xref: /openbmc/linux/include/net/6lowpan.h (revision 36bccb11)
1 /*
2  * Copyright 2011, Siemens AG
3  * written by Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
4  */
5 
6 /*
7  * Based on patches from Jon Smirl <jonsmirl@gmail.com>
8  * Copyright (c) 2011 Jon Smirl <jonsmirl@gmail.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2
12  * as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License along
20  * with this program; if not, write to the Free Software Foundation, Inc.,
21  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
22  */
23 
24 /* Jon's code is based on 6lowpan implementation for Contiki which is:
25  * Copyright (c) 2008, Swedish Institute of Computer Science.
26  * All rights reserved.
27  *
28  * Redistribution and use in source and binary forms, with or without
29  * modification, are permitted provided that the following conditions
30  * are met:
31  * 1. Redistributions of source code must retain the above copyright
32  *    notice, this list of conditions and the following disclaimer.
33  * 2. Redistributions in binary form must reproduce the above copyright
34  *    notice, this list of conditions and the following disclaimer in the
35  *    documentation and/or other materials provided with the distribution.
36  * 3. Neither the name of the Institute nor the names of its contributors
37  *    may be used to endorse or promote products derived from this software
38  *    without specific prior written permission.
39  *
40  * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  */
52 
53 #ifndef __6LOWPAN_H__
54 #define __6LOWPAN_H__
55 
56 #include <net/ipv6.h>
57 
58 #define UIP_802154_SHORTADDR_LEN	2  /* compressed ipv6 address length */
59 #define UIP_IPH_LEN			40 /* ipv6 fixed header size */
60 #define UIP_PROTO_UDP			17 /* ipv6 next header value for UDP */
61 #define UIP_FRAGH_LEN			8  /* ipv6 fragment header size */
62 
63 /*
64  * ipv6 address based on mac
65  * second bit-flip (Universe/Local) is done according RFC2464
66  */
67 #define is_addr_mac_addr_based(a, m) \
68 	((((a)->s6_addr[8])  == (((m)[0]) ^ 0x02)) &&	\
69 	 (((a)->s6_addr[9])  == (m)[1]) &&		\
70 	 (((a)->s6_addr[10]) == (m)[2]) &&		\
71 	 (((a)->s6_addr[11]) == (m)[3]) &&		\
72 	 (((a)->s6_addr[12]) == (m)[4]) &&		\
73 	 (((a)->s6_addr[13]) == (m)[5]) &&		\
74 	 (((a)->s6_addr[14]) == (m)[6]) &&		\
75 	 (((a)->s6_addr[15]) == (m)[7]))
76 
77 /* ipv6 address is unspecified */
78 #define is_addr_unspecified(a)		\
79 	((((a)->s6_addr32[0]) == 0) &&	\
80 	 (((a)->s6_addr32[1]) == 0) &&	\
81 	 (((a)->s6_addr32[2]) == 0) &&	\
82 	 (((a)->s6_addr32[3]) == 0))
83 
84 /* compare ipv6 addresses prefixes */
85 #define ipaddr_prefixcmp(addr1, addr2, length) \
86 	(memcmp(addr1, addr2, length >> 3) == 0)
87 
88 /* local link, i.e. FE80::/10 */
89 #define is_addr_link_local(a) (((a)->s6_addr16[0]) == htons(0xFE80))
90 
91 /*
92  * check whether we can compress the IID to 16 bits,
93  * it's possible for unicast adresses with first 49 bits are zero only.
94  */
95 #define lowpan_is_iid_16_bit_compressable(a)	\
96 	((((a)->s6_addr16[4]) == 0) &&		\
97 	 (((a)->s6_addr[10]) == 0) &&		\
98 	 (((a)->s6_addr[11]) == 0xff) &&	\
99 	 (((a)->s6_addr[12]) == 0xfe) &&	\
100 	 (((a)->s6_addr[13]) == 0))
101 
102 /* multicast address */
103 #define is_addr_mcast(a) (((a)->s6_addr[0]) == 0xFF)
104 
105 /* check whether the 112-bit gid of the multicast address is mappable to: */
106 
107 /* 9 bits, for FF02::1 (all nodes) and FF02::2 (all routers) addresses only. */
108 #define lowpan_is_mcast_addr_compressable(a)	\
109 	((((a)->s6_addr16[1]) == 0) &&		\
110 	 (((a)->s6_addr16[2]) == 0) &&		\
111 	 (((a)->s6_addr16[3]) == 0) &&		\
112 	 (((a)->s6_addr16[4]) == 0) &&		\
113 	 (((a)->s6_addr16[5]) == 0) &&		\
114 	 (((a)->s6_addr16[6]) == 0) &&		\
115 	 (((a)->s6_addr[14])  == 0) &&		\
116 	 ((((a)->s6_addr[15]) == 1) || (((a)->s6_addr[15]) == 2)))
117 
118 /* 48 bits, FFXX::00XX:XXXX:XXXX */
119 #define lowpan_is_mcast_addr_compressable48(a)	\
120 	((((a)->s6_addr16[1]) == 0) &&		\
121 	 (((a)->s6_addr16[2]) == 0) &&		\
122 	 (((a)->s6_addr16[3]) == 0) &&		\
123 	 (((a)->s6_addr16[4]) == 0) &&		\
124 	 (((a)->s6_addr[10]) == 0))
125 
126 /* 32 bits, FFXX::00XX:XXXX */
127 #define lowpan_is_mcast_addr_compressable32(a)	\
128 	((((a)->s6_addr16[1]) == 0) &&		\
129 	 (((a)->s6_addr16[2]) == 0) &&		\
130 	 (((a)->s6_addr16[3]) == 0) &&		\
131 	 (((a)->s6_addr16[4]) == 0) &&		\
132 	 (((a)->s6_addr16[5]) == 0) &&		\
133 	 (((a)->s6_addr[12]) == 0))
134 
135 /* 8 bits, FF02::00XX */
136 #define lowpan_is_mcast_addr_compressable8(a)	\
137 	((((a)->s6_addr[1])  == 2) &&		\
138 	 (((a)->s6_addr16[1]) == 0) &&		\
139 	 (((a)->s6_addr16[2]) == 0) &&		\
140 	 (((a)->s6_addr16[3]) == 0) &&		\
141 	 (((a)->s6_addr16[4]) == 0) &&		\
142 	 (((a)->s6_addr16[5]) == 0) &&		\
143 	 (((a)->s6_addr16[6]) == 0) &&		\
144 	 (((a)->s6_addr[14]) == 0))
145 
146 #define lowpan_is_addr_broadcast(a)	\
147 	((((a)[0]) == 0xFF) &&	\
148 	 (((a)[1]) == 0xFF) &&	\
149 	 (((a)[2]) == 0xFF) &&	\
150 	 (((a)[3]) == 0xFF) &&	\
151 	 (((a)[4]) == 0xFF) &&	\
152 	 (((a)[5]) == 0xFF) &&	\
153 	 (((a)[6]) == 0xFF) &&	\
154 	 (((a)[7]) == 0xFF))
155 
156 #define LOWPAN_DISPATCH_IPV6	0x41 /* 01000001 = 65 */
157 #define LOWPAN_DISPATCH_HC1	0x42 /* 01000010 = 66 */
158 #define LOWPAN_DISPATCH_IPHC	0x60 /* 011xxxxx = ... */
159 #define LOWPAN_DISPATCH_FRAG1	0xc0 /* 11000xxx */
160 #define LOWPAN_DISPATCH_FRAGN	0xe0 /* 11100xxx */
161 
162 #define LOWPAN_DISPATCH_MASK	0xf8 /* 11111000 */
163 
164 #define LOWPAN_FRAG_TIMEOUT	(HZ * 60)	/* time-out 60 sec */
165 
166 #define LOWPAN_FRAG1_HEAD_SIZE	0x4
167 #define LOWPAN_FRAGN_HEAD_SIZE	0x5
168 
169 /*
170  * According IEEE802.15.4 standard:
171  *   - MTU is 127 octets
172  *   - maximum MHR size is 37 octets
173  *   - MFR size is 2 octets
174  *
175  * so minimal payload size that we may guarantee is:
176  *   MTU - MHR - MFR = 88 octets
177  */
178 #define LOWPAN_FRAG_SIZE	88
179 
180 /*
181  * Values of fields within the IPHC encoding first byte
182  * (C stands for compressed and I for inline)
183  */
184 #define LOWPAN_IPHC_TF		0x18
185 
186 #define LOWPAN_IPHC_FL_C	0x10
187 #define LOWPAN_IPHC_TC_C	0x08
188 #define LOWPAN_IPHC_NH_C	0x04
189 #define LOWPAN_IPHC_TTL_1	0x01
190 #define LOWPAN_IPHC_TTL_64	0x02
191 #define LOWPAN_IPHC_TTL_255	0x03
192 #define LOWPAN_IPHC_TTL_I	0x00
193 
194 
195 /* Values of fields within the IPHC encoding second byte */
196 #define LOWPAN_IPHC_CID		0x80
197 
198 #define LOWPAN_IPHC_ADDR_00	0x00
199 #define LOWPAN_IPHC_ADDR_01	0x01
200 #define LOWPAN_IPHC_ADDR_02	0x02
201 #define LOWPAN_IPHC_ADDR_03	0x03
202 
203 #define LOWPAN_IPHC_SAC		0x40
204 #define LOWPAN_IPHC_SAM		0x30
205 
206 #define LOWPAN_IPHC_SAM_BIT	4
207 
208 #define LOWPAN_IPHC_M		0x08
209 #define LOWPAN_IPHC_DAC		0x04
210 #define LOWPAN_IPHC_DAM_00	0x00
211 #define LOWPAN_IPHC_DAM_01	0x01
212 #define LOWPAN_IPHC_DAM_10	0x02
213 #define LOWPAN_IPHC_DAM_11	0x03
214 
215 #define LOWPAN_IPHC_DAM_BIT	0
216 /*
217  * LOWPAN_UDP encoding (works together with IPHC)
218  */
219 #define LOWPAN_NHC_UDP_MASK		0xF8
220 #define LOWPAN_NHC_UDP_ID		0xF0
221 #define LOWPAN_NHC_UDP_CHECKSUMC	0x04
222 #define LOWPAN_NHC_UDP_CHECKSUMI	0x00
223 
224 #define LOWPAN_NHC_UDP_4BIT_PORT	0xF0B0
225 #define LOWPAN_NHC_UDP_4BIT_MASK	0xFFF0
226 #define LOWPAN_NHC_UDP_8BIT_PORT	0xF000
227 #define LOWPAN_NHC_UDP_8BIT_MASK	0xFF00
228 
229 /* values for port compression, _with checksum_ ie bit 5 set to 0 */
230 #define LOWPAN_NHC_UDP_CS_P_00	0xF0 /* all inline */
231 #define LOWPAN_NHC_UDP_CS_P_01	0xF1 /* source 16bit inline,
232 					dest = 0xF0 + 8 bit inline */
233 #define LOWPAN_NHC_UDP_CS_P_10	0xF2 /* source = 0xF0 + 8bit inline,
234 					dest = 16 bit inline */
235 #define LOWPAN_NHC_UDP_CS_P_11	0xF3 /* source & dest = 0xF0B + 4bit inline */
236 #define LOWPAN_NHC_UDP_CS_C	0x04 /* checksum elided */
237 
238 #ifdef DEBUG
239 /* print data in line */
240 static inline void raw_dump_inline(const char *caller, char *msg,
241 				   unsigned char *buf, int len)
242 {
243 	if (msg)
244 		pr_debug("%s():%s: ", caller, msg);
245 
246 	print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, buf, len, false);
247 }
248 
249 /* print data in a table format:
250  *
251  * addr: xx xx xx xx xx xx
252  * addr: xx xx xx xx xx xx
253  * ...
254  */
255 static inline void raw_dump_table(const char *caller, char *msg,
256 				  unsigned char *buf, int len)
257 {
258 	if (msg)
259 		pr_debug("%s():%s:\n", caller, msg);
260 
261 	print_hex_dump_debug("\t", DUMP_PREFIX_OFFSET, 16, 1, buf, len, false);
262 }
263 #else
264 static inline void raw_dump_table(const char *caller, char *msg,
265 				  unsigned char *buf, int len) { }
266 static inline void raw_dump_inline(const char *caller, char *msg,
267 				   unsigned char *buf, int len) { }
268 #endif
269 
270 static inline int lowpan_fetch_skb_u8(struct sk_buff *skb, u8 *val)
271 {
272 	if (unlikely(!pskb_may_pull(skb, 1)))
273 		return -EINVAL;
274 
275 	*val = skb->data[0];
276 	skb_pull(skb, 1);
277 
278 	return 0;
279 }
280 
281 static inline int lowpan_fetch_skb_u16(struct sk_buff *skb, u16 *val)
282 {
283 	if (unlikely(!pskb_may_pull(skb, 2)))
284 		return -EINVAL;
285 
286 	*val = (skb->data[0] << 8) | skb->data[1];
287 	skb_pull(skb, 2);
288 
289 	return 0;
290 }
291 
292 static inline bool lowpan_fetch_skb(struct sk_buff *skb,
293 		void *data, const unsigned int len)
294 {
295 	if (unlikely(!pskb_may_pull(skb, len)))
296 		return true;
297 
298 	skb_copy_from_linear_data(skb, data, len);
299 	skb_pull(skb, len);
300 
301 	return false;
302 }
303 
304 static inline void lowpan_push_hc_data(u8 **hc_ptr, const void *data,
305 				       const size_t len)
306 {
307 	memcpy(*hc_ptr, data, len);
308 	*hc_ptr += len;
309 }
310 
311 static inline u8 lowpan_addr_mode_size(const u8 addr_mode)
312 {
313 	static const u8 addr_sizes[] = {
314 		[LOWPAN_IPHC_ADDR_00] = 16,
315 		[LOWPAN_IPHC_ADDR_01] = 8,
316 		[LOWPAN_IPHC_ADDR_02] = 2,
317 		[LOWPAN_IPHC_ADDR_03] = 0,
318 	};
319 	return addr_sizes[addr_mode];
320 }
321 
322 static inline u8 lowpan_next_hdr_size(const u8 h_enc, u16 *uncomp_header)
323 {
324 	u8 ret = 1;
325 
326 	if ((h_enc & LOWPAN_NHC_UDP_MASK) == LOWPAN_NHC_UDP_ID) {
327 		*uncomp_header += sizeof(struct udphdr);
328 
329 		switch (h_enc & LOWPAN_NHC_UDP_CS_P_11) {
330 		case LOWPAN_NHC_UDP_CS_P_00:
331 			ret += 4;
332 			break;
333 		case LOWPAN_NHC_UDP_CS_P_01:
334 		case LOWPAN_NHC_UDP_CS_P_10:
335 			ret += 3;
336 			break;
337 		case LOWPAN_NHC_UDP_CS_P_11:
338 			ret++;
339 			break;
340 		default:
341 			break;
342 		}
343 
344 		if (!(h_enc & LOWPAN_NHC_UDP_CS_C))
345 			ret += 2;
346 	}
347 
348 	return ret;
349 }
350 
351 /**
352  *	lowpan_uncompress_size - returns skb->len size with uncompressed header
353  *	@skb: sk_buff with 6lowpan header inside
354  *	@datagram_offset: optional to get the datagram_offset value
355  *
356  *	Returns the skb->len with uncompressed header
357  */
358 static inline u16
359 lowpan_uncompress_size(const struct sk_buff *skb, u16 *dgram_offset)
360 {
361 	u16 ret = 2, uncomp_header = sizeof(struct ipv6hdr);
362 	u8 iphc0, iphc1, h_enc;
363 
364 	iphc0 = skb_network_header(skb)[0];
365 	iphc1 = skb_network_header(skb)[1];
366 
367 	switch ((iphc0 & LOWPAN_IPHC_TF) >> 3) {
368 	case 0:
369 		ret += 4;
370 		break;
371 	case 1:
372 		ret += 3;
373 		break;
374 	case 2:
375 		ret++;
376 		break;
377 	default:
378 		break;
379 	}
380 
381 	if (!(iphc0 & LOWPAN_IPHC_NH_C))
382 		ret++;
383 
384 	if (!(iphc0 & 0x03))
385 		ret++;
386 
387 	ret += lowpan_addr_mode_size((iphc1 & LOWPAN_IPHC_SAM) >>
388 				     LOWPAN_IPHC_SAM_BIT);
389 
390 	if (iphc1 & LOWPAN_IPHC_M) {
391 		switch ((iphc1 & LOWPAN_IPHC_DAM_11) >>
392 			LOWPAN_IPHC_DAM_BIT) {
393 		case LOWPAN_IPHC_DAM_00:
394 			ret += 16;
395 			break;
396 		case LOWPAN_IPHC_DAM_01:
397 			ret += 6;
398 			break;
399 		case LOWPAN_IPHC_DAM_10:
400 			ret += 4;
401 			break;
402 		case LOWPAN_IPHC_DAM_11:
403 			ret++;
404 			break;
405 		default:
406 			break;
407 		}
408 	} else {
409 		ret += lowpan_addr_mode_size((iphc1 & LOWPAN_IPHC_DAM_11) >>
410 					     LOWPAN_IPHC_DAM_BIT);
411 	}
412 
413 	if (iphc0 & LOWPAN_IPHC_NH_C) {
414 		h_enc = skb_network_header(skb)[ret];
415 		ret += lowpan_next_hdr_size(h_enc, &uncomp_header);
416 	}
417 
418 	if (dgram_offset)
419 		*dgram_offset = uncomp_header;
420 
421 	return skb->len + uncomp_header - ret;
422 }
423 
424 typedef int (*skb_delivery_cb)(struct sk_buff *skb, struct net_device *dev);
425 
426 int lowpan_process_data(struct sk_buff *skb, struct net_device *dev,
427 		const u8 *saddr, const u8 saddr_type, const u8 saddr_len,
428 		const u8 *daddr, const u8 daddr_type, const u8 daddr_len,
429 		u8 iphc0, u8 iphc1, skb_delivery_cb skb_deliver);
430 int lowpan_header_compress(struct sk_buff *skb, struct net_device *dev,
431 			unsigned short type, const void *_daddr,
432 			const void *_saddr, unsigned int len);
433 
434 #endif /* __6LOWPAN_H__ */
435