xref: /openbmc/linux/include/linux/xarray.h (revision c2cd9d04)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_XARRAY_H
3 #define _LINUX_XARRAY_H
4 /*
5  * eXtensible Arrays
6  * Copyright (c) 2017 Microsoft Corporation
7  * Author: Matthew Wilcox <willy@infradead.org>
8  *
9  * See Documentation/core-api/xarray.rst for how to use the XArray.
10  */
11 
12 #include <linux/bug.h>
13 #include <linux/compiler.h>
14 #include <linux/gfp.h>
15 #include <linux/kconfig.h>
16 #include <linux/kernel.h>
17 #include <linux/rcupdate.h>
18 #include <linux/spinlock.h>
19 #include <linux/types.h>
20 
21 /*
22  * The bottom two bits of the entry determine how the XArray interprets
23  * the contents:
24  *
25  * 00: Pointer entry
26  * 10: Internal entry
27  * x1: Value entry or tagged pointer
28  *
29  * Attempting to store internal entries in the XArray is a bug.
30  *
31  * Most internal entries are pointers to the next node in the tree.
32  * The following internal entries have a special meaning:
33  *
34  * 0-62: Sibling entries
35  * 256: Zero entry
36  * 257: Retry entry
37  *
38  * Errors are also represented as internal entries, but use the negative
39  * space (-4094 to -2).  They're never stored in the slots array; only
40  * returned by the normal API.
41  */
42 
43 #define BITS_PER_XA_VALUE	(BITS_PER_LONG - 1)
44 
45 /**
46  * xa_mk_value() - Create an XArray entry from an integer.
47  * @v: Value to store in XArray.
48  *
49  * Context: Any context.
50  * Return: An entry suitable for storing in the XArray.
51  */
52 static inline void *xa_mk_value(unsigned long v)
53 {
54 	WARN_ON((long)v < 0);
55 	return (void *)((v << 1) | 1);
56 }
57 
58 /**
59  * xa_to_value() - Get value stored in an XArray entry.
60  * @entry: XArray entry.
61  *
62  * Context: Any context.
63  * Return: The value stored in the XArray entry.
64  */
65 static inline unsigned long xa_to_value(const void *entry)
66 {
67 	return (unsigned long)entry >> 1;
68 }
69 
70 /**
71  * xa_is_value() - Determine if an entry is a value.
72  * @entry: XArray entry.
73  *
74  * Context: Any context.
75  * Return: True if the entry is a value, false if it is a pointer.
76  */
77 static inline bool xa_is_value(const void *entry)
78 {
79 	return (unsigned long)entry & 1;
80 }
81 
82 /**
83  * xa_tag_pointer() - Create an XArray entry for a tagged pointer.
84  * @p: Plain pointer.
85  * @tag: Tag value (0, 1 or 3).
86  *
87  * If the user of the XArray prefers, they can tag their pointers instead
88  * of storing value entries.  Three tags are available (0, 1 and 3).
89  * These are distinct from the xa_mark_t as they are not replicated up
90  * through the array and cannot be searched for.
91  *
92  * Context: Any context.
93  * Return: An XArray entry.
94  */
95 static inline void *xa_tag_pointer(void *p, unsigned long tag)
96 {
97 	return (void *)((unsigned long)p | tag);
98 }
99 
100 /**
101  * xa_untag_pointer() - Turn an XArray entry into a plain pointer.
102  * @entry: XArray entry.
103  *
104  * If you have stored a tagged pointer in the XArray, call this function
105  * to get the untagged version of the pointer.
106  *
107  * Context: Any context.
108  * Return: A pointer.
109  */
110 static inline void *xa_untag_pointer(void *entry)
111 {
112 	return (void *)((unsigned long)entry & ~3UL);
113 }
114 
115 /**
116  * xa_pointer_tag() - Get the tag stored in an XArray entry.
117  * @entry: XArray entry.
118  *
119  * If you have stored a tagged pointer in the XArray, call this function
120  * to get the tag of that pointer.
121  *
122  * Context: Any context.
123  * Return: A tag.
124  */
125 static inline unsigned int xa_pointer_tag(void *entry)
126 {
127 	return (unsigned long)entry & 3UL;
128 }
129 
130 /*
131  * xa_mk_internal() - Create an internal entry.
132  * @v: Value to turn into an internal entry.
133  *
134  * Internal entries are used for a number of purposes.  Entries 0-255 are
135  * used for sibling entries (only 0-62 are used by the current code).  256
136  * is used for the retry entry.  257 is used for the reserved / zero entry.
137  * Negative internal entries are used to represent errnos.  Node pointers
138  * are also tagged as internal entries in some situations.
139  *
140  * Context: Any context.
141  * Return: An XArray internal entry corresponding to this value.
142  */
143 static inline void *xa_mk_internal(unsigned long v)
144 {
145 	return (void *)((v << 2) | 2);
146 }
147 
148 /*
149  * xa_to_internal() - Extract the value from an internal entry.
150  * @entry: XArray entry.
151  *
152  * Context: Any context.
153  * Return: The value which was stored in the internal entry.
154  */
155 static inline unsigned long xa_to_internal(const void *entry)
156 {
157 	return (unsigned long)entry >> 2;
158 }
159 
160 /*
161  * xa_is_internal() - Is the entry an internal entry?
162  * @entry: XArray entry.
163  *
164  * Context: Any context.
165  * Return: %true if the entry is an internal entry.
166  */
167 static inline bool xa_is_internal(const void *entry)
168 {
169 	return ((unsigned long)entry & 3) == 2;
170 }
171 
172 #define XA_ZERO_ENTRY		xa_mk_internal(257)
173 
174 /**
175  * xa_is_zero() - Is the entry a zero entry?
176  * @entry: Entry retrieved from the XArray
177  *
178  * The normal API will return NULL as the contents of a slot containing
179  * a zero entry.  You can only see zero entries by using the advanced API.
180  *
181  * Return: %true if the entry is a zero entry.
182  */
183 static inline bool xa_is_zero(const void *entry)
184 {
185 	return unlikely(entry == XA_ZERO_ENTRY);
186 }
187 
188 /**
189  * xa_is_err() - Report whether an XArray operation returned an error
190  * @entry: Result from calling an XArray function
191  *
192  * If an XArray operation cannot complete an operation, it will return
193  * a special value indicating an error.  This function tells you
194  * whether an error occurred; xa_err() tells you which error occurred.
195  *
196  * Context: Any context.
197  * Return: %true if the entry indicates an error.
198  */
199 static inline bool xa_is_err(const void *entry)
200 {
201 	return unlikely(xa_is_internal(entry) &&
202 			entry >= xa_mk_internal(-MAX_ERRNO));
203 }
204 
205 /**
206  * xa_err() - Turn an XArray result into an errno.
207  * @entry: Result from calling an XArray function.
208  *
209  * If an XArray operation cannot complete an operation, it will return
210  * a special pointer value which encodes an errno.  This function extracts
211  * the errno from the pointer value, or returns 0 if the pointer does not
212  * represent an errno.
213  *
214  * Context: Any context.
215  * Return: A negative errno or 0.
216  */
217 static inline int xa_err(void *entry)
218 {
219 	/* xa_to_internal() would not do sign extension. */
220 	if (xa_is_err(entry))
221 		return (long)entry >> 2;
222 	return 0;
223 }
224 
225 /**
226  * struct xa_limit - Represents a range of IDs.
227  * @min: The lowest ID to allocate (inclusive).
228  * @max: The maximum ID to allocate (inclusive).
229  *
230  * This structure is used either directly or via the XA_LIMIT() macro
231  * to communicate the range of IDs that are valid for allocation.
232  * Two common ranges are predefined for you:
233  *  * xa_limit_32b	- [0 - UINT_MAX]
234  *  * xa_limit_31b	- [0 - INT_MAX]
235  */
236 struct xa_limit {
237 	u32 max;
238 	u32 min;
239 };
240 
241 #define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max }
242 
243 #define xa_limit_32b	XA_LIMIT(0, UINT_MAX)
244 #define xa_limit_31b	XA_LIMIT(0, INT_MAX)
245 
246 typedef unsigned __bitwise xa_mark_t;
247 #define XA_MARK_0		((__force xa_mark_t)0U)
248 #define XA_MARK_1		((__force xa_mark_t)1U)
249 #define XA_MARK_2		((__force xa_mark_t)2U)
250 #define XA_PRESENT		((__force xa_mark_t)8U)
251 #define XA_MARK_MAX		XA_MARK_2
252 #define XA_FREE_MARK		XA_MARK_0
253 
254 enum xa_lock_type {
255 	XA_LOCK_IRQ = 1,
256 	XA_LOCK_BH = 2,
257 };
258 
259 /*
260  * Values for xa_flags.  The radix tree stores its GFP flags in the xa_flags,
261  * and we remain compatible with that.
262  */
263 #define XA_FLAGS_LOCK_IRQ	((__force gfp_t)XA_LOCK_IRQ)
264 #define XA_FLAGS_LOCK_BH	((__force gfp_t)XA_LOCK_BH)
265 #define XA_FLAGS_TRACK_FREE	((__force gfp_t)4U)
266 #define XA_FLAGS_ZERO_BUSY	((__force gfp_t)8U)
267 #define XA_FLAGS_ALLOC_WRAPPED	((__force gfp_t)16U)
268 #define XA_FLAGS_MARK(mark)	((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \
269 						(__force unsigned)(mark)))
270 
271 /* ALLOC is for a normal 0-based alloc.  ALLOC1 is for an 1-based alloc */
272 #define XA_FLAGS_ALLOC	(XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK))
273 #define XA_FLAGS_ALLOC1	(XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY)
274 
275 /**
276  * struct xarray - The anchor of the XArray.
277  * @xa_lock: Lock that protects the contents of the XArray.
278  *
279  * To use the xarray, define it statically or embed it in your data structure.
280  * It is a very small data structure, so it does not usually make sense to
281  * allocate it separately and keep a pointer to it in your data structure.
282  *
283  * You may use the xa_lock to protect your own data structures as well.
284  */
285 /*
286  * If all of the entries in the array are NULL, @xa_head is a NULL pointer.
287  * If the only non-NULL entry in the array is at index 0, @xa_head is that
288  * entry.  If any other entry in the array is non-NULL, @xa_head points
289  * to an @xa_node.
290  */
291 struct xarray {
292 	spinlock_t	xa_lock;
293 /* private: The rest of the data structure is not to be used directly. */
294 	gfp_t		xa_flags;
295 	void __rcu *	xa_head;
296 };
297 
298 #define XARRAY_INIT(name, flags) {				\
299 	.xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock),		\
300 	.xa_flags = flags,					\
301 	.xa_head = NULL,					\
302 }
303 
304 /**
305  * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags.
306  * @name: A string that names your XArray.
307  * @flags: XA_FLAG values.
308  *
309  * This is intended for file scope definitions of XArrays.  It declares
310  * and initialises an empty XArray with the chosen name and flags.  It is
311  * equivalent to calling xa_init_flags() on the array, but it does the
312  * initialisation at compiletime instead of runtime.
313  */
314 #define DEFINE_XARRAY_FLAGS(name, flags)				\
315 	struct xarray name = XARRAY_INIT(name, flags)
316 
317 /**
318  * DEFINE_XARRAY() - Define an XArray.
319  * @name: A string that names your XArray.
320  *
321  * This is intended for file scope definitions of XArrays.  It declares
322  * and initialises an empty XArray with the chosen name.  It is equivalent
323  * to calling xa_init() on the array, but it does the initialisation at
324  * compiletime instead of runtime.
325  */
326 #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0)
327 
328 /**
329  * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0.
330  * @name: A string that names your XArray.
331  *
332  * This is intended for file scope definitions of allocating XArrays.
333  * See also DEFINE_XARRAY().
334  */
335 #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC)
336 
337 /**
338  * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1.
339  * @name: A string that names your XArray.
340  *
341  * This is intended for file scope definitions of allocating XArrays.
342  * See also DEFINE_XARRAY().
343  */
344 #define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1)
345 
346 void *xa_load(struct xarray *, unsigned long index);
347 void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
348 void *xa_erase(struct xarray *, unsigned long index);
349 void *xa_store_range(struct xarray *, unsigned long first, unsigned long last,
350 			void *entry, gfp_t);
351 bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t);
352 void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
353 void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
354 void *xa_find(struct xarray *xa, unsigned long *index,
355 		unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
356 void *xa_find_after(struct xarray *xa, unsigned long *index,
357 		unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
358 unsigned int xa_extract(struct xarray *, void **dst, unsigned long start,
359 		unsigned long max, unsigned int n, xa_mark_t);
360 void xa_destroy(struct xarray *);
361 
362 /**
363  * xa_init_flags() - Initialise an empty XArray with flags.
364  * @xa: XArray.
365  * @flags: XA_FLAG values.
366  *
367  * If you need to initialise an XArray with special flags (eg you need
368  * to take the lock from interrupt context), use this function instead
369  * of xa_init().
370  *
371  * Context: Any context.
372  */
373 static inline void xa_init_flags(struct xarray *xa, gfp_t flags)
374 {
375 	spin_lock_init(&xa->xa_lock);
376 	xa->xa_flags = flags;
377 	xa->xa_head = NULL;
378 }
379 
380 /**
381  * xa_init() - Initialise an empty XArray.
382  * @xa: XArray.
383  *
384  * An empty XArray is full of NULL entries.
385  *
386  * Context: Any context.
387  */
388 static inline void xa_init(struct xarray *xa)
389 {
390 	xa_init_flags(xa, 0);
391 }
392 
393 /**
394  * xa_empty() - Determine if an array has any present entries.
395  * @xa: XArray.
396  *
397  * Context: Any context.
398  * Return: %true if the array contains only NULL pointers.
399  */
400 static inline bool xa_empty(const struct xarray *xa)
401 {
402 	return xa->xa_head == NULL;
403 }
404 
405 /**
406  * xa_marked() - Inquire whether any entry in this array has a mark set
407  * @xa: Array
408  * @mark: Mark value
409  *
410  * Context: Any context.
411  * Return: %true if any entry has this mark set.
412  */
413 static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark)
414 {
415 	return xa->xa_flags & XA_FLAGS_MARK(mark);
416 }
417 
418 /**
419  * xa_for_each_start() - Iterate over a portion of an XArray.
420  * @xa: XArray.
421  * @index: Index of @entry.
422  * @entry: Entry retrieved from array.
423  * @start: First index to retrieve from array.
424  *
425  * During the iteration, @entry will have the value of the entry stored
426  * in @xa at @index.  You may modify @index during the iteration if you
427  * want to skip or reprocess indices.  It is safe to modify the array
428  * during the iteration.  At the end of the iteration, @entry will be set
429  * to NULL and @index will have a value less than or equal to max.
430  *
431  * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n).  You have
432  * to handle your own locking with xas_for_each(), and if you have to unlock
433  * after each iteration, it will also end up being O(n.log(n)).
434  * xa_for_each_start() will spin if it hits a retry entry; if you intend to
435  * see retry entries, you should use the xas_for_each() iterator instead.
436  * The xas_for_each() iterator will expand into more inline code than
437  * xa_for_each_start().
438  *
439  * Context: Any context.  Takes and releases the RCU lock.
440  */
441 #define xa_for_each_start(xa, index, entry, start)			\
442 	for (index = start,						\
443 	     entry = xa_find(xa, &index, ULONG_MAX, XA_PRESENT);	\
444 	     entry;							\
445 	     entry = xa_find_after(xa, &index, ULONG_MAX, XA_PRESENT))
446 
447 /**
448  * xa_for_each() - Iterate over present entries in an XArray.
449  * @xa: XArray.
450  * @index: Index of @entry.
451  * @entry: Entry retrieved from array.
452  *
453  * During the iteration, @entry will have the value of the entry stored
454  * in @xa at @index.  You may modify @index during the iteration if you want
455  * to skip or reprocess indices.  It is safe to modify the array during the
456  * iteration.  At the end of the iteration, @entry will be set to NULL and
457  * @index will have a value less than or equal to max.
458  *
459  * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n).  You have
460  * to handle your own locking with xas_for_each(), and if you have to unlock
461  * after each iteration, it will also end up being O(n.log(n)).  xa_for_each()
462  * will spin if it hits a retry entry; if you intend to see retry entries,
463  * you should use the xas_for_each() iterator instead.  The xas_for_each()
464  * iterator will expand into more inline code than xa_for_each().
465  *
466  * Context: Any context.  Takes and releases the RCU lock.
467  */
468 #define xa_for_each(xa, index, entry) \
469 	xa_for_each_start(xa, index, entry, 0)
470 
471 /**
472  * xa_for_each_marked() - Iterate over marked entries in an XArray.
473  * @xa: XArray.
474  * @index: Index of @entry.
475  * @entry: Entry retrieved from array.
476  * @filter: Selection criterion.
477  *
478  * During the iteration, @entry will have the value of the entry stored
479  * in @xa at @index.  The iteration will skip all entries in the array
480  * which do not match @filter.  You may modify @index during the iteration
481  * if you want to skip or reprocess indices.  It is safe to modify the array
482  * during the iteration.  At the end of the iteration, @entry will be set to
483  * NULL and @index will have a value less than or equal to max.
484  *
485  * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n).
486  * You have to handle your own locking with xas_for_each(), and if you have
487  * to unlock after each iteration, it will also end up being O(n.log(n)).
488  * xa_for_each_marked() will spin if it hits a retry entry; if you intend to
489  * see retry entries, you should use the xas_for_each_marked() iterator
490  * instead.  The xas_for_each_marked() iterator will expand into more inline
491  * code than xa_for_each_marked().
492  *
493  * Context: Any context.  Takes and releases the RCU lock.
494  */
495 #define xa_for_each_marked(xa, index, entry, filter) \
496 	for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \
497 	     entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter))
498 
499 #define xa_trylock(xa)		spin_trylock(&(xa)->xa_lock)
500 #define xa_lock(xa)		spin_lock(&(xa)->xa_lock)
501 #define xa_unlock(xa)		spin_unlock(&(xa)->xa_lock)
502 #define xa_lock_bh(xa)		spin_lock_bh(&(xa)->xa_lock)
503 #define xa_unlock_bh(xa)	spin_unlock_bh(&(xa)->xa_lock)
504 #define xa_lock_irq(xa)		spin_lock_irq(&(xa)->xa_lock)
505 #define xa_unlock_irq(xa)	spin_unlock_irq(&(xa)->xa_lock)
506 #define xa_lock_irqsave(xa, flags) \
507 				spin_lock_irqsave(&(xa)->xa_lock, flags)
508 #define xa_unlock_irqrestore(xa, flags) \
509 				spin_unlock_irqrestore(&(xa)->xa_lock, flags)
510 
511 /*
512  * Versions of the normal API which require the caller to hold the
513  * xa_lock.  If the GFP flags allow it, they will drop the lock to
514  * allocate memory, then reacquire it afterwards.  These functions
515  * may also re-enable interrupts if the XArray flags indicate the
516  * locking should be interrupt safe.
517  */
518 void *__xa_erase(struct xarray *, unsigned long index);
519 void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
520 void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old,
521 		void *entry, gfp_t);
522 int __must_check __xa_insert(struct xarray *, unsigned long index,
523 		void *entry, gfp_t);
524 int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry,
525 		struct xa_limit, gfp_t);
526 int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry,
527 		struct xa_limit, u32 *next, gfp_t);
528 void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
529 void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
530 
531 /**
532  * xa_store_bh() - Store this entry in the XArray.
533  * @xa: XArray.
534  * @index: Index into array.
535  * @entry: New entry.
536  * @gfp: Memory allocation flags.
537  *
538  * This function is like calling xa_store() except it disables softirqs
539  * while holding the array lock.
540  *
541  * Context: Any context.  Takes and releases the xa_lock while
542  * disabling softirqs.
543  * Return: The entry which used to be at this index.
544  */
545 static inline void *xa_store_bh(struct xarray *xa, unsigned long index,
546 		void *entry, gfp_t gfp)
547 {
548 	void *curr;
549 
550 	xa_lock_bh(xa);
551 	curr = __xa_store(xa, index, entry, gfp);
552 	xa_unlock_bh(xa);
553 
554 	return curr;
555 }
556 
557 /**
558  * xa_store_irq() - Store this entry in the XArray.
559  * @xa: XArray.
560  * @index: Index into array.
561  * @entry: New entry.
562  * @gfp: Memory allocation flags.
563  *
564  * This function is like calling xa_store() except it disables interrupts
565  * while holding the array lock.
566  *
567  * Context: Process context.  Takes and releases the xa_lock while
568  * disabling interrupts.
569  * Return: The entry which used to be at this index.
570  */
571 static inline void *xa_store_irq(struct xarray *xa, unsigned long index,
572 		void *entry, gfp_t gfp)
573 {
574 	void *curr;
575 
576 	xa_lock_irq(xa);
577 	curr = __xa_store(xa, index, entry, gfp);
578 	xa_unlock_irq(xa);
579 
580 	return curr;
581 }
582 
583 /**
584  * xa_erase_bh() - Erase this entry from the XArray.
585  * @xa: XArray.
586  * @index: Index of entry.
587  *
588  * After this function returns, loading from @index will return %NULL.
589  * If the index is part of a multi-index entry, all indices will be erased
590  * and none of the entries will be part of a multi-index entry.
591  *
592  * Context: Any context.  Takes and releases the xa_lock while
593  * disabling softirqs.
594  * Return: The entry which used to be at this index.
595  */
596 static inline void *xa_erase_bh(struct xarray *xa, unsigned long index)
597 {
598 	void *entry;
599 
600 	xa_lock_bh(xa);
601 	entry = __xa_erase(xa, index);
602 	xa_unlock_bh(xa);
603 
604 	return entry;
605 }
606 
607 /**
608  * xa_erase_irq() - Erase this entry from the XArray.
609  * @xa: XArray.
610  * @index: Index of entry.
611  *
612  * After this function returns, loading from @index will return %NULL.
613  * If the index is part of a multi-index entry, all indices will be erased
614  * and none of the entries will be part of a multi-index entry.
615  *
616  * Context: Process context.  Takes and releases the xa_lock while
617  * disabling interrupts.
618  * Return: The entry which used to be at this index.
619  */
620 static inline void *xa_erase_irq(struct xarray *xa, unsigned long index)
621 {
622 	void *entry;
623 
624 	xa_lock_irq(xa);
625 	entry = __xa_erase(xa, index);
626 	xa_unlock_irq(xa);
627 
628 	return entry;
629 }
630 
631 /**
632  * xa_cmpxchg() - Conditionally replace an entry in the XArray.
633  * @xa: XArray.
634  * @index: Index into array.
635  * @old: Old value to test against.
636  * @entry: New value to place in array.
637  * @gfp: Memory allocation flags.
638  *
639  * If the entry at @index is the same as @old, replace it with @entry.
640  * If the return value is equal to @old, then the exchange was successful.
641  *
642  * Context: Any context.  Takes and releases the xa_lock.  May sleep
643  * if the @gfp flags permit.
644  * Return: The old value at this index or xa_err() if an error happened.
645  */
646 static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index,
647 			void *old, void *entry, gfp_t gfp)
648 {
649 	void *curr;
650 
651 	xa_lock(xa);
652 	curr = __xa_cmpxchg(xa, index, old, entry, gfp);
653 	xa_unlock(xa);
654 
655 	return curr;
656 }
657 
658 /**
659  * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray.
660  * @xa: XArray.
661  * @index: Index into array.
662  * @old: Old value to test against.
663  * @entry: New value to place in array.
664  * @gfp: Memory allocation flags.
665  *
666  * This function is like calling xa_cmpxchg() except it disables softirqs
667  * while holding the array lock.
668  *
669  * Context: Any context.  Takes and releases the xa_lock while
670  * disabling softirqs.  May sleep if the @gfp flags permit.
671  * Return: The old value at this index or xa_err() if an error happened.
672  */
673 static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index,
674 			void *old, void *entry, gfp_t gfp)
675 {
676 	void *curr;
677 
678 	xa_lock_bh(xa);
679 	curr = __xa_cmpxchg(xa, index, old, entry, gfp);
680 	xa_unlock_bh(xa);
681 
682 	return curr;
683 }
684 
685 /**
686  * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray.
687  * @xa: XArray.
688  * @index: Index into array.
689  * @old: Old value to test against.
690  * @entry: New value to place in array.
691  * @gfp: Memory allocation flags.
692  *
693  * This function is like calling xa_cmpxchg() except it disables interrupts
694  * while holding the array lock.
695  *
696  * Context: Process context.  Takes and releases the xa_lock while
697  * disabling interrupts.  May sleep if the @gfp flags permit.
698  * Return: The old value at this index or xa_err() if an error happened.
699  */
700 static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index,
701 			void *old, void *entry, gfp_t gfp)
702 {
703 	void *curr;
704 
705 	xa_lock_irq(xa);
706 	curr = __xa_cmpxchg(xa, index, old, entry, gfp);
707 	xa_unlock_irq(xa);
708 
709 	return curr;
710 }
711 
712 /**
713  * xa_insert() - Store this entry in the XArray unless another entry is
714  *			already present.
715  * @xa: XArray.
716  * @index: Index into array.
717  * @entry: New entry.
718  * @gfp: Memory allocation flags.
719  *
720  * Inserting a NULL entry will store a reserved entry (like xa_reserve())
721  * if no entry is present.  Inserting will fail if a reserved entry is
722  * present, even though loading from this index will return NULL.
723  *
724  * Context: Any context.  Takes and releases the xa_lock.  May sleep if
725  * the @gfp flags permit.
726  * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
727  * -ENOMEM if memory could not be allocated.
728  */
729 static inline int __must_check xa_insert(struct xarray *xa,
730 		unsigned long index, void *entry, gfp_t gfp)
731 {
732 	int err;
733 
734 	xa_lock(xa);
735 	err = __xa_insert(xa, index, entry, gfp);
736 	xa_unlock(xa);
737 
738 	return err;
739 }
740 
741 /**
742  * xa_insert_bh() - Store this entry in the XArray unless another entry is
743  *			already present.
744  * @xa: XArray.
745  * @index: Index into array.
746  * @entry: New entry.
747  * @gfp: Memory allocation flags.
748  *
749  * Inserting a NULL entry will store a reserved entry (like xa_reserve())
750  * if no entry is present.  Inserting will fail if a reserved entry is
751  * present, even though loading from this index will return NULL.
752  *
753  * Context: Any context.  Takes and releases the xa_lock while
754  * disabling softirqs.  May sleep if the @gfp flags permit.
755  * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
756  * -ENOMEM if memory could not be allocated.
757  */
758 static inline int __must_check xa_insert_bh(struct xarray *xa,
759 		unsigned long index, void *entry, gfp_t gfp)
760 {
761 	int err;
762 
763 	xa_lock_bh(xa);
764 	err = __xa_insert(xa, index, entry, gfp);
765 	xa_unlock_bh(xa);
766 
767 	return err;
768 }
769 
770 /**
771  * xa_insert_irq() - Store this entry in the XArray unless another entry is
772  *			already present.
773  * @xa: XArray.
774  * @index: Index into array.
775  * @entry: New entry.
776  * @gfp: Memory allocation flags.
777  *
778  * Inserting a NULL entry will store a reserved entry (like xa_reserve())
779  * if no entry is present.  Inserting will fail if a reserved entry is
780  * present, even though loading from this index will return NULL.
781  *
782  * Context: Process context.  Takes and releases the xa_lock while
783  * disabling interrupts.  May sleep if the @gfp flags permit.
784  * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
785  * -ENOMEM if memory could not be allocated.
786  */
787 static inline int __must_check xa_insert_irq(struct xarray *xa,
788 		unsigned long index, void *entry, gfp_t gfp)
789 {
790 	int err;
791 
792 	xa_lock_irq(xa);
793 	err = __xa_insert(xa, index, entry, gfp);
794 	xa_unlock_irq(xa);
795 
796 	return err;
797 }
798 
799 /**
800  * xa_alloc() - Find somewhere to store this entry in the XArray.
801  * @xa: XArray.
802  * @id: Pointer to ID.
803  * @entry: New entry.
804  * @limit: Range of ID to allocate.
805  * @gfp: Memory allocation flags.
806  *
807  * Finds an empty entry in @xa between @limit.min and @limit.max,
808  * stores the index into the @id pointer, then stores the entry at
809  * that index.  A concurrent lookup will not see an uninitialised @id.
810  *
811  * Context: Any context.  Takes and releases the xa_lock.  May sleep if
812  * the @gfp flags permit.
813  * Return: 0 on success, -ENOMEM if memory could not be allocated or
814  * -EBUSY if there are no free entries in @limit.
815  */
816 static inline __must_check int xa_alloc(struct xarray *xa, u32 *id,
817 		void *entry, struct xa_limit limit, gfp_t gfp)
818 {
819 	int err;
820 
821 	xa_lock(xa);
822 	err = __xa_alloc(xa, id, entry, limit, gfp);
823 	xa_unlock(xa);
824 
825 	return err;
826 }
827 
828 /**
829  * xa_alloc_bh() - Find somewhere to store this entry in the XArray.
830  * @xa: XArray.
831  * @id: Pointer to ID.
832  * @entry: New entry.
833  * @limit: Range of ID to allocate.
834  * @gfp: Memory allocation flags.
835  *
836  * Finds an empty entry in @xa between @limit.min and @limit.max,
837  * stores the index into the @id pointer, then stores the entry at
838  * that index.  A concurrent lookup will not see an uninitialised @id.
839  *
840  * Context: Any context.  Takes and releases the xa_lock while
841  * disabling softirqs.  May sleep if the @gfp flags permit.
842  * Return: 0 on success, -ENOMEM if memory could not be allocated or
843  * -EBUSY if there are no free entries in @limit.
844  */
845 static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id,
846 		void *entry, struct xa_limit limit, gfp_t gfp)
847 {
848 	int err;
849 
850 	xa_lock_bh(xa);
851 	err = __xa_alloc(xa, id, entry, limit, gfp);
852 	xa_unlock_bh(xa);
853 
854 	return err;
855 }
856 
857 /**
858  * xa_alloc_irq() - Find somewhere to store this entry in the XArray.
859  * @xa: XArray.
860  * @id: Pointer to ID.
861  * @entry: New entry.
862  * @limit: Range of ID to allocate.
863  * @gfp: Memory allocation flags.
864  *
865  * Finds an empty entry in @xa between @limit.min and @limit.max,
866  * stores the index into the @id pointer, then stores the entry at
867  * that index.  A concurrent lookup will not see an uninitialised @id.
868  *
869  * Context: Process context.  Takes and releases the xa_lock while
870  * disabling interrupts.  May sleep if the @gfp flags permit.
871  * Return: 0 on success, -ENOMEM if memory could not be allocated or
872  * -EBUSY if there are no free entries in @limit.
873  */
874 static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id,
875 		void *entry, struct xa_limit limit, gfp_t gfp)
876 {
877 	int err;
878 
879 	xa_lock_irq(xa);
880 	err = __xa_alloc(xa, id, entry, limit, gfp);
881 	xa_unlock_irq(xa);
882 
883 	return err;
884 }
885 
886 /**
887  * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
888  * @xa: XArray.
889  * @id: Pointer to ID.
890  * @entry: New entry.
891  * @limit: Range of allocated ID.
892  * @next: Pointer to next ID to allocate.
893  * @gfp: Memory allocation flags.
894  *
895  * Finds an empty entry in @xa between @limit.min and @limit.max,
896  * stores the index into the @id pointer, then stores the entry at
897  * that index.  A concurrent lookup will not see an uninitialised @id.
898  * The search for an empty entry will start at @next and will wrap
899  * around if necessary.
900  *
901  * Context: Any context.  Takes and releases the xa_lock.  May sleep if
902  * the @gfp flags permit.
903  * Return: 0 if the allocation succeeded without wrapping.  1 if the
904  * allocation succeeded after wrapping, -ENOMEM if memory could not be
905  * allocated or -EBUSY if there are no free entries in @limit.
906  */
907 static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
908 		struct xa_limit limit, u32 *next, gfp_t gfp)
909 {
910 	int err;
911 
912 	xa_lock(xa);
913 	err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
914 	xa_unlock(xa);
915 
916 	return err;
917 }
918 
919 /**
920  * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray.
921  * @xa: XArray.
922  * @id: Pointer to ID.
923  * @entry: New entry.
924  * @limit: Range of allocated ID.
925  * @next: Pointer to next ID to allocate.
926  * @gfp: Memory allocation flags.
927  *
928  * Finds an empty entry in @xa between @limit.min and @limit.max,
929  * stores the index into the @id pointer, then stores the entry at
930  * that index.  A concurrent lookup will not see an uninitialised @id.
931  * The search for an empty entry will start at @next and will wrap
932  * around if necessary.
933  *
934  * Context: Any context.  Takes and releases the xa_lock while
935  * disabling softirqs.  May sleep if the @gfp flags permit.
936  * Return: 0 if the allocation succeeded without wrapping.  1 if the
937  * allocation succeeded after wrapping, -ENOMEM if memory could not be
938  * allocated or -EBUSY if there are no free entries in @limit.
939  */
940 static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry,
941 		struct xa_limit limit, u32 *next, gfp_t gfp)
942 {
943 	int err;
944 
945 	xa_lock_bh(xa);
946 	err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
947 	xa_unlock_bh(xa);
948 
949 	return err;
950 }
951 
952 /**
953  * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray.
954  * @xa: XArray.
955  * @id: Pointer to ID.
956  * @entry: New entry.
957  * @limit: Range of allocated ID.
958  * @next: Pointer to next ID to allocate.
959  * @gfp: Memory allocation flags.
960  *
961  * Finds an empty entry in @xa between @limit.min and @limit.max,
962  * stores the index into the @id pointer, then stores the entry at
963  * that index.  A concurrent lookup will not see an uninitialised @id.
964  * The search for an empty entry will start at @next and will wrap
965  * around if necessary.
966  *
967  * Context: Process context.  Takes and releases the xa_lock while
968  * disabling interrupts.  May sleep if the @gfp flags permit.
969  * Return: 0 if the allocation succeeded without wrapping.  1 if the
970  * allocation succeeded after wrapping, -ENOMEM if memory could not be
971  * allocated or -EBUSY if there are no free entries in @limit.
972  */
973 static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry,
974 		struct xa_limit limit, u32 *next, gfp_t gfp)
975 {
976 	int err;
977 
978 	xa_lock_irq(xa);
979 	err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
980 	xa_unlock_irq(xa);
981 
982 	return err;
983 }
984 
985 /**
986  * xa_reserve() - Reserve this index in the XArray.
987  * @xa: XArray.
988  * @index: Index into array.
989  * @gfp: Memory allocation flags.
990  *
991  * Ensures there is somewhere to store an entry at @index in the array.
992  * If there is already something stored at @index, this function does
993  * nothing.  If there was nothing there, the entry is marked as reserved.
994  * Loading from a reserved entry returns a %NULL pointer.
995  *
996  * If you do not use the entry that you have reserved, call xa_release()
997  * or xa_erase() to free any unnecessary memory.
998  *
999  * Context: Any context.  Takes and releases the xa_lock.
1000  * May sleep if the @gfp flags permit.
1001  * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1002  */
1003 static inline __must_check
1004 int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
1005 {
1006 	return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1007 }
1008 
1009 /**
1010  * xa_reserve_bh() - Reserve this index in the XArray.
1011  * @xa: XArray.
1012  * @index: Index into array.
1013  * @gfp: Memory allocation flags.
1014  *
1015  * A softirq-disabling version of xa_reserve().
1016  *
1017  * Context: Any context.  Takes and releases the xa_lock while
1018  * disabling softirqs.
1019  * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1020  */
1021 static inline __must_check
1022 int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp)
1023 {
1024 	return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1025 }
1026 
1027 /**
1028  * xa_reserve_irq() - Reserve this index in the XArray.
1029  * @xa: XArray.
1030  * @index: Index into array.
1031  * @gfp: Memory allocation flags.
1032  *
1033  * An interrupt-disabling version of xa_reserve().
1034  *
1035  * Context: Process context.  Takes and releases the xa_lock while
1036  * disabling interrupts.
1037  * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1038  */
1039 static inline __must_check
1040 int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp)
1041 {
1042 	return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1043 }
1044 
1045 /**
1046  * xa_release() - Release a reserved entry.
1047  * @xa: XArray.
1048  * @index: Index of entry.
1049  *
1050  * After calling xa_reserve(), you can call this function to release the
1051  * reservation.  If the entry at @index has been stored to, this function
1052  * will do nothing.
1053  */
1054 static inline void xa_release(struct xarray *xa, unsigned long index)
1055 {
1056 	xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0);
1057 }
1058 
1059 /* Everything below here is the Advanced API.  Proceed with caution. */
1060 
1061 /*
1062  * The xarray is constructed out of a set of 'chunks' of pointers.  Choosing
1063  * the best chunk size requires some tradeoffs.  A power of two recommends
1064  * itself so that we can walk the tree based purely on shifts and masks.
1065  * Generally, the larger the better; as the number of slots per level of the
1066  * tree increases, the less tall the tree needs to be.  But that needs to be
1067  * balanced against the memory consumption of each node.  On a 64-bit system,
1068  * xa_node is currently 576 bytes, and we get 7 of them per 4kB page.  If we
1069  * doubled the number of slots per node, we'd get only 3 nodes per 4kB page.
1070  */
1071 #ifndef XA_CHUNK_SHIFT
1072 #define XA_CHUNK_SHIFT		(CONFIG_BASE_SMALL ? 4 : 6)
1073 #endif
1074 #define XA_CHUNK_SIZE		(1UL << XA_CHUNK_SHIFT)
1075 #define XA_CHUNK_MASK		(XA_CHUNK_SIZE - 1)
1076 #define XA_MAX_MARKS		3
1077 #define XA_MARK_LONGS		DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG)
1078 
1079 /*
1080  * @count is the count of every non-NULL element in the ->slots array
1081  * whether that is a value entry, a retry entry, a user pointer,
1082  * a sibling entry or a pointer to the next level of the tree.
1083  * @nr_values is the count of every element in ->slots which is
1084  * either a value entry or a sibling of a value entry.
1085  */
1086 struct xa_node {
1087 	unsigned char	shift;		/* Bits remaining in each slot */
1088 	unsigned char	offset;		/* Slot offset in parent */
1089 	unsigned char	count;		/* Total entry count */
1090 	unsigned char	nr_values;	/* Value entry count */
1091 	struct xa_node __rcu *parent;	/* NULL at top of tree */
1092 	struct xarray	*array;		/* The array we belong to */
1093 	union {
1094 		struct list_head private_list;	/* For tree user */
1095 		struct rcu_head	rcu_head;	/* Used when freeing node */
1096 	};
1097 	void __rcu	*slots[XA_CHUNK_SIZE];
1098 	union {
1099 		unsigned long	tags[XA_MAX_MARKS][XA_MARK_LONGS];
1100 		unsigned long	marks[XA_MAX_MARKS][XA_MARK_LONGS];
1101 	};
1102 };
1103 
1104 void xa_dump(const struct xarray *);
1105 void xa_dump_node(const struct xa_node *);
1106 
1107 #ifdef XA_DEBUG
1108 #define XA_BUG_ON(xa, x) do {					\
1109 		if (x) {					\
1110 			xa_dump(xa);				\
1111 			BUG();					\
1112 		}						\
1113 	} while (0)
1114 #define XA_NODE_BUG_ON(node, x) do {				\
1115 		if (x) {					\
1116 			if (node) xa_dump_node(node);		\
1117 			BUG();					\
1118 		}						\
1119 	} while (0)
1120 #else
1121 #define XA_BUG_ON(xa, x)	do { } while (0)
1122 #define XA_NODE_BUG_ON(node, x)	do { } while (0)
1123 #endif
1124 
1125 /* Private */
1126 static inline void *xa_head(const struct xarray *xa)
1127 {
1128 	return rcu_dereference_check(xa->xa_head,
1129 						lockdep_is_held(&xa->xa_lock));
1130 }
1131 
1132 /* Private */
1133 static inline void *xa_head_locked(const struct xarray *xa)
1134 {
1135 	return rcu_dereference_protected(xa->xa_head,
1136 						lockdep_is_held(&xa->xa_lock));
1137 }
1138 
1139 /* Private */
1140 static inline void *xa_entry(const struct xarray *xa,
1141 				const struct xa_node *node, unsigned int offset)
1142 {
1143 	XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1144 	return rcu_dereference_check(node->slots[offset],
1145 						lockdep_is_held(&xa->xa_lock));
1146 }
1147 
1148 /* Private */
1149 static inline void *xa_entry_locked(const struct xarray *xa,
1150 				const struct xa_node *node, unsigned int offset)
1151 {
1152 	XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1153 	return rcu_dereference_protected(node->slots[offset],
1154 						lockdep_is_held(&xa->xa_lock));
1155 }
1156 
1157 /* Private */
1158 static inline struct xa_node *xa_parent(const struct xarray *xa,
1159 					const struct xa_node *node)
1160 {
1161 	return rcu_dereference_check(node->parent,
1162 						lockdep_is_held(&xa->xa_lock));
1163 }
1164 
1165 /* Private */
1166 static inline struct xa_node *xa_parent_locked(const struct xarray *xa,
1167 					const struct xa_node *node)
1168 {
1169 	return rcu_dereference_protected(node->parent,
1170 						lockdep_is_held(&xa->xa_lock));
1171 }
1172 
1173 /* Private */
1174 static inline void *xa_mk_node(const struct xa_node *node)
1175 {
1176 	return (void *)((unsigned long)node | 2);
1177 }
1178 
1179 /* Private */
1180 static inline struct xa_node *xa_to_node(const void *entry)
1181 {
1182 	return (struct xa_node *)((unsigned long)entry - 2);
1183 }
1184 
1185 /* Private */
1186 static inline bool xa_is_node(const void *entry)
1187 {
1188 	return xa_is_internal(entry) && (unsigned long)entry > 4096;
1189 }
1190 
1191 /* Private */
1192 static inline void *xa_mk_sibling(unsigned int offset)
1193 {
1194 	return xa_mk_internal(offset);
1195 }
1196 
1197 /* Private */
1198 static inline unsigned long xa_to_sibling(const void *entry)
1199 {
1200 	return xa_to_internal(entry);
1201 }
1202 
1203 /**
1204  * xa_is_sibling() - Is the entry a sibling entry?
1205  * @entry: Entry retrieved from the XArray
1206  *
1207  * Return: %true if the entry is a sibling entry.
1208  */
1209 static inline bool xa_is_sibling(const void *entry)
1210 {
1211 	return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) &&
1212 		(entry < xa_mk_sibling(XA_CHUNK_SIZE - 1));
1213 }
1214 
1215 #define XA_RETRY_ENTRY		xa_mk_internal(256)
1216 
1217 /**
1218  * xa_is_retry() - Is the entry a retry entry?
1219  * @entry: Entry retrieved from the XArray
1220  *
1221  * Return: %true if the entry is a retry entry.
1222  */
1223 static inline bool xa_is_retry(const void *entry)
1224 {
1225 	return unlikely(entry == XA_RETRY_ENTRY);
1226 }
1227 
1228 /**
1229  * xa_is_advanced() - Is the entry only permitted for the advanced API?
1230  * @entry: Entry to be stored in the XArray.
1231  *
1232  * Return: %true if the entry cannot be stored by the normal API.
1233  */
1234 static inline bool xa_is_advanced(const void *entry)
1235 {
1236 	return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY);
1237 }
1238 
1239 /**
1240  * typedef xa_update_node_t - A callback function from the XArray.
1241  * @node: The node which is being processed
1242  *
1243  * This function is called every time the XArray updates the count of
1244  * present and value entries in a node.  It allows advanced users to
1245  * maintain the private_list in the node.
1246  *
1247  * Context: The xa_lock is held and interrupts may be disabled.
1248  *	    Implementations should not drop the xa_lock, nor re-enable
1249  *	    interrupts.
1250  */
1251 typedef void (*xa_update_node_t)(struct xa_node *node);
1252 
1253 /*
1254  * The xa_state is opaque to its users.  It contains various different pieces
1255  * of state involved in the current operation on the XArray.  It should be
1256  * declared on the stack and passed between the various internal routines.
1257  * The various elements in it should not be accessed directly, but only
1258  * through the provided accessor functions.  The below documentation is for
1259  * the benefit of those working on the code, not for users of the XArray.
1260  *
1261  * @xa_node usually points to the xa_node containing the slot we're operating
1262  * on (and @xa_offset is the offset in the slots array).  If there is a
1263  * single entry in the array at index 0, there are no allocated xa_nodes to
1264  * point to, and so we store %NULL in @xa_node.  @xa_node is set to
1265  * the value %XAS_RESTART if the xa_state is not walked to the correct
1266  * position in the tree of nodes for this operation.  If an error occurs
1267  * during an operation, it is set to an %XAS_ERROR value.  If we run off the
1268  * end of the allocated nodes, it is set to %XAS_BOUNDS.
1269  */
1270 struct xa_state {
1271 	struct xarray *xa;
1272 	unsigned long xa_index;
1273 	unsigned char xa_shift;
1274 	unsigned char xa_sibs;
1275 	unsigned char xa_offset;
1276 	unsigned char xa_pad;		/* Helps gcc generate better code */
1277 	struct xa_node *xa_node;
1278 	struct xa_node *xa_alloc;
1279 	xa_update_node_t xa_update;
1280 };
1281 
1282 /*
1283  * We encode errnos in the xas->xa_node.  If an error has happened, we need to
1284  * drop the lock to fix it, and once we've done so the xa_state is invalid.
1285  */
1286 #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL))
1287 #define XAS_BOUNDS	((struct xa_node *)1UL)
1288 #define XAS_RESTART	((struct xa_node *)3UL)
1289 
1290 #define __XA_STATE(array, index, shift, sibs)  {	\
1291 	.xa = array,					\
1292 	.xa_index = index,				\
1293 	.xa_shift = shift,				\
1294 	.xa_sibs = sibs,				\
1295 	.xa_offset = 0,					\
1296 	.xa_pad = 0,					\
1297 	.xa_node = XAS_RESTART,				\
1298 	.xa_alloc = NULL,				\
1299 	.xa_update = NULL				\
1300 }
1301 
1302 /**
1303  * XA_STATE() - Declare an XArray operation state.
1304  * @name: Name of this operation state (usually xas).
1305  * @array: Array to operate on.
1306  * @index: Initial index of interest.
1307  *
1308  * Declare and initialise an xa_state on the stack.
1309  */
1310 #define XA_STATE(name, array, index)				\
1311 	struct xa_state name = __XA_STATE(array, index, 0, 0)
1312 
1313 /**
1314  * XA_STATE_ORDER() - Declare an XArray operation state.
1315  * @name: Name of this operation state (usually xas).
1316  * @array: Array to operate on.
1317  * @index: Initial index of interest.
1318  * @order: Order of entry.
1319  *
1320  * Declare and initialise an xa_state on the stack.  This variant of
1321  * XA_STATE() allows you to specify the 'order' of the element you
1322  * want to operate on.`
1323  */
1324 #define XA_STATE_ORDER(name, array, index, order)		\
1325 	struct xa_state name = __XA_STATE(array,		\
1326 			(index >> order) << order,		\
1327 			order - (order % XA_CHUNK_SHIFT),	\
1328 			(1U << (order % XA_CHUNK_SHIFT)) - 1)
1329 
1330 #define xas_marked(xas, mark)	xa_marked((xas)->xa, (mark))
1331 #define xas_trylock(xas)	xa_trylock((xas)->xa)
1332 #define xas_lock(xas)		xa_lock((xas)->xa)
1333 #define xas_unlock(xas)		xa_unlock((xas)->xa)
1334 #define xas_lock_bh(xas)	xa_lock_bh((xas)->xa)
1335 #define xas_unlock_bh(xas)	xa_unlock_bh((xas)->xa)
1336 #define xas_lock_irq(xas)	xa_lock_irq((xas)->xa)
1337 #define xas_unlock_irq(xas)	xa_unlock_irq((xas)->xa)
1338 #define xas_lock_irqsave(xas, flags) \
1339 				xa_lock_irqsave((xas)->xa, flags)
1340 #define xas_unlock_irqrestore(xas, flags) \
1341 				xa_unlock_irqrestore((xas)->xa, flags)
1342 
1343 /**
1344  * xas_error() - Return an errno stored in the xa_state.
1345  * @xas: XArray operation state.
1346  *
1347  * Return: 0 if no error has been noted.  A negative errno if one has.
1348  */
1349 static inline int xas_error(const struct xa_state *xas)
1350 {
1351 	return xa_err(xas->xa_node);
1352 }
1353 
1354 /**
1355  * xas_set_err() - Note an error in the xa_state.
1356  * @xas: XArray operation state.
1357  * @err: Negative error number.
1358  *
1359  * Only call this function with a negative @err; zero or positive errors
1360  * will probably not behave the way you think they should.  If you want
1361  * to clear the error from an xa_state, use xas_reset().
1362  */
1363 static inline void xas_set_err(struct xa_state *xas, long err)
1364 {
1365 	xas->xa_node = XA_ERROR(err);
1366 }
1367 
1368 /**
1369  * xas_invalid() - Is the xas in a retry or error state?
1370  * @xas: XArray operation state.
1371  *
1372  * Return: %true if the xas cannot be used for operations.
1373  */
1374 static inline bool xas_invalid(const struct xa_state *xas)
1375 {
1376 	return (unsigned long)xas->xa_node & 3;
1377 }
1378 
1379 /**
1380  * xas_valid() - Is the xas a valid cursor into the array?
1381  * @xas: XArray operation state.
1382  *
1383  * Return: %true if the xas can be used for operations.
1384  */
1385 static inline bool xas_valid(const struct xa_state *xas)
1386 {
1387 	return !xas_invalid(xas);
1388 }
1389 
1390 /**
1391  * xas_is_node() - Does the xas point to a node?
1392  * @xas: XArray operation state.
1393  *
1394  * Return: %true if the xas currently references a node.
1395  */
1396 static inline bool xas_is_node(const struct xa_state *xas)
1397 {
1398 	return xas_valid(xas) && xas->xa_node;
1399 }
1400 
1401 /* True if the pointer is something other than a node */
1402 static inline bool xas_not_node(struct xa_node *node)
1403 {
1404 	return ((unsigned long)node & 3) || !node;
1405 }
1406 
1407 /* True if the node represents RESTART or an error */
1408 static inline bool xas_frozen(struct xa_node *node)
1409 {
1410 	return (unsigned long)node & 2;
1411 }
1412 
1413 /* True if the node represents head-of-tree, RESTART or BOUNDS */
1414 static inline bool xas_top(struct xa_node *node)
1415 {
1416 	return node <= XAS_RESTART;
1417 }
1418 
1419 /**
1420  * xas_reset() - Reset an XArray operation state.
1421  * @xas: XArray operation state.
1422  *
1423  * Resets the error or walk state of the @xas so future walks of the
1424  * array will start from the root.  Use this if you have dropped the
1425  * xarray lock and want to reuse the xa_state.
1426  *
1427  * Context: Any context.
1428  */
1429 static inline void xas_reset(struct xa_state *xas)
1430 {
1431 	xas->xa_node = XAS_RESTART;
1432 }
1433 
1434 /**
1435  * xas_retry() - Retry the operation if appropriate.
1436  * @xas: XArray operation state.
1437  * @entry: Entry from xarray.
1438  *
1439  * The advanced functions may sometimes return an internal entry, such as
1440  * a retry entry or a zero entry.  This function sets up the @xas to restart
1441  * the walk from the head of the array if needed.
1442  *
1443  * Context: Any context.
1444  * Return: true if the operation needs to be retried.
1445  */
1446 static inline bool xas_retry(struct xa_state *xas, const void *entry)
1447 {
1448 	if (xa_is_zero(entry))
1449 		return true;
1450 	if (!xa_is_retry(entry))
1451 		return false;
1452 	xas_reset(xas);
1453 	return true;
1454 }
1455 
1456 void *xas_load(struct xa_state *);
1457 void *xas_store(struct xa_state *, void *entry);
1458 void *xas_find(struct xa_state *, unsigned long max);
1459 void *xas_find_conflict(struct xa_state *);
1460 
1461 bool xas_get_mark(const struct xa_state *, xa_mark_t);
1462 void xas_set_mark(const struct xa_state *, xa_mark_t);
1463 void xas_clear_mark(const struct xa_state *, xa_mark_t);
1464 void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t);
1465 void xas_init_marks(const struct xa_state *);
1466 
1467 bool xas_nomem(struct xa_state *, gfp_t);
1468 void xas_pause(struct xa_state *);
1469 
1470 void xas_create_range(struct xa_state *);
1471 
1472 /**
1473  * xas_reload() - Refetch an entry from the xarray.
1474  * @xas: XArray operation state.
1475  *
1476  * Use this function to check that a previously loaded entry still has
1477  * the same value.  This is useful for the lockless pagecache lookup where
1478  * we walk the array with only the RCU lock to protect us, lock the page,
1479  * then check that the page hasn't moved since we looked it up.
1480  *
1481  * The caller guarantees that @xas is still valid.  If it may be in an
1482  * error or restart state, call xas_load() instead.
1483  *
1484  * Return: The entry at this location in the xarray.
1485  */
1486 static inline void *xas_reload(struct xa_state *xas)
1487 {
1488 	struct xa_node *node = xas->xa_node;
1489 
1490 	if (node)
1491 		return xa_entry(xas->xa, node, xas->xa_offset);
1492 	return xa_head(xas->xa);
1493 }
1494 
1495 /**
1496  * xas_set() - Set up XArray operation state for a different index.
1497  * @xas: XArray operation state.
1498  * @index: New index into the XArray.
1499  *
1500  * Move the operation state to refer to a different index.  This will
1501  * have the effect of starting a walk from the top; see xas_next()
1502  * to move to an adjacent index.
1503  */
1504 static inline void xas_set(struct xa_state *xas, unsigned long index)
1505 {
1506 	xas->xa_index = index;
1507 	xas->xa_node = XAS_RESTART;
1508 }
1509 
1510 /**
1511  * xas_set_order() - Set up XArray operation state for a multislot entry.
1512  * @xas: XArray operation state.
1513  * @index: Target of the operation.
1514  * @order: Entry occupies 2^@order indices.
1515  */
1516 static inline void xas_set_order(struct xa_state *xas, unsigned long index,
1517 					unsigned int order)
1518 {
1519 #ifdef CONFIG_XARRAY_MULTI
1520 	xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0;
1521 	xas->xa_shift = order - (order % XA_CHUNK_SHIFT);
1522 	xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1523 	xas->xa_node = XAS_RESTART;
1524 #else
1525 	BUG_ON(order > 0);
1526 	xas_set(xas, index);
1527 #endif
1528 }
1529 
1530 /**
1531  * xas_set_update() - Set up XArray operation state for a callback.
1532  * @xas: XArray operation state.
1533  * @update: Function to call when updating a node.
1534  *
1535  * The XArray can notify a caller after it has updated an xa_node.
1536  * This is advanced functionality and is only needed by the page cache.
1537  */
1538 static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update)
1539 {
1540 	xas->xa_update = update;
1541 }
1542 
1543 /**
1544  * xas_next_entry() - Advance iterator to next present entry.
1545  * @xas: XArray operation state.
1546  * @max: Highest index to return.
1547  *
1548  * xas_next_entry() is an inline function to optimise xarray traversal for
1549  * speed.  It is equivalent to calling xas_find(), and will call xas_find()
1550  * for all the hard cases.
1551  *
1552  * Return: The next present entry after the one currently referred to by @xas.
1553  */
1554 static inline void *xas_next_entry(struct xa_state *xas, unsigned long max)
1555 {
1556 	struct xa_node *node = xas->xa_node;
1557 	void *entry;
1558 
1559 	if (unlikely(xas_not_node(node) || node->shift ||
1560 			xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)))
1561 		return xas_find(xas, max);
1562 
1563 	do {
1564 		if (unlikely(xas->xa_index >= max))
1565 			return xas_find(xas, max);
1566 		if (unlikely(xas->xa_offset == XA_CHUNK_MASK))
1567 			return xas_find(xas, max);
1568 		entry = xa_entry(xas->xa, node, xas->xa_offset + 1);
1569 		if (unlikely(xa_is_internal(entry)))
1570 			return xas_find(xas, max);
1571 		xas->xa_offset++;
1572 		xas->xa_index++;
1573 	} while (!entry);
1574 
1575 	return entry;
1576 }
1577 
1578 /* Private */
1579 static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance,
1580 		xa_mark_t mark)
1581 {
1582 	unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark];
1583 	unsigned int offset = xas->xa_offset;
1584 
1585 	if (advance)
1586 		offset++;
1587 	if (XA_CHUNK_SIZE == BITS_PER_LONG) {
1588 		if (offset < XA_CHUNK_SIZE) {
1589 			unsigned long data = *addr & (~0UL << offset);
1590 			if (data)
1591 				return __ffs(data);
1592 		}
1593 		return XA_CHUNK_SIZE;
1594 	}
1595 
1596 	return find_next_bit(addr, XA_CHUNK_SIZE, offset);
1597 }
1598 
1599 /**
1600  * xas_next_marked() - Advance iterator to next marked entry.
1601  * @xas: XArray operation state.
1602  * @max: Highest index to return.
1603  * @mark: Mark to search for.
1604  *
1605  * xas_next_marked() is an inline function to optimise xarray traversal for
1606  * speed.  It is equivalent to calling xas_find_marked(), and will call
1607  * xas_find_marked() for all the hard cases.
1608  *
1609  * Return: The next marked entry after the one currently referred to by @xas.
1610  */
1611 static inline void *xas_next_marked(struct xa_state *xas, unsigned long max,
1612 								xa_mark_t mark)
1613 {
1614 	struct xa_node *node = xas->xa_node;
1615 	unsigned int offset;
1616 
1617 	if (unlikely(xas_not_node(node) || node->shift))
1618 		return xas_find_marked(xas, max, mark);
1619 	offset = xas_find_chunk(xas, true, mark);
1620 	xas->xa_offset = offset;
1621 	xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset;
1622 	if (xas->xa_index > max)
1623 		return NULL;
1624 	if (offset == XA_CHUNK_SIZE)
1625 		return xas_find_marked(xas, max, mark);
1626 	return xa_entry(xas->xa, node, offset);
1627 }
1628 
1629 /*
1630  * If iterating while holding a lock, drop the lock and reschedule
1631  * every %XA_CHECK_SCHED loops.
1632  */
1633 enum {
1634 	XA_CHECK_SCHED = 4096,
1635 };
1636 
1637 /**
1638  * xas_for_each() - Iterate over a range of an XArray.
1639  * @xas: XArray operation state.
1640  * @entry: Entry retrieved from the array.
1641  * @max: Maximum index to retrieve from array.
1642  *
1643  * The loop body will be executed for each entry present in the xarray
1644  * between the current xas position and @max.  @entry will be set to
1645  * the entry retrieved from the xarray.  It is safe to delete entries
1646  * from the array in the loop body.  You should hold either the RCU lock
1647  * or the xa_lock while iterating.  If you need to drop the lock, call
1648  * xas_pause() first.
1649  */
1650 #define xas_for_each(xas, entry, max) \
1651 	for (entry = xas_find(xas, max); entry; \
1652 	     entry = xas_next_entry(xas, max))
1653 
1654 /**
1655  * xas_for_each_marked() - Iterate over a range of an XArray.
1656  * @xas: XArray operation state.
1657  * @entry: Entry retrieved from the array.
1658  * @max: Maximum index to retrieve from array.
1659  * @mark: Mark to search for.
1660  *
1661  * The loop body will be executed for each marked entry in the xarray
1662  * between the current xas position and @max.  @entry will be set to
1663  * the entry retrieved from the xarray.  It is safe to delete entries
1664  * from the array in the loop body.  You should hold either the RCU lock
1665  * or the xa_lock while iterating.  If you need to drop the lock, call
1666  * xas_pause() first.
1667  */
1668 #define xas_for_each_marked(xas, entry, max, mark) \
1669 	for (entry = xas_find_marked(xas, max, mark); entry; \
1670 	     entry = xas_next_marked(xas, max, mark))
1671 
1672 /**
1673  * xas_for_each_conflict() - Iterate over a range of an XArray.
1674  * @xas: XArray operation state.
1675  * @entry: Entry retrieved from the array.
1676  *
1677  * The loop body will be executed for each entry in the XArray that lies
1678  * within the range specified by @xas.  If the loop completes successfully,
1679  * any entries that lie in this range will be replaced by @entry.  The caller
1680  * may break out of the loop; if they do so, the contents of the XArray will
1681  * be unchanged.  The operation may fail due to an out of memory condition.
1682  * The caller may also call xa_set_err() to exit the loop while setting an
1683  * error to record the reason.
1684  */
1685 #define xas_for_each_conflict(xas, entry) \
1686 	while ((entry = xas_find_conflict(xas)))
1687 
1688 void *__xas_next(struct xa_state *);
1689 void *__xas_prev(struct xa_state *);
1690 
1691 /**
1692  * xas_prev() - Move iterator to previous index.
1693  * @xas: XArray operation state.
1694  *
1695  * If the @xas was in an error state, it will remain in an error state
1696  * and this function will return %NULL.  If the @xas has never been walked,
1697  * it will have the effect of calling xas_load().  Otherwise one will be
1698  * subtracted from the index and the state will be walked to the correct
1699  * location in the array for the next operation.
1700  *
1701  * If the iterator was referencing index 0, this function wraps
1702  * around to %ULONG_MAX.
1703  *
1704  * Return: The entry at the new index.  This may be %NULL or an internal
1705  * entry.
1706  */
1707 static inline void *xas_prev(struct xa_state *xas)
1708 {
1709 	struct xa_node *node = xas->xa_node;
1710 
1711 	if (unlikely(xas_not_node(node) || node->shift ||
1712 				xas->xa_offset == 0))
1713 		return __xas_prev(xas);
1714 
1715 	xas->xa_index--;
1716 	xas->xa_offset--;
1717 	return xa_entry(xas->xa, node, xas->xa_offset);
1718 }
1719 
1720 /**
1721  * xas_next() - Move state to next index.
1722  * @xas: XArray operation state.
1723  *
1724  * If the @xas was in an error state, it will remain in an error state
1725  * and this function will return %NULL.  If the @xas has never been walked,
1726  * it will have the effect of calling xas_load().  Otherwise one will be
1727  * added to the index and the state will be walked to the correct
1728  * location in the array for the next operation.
1729  *
1730  * If the iterator was referencing index %ULONG_MAX, this function wraps
1731  * around to 0.
1732  *
1733  * Return: The entry at the new index.  This may be %NULL or an internal
1734  * entry.
1735  */
1736 static inline void *xas_next(struct xa_state *xas)
1737 {
1738 	struct xa_node *node = xas->xa_node;
1739 
1740 	if (unlikely(xas_not_node(node) || node->shift ||
1741 				xas->xa_offset == XA_CHUNK_MASK))
1742 		return __xas_next(xas);
1743 
1744 	xas->xa_index++;
1745 	xas->xa_offset++;
1746 	return xa_entry(xas->xa, node, xas->xa_offset);
1747 }
1748 
1749 #endif /* _LINUX_XARRAY_H */
1750