1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 #ifndef _LINUX_XARRAY_H 3 #define _LINUX_XARRAY_H 4 /* 5 * eXtensible Arrays 6 * Copyright (c) 2017 Microsoft Corporation 7 * Author: Matthew Wilcox <willy@infradead.org> 8 * 9 * See Documentation/core-api/xarray.rst for how to use the XArray. 10 */ 11 12 #include <linux/bug.h> 13 #include <linux/compiler.h> 14 #include <linux/gfp.h> 15 #include <linux/kconfig.h> 16 #include <linux/kernel.h> 17 #include <linux/rcupdate.h> 18 #include <linux/spinlock.h> 19 #include <linux/types.h> 20 21 /* 22 * The bottom two bits of the entry determine how the XArray interprets 23 * the contents: 24 * 25 * 00: Pointer entry 26 * 10: Internal entry 27 * x1: Value entry or tagged pointer 28 * 29 * Attempting to store internal entries in the XArray is a bug. 30 * 31 * Most internal entries are pointers to the next node in the tree. 32 * The following internal entries have a special meaning: 33 * 34 * 0-62: Sibling entries 35 * 256: Zero entry 36 * 257: Retry entry 37 * 38 * Errors are also represented as internal entries, but use the negative 39 * space (-4094 to -2). They're never stored in the slots array; only 40 * returned by the normal API. 41 */ 42 43 #define BITS_PER_XA_VALUE (BITS_PER_LONG - 1) 44 45 /** 46 * xa_mk_value() - Create an XArray entry from an integer. 47 * @v: Value to store in XArray. 48 * 49 * Context: Any context. 50 * Return: An entry suitable for storing in the XArray. 51 */ 52 static inline void *xa_mk_value(unsigned long v) 53 { 54 WARN_ON((long)v < 0); 55 return (void *)((v << 1) | 1); 56 } 57 58 /** 59 * xa_to_value() - Get value stored in an XArray entry. 60 * @entry: XArray entry. 61 * 62 * Context: Any context. 63 * Return: The value stored in the XArray entry. 64 */ 65 static inline unsigned long xa_to_value(const void *entry) 66 { 67 return (unsigned long)entry >> 1; 68 } 69 70 /** 71 * xa_is_value() - Determine if an entry is a value. 72 * @entry: XArray entry. 73 * 74 * Context: Any context. 75 * Return: True if the entry is a value, false if it is a pointer. 76 */ 77 static inline bool xa_is_value(const void *entry) 78 { 79 return (unsigned long)entry & 1; 80 } 81 82 /** 83 * xa_tag_pointer() - Create an XArray entry for a tagged pointer. 84 * @p: Plain pointer. 85 * @tag: Tag value (0, 1 or 3). 86 * 87 * If the user of the XArray prefers, they can tag their pointers instead 88 * of storing value entries. Three tags are available (0, 1 and 3). 89 * These are distinct from the xa_mark_t as they are not replicated up 90 * through the array and cannot be searched for. 91 * 92 * Context: Any context. 93 * Return: An XArray entry. 94 */ 95 static inline void *xa_tag_pointer(void *p, unsigned long tag) 96 { 97 return (void *)((unsigned long)p | tag); 98 } 99 100 /** 101 * xa_untag_pointer() - Turn an XArray entry into a plain pointer. 102 * @entry: XArray entry. 103 * 104 * If you have stored a tagged pointer in the XArray, call this function 105 * to get the untagged version of the pointer. 106 * 107 * Context: Any context. 108 * Return: A pointer. 109 */ 110 static inline void *xa_untag_pointer(void *entry) 111 { 112 return (void *)((unsigned long)entry & ~3UL); 113 } 114 115 /** 116 * xa_pointer_tag() - Get the tag stored in an XArray entry. 117 * @entry: XArray entry. 118 * 119 * If you have stored a tagged pointer in the XArray, call this function 120 * to get the tag of that pointer. 121 * 122 * Context: Any context. 123 * Return: A tag. 124 */ 125 static inline unsigned int xa_pointer_tag(void *entry) 126 { 127 return (unsigned long)entry & 3UL; 128 } 129 130 /* 131 * xa_mk_internal() - Create an internal entry. 132 * @v: Value to turn into an internal entry. 133 * 134 * Internal entries are used for a number of purposes. Entries 0-255 are 135 * used for sibling entries (only 0-62 are used by the current code). 256 136 * is used for the retry entry. 257 is used for the reserved / zero entry. 137 * Negative internal entries are used to represent errnos. Node pointers 138 * are also tagged as internal entries in some situations. 139 * 140 * Context: Any context. 141 * Return: An XArray internal entry corresponding to this value. 142 */ 143 static inline void *xa_mk_internal(unsigned long v) 144 { 145 return (void *)((v << 2) | 2); 146 } 147 148 /* 149 * xa_to_internal() - Extract the value from an internal entry. 150 * @entry: XArray entry. 151 * 152 * Context: Any context. 153 * Return: The value which was stored in the internal entry. 154 */ 155 static inline unsigned long xa_to_internal(const void *entry) 156 { 157 return (unsigned long)entry >> 2; 158 } 159 160 /* 161 * xa_is_internal() - Is the entry an internal entry? 162 * @entry: XArray entry. 163 * 164 * Context: Any context. 165 * Return: %true if the entry is an internal entry. 166 */ 167 static inline bool xa_is_internal(const void *entry) 168 { 169 return ((unsigned long)entry & 3) == 2; 170 } 171 172 #define XA_ZERO_ENTRY xa_mk_internal(257) 173 174 /** 175 * xa_is_zero() - Is the entry a zero entry? 176 * @entry: Entry retrieved from the XArray 177 * 178 * The normal API will return NULL as the contents of a slot containing 179 * a zero entry. You can only see zero entries by using the advanced API. 180 * 181 * Return: %true if the entry is a zero entry. 182 */ 183 static inline bool xa_is_zero(const void *entry) 184 { 185 return unlikely(entry == XA_ZERO_ENTRY); 186 } 187 188 /** 189 * xa_is_err() - Report whether an XArray operation returned an error 190 * @entry: Result from calling an XArray function 191 * 192 * If an XArray operation cannot complete an operation, it will return 193 * a special value indicating an error. This function tells you 194 * whether an error occurred; xa_err() tells you which error occurred. 195 * 196 * Context: Any context. 197 * Return: %true if the entry indicates an error. 198 */ 199 static inline bool xa_is_err(const void *entry) 200 { 201 return unlikely(xa_is_internal(entry) && 202 entry >= xa_mk_internal(-MAX_ERRNO)); 203 } 204 205 /** 206 * xa_err() - Turn an XArray result into an errno. 207 * @entry: Result from calling an XArray function. 208 * 209 * If an XArray operation cannot complete an operation, it will return 210 * a special pointer value which encodes an errno. This function extracts 211 * the errno from the pointer value, or returns 0 if the pointer does not 212 * represent an errno. 213 * 214 * Context: Any context. 215 * Return: A negative errno or 0. 216 */ 217 static inline int xa_err(void *entry) 218 { 219 /* xa_to_internal() would not do sign extension. */ 220 if (xa_is_err(entry)) 221 return (long)entry >> 2; 222 return 0; 223 } 224 225 /** 226 * struct xa_limit - Represents a range of IDs. 227 * @min: The lowest ID to allocate (inclusive). 228 * @max: The maximum ID to allocate (inclusive). 229 * 230 * This structure is used either directly or via the XA_LIMIT() macro 231 * to communicate the range of IDs that are valid for allocation. 232 * Two common ranges are predefined for you: 233 * * xa_limit_32b - [0 - UINT_MAX] 234 * * xa_limit_31b - [0 - INT_MAX] 235 */ 236 struct xa_limit { 237 u32 max; 238 u32 min; 239 }; 240 241 #define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max } 242 243 #define xa_limit_32b XA_LIMIT(0, UINT_MAX) 244 #define xa_limit_31b XA_LIMIT(0, INT_MAX) 245 246 typedef unsigned __bitwise xa_mark_t; 247 #define XA_MARK_0 ((__force xa_mark_t)0U) 248 #define XA_MARK_1 ((__force xa_mark_t)1U) 249 #define XA_MARK_2 ((__force xa_mark_t)2U) 250 #define XA_PRESENT ((__force xa_mark_t)8U) 251 #define XA_MARK_MAX XA_MARK_2 252 #define XA_FREE_MARK XA_MARK_0 253 254 enum xa_lock_type { 255 XA_LOCK_IRQ = 1, 256 XA_LOCK_BH = 2, 257 }; 258 259 /* 260 * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags, 261 * and we remain compatible with that. 262 */ 263 #define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ) 264 #define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH) 265 #define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U) 266 #define XA_FLAGS_ZERO_BUSY ((__force gfp_t)8U) 267 #define XA_FLAGS_ALLOC_WRAPPED ((__force gfp_t)16U) 268 #define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \ 269 (__force unsigned)(mark))) 270 271 /* ALLOC is for a normal 0-based alloc. ALLOC1 is for an 1-based alloc */ 272 #define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK)) 273 #define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY) 274 275 /** 276 * struct xarray - The anchor of the XArray. 277 * @xa_lock: Lock that protects the contents of the XArray. 278 * 279 * To use the xarray, define it statically or embed it in your data structure. 280 * It is a very small data structure, so it does not usually make sense to 281 * allocate it separately and keep a pointer to it in your data structure. 282 * 283 * You may use the xa_lock to protect your own data structures as well. 284 */ 285 /* 286 * If all of the entries in the array are NULL, @xa_head is a NULL pointer. 287 * If the only non-NULL entry in the array is at index 0, @xa_head is that 288 * entry. If any other entry in the array is non-NULL, @xa_head points 289 * to an @xa_node. 290 */ 291 struct xarray { 292 spinlock_t xa_lock; 293 /* private: The rest of the data structure is not to be used directly. */ 294 gfp_t xa_flags; 295 void __rcu * xa_head; 296 }; 297 298 #define XARRAY_INIT(name, flags) { \ 299 .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \ 300 .xa_flags = flags, \ 301 .xa_head = NULL, \ 302 } 303 304 /** 305 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags. 306 * @name: A string that names your XArray. 307 * @flags: XA_FLAG values. 308 * 309 * This is intended for file scope definitions of XArrays. It declares 310 * and initialises an empty XArray with the chosen name and flags. It is 311 * equivalent to calling xa_init_flags() on the array, but it does the 312 * initialisation at compiletime instead of runtime. 313 */ 314 #define DEFINE_XARRAY_FLAGS(name, flags) \ 315 struct xarray name = XARRAY_INIT(name, flags) 316 317 /** 318 * DEFINE_XARRAY() - Define an XArray. 319 * @name: A string that names your XArray. 320 * 321 * This is intended for file scope definitions of XArrays. It declares 322 * and initialises an empty XArray with the chosen name. It is equivalent 323 * to calling xa_init() on the array, but it does the initialisation at 324 * compiletime instead of runtime. 325 */ 326 #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0) 327 328 /** 329 * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0. 330 * @name: A string that names your XArray. 331 * 332 * This is intended for file scope definitions of allocating XArrays. 333 * See also DEFINE_XARRAY(). 334 */ 335 #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC) 336 337 /** 338 * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1. 339 * @name: A string that names your XArray. 340 * 341 * This is intended for file scope definitions of allocating XArrays. 342 * See also DEFINE_XARRAY(). 343 */ 344 #define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1) 345 346 void *xa_load(struct xarray *, unsigned long index); 347 void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 348 void *xa_erase(struct xarray *, unsigned long index); 349 void *xa_store_range(struct xarray *, unsigned long first, unsigned long last, 350 void *entry, gfp_t); 351 bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t); 352 void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 353 void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 354 void *xa_find(struct xarray *xa, unsigned long *index, 355 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 356 void *xa_find_after(struct xarray *xa, unsigned long *index, 357 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 358 unsigned int xa_extract(struct xarray *, void **dst, unsigned long start, 359 unsigned long max, unsigned int n, xa_mark_t); 360 void xa_destroy(struct xarray *); 361 362 /** 363 * xa_init_flags() - Initialise an empty XArray with flags. 364 * @xa: XArray. 365 * @flags: XA_FLAG values. 366 * 367 * If you need to initialise an XArray with special flags (eg you need 368 * to take the lock from interrupt context), use this function instead 369 * of xa_init(). 370 * 371 * Context: Any context. 372 */ 373 static inline void xa_init_flags(struct xarray *xa, gfp_t flags) 374 { 375 spin_lock_init(&xa->xa_lock); 376 xa->xa_flags = flags; 377 xa->xa_head = NULL; 378 } 379 380 /** 381 * xa_init() - Initialise an empty XArray. 382 * @xa: XArray. 383 * 384 * An empty XArray is full of NULL entries. 385 * 386 * Context: Any context. 387 */ 388 static inline void xa_init(struct xarray *xa) 389 { 390 xa_init_flags(xa, 0); 391 } 392 393 /** 394 * xa_empty() - Determine if an array has any present entries. 395 * @xa: XArray. 396 * 397 * Context: Any context. 398 * Return: %true if the array contains only NULL pointers. 399 */ 400 static inline bool xa_empty(const struct xarray *xa) 401 { 402 return xa->xa_head == NULL; 403 } 404 405 /** 406 * xa_marked() - Inquire whether any entry in this array has a mark set 407 * @xa: Array 408 * @mark: Mark value 409 * 410 * Context: Any context. 411 * Return: %true if any entry has this mark set. 412 */ 413 static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark) 414 { 415 return xa->xa_flags & XA_FLAGS_MARK(mark); 416 } 417 418 /** 419 * xa_for_each_start() - Iterate over a portion of an XArray. 420 * @xa: XArray. 421 * @index: Index of @entry. 422 * @entry: Entry retrieved from array. 423 * @start: First index to retrieve from array. 424 * 425 * During the iteration, @entry will have the value of the entry stored 426 * in @xa at @index. You may modify @index during the iteration if you 427 * want to skip or reprocess indices. It is safe to modify the array 428 * during the iteration. At the end of the iteration, @entry will be set 429 * to NULL and @index will have a value less than or equal to max. 430 * 431 * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n). You have 432 * to handle your own locking with xas_for_each(), and if you have to unlock 433 * after each iteration, it will also end up being O(n.log(n)). 434 * xa_for_each_start() will spin if it hits a retry entry; if you intend to 435 * see retry entries, you should use the xas_for_each() iterator instead. 436 * The xas_for_each() iterator will expand into more inline code than 437 * xa_for_each_start(). 438 * 439 * Context: Any context. Takes and releases the RCU lock. 440 */ 441 #define xa_for_each_start(xa, index, entry, start) \ 442 for (index = start, \ 443 entry = xa_find(xa, &index, ULONG_MAX, XA_PRESENT); \ 444 entry; \ 445 entry = xa_find_after(xa, &index, ULONG_MAX, XA_PRESENT)) 446 447 /** 448 * xa_for_each() - Iterate over present entries in an XArray. 449 * @xa: XArray. 450 * @index: Index of @entry. 451 * @entry: Entry retrieved from array. 452 * 453 * During the iteration, @entry will have the value of the entry stored 454 * in @xa at @index. You may modify @index during the iteration if you want 455 * to skip or reprocess indices. It is safe to modify the array during the 456 * iteration. At the end of the iteration, @entry will be set to NULL and 457 * @index will have a value less than or equal to max. 458 * 459 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have 460 * to handle your own locking with xas_for_each(), and if you have to unlock 461 * after each iteration, it will also end up being O(n.log(n)). xa_for_each() 462 * will spin if it hits a retry entry; if you intend to see retry entries, 463 * you should use the xas_for_each() iterator instead. The xas_for_each() 464 * iterator will expand into more inline code than xa_for_each(). 465 * 466 * Context: Any context. Takes and releases the RCU lock. 467 */ 468 #define xa_for_each(xa, index, entry) \ 469 xa_for_each_start(xa, index, entry, 0) 470 471 /** 472 * xa_for_each_marked() - Iterate over marked entries in an XArray. 473 * @xa: XArray. 474 * @index: Index of @entry. 475 * @entry: Entry retrieved from array. 476 * @filter: Selection criterion. 477 * 478 * During the iteration, @entry will have the value of the entry stored 479 * in @xa at @index. The iteration will skip all entries in the array 480 * which do not match @filter. You may modify @index during the iteration 481 * if you want to skip or reprocess indices. It is safe to modify the array 482 * during the iteration. At the end of the iteration, @entry will be set to 483 * NULL and @index will have a value less than or equal to max. 484 * 485 * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n). 486 * You have to handle your own locking with xas_for_each(), and if you have 487 * to unlock after each iteration, it will also end up being O(n.log(n)). 488 * xa_for_each_marked() will spin if it hits a retry entry; if you intend to 489 * see retry entries, you should use the xas_for_each_marked() iterator 490 * instead. The xas_for_each_marked() iterator will expand into more inline 491 * code than xa_for_each_marked(). 492 * 493 * Context: Any context. Takes and releases the RCU lock. 494 */ 495 #define xa_for_each_marked(xa, index, entry, filter) \ 496 for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \ 497 entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter)) 498 499 #define xa_trylock(xa) spin_trylock(&(xa)->xa_lock) 500 #define xa_lock(xa) spin_lock(&(xa)->xa_lock) 501 #define xa_unlock(xa) spin_unlock(&(xa)->xa_lock) 502 #define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock) 503 #define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock) 504 #define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock) 505 #define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock) 506 #define xa_lock_irqsave(xa, flags) \ 507 spin_lock_irqsave(&(xa)->xa_lock, flags) 508 #define xa_unlock_irqrestore(xa, flags) \ 509 spin_unlock_irqrestore(&(xa)->xa_lock, flags) 510 511 /* 512 * Versions of the normal API which require the caller to hold the 513 * xa_lock. If the GFP flags allow it, they will drop the lock to 514 * allocate memory, then reacquire it afterwards. These functions 515 * may also re-enable interrupts if the XArray flags indicate the 516 * locking should be interrupt safe. 517 */ 518 void *__xa_erase(struct xarray *, unsigned long index); 519 void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 520 void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old, 521 void *entry, gfp_t); 522 int __must_check __xa_insert(struct xarray *, unsigned long index, 523 void *entry, gfp_t); 524 int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry, 525 struct xa_limit, gfp_t); 526 int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry, 527 struct xa_limit, u32 *next, gfp_t); 528 void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 529 void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 530 531 /** 532 * xa_store_bh() - Store this entry in the XArray. 533 * @xa: XArray. 534 * @index: Index into array. 535 * @entry: New entry. 536 * @gfp: Memory allocation flags. 537 * 538 * This function is like calling xa_store() except it disables softirqs 539 * while holding the array lock. 540 * 541 * Context: Any context. Takes and releases the xa_lock while 542 * disabling softirqs. 543 * Return: The entry which used to be at this index. 544 */ 545 static inline void *xa_store_bh(struct xarray *xa, unsigned long index, 546 void *entry, gfp_t gfp) 547 { 548 void *curr; 549 550 xa_lock_bh(xa); 551 curr = __xa_store(xa, index, entry, gfp); 552 xa_unlock_bh(xa); 553 554 return curr; 555 } 556 557 /** 558 * xa_store_irq() - Store this entry in the XArray. 559 * @xa: XArray. 560 * @index: Index into array. 561 * @entry: New entry. 562 * @gfp: Memory allocation flags. 563 * 564 * This function is like calling xa_store() except it disables interrupts 565 * while holding the array lock. 566 * 567 * Context: Process context. Takes and releases the xa_lock while 568 * disabling interrupts. 569 * Return: The entry which used to be at this index. 570 */ 571 static inline void *xa_store_irq(struct xarray *xa, unsigned long index, 572 void *entry, gfp_t gfp) 573 { 574 void *curr; 575 576 xa_lock_irq(xa); 577 curr = __xa_store(xa, index, entry, gfp); 578 xa_unlock_irq(xa); 579 580 return curr; 581 } 582 583 /** 584 * xa_erase_bh() - Erase this entry from the XArray. 585 * @xa: XArray. 586 * @index: Index of entry. 587 * 588 * After this function returns, loading from @index will return %NULL. 589 * If the index is part of a multi-index entry, all indices will be erased 590 * and none of the entries will be part of a multi-index entry. 591 * 592 * Context: Any context. Takes and releases the xa_lock while 593 * disabling softirqs. 594 * Return: The entry which used to be at this index. 595 */ 596 static inline void *xa_erase_bh(struct xarray *xa, unsigned long index) 597 { 598 void *entry; 599 600 xa_lock_bh(xa); 601 entry = __xa_erase(xa, index); 602 xa_unlock_bh(xa); 603 604 return entry; 605 } 606 607 /** 608 * xa_erase_irq() - Erase this entry from the XArray. 609 * @xa: XArray. 610 * @index: Index of entry. 611 * 612 * After this function returns, loading from @index will return %NULL. 613 * If the index is part of a multi-index entry, all indices will be erased 614 * and none of the entries will be part of a multi-index entry. 615 * 616 * Context: Process context. Takes and releases the xa_lock while 617 * disabling interrupts. 618 * Return: The entry which used to be at this index. 619 */ 620 static inline void *xa_erase_irq(struct xarray *xa, unsigned long index) 621 { 622 void *entry; 623 624 xa_lock_irq(xa); 625 entry = __xa_erase(xa, index); 626 xa_unlock_irq(xa); 627 628 return entry; 629 } 630 631 /** 632 * xa_cmpxchg() - Conditionally replace an entry in the XArray. 633 * @xa: XArray. 634 * @index: Index into array. 635 * @old: Old value to test against. 636 * @entry: New value to place in array. 637 * @gfp: Memory allocation flags. 638 * 639 * If the entry at @index is the same as @old, replace it with @entry. 640 * If the return value is equal to @old, then the exchange was successful. 641 * 642 * Context: Any context. Takes and releases the xa_lock. May sleep 643 * if the @gfp flags permit. 644 * Return: The old value at this index or xa_err() if an error happened. 645 */ 646 static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index, 647 void *old, void *entry, gfp_t gfp) 648 { 649 void *curr; 650 651 xa_lock(xa); 652 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 653 xa_unlock(xa); 654 655 return curr; 656 } 657 658 /** 659 * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray. 660 * @xa: XArray. 661 * @index: Index into array. 662 * @old: Old value to test against. 663 * @entry: New value to place in array. 664 * @gfp: Memory allocation flags. 665 * 666 * This function is like calling xa_cmpxchg() except it disables softirqs 667 * while holding the array lock. 668 * 669 * Context: Any context. Takes and releases the xa_lock while 670 * disabling softirqs. May sleep if the @gfp flags permit. 671 * Return: The old value at this index or xa_err() if an error happened. 672 */ 673 static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index, 674 void *old, void *entry, gfp_t gfp) 675 { 676 void *curr; 677 678 xa_lock_bh(xa); 679 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 680 xa_unlock_bh(xa); 681 682 return curr; 683 } 684 685 /** 686 * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray. 687 * @xa: XArray. 688 * @index: Index into array. 689 * @old: Old value to test against. 690 * @entry: New value to place in array. 691 * @gfp: Memory allocation flags. 692 * 693 * This function is like calling xa_cmpxchg() except it disables interrupts 694 * while holding the array lock. 695 * 696 * Context: Process context. Takes and releases the xa_lock while 697 * disabling interrupts. May sleep if the @gfp flags permit. 698 * Return: The old value at this index or xa_err() if an error happened. 699 */ 700 static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index, 701 void *old, void *entry, gfp_t gfp) 702 { 703 void *curr; 704 705 xa_lock_irq(xa); 706 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 707 xa_unlock_irq(xa); 708 709 return curr; 710 } 711 712 /** 713 * xa_insert() - Store this entry in the XArray unless another entry is 714 * already present. 715 * @xa: XArray. 716 * @index: Index into array. 717 * @entry: New entry. 718 * @gfp: Memory allocation flags. 719 * 720 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 721 * if no entry is present. Inserting will fail if a reserved entry is 722 * present, even though loading from this index will return NULL. 723 * 724 * Context: Any context. Takes and releases the xa_lock. May sleep if 725 * the @gfp flags permit. 726 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 727 * -ENOMEM if memory could not be allocated. 728 */ 729 static inline int __must_check xa_insert(struct xarray *xa, 730 unsigned long index, void *entry, gfp_t gfp) 731 { 732 int err; 733 734 xa_lock(xa); 735 err = __xa_insert(xa, index, entry, gfp); 736 xa_unlock(xa); 737 738 return err; 739 } 740 741 /** 742 * xa_insert_bh() - Store this entry in the XArray unless another entry is 743 * already present. 744 * @xa: XArray. 745 * @index: Index into array. 746 * @entry: New entry. 747 * @gfp: Memory allocation flags. 748 * 749 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 750 * if no entry is present. Inserting will fail if a reserved entry is 751 * present, even though loading from this index will return NULL. 752 * 753 * Context: Any context. Takes and releases the xa_lock while 754 * disabling softirqs. May sleep if the @gfp flags permit. 755 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 756 * -ENOMEM if memory could not be allocated. 757 */ 758 static inline int __must_check xa_insert_bh(struct xarray *xa, 759 unsigned long index, void *entry, gfp_t gfp) 760 { 761 int err; 762 763 xa_lock_bh(xa); 764 err = __xa_insert(xa, index, entry, gfp); 765 xa_unlock_bh(xa); 766 767 return err; 768 } 769 770 /** 771 * xa_insert_irq() - Store this entry in the XArray unless another entry is 772 * already present. 773 * @xa: XArray. 774 * @index: Index into array. 775 * @entry: New entry. 776 * @gfp: Memory allocation flags. 777 * 778 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 779 * if no entry is present. Inserting will fail if a reserved entry is 780 * present, even though loading from this index will return NULL. 781 * 782 * Context: Process context. Takes and releases the xa_lock while 783 * disabling interrupts. May sleep if the @gfp flags permit. 784 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 785 * -ENOMEM if memory could not be allocated. 786 */ 787 static inline int __must_check xa_insert_irq(struct xarray *xa, 788 unsigned long index, void *entry, gfp_t gfp) 789 { 790 int err; 791 792 xa_lock_irq(xa); 793 err = __xa_insert(xa, index, entry, gfp); 794 xa_unlock_irq(xa); 795 796 return err; 797 } 798 799 /** 800 * xa_alloc() - Find somewhere to store this entry in the XArray. 801 * @xa: XArray. 802 * @id: Pointer to ID. 803 * @entry: New entry. 804 * @limit: Range of ID to allocate. 805 * @gfp: Memory allocation flags. 806 * 807 * Finds an empty entry in @xa between @limit.min and @limit.max, 808 * stores the index into the @id pointer, then stores the entry at 809 * that index. A concurrent lookup will not see an uninitialised @id. 810 * 811 * Context: Any context. Takes and releases the xa_lock. May sleep if 812 * the @gfp flags permit. 813 * Return: 0 on success, -ENOMEM if memory could not be allocated or 814 * -EBUSY if there are no free entries in @limit. 815 */ 816 static inline __must_check int xa_alloc(struct xarray *xa, u32 *id, 817 void *entry, struct xa_limit limit, gfp_t gfp) 818 { 819 int err; 820 821 xa_lock(xa); 822 err = __xa_alloc(xa, id, entry, limit, gfp); 823 xa_unlock(xa); 824 825 return err; 826 } 827 828 /** 829 * xa_alloc_bh() - Find somewhere to store this entry in the XArray. 830 * @xa: XArray. 831 * @id: Pointer to ID. 832 * @entry: New entry. 833 * @limit: Range of ID to allocate. 834 * @gfp: Memory allocation flags. 835 * 836 * Finds an empty entry in @xa between @limit.min and @limit.max, 837 * stores the index into the @id pointer, then stores the entry at 838 * that index. A concurrent lookup will not see an uninitialised @id. 839 * 840 * Context: Any context. Takes and releases the xa_lock while 841 * disabling softirqs. May sleep if the @gfp flags permit. 842 * Return: 0 on success, -ENOMEM if memory could not be allocated or 843 * -EBUSY if there are no free entries in @limit. 844 */ 845 static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id, 846 void *entry, struct xa_limit limit, gfp_t gfp) 847 { 848 int err; 849 850 xa_lock_bh(xa); 851 err = __xa_alloc(xa, id, entry, limit, gfp); 852 xa_unlock_bh(xa); 853 854 return err; 855 } 856 857 /** 858 * xa_alloc_irq() - Find somewhere to store this entry in the XArray. 859 * @xa: XArray. 860 * @id: Pointer to ID. 861 * @entry: New entry. 862 * @limit: Range of ID to allocate. 863 * @gfp: Memory allocation flags. 864 * 865 * Finds an empty entry in @xa between @limit.min and @limit.max, 866 * stores the index into the @id pointer, then stores the entry at 867 * that index. A concurrent lookup will not see an uninitialised @id. 868 * 869 * Context: Process context. Takes and releases the xa_lock while 870 * disabling interrupts. May sleep if the @gfp flags permit. 871 * Return: 0 on success, -ENOMEM if memory could not be allocated or 872 * -EBUSY if there are no free entries in @limit. 873 */ 874 static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id, 875 void *entry, struct xa_limit limit, gfp_t gfp) 876 { 877 int err; 878 879 xa_lock_irq(xa); 880 err = __xa_alloc(xa, id, entry, limit, gfp); 881 xa_unlock_irq(xa); 882 883 return err; 884 } 885 886 /** 887 * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 888 * @xa: XArray. 889 * @id: Pointer to ID. 890 * @entry: New entry. 891 * @limit: Range of allocated ID. 892 * @next: Pointer to next ID to allocate. 893 * @gfp: Memory allocation flags. 894 * 895 * Finds an empty entry in @xa between @limit.min and @limit.max, 896 * stores the index into the @id pointer, then stores the entry at 897 * that index. A concurrent lookup will not see an uninitialised @id. 898 * The search for an empty entry will start at @next and will wrap 899 * around if necessary. 900 * 901 * Context: Any context. Takes and releases the xa_lock. May sleep if 902 * the @gfp flags permit. 903 * Return: 0 if the allocation succeeded without wrapping. 1 if the 904 * allocation succeeded after wrapping, -ENOMEM if memory could not be 905 * allocated or -EBUSY if there are no free entries in @limit. 906 */ 907 static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 908 struct xa_limit limit, u32 *next, gfp_t gfp) 909 { 910 int err; 911 912 xa_lock(xa); 913 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 914 xa_unlock(xa); 915 916 return err; 917 } 918 919 /** 920 * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray. 921 * @xa: XArray. 922 * @id: Pointer to ID. 923 * @entry: New entry. 924 * @limit: Range of allocated ID. 925 * @next: Pointer to next ID to allocate. 926 * @gfp: Memory allocation flags. 927 * 928 * Finds an empty entry in @xa between @limit.min and @limit.max, 929 * stores the index into the @id pointer, then stores the entry at 930 * that index. A concurrent lookup will not see an uninitialised @id. 931 * The search for an empty entry will start at @next and will wrap 932 * around if necessary. 933 * 934 * Context: Any context. Takes and releases the xa_lock while 935 * disabling softirqs. May sleep if the @gfp flags permit. 936 * Return: 0 if the allocation succeeded without wrapping. 1 if the 937 * allocation succeeded after wrapping, -ENOMEM if memory could not be 938 * allocated or -EBUSY if there are no free entries in @limit. 939 */ 940 static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry, 941 struct xa_limit limit, u32 *next, gfp_t gfp) 942 { 943 int err; 944 945 xa_lock_bh(xa); 946 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 947 xa_unlock_bh(xa); 948 949 return err; 950 } 951 952 /** 953 * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray. 954 * @xa: XArray. 955 * @id: Pointer to ID. 956 * @entry: New entry. 957 * @limit: Range of allocated ID. 958 * @next: Pointer to next ID to allocate. 959 * @gfp: Memory allocation flags. 960 * 961 * Finds an empty entry in @xa between @limit.min and @limit.max, 962 * stores the index into the @id pointer, then stores the entry at 963 * that index. A concurrent lookup will not see an uninitialised @id. 964 * The search for an empty entry will start at @next and will wrap 965 * around if necessary. 966 * 967 * Context: Process context. Takes and releases the xa_lock while 968 * disabling interrupts. May sleep if the @gfp flags permit. 969 * Return: 0 if the allocation succeeded without wrapping. 1 if the 970 * allocation succeeded after wrapping, -ENOMEM if memory could not be 971 * allocated or -EBUSY if there are no free entries in @limit. 972 */ 973 static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry, 974 struct xa_limit limit, u32 *next, gfp_t gfp) 975 { 976 int err; 977 978 xa_lock_irq(xa); 979 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 980 xa_unlock_irq(xa); 981 982 return err; 983 } 984 985 /** 986 * xa_reserve() - Reserve this index in the XArray. 987 * @xa: XArray. 988 * @index: Index into array. 989 * @gfp: Memory allocation flags. 990 * 991 * Ensures there is somewhere to store an entry at @index in the array. 992 * If there is already something stored at @index, this function does 993 * nothing. If there was nothing there, the entry is marked as reserved. 994 * Loading from a reserved entry returns a %NULL pointer. 995 * 996 * If you do not use the entry that you have reserved, call xa_release() 997 * or xa_erase() to free any unnecessary memory. 998 * 999 * Context: Any context. Takes and releases the xa_lock. 1000 * May sleep if the @gfp flags permit. 1001 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1002 */ 1003 static inline __must_check 1004 int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp) 1005 { 1006 return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1007 } 1008 1009 /** 1010 * xa_reserve_bh() - Reserve this index in the XArray. 1011 * @xa: XArray. 1012 * @index: Index into array. 1013 * @gfp: Memory allocation flags. 1014 * 1015 * A softirq-disabling version of xa_reserve(). 1016 * 1017 * Context: Any context. Takes and releases the xa_lock while 1018 * disabling softirqs. 1019 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1020 */ 1021 static inline __must_check 1022 int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp) 1023 { 1024 return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1025 } 1026 1027 /** 1028 * xa_reserve_irq() - Reserve this index in the XArray. 1029 * @xa: XArray. 1030 * @index: Index into array. 1031 * @gfp: Memory allocation flags. 1032 * 1033 * An interrupt-disabling version of xa_reserve(). 1034 * 1035 * Context: Process context. Takes and releases the xa_lock while 1036 * disabling interrupts. 1037 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1038 */ 1039 static inline __must_check 1040 int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp) 1041 { 1042 return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1043 } 1044 1045 /** 1046 * xa_release() - Release a reserved entry. 1047 * @xa: XArray. 1048 * @index: Index of entry. 1049 * 1050 * After calling xa_reserve(), you can call this function to release the 1051 * reservation. If the entry at @index has been stored to, this function 1052 * will do nothing. 1053 */ 1054 static inline void xa_release(struct xarray *xa, unsigned long index) 1055 { 1056 xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0); 1057 } 1058 1059 /* Everything below here is the Advanced API. Proceed with caution. */ 1060 1061 /* 1062 * The xarray is constructed out of a set of 'chunks' of pointers. Choosing 1063 * the best chunk size requires some tradeoffs. A power of two recommends 1064 * itself so that we can walk the tree based purely on shifts and masks. 1065 * Generally, the larger the better; as the number of slots per level of the 1066 * tree increases, the less tall the tree needs to be. But that needs to be 1067 * balanced against the memory consumption of each node. On a 64-bit system, 1068 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we 1069 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page. 1070 */ 1071 #ifndef XA_CHUNK_SHIFT 1072 #define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) 1073 #endif 1074 #define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT) 1075 #define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1) 1076 #define XA_MAX_MARKS 3 1077 #define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG) 1078 1079 /* 1080 * @count is the count of every non-NULL element in the ->slots array 1081 * whether that is a value entry, a retry entry, a user pointer, 1082 * a sibling entry or a pointer to the next level of the tree. 1083 * @nr_values is the count of every element in ->slots which is 1084 * either a value entry or a sibling of a value entry. 1085 */ 1086 struct xa_node { 1087 unsigned char shift; /* Bits remaining in each slot */ 1088 unsigned char offset; /* Slot offset in parent */ 1089 unsigned char count; /* Total entry count */ 1090 unsigned char nr_values; /* Value entry count */ 1091 struct xa_node __rcu *parent; /* NULL at top of tree */ 1092 struct xarray *array; /* The array we belong to */ 1093 union { 1094 struct list_head private_list; /* For tree user */ 1095 struct rcu_head rcu_head; /* Used when freeing node */ 1096 }; 1097 void __rcu *slots[XA_CHUNK_SIZE]; 1098 union { 1099 unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS]; 1100 unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS]; 1101 }; 1102 }; 1103 1104 void xa_dump(const struct xarray *); 1105 void xa_dump_node(const struct xa_node *); 1106 1107 #ifdef XA_DEBUG 1108 #define XA_BUG_ON(xa, x) do { \ 1109 if (x) { \ 1110 xa_dump(xa); \ 1111 BUG(); \ 1112 } \ 1113 } while (0) 1114 #define XA_NODE_BUG_ON(node, x) do { \ 1115 if (x) { \ 1116 if (node) xa_dump_node(node); \ 1117 BUG(); \ 1118 } \ 1119 } while (0) 1120 #else 1121 #define XA_BUG_ON(xa, x) do { } while (0) 1122 #define XA_NODE_BUG_ON(node, x) do { } while (0) 1123 #endif 1124 1125 /* Private */ 1126 static inline void *xa_head(const struct xarray *xa) 1127 { 1128 return rcu_dereference_check(xa->xa_head, 1129 lockdep_is_held(&xa->xa_lock)); 1130 } 1131 1132 /* Private */ 1133 static inline void *xa_head_locked(const struct xarray *xa) 1134 { 1135 return rcu_dereference_protected(xa->xa_head, 1136 lockdep_is_held(&xa->xa_lock)); 1137 } 1138 1139 /* Private */ 1140 static inline void *xa_entry(const struct xarray *xa, 1141 const struct xa_node *node, unsigned int offset) 1142 { 1143 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 1144 return rcu_dereference_check(node->slots[offset], 1145 lockdep_is_held(&xa->xa_lock)); 1146 } 1147 1148 /* Private */ 1149 static inline void *xa_entry_locked(const struct xarray *xa, 1150 const struct xa_node *node, unsigned int offset) 1151 { 1152 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 1153 return rcu_dereference_protected(node->slots[offset], 1154 lockdep_is_held(&xa->xa_lock)); 1155 } 1156 1157 /* Private */ 1158 static inline struct xa_node *xa_parent(const struct xarray *xa, 1159 const struct xa_node *node) 1160 { 1161 return rcu_dereference_check(node->parent, 1162 lockdep_is_held(&xa->xa_lock)); 1163 } 1164 1165 /* Private */ 1166 static inline struct xa_node *xa_parent_locked(const struct xarray *xa, 1167 const struct xa_node *node) 1168 { 1169 return rcu_dereference_protected(node->parent, 1170 lockdep_is_held(&xa->xa_lock)); 1171 } 1172 1173 /* Private */ 1174 static inline void *xa_mk_node(const struct xa_node *node) 1175 { 1176 return (void *)((unsigned long)node | 2); 1177 } 1178 1179 /* Private */ 1180 static inline struct xa_node *xa_to_node(const void *entry) 1181 { 1182 return (struct xa_node *)((unsigned long)entry - 2); 1183 } 1184 1185 /* Private */ 1186 static inline bool xa_is_node(const void *entry) 1187 { 1188 return xa_is_internal(entry) && (unsigned long)entry > 4096; 1189 } 1190 1191 /* Private */ 1192 static inline void *xa_mk_sibling(unsigned int offset) 1193 { 1194 return xa_mk_internal(offset); 1195 } 1196 1197 /* Private */ 1198 static inline unsigned long xa_to_sibling(const void *entry) 1199 { 1200 return xa_to_internal(entry); 1201 } 1202 1203 /** 1204 * xa_is_sibling() - Is the entry a sibling entry? 1205 * @entry: Entry retrieved from the XArray 1206 * 1207 * Return: %true if the entry is a sibling entry. 1208 */ 1209 static inline bool xa_is_sibling(const void *entry) 1210 { 1211 return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) && 1212 (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1)); 1213 } 1214 1215 #define XA_RETRY_ENTRY xa_mk_internal(256) 1216 1217 /** 1218 * xa_is_retry() - Is the entry a retry entry? 1219 * @entry: Entry retrieved from the XArray 1220 * 1221 * Return: %true if the entry is a retry entry. 1222 */ 1223 static inline bool xa_is_retry(const void *entry) 1224 { 1225 return unlikely(entry == XA_RETRY_ENTRY); 1226 } 1227 1228 /** 1229 * xa_is_advanced() - Is the entry only permitted for the advanced API? 1230 * @entry: Entry to be stored in the XArray. 1231 * 1232 * Return: %true if the entry cannot be stored by the normal API. 1233 */ 1234 static inline bool xa_is_advanced(const void *entry) 1235 { 1236 return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY); 1237 } 1238 1239 /** 1240 * typedef xa_update_node_t - A callback function from the XArray. 1241 * @node: The node which is being processed 1242 * 1243 * This function is called every time the XArray updates the count of 1244 * present and value entries in a node. It allows advanced users to 1245 * maintain the private_list in the node. 1246 * 1247 * Context: The xa_lock is held and interrupts may be disabled. 1248 * Implementations should not drop the xa_lock, nor re-enable 1249 * interrupts. 1250 */ 1251 typedef void (*xa_update_node_t)(struct xa_node *node); 1252 1253 /* 1254 * The xa_state is opaque to its users. It contains various different pieces 1255 * of state involved in the current operation on the XArray. It should be 1256 * declared on the stack and passed between the various internal routines. 1257 * The various elements in it should not be accessed directly, but only 1258 * through the provided accessor functions. The below documentation is for 1259 * the benefit of those working on the code, not for users of the XArray. 1260 * 1261 * @xa_node usually points to the xa_node containing the slot we're operating 1262 * on (and @xa_offset is the offset in the slots array). If there is a 1263 * single entry in the array at index 0, there are no allocated xa_nodes to 1264 * point to, and so we store %NULL in @xa_node. @xa_node is set to 1265 * the value %XAS_RESTART if the xa_state is not walked to the correct 1266 * position in the tree of nodes for this operation. If an error occurs 1267 * during an operation, it is set to an %XAS_ERROR value. If we run off the 1268 * end of the allocated nodes, it is set to %XAS_BOUNDS. 1269 */ 1270 struct xa_state { 1271 struct xarray *xa; 1272 unsigned long xa_index; 1273 unsigned char xa_shift; 1274 unsigned char xa_sibs; 1275 unsigned char xa_offset; 1276 unsigned char xa_pad; /* Helps gcc generate better code */ 1277 struct xa_node *xa_node; 1278 struct xa_node *xa_alloc; 1279 xa_update_node_t xa_update; 1280 }; 1281 1282 /* 1283 * We encode errnos in the xas->xa_node. If an error has happened, we need to 1284 * drop the lock to fix it, and once we've done so the xa_state is invalid. 1285 */ 1286 #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL)) 1287 #define XAS_BOUNDS ((struct xa_node *)1UL) 1288 #define XAS_RESTART ((struct xa_node *)3UL) 1289 1290 #define __XA_STATE(array, index, shift, sibs) { \ 1291 .xa = array, \ 1292 .xa_index = index, \ 1293 .xa_shift = shift, \ 1294 .xa_sibs = sibs, \ 1295 .xa_offset = 0, \ 1296 .xa_pad = 0, \ 1297 .xa_node = XAS_RESTART, \ 1298 .xa_alloc = NULL, \ 1299 .xa_update = NULL \ 1300 } 1301 1302 /** 1303 * XA_STATE() - Declare an XArray operation state. 1304 * @name: Name of this operation state (usually xas). 1305 * @array: Array to operate on. 1306 * @index: Initial index of interest. 1307 * 1308 * Declare and initialise an xa_state on the stack. 1309 */ 1310 #define XA_STATE(name, array, index) \ 1311 struct xa_state name = __XA_STATE(array, index, 0, 0) 1312 1313 /** 1314 * XA_STATE_ORDER() - Declare an XArray operation state. 1315 * @name: Name of this operation state (usually xas). 1316 * @array: Array to operate on. 1317 * @index: Initial index of interest. 1318 * @order: Order of entry. 1319 * 1320 * Declare and initialise an xa_state on the stack. This variant of 1321 * XA_STATE() allows you to specify the 'order' of the element you 1322 * want to operate on.` 1323 */ 1324 #define XA_STATE_ORDER(name, array, index, order) \ 1325 struct xa_state name = __XA_STATE(array, \ 1326 (index >> order) << order, \ 1327 order - (order % XA_CHUNK_SHIFT), \ 1328 (1U << (order % XA_CHUNK_SHIFT)) - 1) 1329 1330 #define xas_marked(xas, mark) xa_marked((xas)->xa, (mark)) 1331 #define xas_trylock(xas) xa_trylock((xas)->xa) 1332 #define xas_lock(xas) xa_lock((xas)->xa) 1333 #define xas_unlock(xas) xa_unlock((xas)->xa) 1334 #define xas_lock_bh(xas) xa_lock_bh((xas)->xa) 1335 #define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa) 1336 #define xas_lock_irq(xas) xa_lock_irq((xas)->xa) 1337 #define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa) 1338 #define xas_lock_irqsave(xas, flags) \ 1339 xa_lock_irqsave((xas)->xa, flags) 1340 #define xas_unlock_irqrestore(xas, flags) \ 1341 xa_unlock_irqrestore((xas)->xa, flags) 1342 1343 /** 1344 * xas_error() - Return an errno stored in the xa_state. 1345 * @xas: XArray operation state. 1346 * 1347 * Return: 0 if no error has been noted. A negative errno if one has. 1348 */ 1349 static inline int xas_error(const struct xa_state *xas) 1350 { 1351 return xa_err(xas->xa_node); 1352 } 1353 1354 /** 1355 * xas_set_err() - Note an error in the xa_state. 1356 * @xas: XArray operation state. 1357 * @err: Negative error number. 1358 * 1359 * Only call this function with a negative @err; zero or positive errors 1360 * will probably not behave the way you think they should. If you want 1361 * to clear the error from an xa_state, use xas_reset(). 1362 */ 1363 static inline void xas_set_err(struct xa_state *xas, long err) 1364 { 1365 xas->xa_node = XA_ERROR(err); 1366 } 1367 1368 /** 1369 * xas_invalid() - Is the xas in a retry or error state? 1370 * @xas: XArray operation state. 1371 * 1372 * Return: %true if the xas cannot be used for operations. 1373 */ 1374 static inline bool xas_invalid(const struct xa_state *xas) 1375 { 1376 return (unsigned long)xas->xa_node & 3; 1377 } 1378 1379 /** 1380 * xas_valid() - Is the xas a valid cursor into the array? 1381 * @xas: XArray operation state. 1382 * 1383 * Return: %true if the xas can be used for operations. 1384 */ 1385 static inline bool xas_valid(const struct xa_state *xas) 1386 { 1387 return !xas_invalid(xas); 1388 } 1389 1390 /** 1391 * xas_is_node() - Does the xas point to a node? 1392 * @xas: XArray operation state. 1393 * 1394 * Return: %true if the xas currently references a node. 1395 */ 1396 static inline bool xas_is_node(const struct xa_state *xas) 1397 { 1398 return xas_valid(xas) && xas->xa_node; 1399 } 1400 1401 /* True if the pointer is something other than a node */ 1402 static inline bool xas_not_node(struct xa_node *node) 1403 { 1404 return ((unsigned long)node & 3) || !node; 1405 } 1406 1407 /* True if the node represents RESTART or an error */ 1408 static inline bool xas_frozen(struct xa_node *node) 1409 { 1410 return (unsigned long)node & 2; 1411 } 1412 1413 /* True if the node represents head-of-tree, RESTART or BOUNDS */ 1414 static inline bool xas_top(struct xa_node *node) 1415 { 1416 return node <= XAS_RESTART; 1417 } 1418 1419 /** 1420 * xas_reset() - Reset an XArray operation state. 1421 * @xas: XArray operation state. 1422 * 1423 * Resets the error or walk state of the @xas so future walks of the 1424 * array will start from the root. Use this if you have dropped the 1425 * xarray lock and want to reuse the xa_state. 1426 * 1427 * Context: Any context. 1428 */ 1429 static inline void xas_reset(struct xa_state *xas) 1430 { 1431 xas->xa_node = XAS_RESTART; 1432 } 1433 1434 /** 1435 * xas_retry() - Retry the operation if appropriate. 1436 * @xas: XArray operation state. 1437 * @entry: Entry from xarray. 1438 * 1439 * The advanced functions may sometimes return an internal entry, such as 1440 * a retry entry or a zero entry. This function sets up the @xas to restart 1441 * the walk from the head of the array if needed. 1442 * 1443 * Context: Any context. 1444 * Return: true if the operation needs to be retried. 1445 */ 1446 static inline bool xas_retry(struct xa_state *xas, const void *entry) 1447 { 1448 if (xa_is_zero(entry)) 1449 return true; 1450 if (!xa_is_retry(entry)) 1451 return false; 1452 xas_reset(xas); 1453 return true; 1454 } 1455 1456 void *xas_load(struct xa_state *); 1457 void *xas_store(struct xa_state *, void *entry); 1458 void *xas_find(struct xa_state *, unsigned long max); 1459 void *xas_find_conflict(struct xa_state *); 1460 1461 bool xas_get_mark(const struct xa_state *, xa_mark_t); 1462 void xas_set_mark(const struct xa_state *, xa_mark_t); 1463 void xas_clear_mark(const struct xa_state *, xa_mark_t); 1464 void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t); 1465 void xas_init_marks(const struct xa_state *); 1466 1467 bool xas_nomem(struct xa_state *, gfp_t); 1468 void xas_pause(struct xa_state *); 1469 1470 void xas_create_range(struct xa_state *); 1471 1472 /** 1473 * xas_reload() - Refetch an entry from the xarray. 1474 * @xas: XArray operation state. 1475 * 1476 * Use this function to check that a previously loaded entry still has 1477 * the same value. This is useful for the lockless pagecache lookup where 1478 * we walk the array with only the RCU lock to protect us, lock the page, 1479 * then check that the page hasn't moved since we looked it up. 1480 * 1481 * The caller guarantees that @xas is still valid. If it may be in an 1482 * error or restart state, call xas_load() instead. 1483 * 1484 * Return: The entry at this location in the xarray. 1485 */ 1486 static inline void *xas_reload(struct xa_state *xas) 1487 { 1488 struct xa_node *node = xas->xa_node; 1489 1490 if (node) 1491 return xa_entry(xas->xa, node, xas->xa_offset); 1492 return xa_head(xas->xa); 1493 } 1494 1495 /** 1496 * xas_set() - Set up XArray operation state for a different index. 1497 * @xas: XArray operation state. 1498 * @index: New index into the XArray. 1499 * 1500 * Move the operation state to refer to a different index. This will 1501 * have the effect of starting a walk from the top; see xas_next() 1502 * to move to an adjacent index. 1503 */ 1504 static inline void xas_set(struct xa_state *xas, unsigned long index) 1505 { 1506 xas->xa_index = index; 1507 xas->xa_node = XAS_RESTART; 1508 } 1509 1510 /** 1511 * xas_set_order() - Set up XArray operation state for a multislot entry. 1512 * @xas: XArray operation state. 1513 * @index: Target of the operation. 1514 * @order: Entry occupies 2^@order indices. 1515 */ 1516 static inline void xas_set_order(struct xa_state *xas, unsigned long index, 1517 unsigned int order) 1518 { 1519 #ifdef CONFIG_XARRAY_MULTI 1520 xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0; 1521 xas->xa_shift = order - (order % XA_CHUNK_SHIFT); 1522 xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1523 xas->xa_node = XAS_RESTART; 1524 #else 1525 BUG_ON(order > 0); 1526 xas_set(xas, index); 1527 #endif 1528 } 1529 1530 /** 1531 * xas_set_update() - Set up XArray operation state for a callback. 1532 * @xas: XArray operation state. 1533 * @update: Function to call when updating a node. 1534 * 1535 * The XArray can notify a caller after it has updated an xa_node. 1536 * This is advanced functionality and is only needed by the page cache. 1537 */ 1538 static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update) 1539 { 1540 xas->xa_update = update; 1541 } 1542 1543 /** 1544 * xas_next_entry() - Advance iterator to next present entry. 1545 * @xas: XArray operation state. 1546 * @max: Highest index to return. 1547 * 1548 * xas_next_entry() is an inline function to optimise xarray traversal for 1549 * speed. It is equivalent to calling xas_find(), and will call xas_find() 1550 * for all the hard cases. 1551 * 1552 * Return: The next present entry after the one currently referred to by @xas. 1553 */ 1554 static inline void *xas_next_entry(struct xa_state *xas, unsigned long max) 1555 { 1556 struct xa_node *node = xas->xa_node; 1557 void *entry; 1558 1559 if (unlikely(xas_not_node(node) || node->shift || 1560 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK))) 1561 return xas_find(xas, max); 1562 1563 do { 1564 if (unlikely(xas->xa_index >= max)) 1565 return xas_find(xas, max); 1566 if (unlikely(xas->xa_offset == XA_CHUNK_MASK)) 1567 return xas_find(xas, max); 1568 entry = xa_entry(xas->xa, node, xas->xa_offset + 1); 1569 if (unlikely(xa_is_internal(entry))) 1570 return xas_find(xas, max); 1571 xas->xa_offset++; 1572 xas->xa_index++; 1573 } while (!entry); 1574 1575 return entry; 1576 } 1577 1578 /* Private */ 1579 static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance, 1580 xa_mark_t mark) 1581 { 1582 unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark]; 1583 unsigned int offset = xas->xa_offset; 1584 1585 if (advance) 1586 offset++; 1587 if (XA_CHUNK_SIZE == BITS_PER_LONG) { 1588 if (offset < XA_CHUNK_SIZE) { 1589 unsigned long data = *addr & (~0UL << offset); 1590 if (data) 1591 return __ffs(data); 1592 } 1593 return XA_CHUNK_SIZE; 1594 } 1595 1596 return find_next_bit(addr, XA_CHUNK_SIZE, offset); 1597 } 1598 1599 /** 1600 * xas_next_marked() - Advance iterator to next marked entry. 1601 * @xas: XArray operation state. 1602 * @max: Highest index to return. 1603 * @mark: Mark to search for. 1604 * 1605 * xas_next_marked() is an inline function to optimise xarray traversal for 1606 * speed. It is equivalent to calling xas_find_marked(), and will call 1607 * xas_find_marked() for all the hard cases. 1608 * 1609 * Return: The next marked entry after the one currently referred to by @xas. 1610 */ 1611 static inline void *xas_next_marked(struct xa_state *xas, unsigned long max, 1612 xa_mark_t mark) 1613 { 1614 struct xa_node *node = xas->xa_node; 1615 unsigned int offset; 1616 1617 if (unlikely(xas_not_node(node) || node->shift)) 1618 return xas_find_marked(xas, max, mark); 1619 offset = xas_find_chunk(xas, true, mark); 1620 xas->xa_offset = offset; 1621 xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset; 1622 if (xas->xa_index > max) 1623 return NULL; 1624 if (offset == XA_CHUNK_SIZE) 1625 return xas_find_marked(xas, max, mark); 1626 return xa_entry(xas->xa, node, offset); 1627 } 1628 1629 /* 1630 * If iterating while holding a lock, drop the lock and reschedule 1631 * every %XA_CHECK_SCHED loops. 1632 */ 1633 enum { 1634 XA_CHECK_SCHED = 4096, 1635 }; 1636 1637 /** 1638 * xas_for_each() - Iterate over a range of an XArray. 1639 * @xas: XArray operation state. 1640 * @entry: Entry retrieved from the array. 1641 * @max: Maximum index to retrieve from array. 1642 * 1643 * The loop body will be executed for each entry present in the xarray 1644 * between the current xas position and @max. @entry will be set to 1645 * the entry retrieved from the xarray. It is safe to delete entries 1646 * from the array in the loop body. You should hold either the RCU lock 1647 * or the xa_lock while iterating. If you need to drop the lock, call 1648 * xas_pause() first. 1649 */ 1650 #define xas_for_each(xas, entry, max) \ 1651 for (entry = xas_find(xas, max); entry; \ 1652 entry = xas_next_entry(xas, max)) 1653 1654 /** 1655 * xas_for_each_marked() - Iterate over a range of an XArray. 1656 * @xas: XArray operation state. 1657 * @entry: Entry retrieved from the array. 1658 * @max: Maximum index to retrieve from array. 1659 * @mark: Mark to search for. 1660 * 1661 * The loop body will be executed for each marked entry in the xarray 1662 * between the current xas position and @max. @entry will be set to 1663 * the entry retrieved from the xarray. It is safe to delete entries 1664 * from the array in the loop body. You should hold either the RCU lock 1665 * or the xa_lock while iterating. If you need to drop the lock, call 1666 * xas_pause() first. 1667 */ 1668 #define xas_for_each_marked(xas, entry, max, mark) \ 1669 for (entry = xas_find_marked(xas, max, mark); entry; \ 1670 entry = xas_next_marked(xas, max, mark)) 1671 1672 /** 1673 * xas_for_each_conflict() - Iterate over a range of an XArray. 1674 * @xas: XArray operation state. 1675 * @entry: Entry retrieved from the array. 1676 * 1677 * The loop body will be executed for each entry in the XArray that lies 1678 * within the range specified by @xas. If the loop completes successfully, 1679 * any entries that lie in this range will be replaced by @entry. The caller 1680 * may break out of the loop; if they do so, the contents of the XArray will 1681 * be unchanged. The operation may fail due to an out of memory condition. 1682 * The caller may also call xa_set_err() to exit the loop while setting an 1683 * error to record the reason. 1684 */ 1685 #define xas_for_each_conflict(xas, entry) \ 1686 while ((entry = xas_find_conflict(xas))) 1687 1688 void *__xas_next(struct xa_state *); 1689 void *__xas_prev(struct xa_state *); 1690 1691 /** 1692 * xas_prev() - Move iterator to previous index. 1693 * @xas: XArray operation state. 1694 * 1695 * If the @xas was in an error state, it will remain in an error state 1696 * and this function will return %NULL. If the @xas has never been walked, 1697 * it will have the effect of calling xas_load(). Otherwise one will be 1698 * subtracted from the index and the state will be walked to the correct 1699 * location in the array for the next operation. 1700 * 1701 * If the iterator was referencing index 0, this function wraps 1702 * around to %ULONG_MAX. 1703 * 1704 * Return: The entry at the new index. This may be %NULL or an internal 1705 * entry. 1706 */ 1707 static inline void *xas_prev(struct xa_state *xas) 1708 { 1709 struct xa_node *node = xas->xa_node; 1710 1711 if (unlikely(xas_not_node(node) || node->shift || 1712 xas->xa_offset == 0)) 1713 return __xas_prev(xas); 1714 1715 xas->xa_index--; 1716 xas->xa_offset--; 1717 return xa_entry(xas->xa, node, xas->xa_offset); 1718 } 1719 1720 /** 1721 * xas_next() - Move state to next index. 1722 * @xas: XArray operation state. 1723 * 1724 * If the @xas was in an error state, it will remain in an error state 1725 * and this function will return %NULL. If the @xas has never been walked, 1726 * it will have the effect of calling xas_load(). Otherwise one will be 1727 * added to the index and the state will be walked to the correct 1728 * location in the array for the next operation. 1729 * 1730 * If the iterator was referencing index %ULONG_MAX, this function wraps 1731 * around to 0. 1732 * 1733 * Return: The entry at the new index. This may be %NULL or an internal 1734 * entry. 1735 */ 1736 static inline void *xas_next(struct xa_state *xas) 1737 { 1738 struct xa_node *node = xas->xa_node; 1739 1740 if (unlikely(xas_not_node(node) || node->shift || 1741 xas->xa_offset == XA_CHUNK_MASK)) 1742 return __xas_next(xas); 1743 1744 xas->xa_index++; 1745 xas->xa_offset++; 1746 return xa_entry(xas->xa, node, xas->xa_offset); 1747 } 1748 1749 #endif /* _LINUX_XARRAY_H */ 1750