1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 #ifndef _LINUX_XARRAY_H 3 #define _LINUX_XARRAY_H 4 /* 5 * eXtensible Arrays 6 * Copyright (c) 2017 Microsoft Corporation 7 * Author: Matthew Wilcox <willy@infradead.org> 8 * 9 * See Documentation/core-api/xarray.rst for how to use the XArray. 10 */ 11 12 #include <linux/bug.h> 13 #include <linux/compiler.h> 14 #include <linux/gfp.h> 15 #include <linux/kconfig.h> 16 #include <linux/kernel.h> 17 #include <linux/rcupdate.h> 18 #include <linux/spinlock.h> 19 #include <linux/types.h> 20 21 /* 22 * The bottom two bits of the entry determine how the XArray interprets 23 * the contents: 24 * 25 * 00: Pointer entry 26 * 10: Internal entry 27 * x1: Value entry or tagged pointer 28 * 29 * Attempting to store internal entries in the XArray is a bug. 30 * 31 * Most internal entries are pointers to the next node in the tree. 32 * The following internal entries have a special meaning: 33 * 34 * 0-62: Sibling entries 35 * 256: Zero entry 36 * 257: Retry entry 37 * 38 * Errors are also represented as internal entries, but use the negative 39 * space (-4094 to -2). They're never stored in the slots array; only 40 * returned by the normal API. 41 */ 42 43 #define BITS_PER_XA_VALUE (BITS_PER_LONG - 1) 44 45 /** 46 * xa_mk_value() - Create an XArray entry from an integer. 47 * @v: Value to store in XArray. 48 * 49 * Context: Any context. 50 * Return: An entry suitable for storing in the XArray. 51 */ 52 static inline void *xa_mk_value(unsigned long v) 53 { 54 WARN_ON((long)v < 0); 55 return (void *)((v << 1) | 1); 56 } 57 58 /** 59 * xa_to_value() - Get value stored in an XArray entry. 60 * @entry: XArray entry. 61 * 62 * Context: Any context. 63 * Return: The value stored in the XArray entry. 64 */ 65 static inline unsigned long xa_to_value(const void *entry) 66 { 67 return (unsigned long)entry >> 1; 68 } 69 70 /** 71 * xa_is_value() - Determine if an entry is a value. 72 * @entry: XArray entry. 73 * 74 * Context: Any context. 75 * Return: True if the entry is a value, false if it is a pointer. 76 */ 77 static inline bool xa_is_value(const void *entry) 78 { 79 return (unsigned long)entry & 1; 80 } 81 82 /** 83 * xa_tag_pointer() - Create an XArray entry for a tagged pointer. 84 * @p: Plain pointer. 85 * @tag: Tag value (0, 1 or 3). 86 * 87 * If the user of the XArray prefers, they can tag their pointers instead 88 * of storing value entries. Three tags are available (0, 1 and 3). 89 * These are distinct from the xa_mark_t as they are not replicated up 90 * through the array and cannot be searched for. 91 * 92 * Context: Any context. 93 * Return: An XArray entry. 94 */ 95 static inline void *xa_tag_pointer(void *p, unsigned long tag) 96 { 97 return (void *)((unsigned long)p | tag); 98 } 99 100 /** 101 * xa_untag_pointer() - Turn an XArray entry into a plain pointer. 102 * @entry: XArray entry. 103 * 104 * If you have stored a tagged pointer in the XArray, call this function 105 * to get the untagged version of the pointer. 106 * 107 * Context: Any context. 108 * Return: A pointer. 109 */ 110 static inline void *xa_untag_pointer(void *entry) 111 { 112 return (void *)((unsigned long)entry & ~3UL); 113 } 114 115 /** 116 * xa_pointer_tag() - Get the tag stored in an XArray entry. 117 * @entry: XArray entry. 118 * 119 * If you have stored a tagged pointer in the XArray, call this function 120 * to get the tag of that pointer. 121 * 122 * Context: Any context. 123 * Return: A tag. 124 */ 125 static inline unsigned int xa_pointer_tag(void *entry) 126 { 127 return (unsigned long)entry & 3UL; 128 } 129 130 /* 131 * xa_mk_internal() - Create an internal entry. 132 * @v: Value to turn into an internal entry. 133 * 134 * Context: Any context. 135 * Return: An XArray internal entry corresponding to this value. 136 */ 137 static inline void *xa_mk_internal(unsigned long v) 138 { 139 return (void *)((v << 2) | 2); 140 } 141 142 /* 143 * xa_to_internal() - Extract the value from an internal entry. 144 * @entry: XArray entry. 145 * 146 * Context: Any context. 147 * Return: The value which was stored in the internal entry. 148 */ 149 static inline unsigned long xa_to_internal(const void *entry) 150 { 151 return (unsigned long)entry >> 2; 152 } 153 154 /* 155 * xa_is_internal() - Is the entry an internal entry? 156 * @entry: XArray entry. 157 * 158 * Context: Any context. 159 * Return: %true if the entry is an internal entry. 160 */ 161 static inline bool xa_is_internal(const void *entry) 162 { 163 return ((unsigned long)entry & 3) == 2; 164 } 165 166 /** 167 * xa_is_err() - Report whether an XArray operation returned an error 168 * @entry: Result from calling an XArray function 169 * 170 * If an XArray operation cannot complete an operation, it will return 171 * a special value indicating an error. This function tells you 172 * whether an error occurred; xa_err() tells you which error occurred. 173 * 174 * Context: Any context. 175 * Return: %true if the entry indicates an error. 176 */ 177 static inline bool xa_is_err(const void *entry) 178 { 179 return unlikely(xa_is_internal(entry)); 180 } 181 182 /** 183 * xa_err() - Turn an XArray result into an errno. 184 * @entry: Result from calling an XArray function. 185 * 186 * If an XArray operation cannot complete an operation, it will return 187 * a special pointer value which encodes an errno. This function extracts 188 * the errno from the pointer value, or returns 0 if the pointer does not 189 * represent an errno. 190 * 191 * Context: Any context. 192 * Return: A negative errno or 0. 193 */ 194 static inline int xa_err(void *entry) 195 { 196 /* xa_to_internal() would not do sign extension. */ 197 if (xa_is_err(entry)) 198 return (long)entry >> 2; 199 return 0; 200 } 201 202 typedef unsigned __bitwise xa_mark_t; 203 #define XA_MARK_0 ((__force xa_mark_t)0U) 204 #define XA_MARK_1 ((__force xa_mark_t)1U) 205 #define XA_MARK_2 ((__force xa_mark_t)2U) 206 #define XA_PRESENT ((__force xa_mark_t)8U) 207 #define XA_MARK_MAX XA_MARK_2 208 #define XA_FREE_MARK XA_MARK_0 209 210 enum xa_lock_type { 211 XA_LOCK_IRQ = 1, 212 XA_LOCK_BH = 2, 213 }; 214 215 /* 216 * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags, 217 * and we remain compatible with that. 218 */ 219 #define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ) 220 #define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH) 221 #define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U) 222 #define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \ 223 (__force unsigned)(mark))) 224 225 #define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK)) 226 227 /** 228 * struct xarray - The anchor of the XArray. 229 * @xa_lock: Lock that protects the contents of the XArray. 230 * 231 * To use the xarray, define it statically or embed it in your data structure. 232 * It is a very small data structure, so it does not usually make sense to 233 * allocate it separately and keep a pointer to it in your data structure. 234 * 235 * You may use the xa_lock to protect your own data structures as well. 236 */ 237 /* 238 * If all of the entries in the array are NULL, @xa_head is a NULL pointer. 239 * If the only non-NULL entry in the array is at index 0, @xa_head is that 240 * entry. If any other entry in the array is non-NULL, @xa_head points 241 * to an @xa_node. 242 */ 243 struct xarray { 244 spinlock_t xa_lock; 245 /* private: The rest of the data structure is not to be used directly. */ 246 gfp_t xa_flags; 247 void __rcu * xa_head; 248 }; 249 250 #define XARRAY_INIT(name, flags) { \ 251 .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \ 252 .xa_flags = flags, \ 253 .xa_head = NULL, \ 254 } 255 256 /** 257 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags. 258 * @name: A string that names your XArray. 259 * @flags: XA_FLAG values. 260 * 261 * This is intended for file scope definitions of XArrays. It declares 262 * and initialises an empty XArray with the chosen name and flags. It is 263 * equivalent to calling xa_init_flags() on the array, but it does the 264 * initialisation at compiletime instead of runtime. 265 */ 266 #define DEFINE_XARRAY_FLAGS(name, flags) \ 267 struct xarray name = XARRAY_INIT(name, flags) 268 269 /** 270 * DEFINE_XARRAY() - Define an XArray. 271 * @name: A string that names your XArray. 272 * 273 * This is intended for file scope definitions of XArrays. It declares 274 * and initialises an empty XArray with the chosen name. It is equivalent 275 * to calling xa_init() on the array, but it does the initialisation at 276 * compiletime instead of runtime. 277 */ 278 #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0) 279 280 /** 281 * DEFINE_XARRAY_ALLOC() - Define an XArray which can allocate IDs. 282 * @name: A string that names your XArray. 283 * 284 * This is intended for file scope definitions of allocating XArrays. 285 * See also DEFINE_XARRAY(). 286 */ 287 #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC) 288 289 void xa_init_flags(struct xarray *, gfp_t flags); 290 void *xa_load(struct xarray *, unsigned long index); 291 void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 292 void *xa_erase(struct xarray *, unsigned long index); 293 void *xa_store_range(struct xarray *, unsigned long first, unsigned long last, 294 void *entry, gfp_t); 295 bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t); 296 void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 297 void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 298 void *xa_find(struct xarray *xa, unsigned long *index, 299 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 300 void *xa_find_after(struct xarray *xa, unsigned long *index, 301 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 302 unsigned int xa_extract(struct xarray *, void **dst, unsigned long start, 303 unsigned long max, unsigned int n, xa_mark_t); 304 void xa_destroy(struct xarray *); 305 306 /** 307 * xa_init() - Initialise an empty XArray. 308 * @xa: XArray. 309 * 310 * An empty XArray is full of NULL entries. 311 * 312 * Context: Any context. 313 */ 314 static inline void xa_init(struct xarray *xa) 315 { 316 xa_init_flags(xa, 0); 317 } 318 319 /** 320 * xa_empty() - Determine if an array has any present entries. 321 * @xa: XArray. 322 * 323 * Context: Any context. 324 * Return: %true if the array contains only NULL pointers. 325 */ 326 static inline bool xa_empty(const struct xarray *xa) 327 { 328 return xa->xa_head == NULL; 329 } 330 331 /** 332 * xa_marked() - Inquire whether any entry in this array has a mark set 333 * @xa: Array 334 * @mark: Mark value 335 * 336 * Context: Any context. 337 * Return: %true if any entry has this mark set. 338 */ 339 static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark) 340 { 341 return xa->xa_flags & XA_FLAGS_MARK(mark); 342 } 343 344 /** 345 * xa_for_each() - Iterate over a portion of an XArray. 346 * @xa: XArray. 347 * @entry: Entry retrieved from array. 348 * @index: Index of @entry. 349 * @max: Maximum index to retrieve from array. 350 * @filter: Selection criterion. 351 * 352 * Initialise @index to the lowest index you want to retrieve from the 353 * array. During the iteration, @entry will have the value of the entry 354 * stored in @xa at @index. The iteration will skip all entries in the 355 * array which do not match @filter. You may modify @index during the 356 * iteration if you want to skip or reprocess indices. It is safe to modify 357 * the array during the iteration. At the end of the iteration, @entry will 358 * be set to NULL and @index will have a value less than or equal to max. 359 * 360 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have 361 * to handle your own locking with xas_for_each(), and if you have to unlock 362 * after each iteration, it will also end up being O(n.log(n)). xa_for_each() 363 * will spin if it hits a retry entry; if you intend to see retry entries, 364 * you should use the xas_for_each() iterator instead. The xas_for_each() 365 * iterator will expand into more inline code than xa_for_each(). 366 * 367 * Context: Any context. Takes and releases the RCU lock. 368 */ 369 #define xa_for_each(xa, entry, index, max, filter) \ 370 for (entry = xa_find(xa, &index, max, filter); entry; \ 371 entry = xa_find_after(xa, &index, max, filter)) 372 373 #define xa_trylock(xa) spin_trylock(&(xa)->xa_lock) 374 #define xa_lock(xa) spin_lock(&(xa)->xa_lock) 375 #define xa_unlock(xa) spin_unlock(&(xa)->xa_lock) 376 #define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock) 377 #define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock) 378 #define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock) 379 #define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock) 380 #define xa_lock_irqsave(xa, flags) \ 381 spin_lock_irqsave(&(xa)->xa_lock, flags) 382 #define xa_unlock_irqrestore(xa, flags) \ 383 spin_unlock_irqrestore(&(xa)->xa_lock, flags) 384 385 /* 386 * Versions of the normal API which require the caller to hold the 387 * xa_lock. If the GFP flags allow it, they will drop the lock to 388 * allocate memory, then reacquire it afterwards. These functions 389 * may also re-enable interrupts if the XArray flags indicate the 390 * locking should be interrupt safe. 391 */ 392 void *__xa_erase(struct xarray *, unsigned long index); 393 void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 394 void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old, 395 void *entry, gfp_t); 396 int __xa_alloc(struct xarray *, u32 *id, u32 max, void *entry, gfp_t); 397 int __xa_reserve(struct xarray *, unsigned long index, gfp_t); 398 void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 399 void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 400 401 /** 402 * __xa_insert() - Store this entry in the XArray unless another entry is 403 * already present. 404 * @xa: XArray. 405 * @index: Index into array. 406 * @entry: New entry. 407 * @gfp: Memory allocation flags. 408 * 409 * If you would rather see the existing entry in the array, use __xa_cmpxchg(). 410 * This function is for users who don't care what the entry is, only that 411 * one is present. 412 * 413 * Context: Any context. Expects xa_lock to be held on entry. May 414 * release and reacquire xa_lock if the @gfp flags permit. 415 * Return: 0 if the store succeeded. -EEXIST if another entry was present. 416 * -ENOMEM if memory could not be allocated. 417 */ 418 static inline int __xa_insert(struct xarray *xa, unsigned long index, 419 void *entry, gfp_t gfp) 420 { 421 void *curr = __xa_cmpxchg(xa, index, NULL, entry, gfp); 422 if (!curr) 423 return 0; 424 if (xa_is_err(curr)) 425 return xa_err(curr); 426 return -EEXIST; 427 } 428 429 /** 430 * xa_store_bh() - Store this entry in the XArray. 431 * @xa: XArray. 432 * @index: Index into array. 433 * @entry: New entry. 434 * @gfp: Memory allocation flags. 435 * 436 * This function is like calling xa_store() except it disables softirqs 437 * while holding the array lock. 438 * 439 * Context: Any context. Takes and releases the xa_lock while 440 * disabling softirqs. 441 * Return: The entry which used to be at this index. 442 */ 443 static inline void *xa_store_bh(struct xarray *xa, unsigned long index, 444 void *entry, gfp_t gfp) 445 { 446 void *curr; 447 448 xa_lock_bh(xa); 449 curr = __xa_store(xa, index, entry, gfp); 450 xa_unlock_bh(xa); 451 452 return curr; 453 } 454 455 /** 456 * xa_store_irq() - Erase this entry from the XArray. 457 * @xa: XArray. 458 * @index: Index into array. 459 * @entry: New entry. 460 * @gfp: Memory allocation flags. 461 * 462 * This function is like calling xa_store() except it disables interrupts 463 * while holding the array lock. 464 * 465 * Context: Process context. Takes and releases the xa_lock while 466 * disabling interrupts. 467 * Return: The entry which used to be at this index. 468 */ 469 static inline void *xa_store_irq(struct xarray *xa, unsigned long index, 470 void *entry, gfp_t gfp) 471 { 472 void *curr; 473 474 xa_lock_irq(xa); 475 curr = __xa_store(xa, index, entry, gfp); 476 xa_unlock_irq(xa); 477 478 return curr; 479 } 480 481 /** 482 * xa_erase_bh() - Erase this entry from the XArray. 483 * @xa: XArray. 484 * @index: Index of entry. 485 * 486 * This function is the equivalent of calling xa_store() with %NULL as 487 * the third argument. The XArray does not need to allocate memory, so 488 * the user does not need to provide GFP flags. 489 * 490 * Context: Any context. Takes and releases the xa_lock while 491 * disabling softirqs. 492 * Return: The entry which used to be at this index. 493 */ 494 static inline void *xa_erase_bh(struct xarray *xa, unsigned long index) 495 { 496 void *entry; 497 498 xa_lock_bh(xa); 499 entry = __xa_erase(xa, index); 500 xa_unlock_bh(xa); 501 502 return entry; 503 } 504 505 /** 506 * xa_erase_irq() - Erase this entry from the XArray. 507 * @xa: XArray. 508 * @index: Index of entry. 509 * 510 * This function is the equivalent of calling xa_store() with %NULL as 511 * the third argument. The XArray does not need to allocate memory, so 512 * the user does not need to provide GFP flags. 513 * 514 * Context: Process context. Takes and releases the xa_lock while 515 * disabling interrupts. 516 * Return: The entry which used to be at this index. 517 */ 518 static inline void *xa_erase_irq(struct xarray *xa, unsigned long index) 519 { 520 void *entry; 521 522 xa_lock_irq(xa); 523 entry = __xa_erase(xa, index); 524 xa_unlock_irq(xa); 525 526 return entry; 527 } 528 529 /** 530 * xa_cmpxchg() - Conditionally replace an entry in the XArray. 531 * @xa: XArray. 532 * @index: Index into array. 533 * @old: Old value to test against. 534 * @entry: New value to place in array. 535 * @gfp: Memory allocation flags. 536 * 537 * If the entry at @index is the same as @old, replace it with @entry. 538 * If the return value is equal to @old, then the exchange was successful. 539 * 540 * Context: Any context. Takes and releases the xa_lock. May sleep 541 * if the @gfp flags permit. 542 * Return: The old value at this index or xa_err() if an error happened. 543 */ 544 static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index, 545 void *old, void *entry, gfp_t gfp) 546 { 547 void *curr; 548 549 xa_lock(xa); 550 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 551 xa_unlock(xa); 552 553 return curr; 554 } 555 556 /** 557 * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray. 558 * @xa: XArray. 559 * @index: Index into array. 560 * @old: Old value to test against. 561 * @entry: New value to place in array. 562 * @gfp: Memory allocation flags. 563 * 564 * This function is like calling xa_cmpxchg() except it disables softirqs 565 * while holding the array lock. 566 * 567 * Context: Any context. Takes and releases the xa_lock while 568 * disabling softirqs. May sleep if the @gfp flags permit. 569 * Return: The old value at this index or xa_err() if an error happened. 570 */ 571 static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index, 572 void *old, void *entry, gfp_t gfp) 573 { 574 void *curr; 575 576 xa_lock_bh(xa); 577 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 578 xa_unlock_bh(xa); 579 580 return curr; 581 } 582 583 /** 584 * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray. 585 * @xa: XArray. 586 * @index: Index into array. 587 * @old: Old value to test against. 588 * @entry: New value to place in array. 589 * @gfp: Memory allocation flags. 590 * 591 * This function is like calling xa_cmpxchg() except it disables interrupts 592 * while holding the array lock. 593 * 594 * Context: Process context. Takes and releases the xa_lock while 595 * disabling interrupts. May sleep if the @gfp flags permit. 596 * Return: The old value at this index or xa_err() if an error happened. 597 */ 598 static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index, 599 void *old, void *entry, gfp_t gfp) 600 { 601 void *curr; 602 603 xa_lock_irq(xa); 604 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 605 xa_unlock_irq(xa); 606 607 return curr; 608 } 609 610 /** 611 * xa_insert() - Store this entry in the XArray unless another entry is 612 * already present. 613 * @xa: XArray. 614 * @index: Index into array. 615 * @entry: New entry. 616 * @gfp: Memory allocation flags. 617 * 618 * If you would rather see the existing entry in the array, use xa_cmpxchg(). 619 * This function is for users who don't care what the entry is, only that 620 * one is present. 621 * 622 * Context: Process context. Takes and releases the xa_lock. 623 * May sleep if the @gfp flags permit. 624 * Return: 0 if the store succeeded. -EEXIST if another entry was present. 625 * -ENOMEM if memory could not be allocated. 626 */ 627 static inline int xa_insert(struct xarray *xa, unsigned long index, 628 void *entry, gfp_t gfp) 629 { 630 void *curr = xa_cmpxchg(xa, index, NULL, entry, gfp); 631 if (!curr) 632 return 0; 633 if (xa_is_err(curr)) 634 return xa_err(curr); 635 return -EEXIST; 636 } 637 638 /** 639 * xa_alloc() - Find somewhere to store this entry in the XArray. 640 * @xa: XArray. 641 * @id: Pointer to ID. 642 * @max: Maximum ID to allocate (inclusive). 643 * @entry: New entry. 644 * @gfp: Memory allocation flags. 645 * 646 * Allocates an unused ID in the range specified by @id and @max. 647 * Updates the @id pointer with the index, then stores the entry at that 648 * index. A concurrent lookup will not see an uninitialised @id. 649 * 650 * Context: Process context. Takes and releases the xa_lock. May sleep if 651 * the @gfp flags permit. 652 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if 653 * there is no more space in the XArray. 654 */ 655 static inline int xa_alloc(struct xarray *xa, u32 *id, u32 max, void *entry, 656 gfp_t gfp) 657 { 658 int err; 659 660 xa_lock(xa); 661 err = __xa_alloc(xa, id, max, entry, gfp); 662 xa_unlock(xa); 663 664 return err; 665 } 666 667 /** 668 * xa_alloc_bh() - Find somewhere to store this entry in the XArray. 669 * @xa: XArray. 670 * @id: Pointer to ID. 671 * @max: Maximum ID to allocate (inclusive). 672 * @entry: New entry. 673 * @gfp: Memory allocation flags. 674 * 675 * Allocates an unused ID in the range specified by @id and @max. 676 * Updates the @id pointer with the index, then stores the entry at that 677 * index. A concurrent lookup will not see an uninitialised @id. 678 * 679 * Context: Any context. Takes and releases the xa_lock while 680 * disabling softirqs. May sleep if the @gfp flags permit. 681 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if 682 * there is no more space in the XArray. 683 */ 684 static inline int xa_alloc_bh(struct xarray *xa, u32 *id, u32 max, void *entry, 685 gfp_t gfp) 686 { 687 int err; 688 689 xa_lock_bh(xa); 690 err = __xa_alloc(xa, id, max, entry, gfp); 691 xa_unlock_bh(xa); 692 693 return err; 694 } 695 696 /** 697 * xa_alloc_irq() - Find somewhere to store this entry in the XArray. 698 * @xa: XArray. 699 * @id: Pointer to ID. 700 * @max: Maximum ID to allocate (inclusive). 701 * @entry: New entry. 702 * @gfp: Memory allocation flags. 703 * 704 * Allocates an unused ID in the range specified by @id and @max. 705 * Updates the @id pointer with the index, then stores the entry at that 706 * index. A concurrent lookup will not see an uninitialised @id. 707 * 708 * Context: Process context. Takes and releases the xa_lock while 709 * disabling interrupts. May sleep if the @gfp flags permit. 710 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if 711 * there is no more space in the XArray. 712 */ 713 static inline int xa_alloc_irq(struct xarray *xa, u32 *id, u32 max, void *entry, 714 gfp_t gfp) 715 { 716 int err; 717 718 xa_lock_irq(xa); 719 err = __xa_alloc(xa, id, max, entry, gfp); 720 xa_unlock_irq(xa); 721 722 return err; 723 } 724 725 /** 726 * xa_reserve() - Reserve this index in the XArray. 727 * @xa: XArray. 728 * @index: Index into array. 729 * @gfp: Memory allocation flags. 730 * 731 * Ensures there is somewhere to store an entry at @index in the array. 732 * If there is already something stored at @index, this function does 733 * nothing. If there was nothing there, the entry is marked as reserved. 734 * Loading from a reserved entry returns a %NULL pointer. 735 * 736 * If you do not use the entry that you have reserved, call xa_release() 737 * or xa_erase() to free any unnecessary memory. 738 * 739 * Context: Any context. Takes and releases the xa_lock. 740 * May sleep if the @gfp flags permit. 741 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 742 */ 743 static inline 744 int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp) 745 { 746 int ret; 747 748 xa_lock(xa); 749 ret = __xa_reserve(xa, index, gfp); 750 xa_unlock(xa); 751 752 return ret; 753 } 754 755 /** 756 * xa_reserve_bh() - Reserve this index in the XArray. 757 * @xa: XArray. 758 * @index: Index into array. 759 * @gfp: Memory allocation flags. 760 * 761 * A softirq-disabling version of xa_reserve(). 762 * 763 * Context: Any context. Takes and releases the xa_lock while 764 * disabling softirqs. 765 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 766 */ 767 static inline 768 int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp) 769 { 770 int ret; 771 772 xa_lock_bh(xa); 773 ret = __xa_reserve(xa, index, gfp); 774 xa_unlock_bh(xa); 775 776 return ret; 777 } 778 779 /** 780 * xa_reserve_irq() - Reserve this index in the XArray. 781 * @xa: XArray. 782 * @index: Index into array. 783 * @gfp: Memory allocation flags. 784 * 785 * An interrupt-disabling version of xa_reserve(). 786 * 787 * Context: Process context. Takes and releases the xa_lock while 788 * disabling interrupts. 789 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 790 */ 791 static inline 792 int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp) 793 { 794 int ret; 795 796 xa_lock_irq(xa); 797 ret = __xa_reserve(xa, index, gfp); 798 xa_unlock_irq(xa); 799 800 return ret; 801 } 802 803 /** 804 * xa_release() - Release a reserved entry. 805 * @xa: XArray. 806 * @index: Index of entry. 807 * 808 * After calling xa_reserve(), you can call this function to release the 809 * reservation. If the entry at @index has been stored to, this function 810 * will do nothing. 811 */ 812 static inline void xa_release(struct xarray *xa, unsigned long index) 813 { 814 xa_cmpxchg(xa, index, NULL, NULL, 0); 815 } 816 817 /* Everything below here is the Advanced API. Proceed with caution. */ 818 819 /* 820 * The xarray is constructed out of a set of 'chunks' of pointers. Choosing 821 * the best chunk size requires some tradeoffs. A power of two recommends 822 * itself so that we can walk the tree based purely on shifts and masks. 823 * Generally, the larger the better; as the number of slots per level of the 824 * tree increases, the less tall the tree needs to be. But that needs to be 825 * balanced against the memory consumption of each node. On a 64-bit system, 826 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we 827 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page. 828 */ 829 #ifndef XA_CHUNK_SHIFT 830 #define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) 831 #endif 832 #define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT) 833 #define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1) 834 #define XA_MAX_MARKS 3 835 #define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG) 836 837 /* 838 * @count is the count of every non-NULL element in the ->slots array 839 * whether that is a value entry, a retry entry, a user pointer, 840 * a sibling entry or a pointer to the next level of the tree. 841 * @nr_values is the count of every element in ->slots which is 842 * either a value entry or a sibling of a value entry. 843 */ 844 struct xa_node { 845 unsigned char shift; /* Bits remaining in each slot */ 846 unsigned char offset; /* Slot offset in parent */ 847 unsigned char count; /* Total entry count */ 848 unsigned char nr_values; /* Value entry count */ 849 struct xa_node __rcu *parent; /* NULL at top of tree */ 850 struct xarray *array; /* The array we belong to */ 851 union { 852 struct list_head private_list; /* For tree user */ 853 struct rcu_head rcu_head; /* Used when freeing node */ 854 }; 855 void __rcu *slots[XA_CHUNK_SIZE]; 856 union { 857 unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS]; 858 unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS]; 859 }; 860 }; 861 862 void xa_dump(const struct xarray *); 863 void xa_dump_node(const struct xa_node *); 864 865 #ifdef XA_DEBUG 866 #define XA_BUG_ON(xa, x) do { \ 867 if (x) { \ 868 xa_dump(xa); \ 869 BUG(); \ 870 } \ 871 } while (0) 872 #define XA_NODE_BUG_ON(node, x) do { \ 873 if (x) { \ 874 if (node) xa_dump_node(node); \ 875 BUG(); \ 876 } \ 877 } while (0) 878 #else 879 #define XA_BUG_ON(xa, x) do { } while (0) 880 #define XA_NODE_BUG_ON(node, x) do { } while (0) 881 #endif 882 883 /* Private */ 884 static inline void *xa_head(const struct xarray *xa) 885 { 886 return rcu_dereference_check(xa->xa_head, 887 lockdep_is_held(&xa->xa_lock)); 888 } 889 890 /* Private */ 891 static inline void *xa_head_locked(const struct xarray *xa) 892 { 893 return rcu_dereference_protected(xa->xa_head, 894 lockdep_is_held(&xa->xa_lock)); 895 } 896 897 /* Private */ 898 static inline void *xa_entry(const struct xarray *xa, 899 const struct xa_node *node, unsigned int offset) 900 { 901 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 902 return rcu_dereference_check(node->slots[offset], 903 lockdep_is_held(&xa->xa_lock)); 904 } 905 906 /* Private */ 907 static inline void *xa_entry_locked(const struct xarray *xa, 908 const struct xa_node *node, unsigned int offset) 909 { 910 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 911 return rcu_dereference_protected(node->slots[offset], 912 lockdep_is_held(&xa->xa_lock)); 913 } 914 915 /* Private */ 916 static inline struct xa_node *xa_parent(const struct xarray *xa, 917 const struct xa_node *node) 918 { 919 return rcu_dereference_check(node->parent, 920 lockdep_is_held(&xa->xa_lock)); 921 } 922 923 /* Private */ 924 static inline struct xa_node *xa_parent_locked(const struct xarray *xa, 925 const struct xa_node *node) 926 { 927 return rcu_dereference_protected(node->parent, 928 lockdep_is_held(&xa->xa_lock)); 929 } 930 931 /* Private */ 932 static inline void *xa_mk_node(const struct xa_node *node) 933 { 934 return (void *)((unsigned long)node | 2); 935 } 936 937 /* Private */ 938 static inline struct xa_node *xa_to_node(const void *entry) 939 { 940 return (struct xa_node *)((unsigned long)entry - 2); 941 } 942 943 /* Private */ 944 static inline bool xa_is_node(const void *entry) 945 { 946 return xa_is_internal(entry) && (unsigned long)entry > 4096; 947 } 948 949 /* Private */ 950 static inline void *xa_mk_sibling(unsigned int offset) 951 { 952 return xa_mk_internal(offset); 953 } 954 955 /* Private */ 956 static inline unsigned long xa_to_sibling(const void *entry) 957 { 958 return xa_to_internal(entry); 959 } 960 961 /** 962 * xa_is_sibling() - Is the entry a sibling entry? 963 * @entry: Entry retrieved from the XArray 964 * 965 * Return: %true if the entry is a sibling entry. 966 */ 967 static inline bool xa_is_sibling(const void *entry) 968 { 969 return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) && 970 (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1)); 971 } 972 973 #define XA_ZERO_ENTRY xa_mk_internal(256) 974 #define XA_RETRY_ENTRY xa_mk_internal(257) 975 976 /** 977 * xa_is_zero() - Is the entry a zero entry? 978 * @entry: Entry retrieved from the XArray 979 * 980 * Return: %true if the entry is a zero entry. 981 */ 982 static inline bool xa_is_zero(const void *entry) 983 { 984 return unlikely(entry == XA_ZERO_ENTRY); 985 } 986 987 /** 988 * xa_is_retry() - Is the entry a retry entry? 989 * @entry: Entry retrieved from the XArray 990 * 991 * Return: %true if the entry is a retry entry. 992 */ 993 static inline bool xa_is_retry(const void *entry) 994 { 995 return unlikely(entry == XA_RETRY_ENTRY); 996 } 997 998 /** 999 * typedef xa_update_node_t - A callback function from the XArray. 1000 * @node: The node which is being processed 1001 * 1002 * This function is called every time the XArray updates the count of 1003 * present and value entries in a node. It allows advanced users to 1004 * maintain the private_list in the node. 1005 * 1006 * Context: The xa_lock is held and interrupts may be disabled. 1007 * Implementations should not drop the xa_lock, nor re-enable 1008 * interrupts. 1009 */ 1010 typedef void (*xa_update_node_t)(struct xa_node *node); 1011 1012 /* 1013 * The xa_state is opaque to its users. It contains various different pieces 1014 * of state involved in the current operation on the XArray. It should be 1015 * declared on the stack and passed between the various internal routines. 1016 * The various elements in it should not be accessed directly, but only 1017 * through the provided accessor functions. The below documentation is for 1018 * the benefit of those working on the code, not for users of the XArray. 1019 * 1020 * @xa_node usually points to the xa_node containing the slot we're operating 1021 * on (and @xa_offset is the offset in the slots array). If there is a 1022 * single entry in the array at index 0, there are no allocated xa_nodes to 1023 * point to, and so we store %NULL in @xa_node. @xa_node is set to 1024 * the value %XAS_RESTART if the xa_state is not walked to the correct 1025 * position in the tree of nodes for this operation. If an error occurs 1026 * during an operation, it is set to an %XAS_ERROR value. If we run off the 1027 * end of the allocated nodes, it is set to %XAS_BOUNDS. 1028 */ 1029 struct xa_state { 1030 struct xarray *xa; 1031 unsigned long xa_index; 1032 unsigned char xa_shift; 1033 unsigned char xa_sibs; 1034 unsigned char xa_offset; 1035 unsigned char xa_pad; /* Helps gcc generate better code */ 1036 struct xa_node *xa_node; 1037 struct xa_node *xa_alloc; 1038 xa_update_node_t xa_update; 1039 }; 1040 1041 /* 1042 * We encode errnos in the xas->xa_node. If an error has happened, we need to 1043 * drop the lock to fix it, and once we've done so the xa_state is invalid. 1044 */ 1045 #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL)) 1046 #define XAS_BOUNDS ((struct xa_node *)1UL) 1047 #define XAS_RESTART ((struct xa_node *)3UL) 1048 1049 #define __XA_STATE(array, index, shift, sibs) { \ 1050 .xa = array, \ 1051 .xa_index = index, \ 1052 .xa_shift = shift, \ 1053 .xa_sibs = sibs, \ 1054 .xa_offset = 0, \ 1055 .xa_pad = 0, \ 1056 .xa_node = XAS_RESTART, \ 1057 .xa_alloc = NULL, \ 1058 .xa_update = NULL \ 1059 } 1060 1061 /** 1062 * XA_STATE() - Declare an XArray operation state. 1063 * @name: Name of this operation state (usually xas). 1064 * @array: Array to operate on. 1065 * @index: Initial index of interest. 1066 * 1067 * Declare and initialise an xa_state on the stack. 1068 */ 1069 #define XA_STATE(name, array, index) \ 1070 struct xa_state name = __XA_STATE(array, index, 0, 0) 1071 1072 /** 1073 * XA_STATE_ORDER() - Declare an XArray operation state. 1074 * @name: Name of this operation state (usually xas). 1075 * @array: Array to operate on. 1076 * @index: Initial index of interest. 1077 * @order: Order of entry. 1078 * 1079 * Declare and initialise an xa_state on the stack. This variant of 1080 * XA_STATE() allows you to specify the 'order' of the element you 1081 * want to operate on.` 1082 */ 1083 #define XA_STATE_ORDER(name, array, index, order) \ 1084 struct xa_state name = __XA_STATE(array, \ 1085 (index >> order) << order, \ 1086 order - (order % XA_CHUNK_SHIFT), \ 1087 (1U << (order % XA_CHUNK_SHIFT)) - 1) 1088 1089 #define xas_marked(xas, mark) xa_marked((xas)->xa, (mark)) 1090 #define xas_trylock(xas) xa_trylock((xas)->xa) 1091 #define xas_lock(xas) xa_lock((xas)->xa) 1092 #define xas_unlock(xas) xa_unlock((xas)->xa) 1093 #define xas_lock_bh(xas) xa_lock_bh((xas)->xa) 1094 #define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa) 1095 #define xas_lock_irq(xas) xa_lock_irq((xas)->xa) 1096 #define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa) 1097 #define xas_lock_irqsave(xas, flags) \ 1098 xa_lock_irqsave((xas)->xa, flags) 1099 #define xas_unlock_irqrestore(xas, flags) \ 1100 xa_unlock_irqrestore((xas)->xa, flags) 1101 1102 /** 1103 * xas_error() - Return an errno stored in the xa_state. 1104 * @xas: XArray operation state. 1105 * 1106 * Return: 0 if no error has been noted. A negative errno if one has. 1107 */ 1108 static inline int xas_error(const struct xa_state *xas) 1109 { 1110 return xa_err(xas->xa_node); 1111 } 1112 1113 /** 1114 * xas_set_err() - Note an error in the xa_state. 1115 * @xas: XArray operation state. 1116 * @err: Negative error number. 1117 * 1118 * Only call this function with a negative @err; zero or positive errors 1119 * will probably not behave the way you think they should. If you want 1120 * to clear the error from an xa_state, use xas_reset(). 1121 */ 1122 static inline void xas_set_err(struct xa_state *xas, long err) 1123 { 1124 xas->xa_node = XA_ERROR(err); 1125 } 1126 1127 /** 1128 * xas_invalid() - Is the xas in a retry or error state? 1129 * @xas: XArray operation state. 1130 * 1131 * Return: %true if the xas cannot be used for operations. 1132 */ 1133 static inline bool xas_invalid(const struct xa_state *xas) 1134 { 1135 return (unsigned long)xas->xa_node & 3; 1136 } 1137 1138 /** 1139 * xas_valid() - Is the xas a valid cursor into the array? 1140 * @xas: XArray operation state. 1141 * 1142 * Return: %true if the xas can be used for operations. 1143 */ 1144 static inline bool xas_valid(const struct xa_state *xas) 1145 { 1146 return !xas_invalid(xas); 1147 } 1148 1149 /** 1150 * xas_is_node() - Does the xas point to a node? 1151 * @xas: XArray operation state. 1152 * 1153 * Return: %true if the xas currently references a node. 1154 */ 1155 static inline bool xas_is_node(const struct xa_state *xas) 1156 { 1157 return xas_valid(xas) && xas->xa_node; 1158 } 1159 1160 /* True if the pointer is something other than a node */ 1161 static inline bool xas_not_node(struct xa_node *node) 1162 { 1163 return ((unsigned long)node & 3) || !node; 1164 } 1165 1166 /* True if the node represents RESTART or an error */ 1167 static inline bool xas_frozen(struct xa_node *node) 1168 { 1169 return (unsigned long)node & 2; 1170 } 1171 1172 /* True if the node represents head-of-tree, RESTART or BOUNDS */ 1173 static inline bool xas_top(struct xa_node *node) 1174 { 1175 return node <= XAS_RESTART; 1176 } 1177 1178 /** 1179 * xas_reset() - Reset an XArray operation state. 1180 * @xas: XArray operation state. 1181 * 1182 * Resets the error or walk state of the @xas so future walks of the 1183 * array will start from the root. Use this if you have dropped the 1184 * xarray lock and want to reuse the xa_state. 1185 * 1186 * Context: Any context. 1187 */ 1188 static inline void xas_reset(struct xa_state *xas) 1189 { 1190 xas->xa_node = XAS_RESTART; 1191 } 1192 1193 /** 1194 * xas_retry() - Retry the operation if appropriate. 1195 * @xas: XArray operation state. 1196 * @entry: Entry from xarray. 1197 * 1198 * The advanced functions may sometimes return an internal entry, such as 1199 * a retry entry or a zero entry. This function sets up the @xas to restart 1200 * the walk from the head of the array if needed. 1201 * 1202 * Context: Any context. 1203 * Return: true if the operation needs to be retried. 1204 */ 1205 static inline bool xas_retry(struct xa_state *xas, const void *entry) 1206 { 1207 if (xa_is_zero(entry)) 1208 return true; 1209 if (!xa_is_retry(entry)) 1210 return false; 1211 xas_reset(xas); 1212 return true; 1213 } 1214 1215 void *xas_load(struct xa_state *); 1216 void *xas_store(struct xa_state *, void *entry); 1217 void *xas_find(struct xa_state *, unsigned long max); 1218 void *xas_find_conflict(struct xa_state *); 1219 1220 bool xas_get_mark(const struct xa_state *, xa_mark_t); 1221 void xas_set_mark(const struct xa_state *, xa_mark_t); 1222 void xas_clear_mark(const struct xa_state *, xa_mark_t); 1223 void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t); 1224 void xas_init_marks(const struct xa_state *); 1225 1226 bool xas_nomem(struct xa_state *, gfp_t); 1227 void xas_pause(struct xa_state *); 1228 1229 void xas_create_range(struct xa_state *); 1230 1231 /** 1232 * xas_reload() - Refetch an entry from the xarray. 1233 * @xas: XArray operation state. 1234 * 1235 * Use this function to check that a previously loaded entry still has 1236 * the same value. This is useful for the lockless pagecache lookup where 1237 * we walk the array with only the RCU lock to protect us, lock the page, 1238 * then check that the page hasn't moved since we looked it up. 1239 * 1240 * The caller guarantees that @xas is still valid. If it may be in an 1241 * error or restart state, call xas_load() instead. 1242 * 1243 * Return: The entry at this location in the xarray. 1244 */ 1245 static inline void *xas_reload(struct xa_state *xas) 1246 { 1247 struct xa_node *node = xas->xa_node; 1248 1249 if (node) 1250 return xa_entry(xas->xa, node, xas->xa_offset); 1251 return xa_head(xas->xa); 1252 } 1253 1254 /** 1255 * xas_set() - Set up XArray operation state for a different index. 1256 * @xas: XArray operation state. 1257 * @index: New index into the XArray. 1258 * 1259 * Move the operation state to refer to a different index. This will 1260 * have the effect of starting a walk from the top; see xas_next() 1261 * to move to an adjacent index. 1262 */ 1263 static inline void xas_set(struct xa_state *xas, unsigned long index) 1264 { 1265 xas->xa_index = index; 1266 xas->xa_node = XAS_RESTART; 1267 } 1268 1269 /** 1270 * xas_set_order() - Set up XArray operation state for a multislot entry. 1271 * @xas: XArray operation state. 1272 * @index: Target of the operation. 1273 * @order: Entry occupies 2^@order indices. 1274 */ 1275 static inline void xas_set_order(struct xa_state *xas, unsigned long index, 1276 unsigned int order) 1277 { 1278 #ifdef CONFIG_XARRAY_MULTI 1279 xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0; 1280 xas->xa_shift = order - (order % XA_CHUNK_SHIFT); 1281 xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1282 xas->xa_node = XAS_RESTART; 1283 #else 1284 BUG_ON(order > 0); 1285 xas_set(xas, index); 1286 #endif 1287 } 1288 1289 /** 1290 * xas_set_update() - Set up XArray operation state for a callback. 1291 * @xas: XArray operation state. 1292 * @update: Function to call when updating a node. 1293 * 1294 * The XArray can notify a caller after it has updated an xa_node. 1295 * This is advanced functionality and is only needed by the page cache. 1296 */ 1297 static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update) 1298 { 1299 xas->xa_update = update; 1300 } 1301 1302 /** 1303 * xas_next_entry() - Advance iterator to next present entry. 1304 * @xas: XArray operation state. 1305 * @max: Highest index to return. 1306 * 1307 * xas_next_entry() is an inline function to optimise xarray traversal for 1308 * speed. It is equivalent to calling xas_find(), and will call xas_find() 1309 * for all the hard cases. 1310 * 1311 * Return: The next present entry after the one currently referred to by @xas. 1312 */ 1313 static inline void *xas_next_entry(struct xa_state *xas, unsigned long max) 1314 { 1315 struct xa_node *node = xas->xa_node; 1316 void *entry; 1317 1318 if (unlikely(xas_not_node(node) || node->shift || 1319 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK))) 1320 return xas_find(xas, max); 1321 1322 do { 1323 if (unlikely(xas->xa_index >= max)) 1324 return xas_find(xas, max); 1325 if (unlikely(xas->xa_offset == XA_CHUNK_MASK)) 1326 return xas_find(xas, max); 1327 entry = xa_entry(xas->xa, node, xas->xa_offset + 1); 1328 if (unlikely(xa_is_internal(entry))) 1329 return xas_find(xas, max); 1330 xas->xa_offset++; 1331 xas->xa_index++; 1332 } while (!entry); 1333 1334 return entry; 1335 } 1336 1337 /* Private */ 1338 static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance, 1339 xa_mark_t mark) 1340 { 1341 unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark]; 1342 unsigned int offset = xas->xa_offset; 1343 1344 if (advance) 1345 offset++; 1346 if (XA_CHUNK_SIZE == BITS_PER_LONG) { 1347 if (offset < XA_CHUNK_SIZE) { 1348 unsigned long data = *addr & (~0UL << offset); 1349 if (data) 1350 return __ffs(data); 1351 } 1352 return XA_CHUNK_SIZE; 1353 } 1354 1355 return find_next_bit(addr, XA_CHUNK_SIZE, offset); 1356 } 1357 1358 /** 1359 * xas_next_marked() - Advance iterator to next marked entry. 1360 * @xas: XArray operation state. 1361 * @max: Highest index to return. 1362 * @mark: Mark to search for. 1363 * 1364 * xas_next_marked() is an inline function to optimise xarray traversal for 1365 * speed. It is equivalent to calling xas_find_marked(), and will call 1366 * xas_find_marked() for all the hard cases. 1367 * 1368 * Return: The next marked entry after the one currently referred to by @xas. 1369 */ 1370 static inline void *xas_next_marked(struct xa_state *xas, unsigned long max, 1371 xa_mark_t mark) 1372 { 1373 struct xa_node *node = xas->xa_node; 1374 unsigned int offset; 1375 1376 if (unlikely(xas_not_node(node) || node->shift)) 1377 return xas_find_marked(xas, max, mark); 1378 offset = xas_find_chunk(xas, true, mark); 1379 xas->xa_offset = offset; 1380 xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset; 1381 if (xas->xa_index > max) 1382 return NULL; 1383 if (offset == XA_CHUNK_SIZE) 1384 return xas_find_marked(xas, max, mark); 1385 return xa_entry(xas->xa, node, offset); 1386 } 1387 1388 /* 1389 * If iterating while holding a lock, drop the lock and reschedule 1390 * every %XA_CHECK_SCHED loops. 1391 */ 1392 enum { 1393 XA_CHECK_SCHED = 4096, 1394 }; 1395 1396 /** 1397 * xas_for_each() - Iterate over a range of an XArray. 1398 * @xas: XArray operation state. 1399 * @entry: Entry retrieved from the array. 1400 * @max: Maximum index to retrieve from array. 1401 * 1402 * The loop body will be executed for each entry present in the xarray 1403 * between the current xas position and @max. @entry will be set to 1404 * the entry retrieved from the xarray. It is safe to delete entries 1405 * from the array in the loop body. You should hold either the RCU lock 1406 * or the xa_lock while iterating. If you need to drop the lock, call 1407 * xas_pause() first. 1408 */ 1409 #define xas_for_each(xas, entry, max) \ 1410 for (entry = xas_find(xas, max); entry; \ 1411 entry = xas_next_entry(xas, max)) 1412 1413 /** 1414 * xas_for_each_marked() - Iterate over a range of an XArray. 1415 * @xas: XArray operation state. 1416 * @entry: Entry retrieved from the array. 1417 * @max: Maximum index to retrieve from array. 1418 * @mark: Mark to search for. 1419 * 1420 * The loop body will be executed for each marked entry in the xarray 1421 * between the current xas position and @max. @entry will be set to 1422 * the entry retrieved from the xarray. It is safe to delete entries 1423 * from the array in the loop body. You should hold either the RCU lock 1424 * or the xa_lock while iterating. If you need to drop the lock, call 1425 * xas_pause() first. 1426 */ 1427 #define xas_for_each_marked(xas, entry, max, mark) \ 1428 for (entry = xas_find_marked(xas, max, mark); entry; \ 1429 entry = xas_next_marked(xas, max, mark)) 1430 1431 /** 1432 * xas_for_each_conflict() - Iterate over a range of an XArray. 1433 * @xas: XArray operation state. 1434 * @entry: Entry retrieved from the array. 1435 * 1436 * The loop body will be executed for each entry in the XArray that lies 1437 * within the range specified by @xas. If the loop completes successfully, 1438 * any entries that lie in this range will be replaced by @entry. The caller 1439 * may break out of the loop; if they do so, the contents of the XArray will 1440 * be unchanged. The operation may fail due to an out of memory condition. 1441 * The caller may also call xa_set_err() to exit the loop while setting an 1442 * error to record the reason. 1443 */ 1444 #define xas_for_each_conflict(xas, entry) \ 1445 while ((entry = xas_find_conflict(xas))) 1446 1447 void *__xas_next(struct xa_state *); 1448 void *__xas_prev(struct xa_state *); 1449 1450 /** 1451 * xas_prev() - Move iterator to previous index. 1452 * @xas: XArray operation state. 1453 * 1454 * If the @xas was in an error state, it will remain in an error state 1455 * and this function will return %NULL. If the @xas has never been walked, 1456 * it will have the effect of calling xas_load(). Otherwise one will be 1457 * subtracted from the index and the state will be walked to the correct 1458 * location in the array for the next operation. 1459 * 1460 * If the iterator was referencing index 0, this function wraps 1461 * around to %ULONG_MAX. 1462 * 1463 * Return: The entry at the new index. This may be %NULL or an internal 1464 * entry. 1465 */ 1466 static inline void *xas_prev(struct xa_state *xas) 1467 { 1468 struct xa_node *node = xas->xa_node; 1469 1470 if (unlikely(xas_not_node(node) || node->shift || 1471 xas->xa_offset == 0)) 1472 return __xas_prev(xas); 1473 1474 xas->xa_index--; 1475 xas->xa_offset--; 1476 return xa_entry(xas->xa, node, xas->xa_offset); 1477 } 1478 1479 /** 1480 * xas_next() - Move state to next index. 1481 * @xas: XArray operation state. 1482 * 1483 * If the @xas was in an error state, it will remain in an error state 1484 * and this function will return %NULL. If the @xas has never been walked, 1485 * it will have the effect of calling xas_load(). Otherwise one will be 1486 * added to the index and the state will be walked to the correct 1487 * location in the array for the next operation. 1488 * 1489 * If the iterator was referencing index %ULONG_MAX, this function wraps 1490 * around to 0. 1491 * 1492 * Return: The entry at the new index. This may be %NULL or an internal 1493 * entry. 1494 */ 1495 static inline void *xas_next(struct xa_state *xas) 1496 { 1497 struct xa_node *node = xas->xa_node; 1498 1499 if (unlikely(xas_not_node(node) || node->shift || 1500 xas->xa_offset == XA_CHUNK_MASK)) 1501 return __xas_next(xas); 1502 1503 xas->xa_index++; 1504 xas->xa_offset++; 1505 return xa_entry(xas->xa, node, xas->xa_offset); 1506 } 1507 1508 #endif /* _LINUX_XARRAY_H */ 1509