xref: /openbmc/linux/include/linux/xarray.h (revision c67e8ec0)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_XARRAY_H
3 #define _LINUX_XARRAY_H
4 /*
5  * eXtensible Arrays
6  * Copyright (c) 2017 Microsoft Corporation
7  * Author: Matthew Wilcox <willy@infradead.org>
8  *
9  * See Documentation/core-api/xarray.rst for how to use the XArray.
10  */
11 
12 #include <linux/bug.h>
13 #include <linux/compiler.h>
14 #include <linux/gfp.h>
15 #include <linux/kconfig.h>
16 #include <linux/kernel.h>
17 #include <linux/rcupdate.h>
18 #include <linux/spinlock.h>
19 #include <linux/types.h>
20 
21 /*
22  * The bottom two bits of the entry determine how the XArray interprets
23  * the contents:
24  *
25  * 00: Pointer entry
26  * 10: Internal entry
27  * x1: Value entry or tagged pointer
28  *
29  * Attempting to store internal entries in the XArray is a bug.
30  *
31  * Most internal entries are pointers to the next node in the tree.
32  * The following internal entries have a special meaning:
33  *
34  * 0-62: Sibling entries
35  * 256: Zero entry
36  * 257: Retry entry
37  *
38  * Errors are also represented as internal entries, but use the negative
39  * space (-4094 to -2).  They're never stored in the slots array; only
40  * returned by the normal API.
41  */
42 
43 #define BITS_PER_XA_VALUE	(BITS_PER_LONG - 1)
44 
45 /**
46  * xa_mk_value() - Create an XArray entry from an integer.
47  * @v: Value to store in XArray.
48  *
49  * Context: Any context.
50  * Return: An entry suitable for storing in the XArray.
51  */
52 static inline void *xa_mk_value(unsigned long v)
53 {
54 	WARN_ON((long)v < 0);
55 	return (void *)((v << 1) | 1);
56 }
57 
58 /**
59  * xa_to_value() - Get value stored in an XArray entry.
60  * @entry: XArray entry.
61  *
62  * Context: Any context.
63  * Return: The value stored in the XArray entry.
64  */
65 static inline unsigned long xa_to_value(const void *entry)
66 {
67 	return (unsigned long)entry >> 1;
68 }
69 
70 /**
71  * xa_is_value() - Determine if an entry is a value.
72  * @entry: XArray entry.
73  *
74  * Context: Any context.
75  * Return: True if the entry is a value, false if it is a pointer.
76  */
77 static inline bool xa_is_value(const void *entry)
78 {
79 	return (unsigned long)entry & 1;
80 }
81 
82 /**
83  * xa_tag_pointer() - Create an XArray entry for a tagged pointer.
84  * @p: Plain pointer.
85  * @tag: Tag value (0, 1 or 3).
86  *
87  * If the user of the XArray prefers, they can tag their pointers instead
88  * of storing value entries.  Three tags are available (0, 1 and 3).
89  * These are distinct from the xa_mark_t as they are not replicated up
90  * through the array and cannot be searched for.
91  *
92  * Context: Any context.
93  * Return: An XArray entry.
94  */
95 static inline void *xa_tag_pointer(void *p, unsigned long tag)
96 {
97 	return (void *)((unsigned long)p | tag);
98 }
99 
100 /**
101  * xa_untag_pointer() - Turn an XArray entry into a plain pointer.
102  * @entry: XArray entry.
103  *
104  * If you have stored a tagged pointer in the XArray, call this function
105  * to get the untagged version of the pointer.
106  *
107  * Context: Any context.
108  * Return: A pointer.
109  */
110 static inline void *xa_untag_pointer(void *entry)
111 {
112 	return (void *)((unsigned long)entry & ~3UL);
113 }
114 
115 /**
116  * xa_pointer_tag() - Get the tag stored in an XArray entry.
117  * @entry: XArray entry.
118  *
119  * If you have stored a tagged pointer in the XArray, call this function
120  * to get the tag of that pointer.
121  *
122  * Context: Any context.
123  * Return: A tag.
124  */
125 static inline unsigned int xa_pointer_tag(void *entry)
126 {
127 	return (unsigned long)entry & 3UL;
128 }
129 
130 /*
131  * xa_mk_internal() - Create an internal entry.
132  * @v: Value to turn into an internal entry.
133  *
134  * Context: Any context.
135  * Return: An XArray internal entry corresponding to this value.
136  */
137 static inline void *xa_mk_internal(unsigned long v)
138 {
139 	return (void *)((v << 2) | 2);
140 }
141 
142 /*
143  * xa_to_internal() - Extract the value from an internal entry.
144  * @entry: XArray entry.
145  *
146  * Context: Any context.
147  * Return: The value which was stored in the internal entry.
148  */
149 static inline unsigned long xa_to_internal(const void *entry)
150 {
151 	return (unsigned long)entry >> 2;
152 }
153 
154 /*
155  * xa_is_internal() - Is the entry an internal entry?
156  * @entry: XArray entry.
157  *
158  * Context: Any context.
159  * Return: %true if the entry is an internal entry.
160  */
161 static inline bool xa_is_internal(const void *entry)
162 {
163 	return ((unsigned long)entry & 3) == 2;
164 }
165 
166 /**
167  * xa_is_err() - Report whether an XArray operation returned an error
168  * @entry: Result from calling an XArray function
169  *
170  * If an XArray operation cannot complete an operation, it will return
171  * a special value indicating an error.  This function tells you
172  * whether an error occurred; xa_err() tells you which error occurred.
173  *
174  * Context: Any context.
175  * Return: %true if the entry indicates an error.
176  */
177 static inline bool xa_is_err(const void *entry)
178 {
179 	return unlikely(xa_is_internal(entry));
180 }
181 
182 /**
183  * xa_err() - Turn an XArray result into an errno.
184  * @entry: Result from calling an XArray function.
185  *
186  * If an XArray operation cannot complete an operation, it will return
187  * a special pointer value which encodes an errno.  This function extracts
188  * the errno from the pointer value, or returns 0 if the pointer does not
189  * represent an errno.
190  *
191  * Context: Any context.
192  * Return: A negative errno or 0.
193  */
194 static inline int xa_err(void *entry)
195 {
196 	/* xa_to_internal() would not do sign extension. */
197 	if (xa_is_err(entry))
198 		return (long)entry >> 2;
199 	return 0;
200 }
201 
202 typedef unsigned __bitwise xa_mark_t;
203 #define XA_MARK_0		((__force xa_mark_t)0U)
204 #define XA_MARK_1		((__force xa_mark_t)1U)
205 #define XA_MARK_2		((__force xa_mark_t)2U)
206 #define XA_PRESENT		((__force xa_mark_t)8U)
207 #define XA_MARK_MAX		XA_MARK_2
208 #define XA_FREE_MARK		XA_MARK_0
209 
210 enum xa_lock_type {
211 	XA_LOCK_IRQ = 1,
212 	XA_LOCK_BH = 2,
213 };
214 
215 /*
216  * Values for xa_flags.  The radix tree stores its GFP flags in the xa_flags,
217  * and we remain compatible with that.
218  */
219 #define XA_FLAGS_LOCK_IRQ	((__force gfp_t)XA_LOCK_IRQ)
220 #define XA_FLAGS_LOCK_BH	((__force gfp_t)XA_LOCK_BH)
221 #define XA_FLAGS_TRACK_FREE	((__force gfp_t)4U)
222 #define XA_FLAGS_MARK(mark)	((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \
223 						(__force unsigned)(mark)))
224 
225 #define XA_FLAGS_ALLOC	(XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK))
226 
227 /**
228  * struct xarray - The anchor of the XArray.
229  * @xa_lock: Lock that protects the contents of the XArray.
230  *
231  * To use the xarray, define it statically or embed it in your data structure.
232  * It is a very small data structure, so it does not usually make sense to
233  * allocate it separately and keep a pointer to it in your data structure.
234  *
235  * You may use the xa_lock to protect your own data structures as well.
236  */
237 /*
238  * If all of the entries in the array are NULL, @xa_head is a NULL pointer.
239  * If the only non-NULL entry in the array is at index 0, @xa_head is that
240  * entry.  If any other entry in the array is non-NULL, @xa_head points
241  * to an @xa_node.
242  */
243 struct xarray {
244 	spinlock_t	xa_lock;
245 /* private: The rest of the data structure is not to be used directly. */
246 	gfp_t		xa_flags;
247 	void __rcu *	xa_head;
248 };
249 
250 #define XARRAY_INIT(name, flags) {				\
251 	.xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock),		\
252 	.xa_flags = flags,					\
253 	.xa_head = NULL,					\
254 }
255 
256 /**
257  * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags.
258  * @name: A string that names your XArray.
259  * @flags: XA_FLAG values.
260  *
261  * This is intended for file scope definitions of XArrays.  It declares
262  * and initialises an empty XArray with the chosen name and flags.  It is
263  * equivalent to calling xa_init_flags() on the array, but it does the
264  * initialisation at compiletime instead of runtime.
265  */
266 #define DEFINE_XARRAY_FLAGS(name, flags)				\
267 	struct xarray name = XARRAY_INIT(name, flags)
268 
269 /**
270  * DEFINE_XARRAY() - Define an XArray.
271  * @name: A string that names your XArray.
272  *
273  * This is intended for file scope definitions of XArrays.  It declares
274  * and initialises an empty XArray with the chosen name.  It is equivalent
275  * to calling xa_init() on the array, but it does the initialisation at
276  * compiletime instead of runtime.
277  */
278 #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0)
279 
280 /**
281  * DEFINE_XARRAY_ALLOC() - Define an XArray which can allocate IDs.
282  * @name: A string that names your XArray.
283  *
284  * This is intended for file scope definitions of allocating XArrays.
285  * See also DEFINE_XARRAY().
286  */
287 #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC)
288 
289 void xa_init_flags(struct xarray *, gfp_t flags);
290 void *xa_load(struct xarray *, unsigned long index);
291 void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
292 void *xa_erase(struct xarray *, unsigned long index);
293 void *xa_store_range(struct xarray *, unsigned long first, unsigned long last,
294 			void *entry, gfp_t);
295 bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t);
296 void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
297 void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
298 void *xa_find(struct xarray *xa, unsigned long *index,
299 		unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
300 void *xa_find_after(struct xarray *xa, unsigned long *index,
301 		unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
302 unsigned int xa_extract(struct xarray *, void **dst, unsigned long start,
303 		unsigned long max, unsigned int n, xa_mark_t);
304 void xa_destroy(struct xarray *);
305 
306 /**
307  * xa_init() - Initialise an empty XArray.
308  * @xa: XArray.
309  *
310  * An empty XArray is full of NULL entries.
311  *
312  * Context: Any context.
313  */
314 static inline void xa_init(struct xarray *xa)
315 {
316 	xa_init_flags(xa, 0);
317 }
318 
319 /**
320  * xa_empty() - Determine if an array has any present entries.
321  * @xa: XArray.
322  *
323  * Context: Any context.
324  * Return: %true if the array contains only NULL pointers.
325  */
326 static inline bool xa_empty(const struct xarray *xa)
327 {
328 	return xa->xa_head == NULL;
329 }
330 
331 /**
332  * xa_marked() - Inquire whether any entry in this array has a mark set
333  * @xa: Array
334  * @mark: Mark value
335  *
336  * Context: Any context.
337  * Return: %true if any entry has this mark set.
338  */
339 static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark)
340 {
341 	return xa->xa_flags & XA_FLAGS_MARK(mark);
342 }
343 
344 /**
345  * xa_for_each() - Iterate over a portion of an XArray.
346  * @xa: XArray.
347  * @entry: Entry retrieved from array.
348  * @index: Index of @entry.
349  * @max: Maximum index to retrieve from array.
350  * @filter: Selection criterion.
351  *
352  * Initialise @index to the lowest index you want to retrieve from the
353  * array.  During the iteration, @entry will have the value of the entry
354  * stored in @xa at @index.  The iteration will skip all entries in the
355  * array which do not match @filter.  You may modify @index during the
356  * iteration if you want to skip or reprocess indices.  It is safe to modify
357  * the array during the iteration.  At the end of the iteration, @entry will
358  * be set to NULL and @index will have a value less than or equal to max.
359  *
360  * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n).  You have
361  * to handle your own locking with xas_for_each(), and if you have to unlock
362  * after each iteration, it will also end up being O(n.log(n)).  xa_for_each()
363  * will spin if it hits a retry entry; if you intend to see retry entries,
364  * you should use the xas_for_each() iterator instead.  The xas_for_each()
365  * iterator will expand into more inline code than xa_for_each().
366  *
367  * Context: Any context.  Takes and releases the RCU lock.
368  */
369 #define xa_for_each(xa, entry, index, max, filter) \
370 	for (entry = xa_find(xa, &index, max, filter); entry; \
371 	     entry = xa_find_after(xa, &index, max, filter))
372 
373 #define xa_trylock(xa)		spin_trylock(&(xa)->xa_lock)
374 #define xa_lock(xa)		spin_lock(&(xa)->xa_lock)
375 #define xa_unlock(xa)		spin_unlock(&(xa)->xa_lock)
376 #define xa_lock_bh(xa)		spin_lock_bh(&(xa)->xa_lock)
377 #define xa_unlock_bh(xa)	spin_unlock_bh(&(xa)->xa_lock)
378 #define xa_lock_irq(xa)		spin_lock_irq(&(xa)->xa_lock)
379 #define xa_unlock_irq(xa)	spin_unlock_irq(&(xa)->xa_lock)
380 #define xa_lock_irqsave(xa, flags) \
381 				spin_lock_irqsave(&(xa)->xa_lock, flags)
382 #define xa_unlock_irqrestore(xa, flags) \
383 				spin_unlock_irqrestore(&(xa)->xa_lock, flags)
384 
385 /*
386  * Versions of the normal API which require the caller to hold the
387  * xa_lock.  If the GFP flags allow it, they will drop the lock to
388  * allocate memory, then reacquire it afterwards.  These functions
389  * may also re-enable interrupts if the XArray flags indicate the
390  * locking should be interrupt safe.
391  */
392 void *__xa_erase(struct xarray *, unsigned long index);
393 void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
394 void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old,
395 		void *entry, gfp_t);
396 int __xa_alloc(struct xarray *, u32 *id, u32 max, void *entry, gfp_t);
397 int __xa_reserve(struct xarray *, unsigned long index, gfp_t);
398 void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
399 void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
400 
401 /**
402  * __xa_insert() - Store this entry in the XArray unless another entry is
403  *			already present.
404  * @xa: XArray.
405  * @index: Index into array.
406  * @entry: New entry.
407  * @gfp: Memory allocation flags.
408  *
409  * If you would rather see the existing entry in the array, use __xa_cmpxchg().
410  * This function is for users who don't care what the entry is, only that
411  * one is present.
412  *
413  * Context: Any context.  Expects xa_lock to be held on entry.  May
414  *	    release and reacquire xa_lock if the @gfp flags permit.
415  * Return: 0 if the store succeeded.  -EEXIST if another entry was present.
416  * -ENOMEM if memory could not be allocated.
417  */
418 static inline int __xa_insert(struct xarray *xa, unsigned long index,
419 		void *entry, gfp_t gfp)
420 {
421 	void *curr = __xa_cmpxchg(xa, index, NULL, entry, gfp);
422 	if (!curr)
423 		return 0;
424 	if (xa_is_err(curr))
425 		return xa_err(curr);
426 	return -EEXIST;
427 }
428 
429 /**
430  * xa_store_bh() - Store this entry in the XArray.
431  * @xa: XArray.
432  * @index: Index into array.
433  * @entry: New entry.
434  * @gfp: Memory allocation flags.
435  *
436  * This function is like calling xa_store() except it disables softirqs
437  * while holding the array lock.
438  *
439  * Context: Any context.  Takes and releases the xa_lock while
440  * disabling softirqs.
441  * Return: The entry which used to be at this index.
442  */
443 static inline void *xa_store_bh(struct xarray *xa, unsigned long index,
444 		void *entry, gfp_t gfp)
445 {
446 	void *curr;
447 
448 	xa_lock_bh(xa);
449 	curr = __xa_store(xa, index, entry, gfp);
450 	xa_unlock_bh(xa);
451 
452 	return curr;
453 }
454 
455 /**
456  * xa_store_irq() - Erase this entry from the XArray.
457  * @xa: XArray.
458  * @index: Index into array.
459  * @entry: New entry.
460  * @gfp: Memory allocation flags.
461  *
462  * This function is like calling xa_store() except it disables interrupts
463  * while holding the array lock.
464  *
465  * Context: Process context.  Takes and releases the xa_lock while
466  * disabling interrupts.
467  * Return: The entry which used to be at this index.
468  */
469 static inline void *xa_store_irq(struct xarray *xa, unsigned long index,
470 		void *entry, gfp_t gfp)
471 {
472 	void *curr;
473 
474 	xa_lock_irq(xa);
475 	curr = __xa_store(xa, index, entry, gfp);
476 	xa_unlock_irq(xa);
477 
478 	return curr;
479 }
480 
481 /**
482  * xa_erase_bh() - Erase this entry from the XArray.
483  * @xa: XArray.
484  * @index: Index of entry.
485  *
486  * This function is the equivalent of calling xa_store() with %NULL as
487  * the third argument.  The XArray does not need to allocate memory, so
488  * the user does not need to provide GFP flags.
489  *
490  * Context: Any context.  Takes and releases the xa_lock while
491  * disabling softirqs.
492  * Return: The entry which used to be at this index.
493  */
494 static inline void *xa_erase_bh(struct xarray *xa, unsigned long index)
495 {
496 	void *entry;
497 
498 	xa_lock_bh(xa);
499 	entry = __xa_erase(xa, index);
500 	xa_unlock_bh(xa);
501 
502 	return entry;
503 }
504 
505 /**
506  * xa_erase_irq() - Erase this entry from the XArray.
507  * @xa: XArray.
508  * @index: Index of entry.
509  *
510  * This function is the equivalent of calling xa_store() with %NULL as
511  * the third argument.  The XArray does not need to allocate memory, so
512  * the user does not need to provide GFP flags.
513  *
514  * Context: Process context.  Takes and releases the xa_lock while
515  * disabling interrupts.
516  * Return: The entry which used to be at this index.
517  */
518 static inline void *xa_erase_irq(struct xarray *xa, unsigned long index)
519 {
520 	void *entry;
521 
522 	xa_lock_irq(xa);
523 	entry = __xa_erase(xa, index);
524 	xa_unlock_irq(xa);
525 
526 	return entry;
527 }
528 
529 /**
530  * xa_cmpxchg() - Conditionally replace an entry in the XArray.
531  * @xa: XArray.
532  * @index: Index into array.
533  * @old: Old value to test against.
534  * @entry: New value to place in array.
535  * @gfp: Memory allocation flags.
536  *
537  * If the entry at @index is the same as @old, replace it with @entry.
538  * If the return value is equal to @old, then the exchange was successful.
539  *
540  * Context: Any context.  Takes and releases the xa_lock.  May sleep
541  * if the @gfp flags permit.
542  * Return: The old value at this index or xa_err() if an error happened.
543  */
544 static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index,
545 			void *old, void *entry, gfp_t gfp)
546 {
547 	void *curr;
548 
549 	xa_lock(xa);
550 	curr = __xa_cmpxchg(xa, index, old, entry, gfp);
551 	xa_unlock(xa);
552 
553 	return curr;
554 }
555 
556 /**
557  * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray.
558  * @xa: XArray.
559  * @index: Index into array.
560  * @old: Old value to test against.
561  * @entry: New value to place in array.
562  * @gfp: Memory allocation flags.
563  *
564  * This function is like calling xa_cmpxchg() except it disables softirqs
565  * while holding the array lock.
566  *
567  * Context: Any context.  Takes and releases the xa_lock while
568  * disabling softirqs.  May sleep if the @gfp flags permit.
569  * Return: The old value at this index or xa_err() if an error happened.
570  */
571 static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index,
572 			void *old, void *entry, gfp_t gfp)
573 {
574 	void *curr;
575 
576 	xa_lock_bh(xa);
577 	curr = __xa_cmpxchg(xa, index, old, entry, gfp);
578 	xa_unlock_bh(xa);
579 
580 	return curr;
581 }
582 
583 /**
584  * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray.
585  * @xa: XArray.
586  * @index: Index into array.
587  * @old: Old value to test against.
588  * @entry: New value to place in array.
589  * @gfp: Memory allocation flags.
590  *
591  * This function is like calling xa_cmpxchg() except it disables interrupts
592  * while holding the array lock.
593  *
594  * Context: Process context.  Takes and releases the xa_lock while
595  * disabling interrupts.  May sleep if the @gfp flags permit.
596  * Return: The old value at this index or xa_err() if an error happened.
597  */
598 static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index,
599 			void *old, void *entry, gfp_t gfp)
600 {
601 	void *curr;
602 
603 	xa_lock_irq(xa);
604 	curr = __xa_cmpxchg(xa, index, old, entry, gfp);
605 	xa_unlock_irq(xa);
606 
607 	return curr;
608 }
609 
610 /**
611  * xa_insert() - Store this entry in the XArray unless another entry is
612  *			already present.
613  * @xa: XArray.
614  * @index: Index into array.
615  * @entry: New entry.
616  * @gfp: Memory allocation flags.
617  *
618  * If you would rather see the existing entry in the array, use xa_cmpxchg().
619  * This function is for users who don't care what the entry is, only that
620  * one is present.
621  *
622  * Context: Process context.  Takes and releases the xa_lock.
623  *	    May sleep if the @gfp flags permit.
624  * Return: 0 if the store succeeded.  -EEXIST if another entry was present.
625  * -ENOMEM if memory could not be allocated.
626  */
627 static inline int xa_insert(struct xarray *xa, unsigned long index,
628 		void *entry, gfp_t gfp)
629 {
630 	void *curr = xa_cmpxchg(xa, index, NULL, entry, gfp);
631 	if (!curr)
632 		return 0;
633 	if (xa_is_err(curr))
634 		return xa_err(curr);
635 	return -EEXIST;
636 }
637 
638 /**
639  * xa_alloc() - Find somewhere to store this entry in the XArray.
640  * @xa: XArray.
641  * @id: Pointer to ID.
642  * @max: Maximum ID to allocate (inclusive).
643  * @entry: New entry.
644  * @gfp: Memory allocation flags.
645  *
646  * Allocates an unused ID in the range specified by @id and @max.
647  * Updates the @id pointer with the index, then stores the entry at that
648  * index.  A concurrent lookup will not see an uninitialised @id.
649  *
650  * Context: Process context.  Takes and releases the xa_lock.  May sleep if
651  * the @gfp flags permit.
652  * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if
653  * there is no more space in the XArray.
654  */
655 static inline int xa_alloc(struct xarray *xa, u32 *id, u32 max, void *entry,
656 		gfp_t gfp)
657 {
658 	int err;
659 
660 	xa_lock(xa);
661 	err = __xa_alloc(xa, id, max, entry, gfp);
662 	xa_unlock(xa);
663 
664 	return err;
665 }
666 
667 /**
668  * xa_alloc_bh() - Find somewhere to store this entry in the XArray.
669  * @xa: XArray.
670  * @id: Pointer to ID.
671  * @max: Maximum ID to allocate (inclusive).
672  * @entry: New entry.
673  * @gfp: Memory allocation flags.
674  *
675  * Allocates an unused ID in the range specified by @id and @max.
676  * Updates the @id pointer with the index, then stores the entry at that
677  * index.  A concurrent lookup will not see an uninitialised @id.
678  *
679  * Context: Any context.  Takes and releases the xa_lock while
680  * disabling softirqs.  May sleep if the @gfp flags permit.
681  * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if
682  * there is no more space in the XArray.
683  */
684 static inline int xa_alloc_bh(struct xarray *xa, u32 *id, u32 max, void *entry,
685 		gfp_t gfp)
686 {
687 	int err;
688 
689 	xa_lock_bh(xa);
690 	err = __xa_alloc(xa, id, max, entry, gfp);
691 	xa_unlock_bh(xa);
692 
693 	return err;
694 }
695 
696 /**
697  * xa_alloc_irq() - Find somewhere to store this entry in the XArray.
698  * @xa: XArray.
699  * @id: Pointer to ID.
700  * @max: Maximum ID to allocate (inclusive).
701  * @entry: New entry.
702  * @gfp: Memory allocation flags.
703  *
704  * Allocates an unused ID in the range specified by @id and @max.
705  * Updates the @id pointer with the index, then stores the entry at that
706  * index.  A concurrent lookup will not see an uninitialised @id.
707  *
708  * Context: Process context.  Takes and releases the xa_lock while
709  * disabling interrupts.  May sleep if the @gfp flags permit.
710  * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if
711  * there is no more space in the XArray.
712  */
713 static inline int xa_alloc_irq(struct xarray *xa, u32 *id, u32 max, void *entry,
714 		gfp_t gfp)
715 {
716 	int err;
717 
718 	xa_lock_irq(xa);
719 	err = __xa_alloc(xa, id, max, entry, gfp);
720 	xa_unlock_irq(xa);
721 
722 	return err;
723 }
724 
725 /**
726  * xa_reserve() - Reserve this index in the XArray.
727  * @xa: XArray.
728  * @index: Index into array.
729  * @gfp: Memory allocation flags.
730  *
731  * Ensures there is somewhere to store an entry at @index in the array.
732  * If there is already something stored at @index, this function does
733  * nothing.  If there was nothing there, the entry is marked as reserved.
734  * Loading from a reserved entry returns a %NULL pointer.
735  *
736  * If you do not use the entry that you have reserved, call xa_release()
737  * or xa_erase() to free any unnecessary memory.
738  *
739  * Context: Any context.  Takes and releases the xa_lock.
740  * May sleep if the @gfp flags permit.
741  * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
742  */
743 static inline
744 int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
745 {
746 	int ret;
747 
748 	xa_lock(xa);
749 	ret = __xa_reserve(xa, index, gfp);
750 	xa_unlock(xa);
751 
752 	return ret;
753 }
754 
755 /**
756  * xa_reserve_bh() - Reserve this index in the XArray.
757  * @xa: XArray.
758  * @index: Index into array.
759  * @gfp: Memory allocation flags.
760  *
761  * A softirq-disabling version of xa_reserve().
762  *
763  * Context: Any context.  Takes and releases the xa_lock while
764  * disabling softirqs.
765  * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
766  */
767 static inline
768 int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp)
769 {
770 	int ret;
771 
772 	xa_lock_bh(xa);
773 	ret = __xa_reserve(xa, index, gfp);
774 	xa_unlock_bh(xa);
775 
776 	return ret;
777 }
778 
779 /**
780  * xa_reserve_irq() - Reserve this index in the XArray.
781  * @xa: XArray.
782  * @index: Index into array.
783  * @gfp: Memory allocation flags.
784  *
785  * An interrupt-disabling version of xa_reserve().
786  *
787  * Context: Process context.  Takes and releases the xa_lock while
788  * disabling interrupts.
789  * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
790  */
791 static inline
792 int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp)
793 {
794 	int ret;
795 
796 	xa_lock_irq(xa);
797 	ret = __xa_reserve(xa, index, gfp);
798 	xa_unlock_irq(xa);
799 
800 	return ret;
801 }
802 
803 /**
804  * xa_release() - Release a reserved entry.
805  * @xa: XArray.
806  * @index: Index of entry.
807  *
808  * After calling xa_reserve(), you can call this function to release the
809  * reservation.  If the entry at @index has been stored to, this function
810  * will do nothing.
811  */
812 static inline void xa_release(struct xarray *xa, unsigned long index)
813 {
814 	xa_cmpxchg(xa, index, NULL, NULL, 0);
815 }
816 
817 /* Everything below here is the Advanced API.  Proceed with caution. */
818 
819 /*
820  * The xarray is constructed out of a set of 'chunks' of pointers.  Choosing
821  * the best chunk size requires some tradeoffs.  A power of two recommends
822  * itself so that we can walk the tree based purely on shifts and masks.
823  * Generally, the larger the better; as the number of slots per level of the
824  * tree increases, the less tall the tree needs to be.  But that needs to be
825  * balanced against the memory consumption of each node.  On a 64-bit system,
826  * xa_node is currently 576 bytes, and we get 7 of them per 4kB page.  If we
827  * doubled the number of slots per node, we'd get only 3 nodes per 4kB page.
828  */
829 #ifndef XA_CHUNK_SHIFT
830 #define XA_CHUNK_SHIFT		(CONFIG_BASE_SMALL ? 4 : 6)
831 #endif
832 #define XA_CHUNK_SIZE		(1UL << XA_CHUNK_SHIFT)
833 #define XA_CHUNK_MASK		(XA_CHUNK_SIZE - 1)
834 #define XA_MAX_MARKS		3
835 #define XA_MARK_LONGS		DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG)
836 
837 /*
838  * @count is the count of every non-NULL element in the ->slots array
839  * whether that is a value entry, a retry entry, a user pointer,
840  * a sibling entry or a pointer to the next level of the tree.
841  * @nr_values is the count of every element in ->slots which is
842  * either a value entry or a sibling of a value entry.
843  */
844 struct xa_node {
845 	unsigned char	shift;		/* Bits remaining in each slot */
846 	unsigned char	offset;		/* Slot offset in parent */
847 	unsigned char	count;		/* Total entry count */
848 	unsigned char	nr_values;	/* Value entry count */
849 	struct xa_node __rcu *parent;	/* NULL at top of tree */
850 	struct xarray	*array;		/* The array we belong to */
851 	union {
852 		struct list_head private_list;	/* For tree user */
853 		struct rcu_head	rcu_head;	/* Used when freeing node */
854 	};
855 	void __rcu	*slots[XA_CHUNK_SIZE];
856 	union {
857 		unsigned long	tags[XA_MAX_MARKS][XA_MARK_LONGS];
858 		unsigned long	marks[XA_MAX_MARKS][XA_MARK_LONGS];
859 	};
860 };
861 
862 void xa_dump(const struct xarray *);
863 void xa_dump_node(const struct xa_node *);
864 
865 #ifdef XA_DEBUG
866 #define XA_BUG_ON(xa, x) do {					\
867 		if (x) {					\
868 			xa_dump(xa);				\
869 			BUG();					\
870 		}						\
871 	} while (0)
872 #define XA_NODE_BUG_ON(node, x) do {				\
873 		if (x) {					\
874 			if (node) xa_dump_node(node);		\
875 			BUG();					\
876 		}						\
877 	} while (0)
878 #else
879 #define XA_BUG_ON(xa, x)	do { } while (0)
880 #define XA_NODE_BUG_ON(node, x)	do { } while (0)
881 #endif
882 
883 /* Private */
884 static inline void *xa_head(const struct xarray *xa)
885 {
886 	return rcu_dereference_check(xa->xa_head,
887 						lockdep_is_held(&xa->xa_lock));
888 }
889 
890 /* Private */
891 static inline void *xa_head_locked(const struct xarray *xa)
892 {
893 	return rcu_dereference_protected(xa->xa_head,
894 						lockdep_is_held(&xa->xa_lock));
895 }
896 
897 /* Private */
898 static inline void *xa_entry(const struct xarray *xa,
899 				const struct xa_node *node, unsigned int offset)
900 {
901 	XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
902 	return rcu_dereference_check(node->slots[offset],
903 						lockdep_is_held(&xa->xa_lock));
904 }
905 
906 /* Private */
907 static inline void *xa_entry_locked(const struct xarray *xa,
908 				const struct xa_node *node, unsigned int offset)
909 {
910 	XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
911 	return rcu_dereference_protected(node->slots[offset],
912 						lockdep_is_held(&xa->xa_lock));
913 }
914 
915 /* Private */
916 static inline struct xa_node *xa_parent(const struct xarray *xa,
917 					const struct xa_node *node)
918 {
919 	return rcu_dereference_check(node->parent,
920 						lockdep_is_held(&xa->xa_lock));
921 }
922 
923 /* Private */
924 static inline struct xa_node *xa_parent_locked(const struct xarray *xa,
925 					const struct xa_node *node)
926 {
927 	return rcu_dereference_protected(node->parent,
928 						lockdep_is_held(&xa->xa_lock));
929 }
930 
931 /* Private */
932 static inline void *xa_mk_node(const struct xa_node *node)
933 {
934 	return (void *)((unsigned long)node | 2);
935 }
936 
937 /* Private */
938 static inline struct xa_node *xa_to_node(const void *entry)
939 {
940 	return (struct xa_node *)((unsigned long)entry - 2);
941 }
942 
943 /* Private */
944 static inline bool xa_is_node(const void *entry)
945 {
946 	return xa_is_internal(entry) && (unsigned long)entry > 4096;
947 }
948 
949 /* Private */
950 static inline void *xa_mk_sibling(unsigned int offset)
951 {
952 	return xa_mk_internal(offset);
953 }
954 
955 /* Private */
956 static inline unsigned long xa_to_sibling(const void *entry)
957 {
958 	return xa_to_internal(entry);
959 }
960 
961 /**
962  * xa_is_sibling() - Is the entry a sibling entry?
963  * @entry: Entry retrieved from the XArray
964  *
965  * Return: %true if the entry is a sibling entry.
966  */
967 static inline bool xa_is_sibling(const void *entry)
968 {
969 	return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) &&
970 		(entry < xa_mk_sibling(XA_CHUNK_SIZE - 1));
971 }
972 
973 #define XA_ZERO_ENTRY		xa_mk_internal(256)
974 #define XA_RETRY_ENTRY		xa_mk_internal(257)
975 
976 /**
977  * xa_is_zero() - Is the entry a zero entry?
978  * @entry: Entry retrieved from the XArray
979  *
980  * Return: %true if the entry is a zero entry.
981  */
982 static inline bool xa_is_zero(const void *entry)
983 {
984 	return unlikely(entry == XA_ZERO_ENTRY);
985 }
986 
987 /**
988  * xa_is_retry() - Is the entry a retry entry?
989  * @entry: Entry retrieved from the XArray
990  *
991  * Return: %true if the entry is a retry entry.
992  */
993 static inline bool xa_is_retry(const void *entry)
994 {
995 	return unlikely(entry == XA_RETRY_ENTRY);
996 }
997 
998 /**
999  * typedef xa_update_node_t - A callback function from the XArray.
1000  * @node: The node which is being processed
1001  *
1002  * This function is called every time the XArray updates the count of
1003  * present and value entries in a node.  It allows advanced users to
1004  * maintain the private_list in the node.
1005  *
1006  * Context: The xa_lock is held and interrupts may be disabled.
1007  *	    Implementations should not drop the xa_lock, nor re-enable
1008  *	    interrupts.
1009  */
1010 typedef void (*xa_update_node_t)(struct xa_node *node);
1011 
1012 /*
1013  * The xa_state is opaque to its users.  It contains various different pieces
1014  * of state involved in the current operation on the XArray.  It should be
1015  * declared on the stack and passed between the various internal routines.
1016  * The various elements in it should not be accessed directly, but only
1017  * through the provided accessor functions.  The below documentation is for
1018  * the benefit of those working on the code, not for users of the XArray.
1019  *
1020  * @xa_node usually points to the xa_node containing the slot we're operating
1021  * on (and @xa_offset is the offset in the slots array).  If there is a
1022  * single entry in the array at index 0, there are no allocated xa_nodes to
1023  * point to, and so we store %NULL in @xa_node.  @xa_node is set to
1024  * the value %XAS_RESTART if the xa_state is not walked to the correct
1025  * position in the tree of nodes for this operation.  If an error occurs
1026  * during an operation, it is set to an %XAS_ERROR value.  If we run off the
1027  * end of the allocated nodes, it is set to %XAS_BOUNDS.
1028  */
1029 struct xa_state {
1030 	struct xarray *xa;
1031 	unsigned long xa_index;
1032 	unsigned char xa_shift;
1033 	unsigned char xa_sibs;
1034 	unsigned char xa_offset;
1035 	unsigned char xa_pad;		/* Helps gcc generate better code */
1036 	struct xa_node *xa_node;
1037 	struct xa_node *xa_alloc;
1038 	xa_update_node_t xa_update;
1039 };
1040 
1041 /*
1042  * We encode errnos in the xas->xa_node.  If an error has happened, we need to
1043  * drop the lock to fix it, and once we've done so the xa_state is invalid.
1044  */
1045 #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL))
1046 #define XAS_BOUNDS	((struct xa_node *)1UL)
1047 #define XAS_RESTART	((struct xa_node *)3UL)
1048 
1049 #define __XA_STATE(array, index, shift, sibs)  {	\
1050 	.xa = array,					\
1051 	.xa_index = index,				\
1052 	.xa_shift = shift,				\
1053 	.xa_sibs = sibs,				\
1054 	.xa_offset = 0,					\
1055 	.xa_pad = 0,					\
1056 	.xa_node = XAS_RESTART,				\
1057 	.xa_alloc = NULL,				\
1058 	.xa_update = NULL				\
1059 }
1060 
1061 /**
1062  * XA_STATE() - Declare an XArray operation state.
1063  * @name: Name of this operation state (usually xas).
1064  * @array: Array to operate on.
1065  * @index: Initial index of interest.
1066  *
1067  * Declare and initialise an xa_state on the stack.
1068  */
1069 #define XA_STATE(name, array, index)				\
1070 	struct xa_state name = __XA_STATE(array, index, 0, 0)
1071 
1072 /**
1073  * XA_STATE_ORDER() - Declare an XArray operation state.
1074  * @name: Name of this operation state (usually xas).
1075  * @array: Array to operate on.
1076  * @index: Initial index of interest.
1077  * @order: Order of entry.
1078  *
1079  * Declare and initialise an xa_state on the stack.  This variant of
1080  * XA_STATE() allows you to specify the 'order' of the element you
1081  * want to operate on.`
1082  */
1083 #define XA_STATE_ORDER(name, array, index, order)		\
1084 	struct xa_state name = __XA_STATE(array,		\
1085 			(index >> order) << order,		\
1086 			order - (order % XA_CHUNK_SHIFT),	\
1087 			(1U << (order % XA_CHUNK_SHIFT)) - 1)
1088 
1089 #define xas_marked(xas, mark)	xa_marked((xas)->xa, (mark))
1090 #define xas_trylock(xas)	xa_trylock((xas)->xa)
1091 #define xas_lock(xas)		xa_lock((xas)->xa)
1092 #define xas_unlock(xas)		xa_unlock((xas)->xa)
1093 #define xas_lock_bh(xas)	xa_lock_bh((xas)->xa)
1094 #define xas_unlock_bh(xas)	xa_unlock_bh((xas)->xa)
1095 #define xas_lock_irq(xas)	xa_lock_irq((xas)->xa)
1096 #define xas_unlock_irq(xas)	xa_unlock_irq((xas)->xa)
1097 #define xas_lock_irqsave(xas, flags) \
1098 				xa_lock_irqsave((xas)->xa, flags)
1099 #define xas_unlock_irqrestore(xas, flags) \
1100 				xa_unlock_irqrestore((xas)->xa, flags)
1101 
1102 /**
1103  * xas_error() - Return an errno stored in the xa_state.
1104  * @xas: XArray operation state.
1105  *
1106  * Return: 0 if no error has been noted.  A negative errno if one has.
1107  */
1108 static inline int xas_error(const struct xa_state *xas)
1109 {
1110 	return xa_err(xas->xa_node);
1111 }
1112 
1113 /**
1114  * xas_set_err() - Note an error in the xa_state.
1115  * @xas: XArray operation state.
1116  * @err: Negative error number.
1117  *
1118  * Only call this function with a negative @err; zero or positive errors
1119  * will probably not behave the way you think they should.  If you want
1120  * to clear the error from an xa_state, use xas_reset().
1121  */
1122 static inline void xas_set_err(struct xa_state *xas, long err)
1123 {
1124 	xas->xa_node = XA_ERROR(err);
1125 }
1126 
1127 /**
1128  * xas_invalid() - Is the xas in a retry or error state?
1129  * @xas: XArray operation state.
1130  *
1131  * Return: %true if the xas cannot be used for operations.
1132  */
1133 static inline bool xas_invalid(const struct xa_state *xas)
1134 {
1135 	return (unsigned long)xas->xa_node & 3;
1136 }
1137 
1138 /**
1139  * xas_valid() - Is the xas a valid cursor into the array?
1140  * @xas: XArray operation state.
1141  *
1142  * Return: %true if the xas can be used for operations.
1143  */
1144 static inline bool xas_valid(const struct xa_state *xas)
1145 {
1146 	return !xas_invalid(xas);
1147 }
1148 
1149 /**
1150  * xas_is_node() - Does the xas point to a node?
1151  * @xas: XArray operation state.
1152  *
1153  * Return: %true if the xas currently references a node.
1154  */
1155 static inline bool xas_is_node(const struct xa_state *xas)
1156 {
1157 	return xas_valid(xas) && xas->xa_node;
1158 }
1159 
1160 /* True if the pointer is something other than a node */
1161 static inline bool xas_not_node(struct xa_node *node)
1162 {
1163 	return ((unsigned long)node & 3) || !node;
1164 }
1165 
1166 /* True if the node represents RESTART or an error */
1167 static inline bool xas_frozen(struct xa_node *node)
1168 {
1169 	return (unsigned long)node & 2;
1170 }
1171 
1172 /* True if the node represents head-of-tree, RESTART or BOUNDS */
1173 static inline bool xas_top(struct xa_node *node)
1174 {
1175 	return node <= XAS_RESTART;
1176 }
1177 
1178 /**
1179  * xas_reset() - Reset an XArray operation state.
1180  * @xas: XArray operation state.
1181  *
1182  * Resets the error or walk state of the @xas so future walks of the
1183  * array will start from the root.  Use this if you have dropped the
1184  * xarray lock and want to reuse the xa_state.
1185  *
1186  * Context: Any context.
1187  */
1188 static inline void xas_reset(struct xa_state *xas)
1189 {
1190 	xas->xa_node = XAS_RESTART;
1191 }
1192 
1193 /**
1194  * xas_retry() - Retry the operation if appropriate.
1195  * @xas: XArray operation state.
1196  * @entry: Entry from xarray.
1197  *
1198  * The advanced functions may sometimes return an internal entry, such as
1199  * a retry entry or a zero entry.  This function sets up the @xas to restart
1200  * the walk from the head of the array if needed.
1201  *
1202  * Context: Any context.
1203  * Return: true if the operation needs to be retried.
1204  */
1205 static inline bool xas_retry(struct xa_state *xas, const void *entry)
1206 {
1207 	if (xa_is_zero(entry))
1208 		return true;
1209 	if (!xa_is_retry(entry))
1210 		return false;
1211 	xas_reset(xas);
1212 	return true;
1213 }
1214 
1215 void *xas_load(struct xa_state *);
1216 void *xas_store(struct xa_state *, void *entry);
1217 void *xas_find(struct xa_state *, unsigned long max);
1218 void *xas_find_conflict(struct xa_state *);
1219 
1220 bool xas_get_mark(const struct xa_state *, xa_mark_t);
1221 void xas_set_mark(const struct xa_state *, xa_mark_t);
1222 void xas_clear_mark(const struct xa_state *, xa_mark_t);
1223 void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t);
1224 void xas_init_marks(const struct xa_state *);
1225 
1226 bool xas_nomem(struct xa_state *, gfp_t);
1227 void xas_pause(struct xa_state *);
1228 
1229 void xas_create_range(struct xa_state *);
1230 
1231 /**
1232  * xas_reload() - Refetch an entry from the xarray.
1233  * @xas: XArray operation state.
1234  *
1235  * Use this function to check that a previously loaded entry still has
1236  * the same value.  This is useful for the lockless pagecache lookup where
1237  * we walk the array with only the RCU lock to protect us, lock the page,
1238  * then check that the page hasn't moved since we looked it up.
1239  *
1240  * The caller guarantees that @xas is still valid.  If it may be in an
1241  * error or restart state, call xas_load() instead.
1242  *
1243  * Return: The entry at this location in the xarray.
1244  */
1245 static inline void *xas_reload(struct xa_state *xas)
1246 {
1247 	struct xa_node *node = xas->xa_node;
1248 
1249 	if (node)
1250 		return xa_entry(xas->xa, node, xas->xa_offset);
1251 	return xa_head(xas->xa);
1252 }
1253 
1254 /**
1255  * xas_set() - Set up XArray operation state for a different index.
1256  * @xas: XArray operation state.
1257  * @index: New index into the XArray.
1258  *
1259  * Move the operation state to refer to a different index.  This will
1260  * have the effect of starting a walk from the top; see xas_next()
1261  * to move to an adjacent index.
1262  */
1263 static inline void xas_set(struct xa_state *xas, unsigned long index)
1264 {
1265 	xas->xa_index = index;
1266 	xas->xa_node = XAS_RESTART;
1267 }
1268 
1269 /**
1270  * xas_set_order() - Set up XArray operation state for a multislot entry.
1271  * @xas: XArray operation state.
1272  * @index: Target of the operation.
1273  * @order: Entry occupies 2^@order indices.
1274  */
1275 static inline void xas_set_order(struct xa_state *xas, unsigned long index,
1276 					unsigned int order)
1277 {
1278 #ifdef CONFIG_XARRAY_MULTI
1279 	xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0;
1280 	xas->xa_shift = order - (order % XA_CHUNK_SHIFT);
1281 	xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1282 	xas->xa_node = XAS_RESTART;
1283 #else
1284 	BUG_ON(order > 0);
1285 	xas_set(xas, index);
1286 #endif
1287 }
1288 
1289 /**
1290  * xas_set_update() - Set up XArray operation state for a callback.
1291  * @xas: XArray operation state.
1292  * @update: Function to call when updating a node.
1293  *
1294  * The XArray can notify a caller after it has updated an xa_node.
1295  * This is advanced functionality and is only needed by the page cache.
1296  */
1297 static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update)
1298 {
1299 	xas->xa_update = update;
1300 }
1301 
1302 /**
1303  * xas_next_entry() - Advance iterator to next present entry.
1304  * @xas: XArray operation state.
1305  * @max: Highest index to return.
1306  *
1307  * xas_next_entry() is an inline function to optimise xarray traversal for
1308  * speed.  It is equivalent to calling xas_find(), and will call xas_find()
1309  * for all the hard cases.
1310  *
1311  * Return: The next present entry after the one currently referred to by @xas.
1312  */
1313 static inline void *xas_next_entry(struct xa_state *xas, unsigned long max)
1314 {
1315 	struct xa_node *node = xas->xa_node;
1316 	void *entry;
1317 
1318 	if (unlikely(xas_not_node(node) || node->shift ||
1319 			xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)))
1320 		return xas_find(xas, max);
1321 
1322 	do {
1323 		if (unlikely(xas->xa_index >= max))
1324 			return xas_find(xas, max);
1325 		if (unlikely(xas->xa_offset == XA_CHUNK_MASK))
1326 			return xas_find(xas, max);
1327 		entry = xa_entry(xas->xa, node, xas->xa_offset + 1);
1328 		if (unlikely(xa_is_internal(entry)))
1329 			return xas_find(xas, max);
1330 		xas->xa_offset++;
1331 		xas->xa_index++;
1332 	} while (!entry);
1333 
1334 	return entry;
1335 }
1336 
1337 /* Private */
1338 static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance,
1339 		xa_mark_t mark)
1340 {
1341 	unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark];
1342 	unsigned int offset = xas->xa_offset;
1343 
1344 	if (advance)
1345 		offset++;
1346 	if (XA_CHUNK_SIZE == BITS_PER_LONG) {
1347 		if (offset < XA_CHUNK_SIZE) {
1348 			unsigned long data = *addr & (~0UL << offset);
1349 			if (data)
1350 				return __ffs(data);
1351 		}
1352 		return XA_CHUNK_SIZE;
1353 	}
1354 
1355 	return find_next_bit(addr, XA_CHUNK_SIZE, offset);
1356 }
1357 
1358 /**
1359  * xas_next_marked() - Advance iterator to next marked entry.
1360  * @xas: XArray operation state.
1361  * @max: Highest index to return.
1362  * @mark: Mark to search for.
1363  *
1364  * xas_next_marked() is an inline function to optimise xarray traversal for
1365  * speed.  It is equivalent to calling xas_find_marked(), and will call
1366  * xas_find_marked() for all the hard cases.
1367  *
1368  * Return: The next marked entry after the one currently referred to by @xas.
1369  */
1370 static inline void *xas_next_marked(struct xa_state *xas, unsigned long max,
1371 								xa_mark_t mark)
1372 {
1373 	struct xa_node *node = xas->xa_node;
1374 	unsigned int offset;
1375 
1376 	if (unlikely(xas_not_node(node) || node->shift))
1377 		return xas_find_marked(xas, max, mark);
1378 	offset = xas_find_chunk(xas, true, mark);
1379 	xas->xa_offset = offset;
1380 	xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset;
1381 	if (xas->xa_index > max)
1382 		return NULL;
1383 	if (offset == XA_CHUNK_SIZE)
1384 		return xas_find_marked(xas, max, mark);
1385 	return xa_entry(xas->xa, node, offset);
1386 }
1387 
1388 /*
1389  * If iterating while holding a lock, drop the lock and reschedule
1390  * every %XA_CHECK_SCHED loops.
1391  */
1392 enum {
1393 	XA_CHECK_SCHED = 4096,
1394 };
1395 
1396 /**
1397  * xas_for_each() - Iterate over a range of an XArray.
1398  * @xas: XArray operation state.
1399  * @entry: Entry retrieved from the array.
1400  * @max: Maximum index to retrieve from array.
1401  *
1402  * The loop body will be executed for each entry present in the xarray
1403  * between the current xas position and @max.  @entry will be set to
1404  * the entry retrieved from the xarray.  It is safe to delete entries
1405  * from the array in the loop body.  You should hold either the RCU lock
1406  * or the xa_lock while iterating.  If you need to drop the lock, call
1407  * xas_pause() first.
1408  */
1409 #define xas_for_each(xas, entry, max) \
1410 	for (entry = xas_find(xas, max); entry; \
1411 	     entry = xas_next_entry(xas, max))
1412 
1413 /**
1414  * xas_for_each_marked() - Iterate over a range of an XArray.
1415  * @xas: XArray operation state.
1416  * @entry: Entry retrieved from the array.
1417  * @max: Maximum index to retrieve from array.
1418  * @mark: Mark to search for.
1419  *
1420  * The loop body will be executed for each marked entry in the xarray
1421  * between the current xas position and @max.  @entry will be set to
1422  * the entry retrieved from the xarray.  It is safe to delete entries
1423  * from the array in the loop body.  You should hold either the RCU lock
1424  * or the xa_lock while iterating.  If you need to drop the lock, call
1425  * xas_pause() first.
1426  */
1427 #define xas_for_each_marked(xas, entry, max, mark) \
1428 	for (entry = xas_find_marked(xas, max, mark); entry; \
1429 	     entry = xas_next_marked(xas, max, mark))
1430 
1431 /**
1432  * xas_for_each_conflict() - Iterate over a range of an XArray.
1433  * @xas: XArray operation state.
1434  * @entry: Entry retrieved from the array.
1435  *
1436  * The loop body will be executed for each entry in the XArray that lies
1437  * within the range specified by @xas.  If the loop completes successfully,
1438  * any entries that lie in this range will be replaced by @entry.  The caller
1439  * may break out of the loop; if they do so, the contents of the XArray will
1440  * be unchanged.  The operation may fail due to an out of memory condition.
1441  * The caller may also call xa_set_err() to exit the loop while setting an
1442  * error to record the reason.
1443  */
1444 #define xas_for_each_conflict(xas, entry) \
1445 	while ((entry = xas_find_conflict(xas)))
1446 
1447 void *__xas_next(struct xa_state *);
1448 void *__xas_prev(struct xa_state *);
1449 
1450 /**
1451  * xas_prev() - Move iterator to previous index.
1452  * @xas: XArray operation state.
1453  *
1454  * If the @xas was in an error state, it will remain in an error state
1455  * and this function will return %NULL.  If the @xas has never been walked,
1456  * it will have the effect of calling xas_load().  Otherwise one will be
1457  * subtracted from the index and the state will be walked to the correct
1458  * location in the array for the next operation.
1459  *
1460  * If the iterator was referencing index 0, this function wraps
1461  * around to %ULONG_MAX.
1462  *
1463  * Return: The entry at the new index.  This may be %NULL or an internal
1464  * entry.
1465  */
1466 static inline void *xas_prev(struct xa_state *xas)
1467 {
1468 	struct xa_node *node = xas->xa_node;
1469 
1470 	if (unlikely(xas_not_node(node) || node->shift ||
1471 				xas->xa_offset == 0))
1472 		return __xas_prev(xas);
1473 
1474 	xas->xa_index--;
1475 	xas->xa_offset--;
1476 	return xa_entry(xas->xa, node, xas->xa_offset);
1477 }
1478 
1479 /**
1480  * xas_next() - Move state to next index.
1481  * @xas: XArray operation state.
1482  *
1483  * If the @xas was in an error state, it will remain in an error state
1484  * and this function will return %NULL.  If the @xas has never been walked,
1485  * it will have the effect of calling xas_load().  Otherwise one will be
1486  * added to the index and the state will be walked to the correct
1487  * location in the array for the next operation.
1488  *
1489  * If the iterator was referencing index %ULONG_MAX, this function wraps
1490  * around to 0.
1491  *
1492  * Return: The entry at the new index.  This may be %NULL or an internal
1493  * entry.
1494  */
1495 static inline void *xas_next(struct xa_state *xas)
1496 {
1497 	struct xa_node *node = xas->xa_node;
1498 
1499 	if (unlikely(xas_not_node(node) || node->shift ||
1500 				xas->xa_offset == XA_CHUNK_MASK))
1501 		return __xas_next(xas);
1502 
1503 	xas->xa_index++;
1504 	xas->xa_offset++;
1505 	return xa_entry(xas->xa, node, xas->xa_offset);
1506 }
1507 
1508 #endif /* _LINUX_XARRAY_H */
1509