAD(&hdev->discovery.all);
497 	INIT_LIST_HEAD(&hdev->discovery.unknown);
498 	INIT_LIST_HEAD(&hdev->discovery.resolve);
499 }
500 
501 bool hci_discovery_active(struct hci_dev *hdev);
502 
503 void hci_discovery_set_state(struct hci_dev *hdev, int state);
504 
505 static inline int inquiry_cache_empty(struct hci_dev *hdev)
506 {
507 	return list_empty(&hdev->discovery.all);
508 }
509 
510 static inline long inquiry_cache_age(struct hci_dev *hdev)
511 {
512 	struct discovery_state *c = &hdev->discovery;
513 	return jiffies - c->timestamp;
514 }
515 
516 static inline long inquiry_entry_age(struct inquiry_entry *e)
517 {
518 	return jiffies - e->timestamp;
519 }
520 
521 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
522 					       bdaddr_t *bdaddr);
523 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
524 						       bdaddr_t *bdaddr);
525 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
526 						       bdaddr_t *bdaddr,
527 						       int state);
528 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
529 				      struct inquiry_entry *ie);
530 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
531 			     bool name_known);
532 void hci_inquiry_cache_flush(struct hci_dev *hdev);
533 
534 /* ----- HCI Connections ----- */
535 enum {
536 	HCI_CONN_AUTH_PEND,
537 	HCI_CONN_REAUTH_PEND,
538 	HCI_CONN_ENCRYPT_PEND,
539 	HCI_CONN_RSWITCH_PEND,
540 	HCI_CONN_MODE_CHANGE_PEND,
541 	HCI_CONN_SCO_SETUP_PEND,
542 	HCI_CONN_MGMT_CONNECTED,
543 	HCI_CONN_SSP_ENABLED,
544 	HCI_CONN_SC_ENABLED,
545 	HCI_CONN_AES_CCM,
546 	HCI_CONN_POWER_SAVE,
547 	HCI_CONN_REMOTE_OOB,
548 	HCI_CONN_FLUSH_KEY,
549 	HCI_CONN_ENCRYPT,
550 	HCI_CONN_AUTH,
551 	HCI_CONN_SECURE,
552 	HCI_CONN_FIPS,
553 	HCI_CONN_STK_ENCRYPT,
554 	HCI_CONN_AUTH_INITIATOR,
555 	HCI_CONN_DROP,
556 };
557 
558 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn)
559 {
560 	struct hci_dev *hdev = conn->hdev;
561 	return test_bit(HCI_SSP_ENABLED, &hdev->dev_flags) &&
562 	       test_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
563 }
564 
565 static inline bool hci_conn_sc_enabled(struct hci_conn *conn)
566 {
567 	struct hci_dev *hdev = conn->hdev;
568 	return test_bit(HCI_SC_ENABLED, &hdev->dev_flags) &&
569 	       test_bit(HCI_CONN_SC_ENABLED, &conn->flags);
570 }
571 
572 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c)
573 {
574 	struct hci_conn_hash *h = &hdev->conn_hash;
575 	list_add_rcu(&c->list, &h->list);
576 	switch (c->type) {
577 	case ACL_LINK:
578 		h->acl_num++;
579 		break;
580 	case AMP_LINK:
581 		h->amp_num++;
582 		break;
583 	case LE_LINK:
584 		h->le_num++;
585 		if (c->role == HCI_ROLE_SLAVE)
586 			h->le_num_slave++;
587 		break;
588 	case SCO_LINK:
589 	case ESCO_LINK:
590 		h->sco_num++;
591 		break;
592 	}
593 }
594 
595 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c)
596 {
597 	struct hci_conn_hash *h = &hdev->conn_hash;
598 
599 	list_del_rcu(&c->list);
600 	synchronize_rcu();
601 
602 	switch (c->type) {
603 	case ACL_LINK:
604 		h->acl_num--;
605 		break;
606 	case AMP_LINK:
607 		h->amp_num--;
608 		break;
609 	case LE_LINK:
610 		h->le_num--;
611 		if (c->role == HCI_ROLE_SLAVE)
612 			h->le_num_slave--;
613 		break;
614 	case SCO_LINK:
615 	case ESCO_LINK:
616 		h->sco_num--;
617 		break;
618 	}
619 }
620 
621 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type)
622 {
623 	struct hci_conn_hash *h = &hdev->conn_hash;
624 	switch (type) {
625 	case ACL_LINK:
626 		return h->acl_num;
627 	case AMP_LINK:
628 		return h->amp_num;
629 	case LE_LINK:
630 		return h->le_num;
631 	case SCO_LINK:
632 	case ESCO_LINK:
633 		return h->sco_num;
634 	default:
635 		return 0;
636 	}
637 }
638 
639 static inline unsigned int hci_conn_count(struct hci_dev *hdev)
640 {
641 	struct hci_conn_hash *c = &hdev->conn_hash;
642 
643 	return c->acl_num + c->amp_num + c->sco_num + c->le_num;
644 }
645 
646 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev,
647 								__u16 handle)
648 {
649 	struct hci_conn_hash *h = &hdev->conn_hash;
650 	struct hci_conn  *c;
651 
652 	rcu_read_lock();
653 
654 	list_for_each_entry_rcu(c, &h->list, list) {
655 		if (c->handle == handle) {
656 			rcu_read_unlock();
657 			return c;
658 		}
659 	}
660 	rcu_read_unlock();
661 
662 	return NULL;
663 }
664 
665 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev,
666 							__u8 type, bdaddr_t *ba)
667 {
668 	struct hci_conn_hash *h = &hdev->conn_hash;
669 	struct hci_conn  *c;
670 
671 	rcu_read_lock();
672 
673 	list_for_each_entry_rcu(c, &h->list, list) {
674 		if (c->type == type && !bacmp(&c->dst, ba)) {
675 			rcu_read_unlock();
676 			return c;
677 		}
678 	}
679 
680 	rcu_read_unlock();
681 
682 	return NULL;
683 }
684 
685 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev,
686 							__u8 type, __u16 state)
687 {
688 	struct hci_conn_hash *h = &hdev->conn_hash;
689 	struct hci_conn  *c;
690 
691 	rcu_read_lock();
692 
693 	list_for_each_entry_rcu(c, &h->list, list) {
694 		if (c->type == type && c->state == state) {
695 			rcu_read_unlock();
696 			return c;
697 		}
698 	}
699 
700 	rcu_read_unlock();
701 
702 	return NULL;
703 }
704 
705 int hci_disconnect(struct hci_conn *conn, __u8 reason);
706 bool hci_setup_sync(struct hci_conn *conn, __u16 handle);
707 void hci_sco_setup(struct hci_conn *conn, __u8 status);
708 
709 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
710 			      u8 role);
711 int hci_conn_del(struct hci_conn *conn);
712 void hci_conn_hash_flush(struct hci_dev *hdev);
713 void hci_conn_check_pending(struct hci_dev *hdev);
714 
715 struct hci_chan *hci_chan_create(struct hci_conn *conn);
716 void hci_chan_del(struct hci_chan *chan);
717 void hci_chan_list_flush(struct hci_conn *conn);
718 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle);
719 
720 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
721 				u8 dst_type, u8 sec_level, u16 conn_timeout,
722 				u8 role);
723 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
724 				 u8 sec_level, u8 auth_type);
725 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
726 				 __u16 setting);
727 int hci_conn_check_link_mode(struct hci_conn *conn);
728 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level);
729 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
730 		      bool initiator);
731 int hci_conn_change_link_key(struct hci_conn *conn);
732 int hci_conn_switch_role(struct hci_conn *conn, __u8 role);
733 
734 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active);
735 
736 void hci_le_conn_failed(struct hci_conn *conn, u8 status);
737 
738 /*
739  * hci_conn_get() and hci_conn_put() are used to control the life-time of an
740  * "hci_conn" object. They do not guarantee that the hci_conn object is running,
741  * working or anything else. They just guarantee that the object is available
742  * and can be dereferenced. So you can use its locks, local variables and any
743  * other constant data.
744  * Before accessing runtime data, you _must_ lock the object and then check that
745  * it is still running. As soon as you release the locks, the connection might
746  * get dropped, though.
747  *
748  * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control
749  * how long the underlying connection is held. So every channel that runs on the
750  * hci_conn object calls this to prevent the connection from disappearing. As
751  * long as you hold a device, you must also guarantee that you have a valid
752  * reference to the device via hci_conn_get() (or the initial reference from
753  * hci_conn_add()).
754  * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't
755  * break because nobody cares for that. But this means, we cannot use
756  * _get()/_drop() in it, but require the caller to have a valid ref (FIXME).
757  */
758 
759 static inline struct hci_conn *hci_conn_get(struct hci_conn *conn)
760 {
761 	get_device(&conn->dev);
762 	return conn;
763 }
764 
765 static inline void hci_conn_put(struct hci_conn *conn)
766 {
767 	put_device(&conn->dev);
768 }
769 
770 static inline void hci_conn_hold(struct hci_conn *conn)
771 {
772 	BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
773 
774 	atomic_inc(&conn->refcnt);
775 	cancel_delayed_work(&conn->disc_work);
776 }
777 
778 static inline void hci_conn_drop(struct hci_conn *conn)
779 {
780 	BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
781 
782 	if (atomic_dec_and_test(&conn->refcnt)) {
783 		unsigned long timeo;
784 
785 		switch (conn->type) {
786 		case ACL_LINK:
787 		case LE_LINK:
788 			cancel_delayed_work(&conn->idle_work);
789 			if (conn->state == BT_CONNECTED) {
790 				timeo = conn->disc_timeout;
791 				if (!conn->out)
792 					timeo *= 2;
793 			} else {
794 				timeo = 0;
795 			}
796 			break;
797 
798 		case AMP_LINK:
799 			timeo = conn->disc_timeout;
800 			break;
801 
802 		default:
803 			timeo = 0;
804 			break;
805 		}
806 
807 		cancel_delayed_work(&conn->disc_work);
808 		queue_delayed_work(conn->hdev->workqueue,
809 				   &conn->disc_work, timeo);
810 	}
811 }
812 
813 /* ----- HCI Devices ----- */
814 static inline void hci_dev_put(struct hci_dev *d)
815 {
816 	BT_DBG("%s orig refcnt %d", d->name,
817 	       atomic_read(&d->dev.kobj.kref.refcount));
818 
819 	put_device(&d->dev);
820 }
821 
822 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d)
823 {
824 	BT_DBG("%s orig refcnt %d", d->name,
825 	       atomic_read(&d->dev.kobj.kref.refcount));
826 
827 	get_device(&d->dev);
828 	return d;
829 }
830 
831 #define hci_dev_lock(d)		mutex_lock(&d->lock)
832 #define hci_dev_unlock(d)	mutex_unlock(&d->lock)
833 
834 #define to_hci_dev(d) container_of(d, struct hci_dev, dev)
835 #define to_hci_conn(c) container_of(c, struct hci_conn, dev)
836 
837 static inline void *hci_get_drvdata(struct hci_dev *hdev)
838 {
839 	return dev_get_drvdata(&hdev->dev);
840 }
841 
842 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data)
843 {
844 	dev_set_drvdata(&hdev->dev, data);
845 }
846 
847 struct hci_dev *hci_dev_get(int index);
848 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src);
849 
850 struct hci_dev *hci_alloc_dev(void);
851 void hci_free_dev(struct hci_dev *hdev);
852 int hci_register_dev(struct hci_dev *hdev);
853 void hci_unregister_dev(struct hci_dev *hdev);
854 int hci_suspend_dev(struct hci_dev *hdev);
855 int hci_resume_dev(struct hci_dev *hdev);
856 int hci_dev_open(__u16 dev);
857 int hci_dev_close(__u16 dev);
858 int hci_dev_reset(__u16 dev);
859 int hci_dev_reset_stat(__u16 dev);
860 int hci_dev_cmd(unsigned int cmd, void __user *arg);
861 int hci_get_dev_list(void __user *arg);
862 int hci_get_dev_info(void __user *arg);
863 int hci_get_conn_list(void __user *arg);
864 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg);
865 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg);
866 int hci_inquiry(void __user *arg);
867 
868 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list,
869 					   bdaddr_t *bdaddr, u8 type);
870 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type);
871 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type);
872 void hci_bdaddr_list_clear(struct list_head *list);
873 
874 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
875 					       bdaddr_t *addr, u8 addr_type);
876 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
877 					    bdaddr_t *addr, u8 addr_type);
878 int hci_conn_params_set(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type,
879 			u8 auto_connect);
880 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type);
881 void hci_conn_params_clear_all(struct hci_dev *hdev);
882 void hci_conn_params_clear_disabled(struct hci_dev *hdev);
883 
884 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
885 						  bdaddr_t *addr,
886 						  u8 addr_type);
887 
888 void hci_update_background_scan(struct hci_dev *hdev);
889 
890 void hci_uuids_clear(struct hci_dev *hdev);
891 
892 void hci_link_keys_clear(struct hci_dev *hdev);
893 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
894 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
895 				  bdaddr_t *bdaddr, u8 *val, u8 type,
896 				  u8 pin_len, bool *persistent);
897 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, __le64 rand,
898 			     u8 role);
899 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
900 			    u8 addr_type, u8 type, u8 authenticated,
901 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand);
902 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
903 				     u8 addr_type, u8 role);
904 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type);
905 void hci_smp_ltks_clear(struct hci_dev *hdev);
906 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
907 
908 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa);
909 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
910 				     u8 addr_type);
911 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
912 			    u8 addr_type, u8 val[16], bdaddr_t *rpa);
913 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type);
914 void hci_smp_irks_clear(struct hci_dev *hdev);
915 
916 void hci_remote_oob_data_clear(struct hci_dev *hdev);
917 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
918 					  bdaddr_t *bdaddr);
919 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
920 			    u8 *hash, u8 *randomizer);
921 int hci_add_remote_oob_ext_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
922 				u8 *hash192, u8 *randomizer192,
923 				u8 *hash256, u8 *randomizer256);
924 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr);
925 
926 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);
927 
928 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb);
929 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count);
930 
931 void hci_init_sysfs(struct hci_dev *hdev);
932 void hci_conn_init_sysfs(struct hci_conn *conn);
933 void hci_conn_add_sysfs(struct hci_conn *conn);
934 void hci_conn_del_sysfs(struct hci_conn *conn);
935 
936 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev))
937 
938 /* ----- LMP capabilities ----- */
939 #define lmp_encrypt_capable(dev)   ((dev)->features[0][0] & LMP_ENCRYPT)
940 #define lmp_rswitch_capable(dev)   ((dev)->features[0][0] & LMP_RSWITCH)
941 #define lmp_hold_capable(dev)      ((dev)->features[0][0] & LMP_HOLD)
942 #define lmp_sniff_capable(dev)     ((dev)->features[0][0] & LMP_SNIFF)
943 #define lmp_park_capable(dev)      ((dev)->features[0][1] & LMP_PARK)
944 #define lmp_inq_rssi_capable(dev)  ((dev)->features[0][3] & LMP_RSSI_INQ)
945 #define lmp_esco_capable(dev)      ((dev)->features[0][3] & LMP_ESCO)
946 #define lmp_bredr_capable(dev)     (!((dev)->features[0][4] & LMP_NO_BREDR))
947 #define lmp_le_capable(dev)        ((dev)->features[0][4] & LMP_LE)
948 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR)
949 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC)
950 #define lmp_ext_inq_capable(dev)   ((dev)->features[0][6] & LMP_EXT_INQ)
951 #define lmp_le_br_capable(dev)     (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR))
952 #define lmp_ssp_capable(dev)       ((dev)->features[0][6] & LMP_SIMPLE_PAIR)
953 #define lmp_no_flush_capable(dev)  ((dev)->features[0][6] & LMP_NO_FLUSH)
954 #define lmp_lsto_capable(dev)      ((dev)->features[0][7] & LMP_LSTO)
955 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR)
956 #define lmp_ext_feat_capable(dev)  ((dev)->features[0][7] & LMP_EXTFEATURES)
957 #define lmp_transp_capable(dev)    ((dev)->features[0][2] & LMP_TRANSPARENT)
958 
959 /* ----- Extended LMP capabilities ----- */
960 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER)
961 #define lmp_csb_slave_capable(dev)  ((dev)->features[2][0] & LMP_CSB_SLAVE)
962 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN)
963 #define lmp_sync_scan_capable(dev)  ((dev)->features[2][0] & LMP_SYNC_SCAN)
964 #define lmp_sc_capable(dev)         ((dev)->features[2][1] & LMP_SC)
965 #define lmp_ping_capable(dev)       ((dev)->features[2][1] & LMP_PING)
966 
967 /* ----- Host capabilities ----- */
968 #define lmp_host_ssp_capable(dev)  ((dev)->features[1][0] & LMP_HOST_SSP)
969 #define lmp_host_sc_capable(dev)   ((dev)->features[1][0] & LMP_HOST_SC)
970 #define lmp_host_le_capable(dev)   (!!((dev)->features[1][0] & LMP_HOST_LE))
971 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR))
972 
973 #define hdev_is_powered(hdev) (test_bit(HCI_UP, &hdev->flags) && \
974 				!test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
975 
976 /* ----- HCI protocols ----- */
977 #define HCI_PROTO_DEFER             0x01
978 
979 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
980 					__u8 type, __u8 *flags)
981 {
982 	switch (type) {
983 	case ACL_LINK:
984 		return l2cap_connect_ind(hdev, bdaddr);
985 
986 	case SCO_LINK:
987 	case ESCO_LINK:
988 		return sco_connect_ind(hdev, bdaddr, flags);
989 
990 	default:
991 		BT_ERR("unknown link type %d", type);
992 		return -EINVAL;
993 	}
994 }
995 
996 static inline void hci_proto_connect_cfm(struct hci_conn *conn, __u8 status)
997 {
998 	switch (conn->type) {
999 	case ACL_LINK:
1000 	case LE_LINK:
1001 		l2cap_connect_cfm(conn, status);
1002 		break;
1003 
1004 	case SCO_LINK:
1005 	case ESCO_LINK:
1006 		sco_connect_cfm(conn, status);
1007 		break;
1008 
1009 	default:
1010 		BT_ERR("unknown link type %d", conn->type);
1011 		break;
1012 	}
1013 
1014 	if (conn->connect_cfm_cb)
1015 		conn->connect_cfm_cb(conn, status);
1016 }
1017 
1018 static inline int hci_proto_disconn_ind(struct hci_conn *conn)
1019 {
1020 	if (conn->type != ACL_LINK && conn->type != LE_LINK)
1021 		return HCI_ERROR_REMOTE_USER_TERM;
1022 
1023 	return l2cap_disconn_ind(conn);
1024 }
1025 
1026 static inline void hci_proto_disconn_cfm(struct hci_conn *conn, __u8 reason)
1027 {
1028 	switch (conn->type) {
1029 	case ACL_LINK:
1030 	case LE_LINK:
1031 		l2cap_disconn_cfm(conn, reason);
1032 		break;
1033 
1034 	case SCO_LINK:
1035 	case ESCO_LINK:
1036 		sco_disconn_cfm(conn, reason);
1037 		break;
1038 
1039 	/* L2CAP would be handled for BREDR chan */
1040 	case AMP_LINK:
1041 		break;
1042 
1043 	default:
1044 		BT_ERR("unknown link type %d", conn->type);
1045 		break;
1046 	}
1047 
1048 	if (conn->disconn_cfm_cb)
1049 		conn->disconn_cfm_cb(conn, reason);
1050 }
1051 
1052 static inline void hci_proto_auth_cfm(struct hci_conn *conn, __u8 status)
1053 {
1054 	__u8 encrypt;
1055 
1056 	if (conn->type != ACL_LINK && conn->type != LE_LINK)
1057 		return;
1058 
1059 	if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1060 		return;
1061 
1062 	encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00;
1063 	l2cap_security_cfm(conn, status, encrypt);
1064 
1065 	if (conn->security_cfm_cb)
1066 		conn->security_cfm_cb(conn, status);
1067 }
1068 
1069 static inline void hci_proto_encrypt_cfm(struct hci_conn *conn, __u8 status,
1070 								__u8 encrypt)
1071 {
1072 	if (conn->type != ACL_LINK && conn->type != LE_LINK)
1073 		return;
1074 
1075 	l2cap_security_cfm(conn, status, encrypt);
1076 
1077 	if (conn->security_cfm_cb)
1078 		conn->security_cfm_cb(conn, status);
1079 }
1080 
1081 /* ----- HCI callbacks ----- */
1082 struct hci_cb {
1083 	struct list_head list;
1084 
1085 	char *name;
1086 
1087 	void (*security_cfm)	(struct hci_conn *conn, __u8 status,
1088 								__u8 encrypt);
1089 	void (*key_change_cfm)	(struct hci_conn *conn, __u8 status);
1090 	void (*role_switch_cfm)	(struct hci_conn *conn, __u8 status, __u8 role);
1091 };
1092 
1093 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status)
1094 {
1095 	struct hci_cb *cb;
1096 	__u8 encrypt;
1097 
1098 	hci_proto_auth_cfm(conn, status);
1099 
1100 	if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1101 		return;
1102 
1103 	encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00;
1104 
1105 	read_lock(&hci_cb_list_lock);
1106 	list_for_each_entry(cb, &hci_cb_list, list) {
1107 		if (cb->security_cfm)
1108 			cb->security_cfm(conn, status, encrypt);
1109 	}
1110 	read_unlock(&hci_cb_list_lock);
1111 }
1112 
1113 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status,
1114 								__u8 encrypt)
1115 {
1116 	struct hci_cb *cb;
1117 
1118 	if (conn->sec_level == BT_SECURITY_SDP)
1119 		conn->sec_level = BT_SECURITY_LOW;
1120 
1121 	if (conn->pending_sec_level > conn->sec_level)
1122 		conn->sec_level = conn->pending_sec_level;
1123 
1124 	hci_proto_encrypt_cfm(conn, status, encrypt);
1125 
1126 	read_lock(&hci_cb_list_lock);
1127 	list_for_each_entry(cb, &hci_cb_list, list) {
1128 		if (cb->security_cfm)
1129 			cb->security_cfm(conn, status, encrypt);
1130 	}
1131 	read_unlock(&hci_cb_list_lock);
1132 }
1133 
1134 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status)
1135 {
1136 	struct hci_cb *cb;
1137 
1138 	read_lock(&hci_cb_list_lock);
1139 	list_for_each_entry(cb, &hci_cb_list, list) {
1140 		if (cb->key_change_cfm)
1141 			cb->key_change_cfm(conn, status);
1142 	}
1143 	read_unlock(&hci_cb_list_lock);
1144 }
1145 
1146 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status,
1147 								__u8 role)
1148 {
1149 	struct hci_cb *cb;
1150 
1151 	read_lock(&hci_cb_list_lock);
1152 	list_for_each_entry(cb, &hci_cb_list, list) {
1153 		if (cb->role_switch_cfm)
1154 			cb->role_switch_cfm(conn, status, role);
1155 	}
1156 	read_unlock(&hci_cb_list_lock);
1157 }
1158 
1159 static inline bool eir_has_data_type(u8 *data, size_t data_len, u8 type)
1160 {
1161 	size_t parsed = 0;
1162 
1163 	if (data_len < 2)
1164 		return false;
1165 
1166 	while (parsed < data_len - 1) {
1167 		u8 field_len = data[0];
1168 
1169 		if (field_len == 0)
1170 			break;
1171 
1172 		parsed += field_len + 1;
1173 
1174 		if (parsed > data_len)
1175 			break;
1176 
1177 		if (data[1] == type)
1178 			return true;
1179 
1180 		data += field_len + 1;
1181 	}
1182 
1183 	return false;
1184 }
1185 
1186 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type)
1187 {
1188 	if (addr_type != ADDR_LE_DEV_RANDOM)
1189 		return false;
1190 
1191 	if ((bdaddr->b[5] & 0xc0) == 0x40)
1192 	       return true;
1193 
1194 	return false;
1195 }
1196 
1197 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type)
1198 {
1199 	if (addr_type == ADDR_LE_DEV_PUBLIC)
1200 		return true;
1201 
1202 	/* Check for Random Static address type */
1203 	if ((addr->b[5] & 0xc0) == 0xc0)
1204 		return true;
1205 
1206 	return false;
1207 }
1208 
1209 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev,
1210 					  bdaddr_t *bdaddr, u8 addr_type)
1211 {
1212 	if (!hci_bdaddr_is_rpa(bdaddr, addr_type))
1213 		return NULL;
1214 
1215 	return hci_find_irk_by_rpa(hdev, bdaddr);
1216 }
1217 
1218 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency,
1219 					u16 to_multiplier)
1220 {
1221 	u16 max_latency;
1222 
1223 	if (min > max || min < 6 || max > 3200)
1224 		return -EINVAL;
1225 
1226 	if (to_multiplier < 10 || to_multiplier > 3200)
1227 		return -EINVAL;
1228 
1229 	if (max >= to_multiplier * 8)
1230 		return -EINVAL;
1231 
1232 	max_latency = (to_multiplier * 8 / max) - 1;
1233 	if (latency > 499 || latency > max_latency)
1234 		return -EINVAL;
1235 
1236 	return 0;
1237 }
1238 
1239 int hci_register_cb(struct hci_cb *hcb);
1240 int hci_unregister_cb(struct hci_cb *hcb);
1241 
1242 struct hci_request {
1243 	struct hci_dev		*hdev;
1244 	struct sk_buff_head	cmd_q;
1245 
1246 	/* If something goes wrong when building the HCI request, the error
1247 	 * value is stored in this field.
1248 	 */
1249 	int			err;
1250 };
1251 
1252 void hci_req_init(struct hci_request *req, struct hci_dev *hdev);
1253 int hci_req_run(struct hci_request *req, hci_req_complete_t complete);
1254 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
1255 		 const void *param);
1256 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
1257 		    const void *param, u8 event);
1258 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status);
1259 bool hci_req_pending(struct hci_dev *hdev);
1260 
1261 void hci_req_add_le_scan_disable(struct hci_request *req);
1262 void hci_req_add_le_passive_scan(struct hci_request *req);
1263 
1264 void hci_update_page_scan(struct hci_dev *hdev, struct hci_request *req);
1265 
1266 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1267 			       const void *param, u32 timeout);
1268 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1269 				  const void *param, u8 event, u32 timeout);
1270 
1271 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
1272 		 const void *param);
1273 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags);
1274 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb);
1275 
1276 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode);
1277 
1278 /* ----- HCI Sockets ----- */
1279 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb);
1280 void hci_send_to_control(struct sk_buff *skb, struct sock *skip_sk);
1281 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb);
1282 
1283 void hci_sock_dev_event(struct hci_dev *hdev, int event);
1284 
1285 /* Management interface */
1286 #define DISCOV_TYPE_BREDR		(BIT(BDADDR_BREDR))
1287 #define DISCOV_TYPE_LE			(BIT(BDADDR_LE_PUBLIC) | \
1288 					 BIT(BDADDR_LE_RANDOM))
1289 #define DISCOV_TYPE_INTERLEAVED		(BIT(BDADDR_BREDR) | \
1290 					 BIT(BDADDR_LE_PUBLIC) | \
1291 					 BIT(BDADDR_LE_RANDOM))
1292 
1293 /* These LE scan and inquiry parameters were chosen according to LE General
1294  * Discovery Procedure specification.
1295  */
1296 #define DISCOV_LE_SCAN_WIN		0x12
1297 #define DISCOV_LE_SCAN_INT		0x12
1298 #define DISCOV_LE_TIMEOUT		10240	/* msec */
1299 #define DISCOV_INTERLEAVED_TIMEOUT	5120	/* msec */
1300 #define DISCOV_INTERLEAVED_INQUIRY_LEN	0x04
1301 #define DISCOV_BREDR_INQUIRY_LEN	0x08
1302 
1303 int mgmt_control(struct sock *sk, struct msghdr *msg, size_t len);
1304 int mgmt_new_settings(struct hci_dev *hdev);
1305 void mgmt_index_added(struct hci_dev *hdev);
1306 void mgmt_index_removed(struct hci_dev *hdev);
1307 void mgmt_set_powered_failed(struct hci_dev *hdev, int err);
1308 int mgmt_powered(struct hci_dev *hdev, u8 powered);
1309 int mgmt_update_adv_data(struct hci_dev *hdev);
1310 void mgmt_discoverable_timeout(struct hci_dev *hdev);
1311 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key,
1312 		       bool persistent);
1313 void mgmt_device_connected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1314 			   u8 addr_type, u32 flags, u8 *name, u8 name_len,
1315 			   u8 *dev_class);
1316 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr,
1317 			      u8 link_type, u8 addr_type, u8 reason,
1318 			      bool mgmt_connected);
1319 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr,
1320 			    u8 link_type, u8 addr_type, u8 status);
1321 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1322 			 u8 addr_type, u8 status);
1323 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure);
1324 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1325 				  u8 status);
1326 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1327 				      u8 status);
1328 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1329 			      u8 link_type, u8 addr_type, u32 value,
1330 			      u8 confirm_hint);
1331 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1332 				     u8 link_type, u8 addr_type, u8 status);
1333 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1334 					 u8 link_type, u8 addr_type, u8 status);
1335 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1336 			      u8 link_type, u8 addr_type);
1337 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1338 				     u8 link_type, u8 addr_type, u8 status);
1339 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1340 					 u8 link_type, u8 addr_type, u8 status);
1341 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr,
1342 			     u8 link_type, u8 addr_type, u32 passkey,
1343 			     u8 entered);
1344 void mgmt_auth_failed(struct hci_conn *conn, u8 status);
1345 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status);
1346 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1347 void mgmt_sc_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1348 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class,
1349 				    u8 status);
1350 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status);
1351 void mgmt_read_local_oob_data_complete(struct hci_dev *hdev, u8 *hash192,
1352 				       u8 *randomizer192, u8 *hash256,
1353 				       u8 *randomizer256, u8 status);
1354 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1355 		       u8 addr_type, u8 *dev_class, s8 rssi, u32 flags,
1356 		       u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len);
1357 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1358 		      u8 addr_type, s8 rssi, u8 *name, u8 name_len);
1359 void mgmt_discovering(struct hci_dev *hdev, u8 discovering);
1360 bool mgmt_powering_down(struct hci_dev *hdev);
1361 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent);
1362 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk);
1363 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk,
1364 		   bool persistent);
1365 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr,
1366 			 u8 bdaddr_type, u8 store_hint, u16 min_interval,
1367 			 u16 max_interval, u16 latency, u16 timeout);
1368 void mgmt_reenable_advertising(struct hci_dev *hdev);
1369 void mgmt_smp_complete(struct hci_conn *conn, bool complete);
1370 
1371 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
1372 		      u16 to_multiplier);
1373 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
1374 							__u8 ltk[16]);
1375 
1376 int hci_update_random_address(struct hci_request *req, bool require_privacy,
1377 			      u8 *own_addr_type);
1378 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
1379 			       u8 *bdaddr_type);
1380 
1381 #define SCO_AIRMODE_MASK       0x0003
1382 #define SCO_AIRMODE_CVSD       0x0000
1383 #define SCO_AIRMODE_TRANSP     0x0003
1384 
1385 #endif /* __HCI_CORE_H */
1386