1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 #ifndef _LINUX_XARRAY_H 3 #define _LINUX_XARRAY_H 4 /* 5 * eXtensible Arrays 6 * Copyright (c) 2017 Microsoft Corporation 7 * Author: Matthew Wilcox <willy@infradead.org> 8 * 9 * See Documentation/core-api/xarray.rst for how to use the XArray. 10 */ 11 12 #include <linux/bug.h> 13 #include <linux/compiler.h> 14 #include <linux/gfp.h> 15 #include <linux/kconfig.h> 16 #include <linux/kernel.h> 17 #include <linux/rcupdate.h> 18 #include <linux/spinlock.h> 19 #include <linux/types.h> 20 21 /* 22 * The bottom two bits of the entry determine how the XArray interprets 23 * the contents: 24 * 25 * 00: Pointer entry 26 * 10: Internal entry 27 * x1: Value entry or tagged pointer 28 * 29 * Attempting to store internal entries in the XArray is a bug. 30 * 31 * Most internal entries are pointers to the next node in the tree. 32 * The following internal entries have a special meaning: 33 * 34 * 0-62: Sibling entries 35 * 256: Zero entry 36 * 257: Retry entry 37 * 38 * Errors are also represented as internal entries, but use the negative 39 * space (-4094 to -2). They're never stored in the slots array; only 40 * returned by the normal API. 41 */ 42 43 #define BITS_PER_XA_VALUE (BITS_PER_LONG - 1) 44 45 /** 46 * xa_mk_value() - Create an XArray entry from an integer. 47 * @v: Value to store in XArray. 48 * 49 * Context: Any context. 50 * Return: An entry suitable for storing in the XArray. 51 */ 52 static inline void *xa_mk_value(unsigned long v) 53 { 54 WARN_ON((long)v < 0); 55 return (void *)((v << 1) | 1); 56 } 57 58 /** 59 * xa_to_value() - Get value stored in an XArray entry. 60 * @entry: XArray entry. 61 * 62 * Context: Any context. 63 * Return: The value stored in the XArray entry. 64 */ 65 static inline unsigned long xa_to_value(const void *entry) 66 { 67 return (unsigned long)entry >> 1; 68 } 69 70 /** 71 * xa_is_value() - Determine if an entry is a value. 72 * @entry: XArray entry. 73 * 74 * Context: Any context. 75 * Return: True if the entry is a value, false if it is a pointer. 76 */ 77 static inline bool xa_is_value(const void *entry) 78 { 79 return (unsigned long)entry & 1; 80 } 81 82 /** 83 * xa_tag_pointer() - Create an XArray entry for a tagged pointer. 84 * @p: Plain pointer. 85 * @tag: Tag value (0, 1 or 3). 86 * 87 * If the user of the XArray prefers, they can tag their pointers instead 88 * of storing value entries. Three tags are available (0, 1 and 3). 89 * These are distinct from the xa_mark_t as they are not replicated up 90 * through the array and cannot be searched for. 91 * 92 * Context: Any context. 93 * Return: An XArray entry. 94 */ 95 static inline void *xa_tag_pointer(void *p, unsigned long tag) 96 { 97 return (void *)((unsigned long)p | tag); 98 } 99 100 /** 101 * xa_untag_pointer() - Turn an XArray entry into a plain pointer. 102 * @entry: XArray entry. 103 * 104 * If you have stored a tagged pointer in the XArray, call this function 105 * to get the untagged version of the pointer. 106 * 107 * Context: Any context. 108 * Return: A pointer. 109 */ 110 static inline void *xa_untag_pointer(void *entry) 111 { 112 return (void *)((unsigned long)entry & ~3UL); 113 } 114 115 /** 116 * xa_pointer_tag() - Get the tag stored in an XArray entry. 117 * @entry: XArray entry. 118 * 119 * If you have stored a tagged pointer in the XArray, call this function 120 * to get the tag of that pointer. 121 * 122 * Context: Any context. 123 * Return: A tag. 124 */ 125 static inline unsigned int xa_pointer_tag(void *entry) 126 { 127 return (unsigned long)entry & 3UL; 128 } 129 130 /* 131 * xa_mk_internal() - Create an internal entry. 132 * @v: Value to turn into an internal entry. 133 * 134 * Context: Any context. 135 * Return: An XArray internal entry corresponding to this value. 136 */ 137 static inline void *xa_mk_internal(unsigned long v) 138 { 139 return (void *)((v << 2) | 2); 140 } 141 142 /* 143 * xa_to_internal() - Extract the value from an internal entry. 144 * @entry: XArray entry. 145 * 146 * Context: Any context. 147 * Return: The value which was stored in the internal entry. 148 */ 149 static inline unsigned long xa_to_internal(const void *entry) 150 { 151 return (unsigned long)entry >> 2; 152 } 153 154 /* 155 * xa_is_internal() - Is the entry an internal entry? 156 * @entry: XArray entry. 157 * 158 * Context: Any context. 159 * Return: %true if the entry is an internal entry. 160 */ 161 static inline bool xa_is_internal(const void *entry) 162 { 163 return ((unsigned long)entry & 3) == 2; 164 } 165 166 /** 167 * xa_is_err() - Report whether an XArray operation returned an error 168 * @entry: Result from calling an XArray function 169 * 170 * If an XArray operation cannot complete an operation, it will return 171 * a special value indicating an error. This function tells you 172 * whether an error occurred; xa_err() tells you which error occurred. 173 * 174 * Context: Any context. 175 * Return: %true if the entry indicates an error. 176 */ 177 static inline bool xa_is_err(const void *entry) 178 { 179 return unlikely(xa_is_internal(entry)); 180 } 181 182 /** 183 * xa_err() - Turn an XArray result into an errno. 184 * @entry: Result from calling an XArray function. 185 * 186 * If an XArray operation cannot complete an operation, it will return 187 * a special pointer value which encodes an errno. This function extracts 188 * the errno from the pointer value, or returns 0 if the pointer does not 189 * represent an errno. 190 * 191 * Context: Any context. 192 * Return: A negative errno or 0. 193 */ 194 static inline int xa_err(void *entry) 195 { 196 /* xa_to_internal() would not do sign extension. */ 197 if (xa_is_err(entry)) 198 return (long)entry >> 2; 199 return 0; 200 } 201 202 typedef unsigned __bitwise xa_mark_t; 203 #define XA_MARK_0 ((__force xa_mark_t)0U) 204 #define XA_MARK_1 ((__force xa_mark_t)1U) 205 #define XA_MARK_2 ((__force xa_mark_t)2U) 206 #define XA_PRESENT ((__force xa_mark_t)8U) 207 #define XA_MARK_MAX XA_MARK_2 208 #define XA_FREE_MARK XA_MARK_0 209 210 enum xa_lock_type { 211 XA_LOCK_IRQ = 1, 212 XA_LOCK_BH = 2, 213 }; 214 215 /* 216 * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags, 217 * and we remain compatible with that. 218 */ 219 #define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ) 220 #define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH) 221 #define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U) 222 #define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \ 223 (__force unsigned)(mark))) 224 225 #define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK)) 226 227 /** 228 * struct xarray - The anchor of the XArray. 229 * @xa_lock: Lock that protects the contents of the XArray. 230 * 231 * To use the xarray, define it statically or embed it in your data structure. 232 * It is a very small data structure, so it does not usually make sense to 233 * allocate it separately and keep a pointer to it in your data structure. 234 * 235 * You may use the xa_lock to protect your own data structures as well. 236 */ 237 /* 238 * If all of the entries in the array are NULL, @xa_head is a NULL pointer. 239 * If the only non-NULL entry in the array is at index 0, @xa_head is that 240 * entry. If any other entry in the array is non-NULL, @xa_head points 241 * to an @xa_node. 242 */ 243 struct xarray { 244 spinlock_t xa_lock; 245 /* private: The rest of the data structure is not to be used directly. */ 246 gfp_t xa_flags; 247 void __rcu * xa_head; 248 }; 249 250 #define XARRAY_INIT(name, flags) { \ 251 .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \ 252 .xa_flags = flags, \ 253 .xa_head = NULL, \ 254 } 255 256 /** 257 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags. 258 * @name: A string that names your XArray. 259 * @flags: XA_FLAG values. 260 * 261 * This is intended for file scope definitions of XArrays. It declares 262 * and initialises an empty XArray with the chosen name and flags. It is 263 * equivalent to calling xa_init_flags() on the array, but it does the 264 * initialisation at compiletime instead of runtime. 265 */ 266 #define DEFINE_XARRAY_FLAGS(name, flags) \ 267 struct xarray name = XARRAY_INIT(name, flags) 268 269 /** 270 * DEFINE_XARRAY() - Define an XArray. 271 * @name: A string that names your XArray. 272 * 273 * This is intended for file scope definitions of XArrays. It declares 274 * and initialises an empty XArray with the chosen name. It is equivalent 275 * to calling xa_init() on the array, but it does the initialisation at 276 * compiletime instead of runtime. 277 */ 278 #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0) 279 280 /** 281 * DEFINE_XARRAY_ALLOC() - Define an XArray which can allocate IDs. 282 * @name: A string that names your XArray. 283 * 284 * This is intended for file scope definitions of allocating XArrays. 285 * See also DEFINE_XARRAY(). 286 */ 287 #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC) 288 289 void xa_init_flags(struct xarray *, gfp_t flags); 290 void *xa_load(struct xarray *, unsigned long index); 291 void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 292 void *xa_cmpxchg(struct xarray *, unsigned long index, 293 void *old, void *entry, gfp_t); 294 int xa_reserve(struct xarray *, unsigned long index, gfp_t); 295 void *xa_store_range(struct xarray *, unsigned long first, unsigned long last, 296 void *entry, gfp_t); 297 bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t); 298 void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 299 void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 300 void *xa_find(struct xarray *xa, unsigned long *index, 301 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 302 void *xa_find_after(struct xarray *xa, unsigned long *index, 303 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 304 unsigned int xa_extract(struct xarray *, void **dst, unsigned long start, 305 unsigned long max, unsigned int n, xa_mark_t); 306 void xa_destroy(struct xarray *); 307 308 /** 309 * xa_init() - Initialise an empty XArray. 310 * @xa: XArray. 311 * 312 * An empty XArray is full of NULL entries. 313 * 314 * Context: Any context. 315 */ 316 static inline void xa_init(struct xarray *xa) 317 { 318 xa_init_flags(xa, 0); 319 } 320 321 /** 322 * xa_empty() - Determine if an array has any present entries. 323 * @xa: XArray. 324 * 325 * Context: Any context. 326 * Return: %true if the array contains only NULL pointers. 327 */ 328 static inline bool xa_empty(const struct xarray *xa) 329 { 330 return xa->xa_head == NULL; 331 } 332 333 /** 334 * xa_marked() - Inquire whether any entry in this array has a mark set 335 * @xa: Array 336 * @mark: Mark value 337 * 338 * Context: Any context. 339 * Return: %true if any entry has this mark set. 340 */ 341 static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark) 342 { 343 return xa->xa_flags & XA_FLAGS_MARK(mark); 344 } 345 346 /** 347 * xa_erase() - Erase this entry from the XArray. 348 * @xa: XArray. 349 * @index: Index of entry. 350 * 351 * This function is the equivalent of calling xa_store() with %NULL as 352 * the third argument. The XArray does not need to allocate memory, so 353 * the user does not need to provide GFP flags. 354 * 355 * Context: Process context. Takes and releases the xa_lock. 356 * Return: The entry which used to be at this index. 357 */ 358 static inline void *xa_erase(struct xarray *xa, unsigned long index) 359 { 360 return xa_store(xa, index, NULL, 0); 361 } 362 363 /** 364 * xa_insert() - Store this entry in the XArray unless another entry is 365 * already present. 366 * @xa: XArray. 367 * @index: Index into array. 368 * @entry: New entry. 369 * @gfp: Memory allocation flags. 370 * 371 * If you would rather see the existing entry in the array, use xa_cmpxchg(). 372 * This function is for users who don't care what the entry is, only that 373 * one is present. 374 * 375 * Context: Process context. Takes and releases the xa_lock. 376 * May sleep if the @gfp flags permit. 377 * Return: 0 if the store succeeded. -EEXIST if another entry was present. 378 * -ENOMEM if memory could not be allocated. 379 */ 380 static inline int xa_insert(struct xarray *xa, unsigned long index, 381 void *entry, gfp_t gfp) 382 { 383 void *curr = xa_cmpxchg(xa, index, NULL, entry, gfp); 384 if (!curr) 385 return 0; 386 if (xa_is_err(curr)) 387 return xa_err(curr); 388 return -EEXIST; 389 } 390 391 /** 392 * xa_release() - Release a reserved entry. 393 * @xa: XArray. 394 * @index: Index of entry. 395 * 396 * After calling xa_reserve(), you can call this function to release the 397 * reservation. If the entry at @index has been stored to, this function 398 * will do nothing. 399 */ 400 static inline void xa_release(struct xarray *xa, unsigned long index) 401 { 402 xa_cmpxchg(xa, index, NULL, NULL, 0); 403 } 404 405 /** 406 * xa_for_each() - Iterate over a portion of an XArray. 407 * @xa: XArray. 408 * @entry: Entry retrieved from array. 409 * @index: Index of @entry. 410 * @max: Maximum index to retrieve from array. 411 * @filter: Selection criterion. 412 * 413 * Initialise @index to the lowest index you want to retrieve from the 414 * array. During the iteration, @entry will have the value of the entry 415 * stored in @xa at @index. The iteration will skip all entries in the 416 * array which do not match @filter. You may modify @index during the 417 * iteration if you want to skip or reprocess indices. It is safe to modify 418 * the array during the iteration. At the end of the iteration, @entry will 419 * be set to NULL and @index will have a value less than or equal to max. 420 * 421 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have 422 * to handle your own locking with xas_for_each(), and if you have to unlock 423 * after each iteration, it will also end up being O(n.log(n)). xa_for_each() 424 * will spin if it hits a retry entry; if you intend to see retry entries, 425 * you should use the xas_for_each() iterator instead. The xas_for_each() 426 * iterator will expand into more inline code than xa_for_each(). 427 * 428 * Context: Any context. Takes and releases the RCU lock. 429 */ 430 #define xa_for_each(xa, entry, index, max, filter) \ 431 for (entry = xa_find(xa, &index, max, filter); entry; \ 432 entry = xa_find_after(xa, &index, max, filter)) 433 434 #define xa_trylock(xa) spin_trylock(&(xa)->xa_lock) 435 #define xa_lock(xa) spin_lock(&(xa)->xa_lock) 436 #define xa_unlock(xa) spin_unlock(&(xa)->xa_lock) 437 #define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock) 438 #define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock) 439 #define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock) 440 #define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock) 441 #define xa_lock_irqsave(xa, flags) \ 442 spin_lock_irqsave(&(xa)->xa_lock, flags) 443 #define xa_unlock_irqrestore(xa, flags) \ 444 spin_unlock_irqrestore(&(xa)->xa_lock, flags) 445 446 /* 447 * Versions of the normal API which require the caller to hold the 448 * xa_lock. If the GFP flags allow it, they will drop the lock to 449 * allocate memory, then reacquire it afterwards. These functions 450 * may also re-enable interrupts if the XArray flags indicate the 451 * locking should be interrupt safe. 452 */ 453 void *__xa_erase(struct xarray *, unsigned long index); 454 void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 455 void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old, 456 void *entry, gfp_t); 457 int __xa_alloc(struct xarray *, u32 *id, u32 max, void *entry, gfp_t); 458 void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 459 void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 460 461 /** 462 * __xa_insert() - Store this entry in the XArray unless another entry is 463 * already present. 464 * @xa: XArray. 465 * @index: Index into array. 466 * @entry: New entry. 467 * @gfp: Memory allocation flags. 468 * 469 * If you would rather see the existing entry in the array, use __xa_cmpxchg(). 470 * This function is for users who don't care what the entry is, only that 471 * one is present. 472 * 473 * Context: Any context. Expects xa_lock to be held on entry. May 474 * release and reacquire xa_lock if the @gfp flags permit. 475 * Return: 0 if the store succeeded. -EEXIST if another entry was present. 476 * -ENOMEM if memory could not be allocated. 477 */ 478 static inline int __xa_insert(struct xarray *xa, unsigned long index, 479 void *entry, gfp_t gfp) 480 { 481 void *curr = __xa_cmpxchg(xa, index, NULL, entry, gfp); 482 if (!curr) 483 return 0; 484 if (xa_is_err(curr)) 485 return xa_err(curr); 486 return -EEXIST; 487 } 488 489 /** 490 * xa_erase_bh() - Erase this entry from the XArray. 491 * @xa: XArray. 492 * @index: Index of entry. 493 * 494 * This function is the equivalent of calling xa_store() with %NULL as 495 * the third argument. The XArray does not need to allocate memory, so 496 * the user does not need to provide GFP flags. 497 * 498 * Context: Process context. Takes and releases the xa_lock while 499 * disabling softirqs. 500 * Return: The entry which used to be at this index. 501 */ 502 static inline void *xa_erase_bh(struct xarray *xa, unsigned long index) 503 { 504 void *entry; 505 506 xa_lock_bh(xa); 507 entry = __xa_erase(xa, index); 508 xa_unlock_bh(xa); 509 510 return entry; 511 } 512 513 /** 514 * xa_erase_irq() - Erase this entry from the XArray. 515 * @xa: XArray. 516 * @index: Index of entry. 517 * 518 * This function is the equivalent of calling xa_store() with %NULL as 519 * the third argument. The XArray does not need to allocate memory, so 520 * the user does not need to provide GFP flags. 521 * 522 * Context: Process context. Takes and releases the xa_lock while 523 * disabling interrupts. 524 * Return: The entry which used to be at this index. 525 */ 526 static inline void *xa_erase_irq(struct xarray *xa, unsigned long index) 527 { 528 void *entry; 529 530 xa_lock_irq(xa); 531 entry = __xa_erase(xa, index); 532 xa_unlock_irq(xa); 533 534 return entry; 535 } 536 537 /** 538 * xa_alloc() - Find somewhere to store this entry in the XArray. 539 * @xa: XArray. 540 * @id: Pointer to ID. 541 * @max: Maximum ID to allocate (inclusive). 542 * @entry: New entry. 543 * @gfp: Memory allocation flags. 544 * 545 * Allocates an unused ID in the range specified by @id and @max. 546 * Updates the @id pointer with the index, then stores the entry at that 547 * index. A concurrent lookup will not see an uninitialised @id. 548 * 549 * Context: Process context. Takes and releases the xa_lock. May sleep if 550 * the @gfp flags permit. 551 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if 552 * there is no more space in the XArray. 553 */ 554 static inline int xa_alloc(struct xarray *xa, u32 *id, u32 max, void *entry, 555 gfp_t gfp) 556 { 557 int err; 558 559 xa_lock(xa); 560 err = __xa_alloc(xa, id, max, entry, gfp); 561 xa_unlock(xa); 562 563 return err; 564 } 565 566 /** 567 * xa_alloc_bh() - Find somewhere to store this entry in the XArray. 568 * @xa: XArray. 569 * @id: Pointer to ID. 570 * @max: Maximum ID to allocate (inclusive). 571 * @entry: New entry. 572 * @gfp: Memory allocation flags. 573 * 574 * Allocates an unused ID in the range specified by @id and @max. 575 * Updates the @id pointer with the index, then stores the entry at that 576 * index. A concurrent lookup will not see an uninitialised @id. 577 * 578 * Context: Process context. Takes and releases the xa_lock while 579 * disabling softirqs. May sleep if the @gfp flags permit. 580 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if 581 * there is no more space in the XArray. 582 */ 583 static inline int xa_alloc_bh(struct xarray *xa, u32 *id, u32 max, void *entry, 584 gfp_t gfp) 585 { 586 int err; 587 588 xa_lock_bh(xa); 589 err = __xa_alloc(xa, id, max, entry, gfp); 590 xa_unlock_bh(xa); 591 592 return err; 593 } 594 595 /** 596 * xa_alloc_irq() - Find somewhere to store this entry in the XArray. 597 * @xa: XArray. 598 * @id: Pointer to ID. 599 * @max: Maximum ID to allocate (inclusive). 600 * @entry: New entry. 601 * @gfp: Memory allocation flags. 602 * 603 * Allocates an unused ID in the range specified by @id and @max. 604 * Updates the @id pointer with the index, then stores the entry at that 605 * index. A concurrent lookup will not see an uninitialised @id. 606 * 607 * Context: Process context. Takes and releases the xa_lock while 608 * disabling interrupts. May sleep if the @gfp flags permit. 609 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if 610 * there is no more space in the XArray. 611 */ 612 static inline int xa_alloc_irq(struct xarray *xa, u32 *id, u32 max, void *entry, 613 gfp_t gfp) 614 { 615 int err; 616 617 xa_lock_irq(xa); 618 err = __xa_alloc(xa, id, max, entry, gfp); 619 xa_unlock_irq(xa); 620 621 return err; 622 } 623 624 /* Everything below here is the Advanced API. Proceed with caution. */ 625 626 /* 627 * The xarray is constructed out of a set of 'chunks' of pointers. Choosing 628 * the best chunk size requires some tradeoffs. A power of two recommends 629 * itself so that we can walk the tree based purely on shifts and masks. 630 * Generally, the larger the better; as the number of slots per level of the 631 * tree increases, the less tall the tree needs to be. But that needs to be 632 * balanced against the memory consumption of each node. On a 64-bit system, 633 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we 634 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page. 635 */ 636 #ifndef XA_CHUNK_SHIFT 637 #define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) 638 #endif 639 #define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT) 640 #define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1) 641 #define XA_MAX_MARKS 3 642 #define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG) 643 644 /* 645 * @count is the count of every non-NULL element in the ->slots array 646 * whether that is a value entry, a retry entry, a user pointer, 647 * a sibling entry or a pointer to the next level of the tree. 648 * @nr_values is the count of every element in ->slots which is 649 * either a value entry or a sibling of a value entry. 650 */ 651 struct xa_node { 652 unsigned char shift; /* Bits remaining in each slot */ 653 unsigned char offset; /* Slot offset in parent */ 654 unsigned char count; /* Total entry count */ 655 unsigned char nr_values; /* Value entry count */ 656 struct xa_node __rcu *parent; /* NULL at top of tree */ 657 struct xarray *array; /* The array we belong to */ 658 union { 659 struct list_head private_list; /* For tree user */ 660 struct rcu_head rcu_head; /* Used when freeing node */ 661 }; 662 void __rcu *slots[XA_CHUNK_SIZE]; 663 union { 664 unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS]; 665 unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS]; 666 }; 667 }; 668 669 void xa_dump(const struct xarray *); 670 void xa_dump_node(const struct xa_node *); 671 672 #ifdef XA_DEBUG 673 #define XA_BUG_ON(xa, x) do { \ 674 if (x) { \ 675 xa_dump(xa); \ 676 BUG(); \ 677 } \ 678 } while (0) 679 #define XA_NODE_BUG_ON(node, x) do { \ 680 if (x) { \ 681 if (node) xa_dump_node(node); \ 682 BUG(); \ 683 } \ 684 } while (0) 685 #else 686 #define XA_BUG_ON(xa, x) do { } while (0) 687 #define XA_NODE_BUG_ON(node, x) do { } while (0) 688 #endif 689 690 /* Private */ 691 static inline void *xa_head(const struct xarray *xa) 692 { 693 return rcu_dereference_check(xa->xa_head, 694 lockdep_is_held(&xa->xa_lock)); 695 } 696 697 /* Private */ 698 static inline void *xa_head_locked(const struct xarray *xa) 699 { 700 return rcu_dereference_protected(xa->xa_head, 701 lockdep_is_held(&xa->xa_lock)); 702 } 703 704 /* Private */ 705 static inline void *xa_entry(const struct xarray *xa, 706 const struct xa_node *node, unsigned int offset) 707 { 708 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 709 return rcu_dereference_check(node->slots[offset], 710 lockdep_is_held(&xa->xa_lock)); 711 } 712 713 /* Private */ 714 static inline void *xa_entry_locked(const struct xarray *xa, 715 const struct xa_node *node, unsigned int offset) 716 { 717 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 718 return rcu_dereference_protected(node->slots[offset], 719 lockdep_is_held(&xa->xa_lock)); 720 } 721 722 /* Private */ 723 static inline struct xa_node *xa_parent(const struct xarray *xa, 724 const struct xa_node *node) 725 { 726 return rcu_dereference_check(node->parent, 727 lockdep_is_held(&xa->xa_lock)); 728 } 729 730 /* Private */ 731 static inline struct xa_node *xa_parent_locked(const struct xarray *xa, 732 const struct xa_node *node) 733 { 734 return rcu_dereference_protected(node->parent, 735 lockdep_is_held(&xa->xa_lock)); 736 } 737 738 /* Private */ 739 static inline void *xa_mk_node(const struct xa_node *node) 740 { 741 return (void *)((unsigned long)node | 2); 742 } 743 744 /* Private */ 745 static inline struct xa_node *xa_to_node(const void *entry) 746 { 747 return (struct xa_node *)((unsigned long)entry - 2); 748 } 749 750 /* Private */ 751 static inline bool xa_is_node(const void *entry) 752 { 753 return xa_is_internal(entry) && (unsigned long)entry > 4096; 754 } 755 756 /* Private */ 757 static inline void *xa_mk_sibling(unsigned int offset) 758 { 759 return xa_mk_internal(offset); 760 } 761 762 /* Private */ 763 static inline unsigned long xa_to_sibling(const void *entry) 764 { 765 return xa_to_internal(entry); 766 } 767 768 /** 769 * xa_is_sibling() - Is the entry a sibling entry? 770 * @entry: Entry retrieved from the XArray 771 * 772 * Return: %true if the entry is a sibling entry. 773 */ 774 static inline bool xa_is_sibling(const void *entry) 775 { 776 return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) && 777 (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1)); 778 } 779 780 #define XA_ZERO_ENTRY xa_mk_internal(256) 781 #define XA_RETRY_ENTRY xa_mk_internal(257) 782 783 /** 784 * xa_is_zero() - Is the entry a zero entry? 785 * @entry: Entry retrieved from the XArray 786 * 787 * Return: %true if the entry is a zero entry. 788 */ 789 static inline bool xa_is_zero(const void *entry) 790 { 791 return unlikely(entry == XA_ZERO_ENTRY); 792 } 793 794 /** 795 * xa_is_retry() - Is the entry a retry entry? 796 * @entry: Entry retrieved from the XArray 797 * 798 * Return: %true if the entry is a retry entry. 799 */ 800 static inline bool xa_is_retry(const void *entry) 801 { 802 return unlikely(entry == XA_RETRY_ENTRY); 803 } 804 805 /** 806 * typedef xa_update_node_t - A callback function from the XArray. 807 * @node: The node which is being processed 808 * 809 * This function is called every time the XArray updates the count of 810 * present and value entries in a node. It allows advanced users to 811 * maintain the private_list in the node. 812 * 813 * Context: The xa_lock is held and interrupts may be disabled. 814 * Implementations should not drop the xa_lock, nor re-enable 815 * interrupts. 816 */ 817 typedef void (*xa_update_node_t)(struct xa_node *node); 818 819 /* 820 * The xa_state is opaque to its users. It contains various different pieces 821 * of state involved in the current operation on the XArray. It should be 822 * declared on the stack and passed between the various internal routines. 823 * The various elements in it should not be accessed directly, but only 824 * through the provided accessor functions. The below documentation is for 825 * the benefit of those working on the code, not for users of the XArray. 826 * 827 * @xa_node usually points to the xa_node containing the slot we're operating 828 * on (and @xa_offset is the offset in the slots array). If there is a 829 * single entry in the array at index 0, there are no allocated xa_nodes to 830 * point to, and so we store %NULL in @xa_node. @xa_node is set to 831 * the value %XAS_RESTART if the xa_state is not walked to the correct 832 * position in the tree of nodes for this operation. If an error occurs 833 * during an operation, it is set to an %XAS_ERROR value. If we run off the 834 * end of the allocated nodes, it is set to %XAS_BOUNDS. 835 */ 836 struct xa_state { 837 struct xarray *xa; 838 unsigned long xa_index; 839 unsigned char xa_shift; 840 unsigned char xa_sibs; 841 unsigned char xa_offset; 842 unsigned char xa_pad; /* Helps gcc generate better code */ 843 struct xa_node *xa_node; 844 struct xa_node *xa_alloc; 845 xa_update_node_t xa_update; 846 }; 847 848 /* 849 * We encode errnos in the xas->xa_node. If an error has happened, we need to 850 * drop the lock to fix it, and once we've done so the xa_state is invalid. 851 */ 852 #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL)) 853 #define XAS_BOUNDS ((struct xa_node *)1UL) 854 #define XAS_RESTART ((struct xa_node *)3UL) 855 856 #define __XA_STATE(array, index, shift, sibs) { \ 857 .xa = array, \ 858 .xa_index = index, \ 859 .xa_shift = shift, \ 860 .xa_sibs = sibs, \ 861 .xa_offset = 0, \ 862 .xa_pad = 0, \ 863 .xa_node = XAS_RESTART, \ 864 .xa_alloc = NULL, \ 865 .xa_update = NULL \ 866 } 867 868 /** 869 * XA_STATE() - Declare an XArray operation state. 870 * @name: Name of this operation state (usually xas). 871 * @array: Array to operate on. 872 * @index: Initial index of interest. 873 * 874 * Declare and initialise an xa_state on the stack. 875 */ 876 #define XA_STATE(name, array, index) \ 877 struct xa_state name = __XA_STATE(array, index, 0, 0) 878 879 /** 880 * XA_STATE_ORDER() - Declare an XArray operation state. 881 * @name: Name of this operation state (usually xas). 882 * @array: Array to operate on. 883 * @index: Initial index of interest. 884 * @order: Order of entry. 885 * 886 * Declare and initialise an xa_state on the stack. This variant of 887 * XA_STATE() allows you to specify the 'order' of the element you 888 * want to operate on.` 889 */ 890 #define XA_STATE_ORDER(name, array, index, order) \ 891 struct xa_state name = __XA_STATE(array, \ 892 (index >> order) << order, \ 893 order - (order % XA_CHUNK_SHIFT), \ 894 (1U << (order % XA_CHUNK_SHIFT)) - 1) 895 896 #define xas_marked(xas, mark) xa_marked((xas)->xa, (mark)) 897 #define xas_trylock(xas) xa_trylock((xas)->xa) 898 #define xas_lock(xas) xa_lock((xas)->xa) 899 #define xas_unlock(xas) xa_unlock((xas)->xa) 900 #define xas_lock_bh(xas) xa_lock_bh((xas)->xa) 901 #define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa) 902 #define xas_lock_irq(xas) xa_lock_irq((xas)->xa) 903 #define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa) 904 #define xas_lock_irqsave(xas, flags) \ 905 xa_lock_irqsave((xas)->xa, flags) 906 #define xas_unlock_irqrestore(xas, flags) \ 907 xa_unlock_irqrestore((xas)->xa, flags) 908 909 /** 910 * xas_error() - Return an errno stored in the xa_state. 911 * @xas: XArray operation state. 912 * 913 * Return: 0 if no error has been noted. A negative errno if one has. 914 */ 915 static inline int xas_error(const struct xa_state *xas) 916 { 917 return xa_err(xas->xa_node); 918 } 919 920 /** 921 * xas_set_err() - Note an error in the xa_state. 922 * @xas: XArray operation state. 923 * @err: Negative error number. 924 * 925 * Only call this function with a negative @err; zero or positive errors 926 * will probably not behave the way you think they should. If you want 927 * to clear the error from an xa_state, use xas_reset(). 928 */ 929 static inline void xas_set_err(struct xa_state *xas, long err) 930 { 931 xas->xa_node = XA_ERROR(err); 932 } 933 934 /** 935 * xas_invalid() - Is the xas in a retry or error state? 936 * @xas: XArray operation state. 937 * 938 * Return: %true if the xas cannot be used for operations. 939 */ 940 static inline bool xas_invalid(const struct xa_state *xas) 941 { 942 return (unsigned long)xas->xa_node & 3; 943 } 944 945 /** 946 * xas_valid() - Is the xas a valid cursor into the array? 947 * @xas: XArray operation state. 948 * 949 * Return: %true if the xas can be used for operations. 950 */ 951 static inline bool xas_valid(const struct xa_state *xas) 952 { 953 return !xas_invalid(xas); 954 } 955 956 /** 957 * xas_is_node() - Does the xas point to a node? 958 * @xas: XArray operation state. 959 * 960 * Return: %true if the xas currently references a node. 961 */ 962 static inline bool xas_is_node(const struct xa_state *xas) 963 { 964 return xas_valid(xas) && xas->xa_node; 965 } 966 967 /* True if the pointer is something other than a node */ 968 static inline bool xas_not_node(struct xa_node *node) 969 { 970 return ((unsigned long)node & 3) || !node; 971 } 972 973 /* True if the node represents RESTART or an error */ 974 static inline bool xas_frozen(struct xa_node *node) 975 { 976 return (unsigned long)node & 2; 977 } 978 979 /* True if the node represents head-of-tree, RESTART or BOUNDS */ 980 static inline bool xas_top(struct xa_node *node) 981 { 982 return node <= XAS_RESTART; 983 } 984 985 /** 986 * xas_reset() - Reset an XArray operation state. 987 * @xas: XArray operation state. 988 * 989 * Resets the error or walk state of the @xas so future walks of the 990 * array will start from the root. Use this if you have dropped the 991 * xarray lock and want to reuse the xa_state. 992 * 993 * Context: Any context. 994 */ 995 static inline void xas_reset(struct xa_state *xas) 996 { 997 xas->xa_node = XAS_RESTART; 998 } 999 1000 /** 1001 * xas_retry() - Retry the operation if appropriate. 1002 * @xas: XArray operation state. 1003 * @entry: Entry from xarray. 1004 * 1005 * The advanced functions may sometimes return an internal entry, such as 1006 * a retry entry or a zero entry. This function sets up the @xas to restart 1007 * the walk from the head of the array if needed. 1008 * 1009 * Context: Any context. 1010 * Return: true if the operation needs to be retried. 1011 */ 1012 static inline bool xas_retry(struct xa_state *xas, const void *entry) 1013 { 1014 if (xa_is_zero(entry)) 1015 return true; 1016 if (!xa_is_retry(entry)) 1017 return false; 1018 xas_reset(xas); 1019 return true; 1020 } 1021 1022 void *xas_load(struct xa_state *); 1023 void *xas_store(struct xa_state *, void *entry); 1024 void *xas_find(struct xa_state *, unsigned long max); 1025 void *xas_find_conflict(struct xa_state *); 1026 1027 bool xas_get_mark(const struct xa_state *, xa_mark_t); 1028 void xas_set_mark(const struct xa_state *, xa_mark_t); 1029 void xas_clear_mark(const struct xa_state *, xa_mark_t); 1030 void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t); 1031 void xas_init_marks(const struct xa_state *); 1032 1033 bool xas_nomem(struct xa_state *, gfp_t); 1034 void xas_pause(struct xa_state *); 1035 1036 void xas_create_range(struct xa_state *); 1037 1038 /** 1039 * xas_reload() - Refetch an entry from the xarray. 1040 * @xas: XArray operation state. 1041 * 1042 * Use this function to check that a previously loaded entry still has 1043 * the same value. This is useful for the lockless pagecache lookup where 1044 * we walk the array with only the RCU lock to protect us, lock the page, 1045 * then check that the page hasn't moved since we looked it up. 1046 * 1047 * The caller guarantees that @xas is still valid. If it may be in an 1048 * error or restart state, call xas_load() instead. 1049 * 1050 * Return: The entry at this location in the xarray. 1051 */ 1052 static inline void *xas_reload(struct xa_state *xas) 1053 { 1054 struct xa_node *node = xas->xa_node; 1055 1056 if (node) 1057 return xa_entry(xas->xa, node, xas->xa_offset); 1058 return xa_head(xas->xa); 1059 } 1060 1061 /** 1062 * xas_set() - Set up XArray operation state for a different index. 1063 * @xas: XArray operation state. 1064 * @index: New index into the XArray. 1065 * 1066 * Move the operation state to refer to a different index. This will 1067 * have the effect of starting a walk from the top; see xas_next() 1068 * to move to an adjacent index. 1069 */ 1070 static inline void xas_set(struct xa_state *xas, unsigned long index) 1071 { 1072 xas->xa_index = index; 1073 xas->xa_node = XAS_RESTART; 1074 } 1075 1076 /** 1077 * xas_set_order() - Set up XArray operation state for a multislot entry. 1078 * @xas: XArray operation state. 1079 * @index: Target of the operation. 1080 * @order: Entry occupies 2^@order indices. 1081 */ 1082 static inline void xas_set_order(struct xa_state *xas, unsigned long index, 1083 unsigned int order) 1084 { 1085 #ifdef CONFIG_XARRAY_MULTI 1086 xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0; 1087 xas->xa_shift = order - (order % XA_CHUNK_SHIFT); 1088 xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1089 xas->xa_node = XAS_RESTART; 1090 #else 1091 BUG_ON(order > 0); 1092 xas_set(xas, index); 1093 #endif 1094 } 1095 1096 /** 1097 * xas_set_update() - Set up XArray operation state for a callback. 1098 * @xas: XArray operation state. 1099 * @update: Function to call when updating a node. 1100 * 1101 * The XArray can notify a caller after it has updated an xa_node. 1102 * This is advanced functionality and is only needed by the page cache. 1103 */ 1104 static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update) 1105 { 1106 xas->xa_update = update; 1107 } 1108 1109 /** 1110 * xas_next_entry() - Advance iterator to next present entry. 1111 * @xas: XArray operation state. 1112 * @max: Highest index to return. 1113 * 1114 * xas_next_entry() is an inline function to optimise xarray traversal for 1115 * speed. It is equivalent to calling xas_find(), and will call xas_find() 1116 * for all the hard cases. 1117 * 1118 * Return: The next present entry after the one currently referred to by @xas. 1119 */ 1120 static inline void *xas_next_entry(struct xa_state *xas, unsigned long max) 1121 { 1122 struct xa_node *node = xas->xa_node; 1123 void *entry; 1124 1125 if (unlikely(xas_not_node(node) || node->shift || 1126 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK))) 1127 return xas_find(xas, max); 1128 1129 do { 1130 if (unlikely(xas->xa_index >= max)) 1131 return xas_find(xas, max); 1132 if (unlikely(xas->xa_offset == XA_CHUNK_MASK)) 1133 return xas_find(xas, max); 1134 entry = xa_entry(xas->xa, node, xas->xa_offset + 1); 1135 if (unlikely(xa_is_internal(entry))) 1136 return xas_find(xas, max); 1137 xas->xa_offset++; 1138 xas->xa_index++; 1139 } while (!entry); 1140 1141 return entry; 1142 } 1143 1144 /* Private */ 1145 static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance, 1146 xa_mark_t mark) 1147 { 1148 unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark]; 1149 unsigned int offset = xas->xa_offset; 1150 1151 if (advance) 1152 offset++; 1153 if (XA_CHUNK_SIZE == BITS_PER_LONG) { 1154 if (offset < XA_CHUNK_SIZE) { 1155 unsigned long data = *addr & (~0UL << offset); 1156 if (data) 1157 return __ffs(data); 1158 } 1159 return XA_CHUNK_SIZE; 1160 } 1161 1162 return find_next_bit(addr, XA_CHUNK_SIZE, offset); 1163 } 1164 1165 /** 1166 * xas_next_marked() - Advance iterator to next marked entry. 1167 * @xas: XArray operation state. 1168 * @max: Highest index to return. 1169 * @mark: Mark to search for. 1170 * 1171 * xas_next_marked() is an inline function to optimise xarray traversal for 1172 * speed. It is equivalent to calling xas_find_marked(), and will call 1173 * xas_find_marked() for all the hard cases. 1174 * 1175 * Return: The next marked entry after the one currently referred to by @xas. 1176 */ 1177 static inline void *xas_next_marked(struct xa_state *xas, unsigned long max, 1178 xa_mark_t mark) 1179 { 1180 struct xa_node *node = xas->xa_node; 1181 unsigned int offset; 1182 1183 if (unlikely(xas_not_node(node) || node->shift)) 1184 return xas_find_marked(xas, max, mark); 1185 offset = xas_find_chunk(xas, true, mark); 1186 xas->xa_offset = offset; 1187 xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset; 1188 if (xas->xa_index > max) 1189 return NULL; 1190 if (offset == XA_CHUNK_SIZE) 1191 return xas_find_marked(xas, max, mark); 1192 return xa_entry(xas->xa, node, offset); 1193 } 1194 1195 /* 1196 * If iterating while holding a lock, drop the lock and reschedule 1197 * every %XA_CHECK_SCHED loops. 1198 */ 1199 enum { 1200 XA_CHECK_SCHED = 4096, 1201 }; 1202 1203 /** 1204 * xas_for_each() - Iterate over a range of an XArray. 1205 * @xas: XArray operation state. 1206 * @entry: Entry retrieved from the array. 1207 * @max: Maximum index to retrieve from array. 1208 * 1209 * The loop body will be executed for each entry present in the xarray 1210 * between the current xas position and @max. @entry will be set to 1211 * the entry retrieved from the xarray. It is safe to delete entries 1212 * from the array in the loop body. You should hold either the RCU lock 1213 * or the xa_lock while iterating. If you need to drop the lock, call 1214 * xas_pause() first. 1215 */ 1216 #define xas_for_each(xas, entry, max) \ 1217 for (entry = xas_find(xas, max); entry; \ 1218 entry = xas_next_entry(xas, max)) 1219 1220 /** 1221 * xas_for_each_marked() - Iterate over a range of an XArray. 1222 * @xas: XArray operation state. 1223 * @entry: Entry retrieved from the array. 1224 * @max: Maximum index to retrieve from array. 1225 * @mark: Mark to search for. 1226 * 1227 * The loop body will be executed for each marked entry in the xarray 1228 * between the current xas position and @max. @entry will be set to 1229 * the entry retrieved from the xarray. It is safe to delete entries 1230 * from the array in the loop body. You should hold either the RCU lock 1231 * or the xa_lock while iterating. If you need to drop the lock, call 1232 * xas_pause() first. 1233 */ 1234 #define xas_for_each_marked(xas, entry, max, mark) \ 1235 for (entry = xas_find_marked(xas, max, mark); entry; \ 1236 entry = xas_next_marked(xas, max, mark)) 1237 1238 /** 1239 * xas_for_each_conflict() - Iterate over a range of an XArray. 1240 * @xas: XArray operation state. 1241 * @entry: Entry retrieved from the array. 1242 * 1243 * The loop body will be executed for each entry in the XArray that lies 1244 * within the range specified by @xas. If the loop completes successfully, 1245 * any entries that lie in this range will be replaced by @entry. The caller 1246 * may break out of the loop; if they do so, the contents of the XArray will 1247 * be unchanged. The operation may fail due to an out of memory condition. 1248 * The caller may also call xa_set_err() to exit the loop while setting an 1249 * error to record the reason. 1250 */ 1251 #define xas_for_each_conflict(xas, entry) \ 1252 while ((entry = xas_find_conflict(xas))) 1253 1254 void *__xas_next(struct xa_state *); 1255 void *__xas_prev(struct xa_state *); 1256 1257 /** 1258 * xas_prev() - Move iterator to previous index. 1259 * @xas: XArray operation state. 1260 * 1261 * If the @xas was in an error state, it will remain in an error state 1262 * and this function will return %NULL. If the @xas has never been walked, 1263 * it will have the effect of calling xas_load(). Otherwise one will be 1264 * subtracted from the index and the state will be walked to the correct 1265 * location in the array for the next operation. 1266 * 1267 * If the iterator was referencing index 0, this function wraps 1268 * around to %ULONG_MAX. 1269 * 1270 * Return: The entry at the new index. This may be %NULL or an internal 1271 * entry. 1272 */ 1273 static inline void *xas_prev(struct xa_state *xas) 1274 { 1275 struct xa_node *node = xas->xa_node; 1276 1277 if (unlikely(xas_not_node(node) || node->shift || 1278 xas->xa_offset == 0)) 1279 return __xas_prev(xas); 1280 1281 xas->xa_index--; 1282 xas->xa_offset--; 1283 return xa_entry(xas->xa, node, xas->xa_offset); 1284 } 1285 1286 /** 1287 * xas_next() - Move state to next index. 1288 * @xas: XArray operation state. 1289 * 1290 * If the @xas was in an error state, it will remain in an error state 1291 * and this function will return %NULL. If the @xas has never been walked, 1292 * it will have the effect of calling xas_load(). Otherwise one will be 1293 * added to the index and the state will be walked to the correct 1294 * location in the array for the next operation. 1295 * 1296 * If the iterator was referencing index %ULONG_MAX, this function wraps 1297 * around to 0. 1298 * 1299 * Return: The entry at the new index. This may be %NULL or an internal 1300 * entry. 1301 */ 1302 static inline void *xas_next(struct xa_state *xas) 1303 { 1304 struct xa_node *node = xas->xa_node; 1305 1306 if (unlikely(xas_not_node(node) || node->shift || 1307 xas->xa_offset == XA_CHUNK_MASK)) 1308 return __xas_next(xas); 1309 1310 xas->xa_index++; 1311 xas->xa_offset++; 1312 return xa_entry(xas->xa, node, xas->xa_offset); 1313 } 1314 1315 #endif /* _LINUX_XARRAY_H */ 1316