1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 #ifndef _LINUX_XARRAY_H 3 #define _LINUX_XARRAY_H 4 /* 5 * eXtensible Arrays 6 * Copyright (c) 2017 Microsoft Corporation 7 * Author: Matthew Wilcox <willy@infradead.org> 8 * 9 * See Documentation/core-api/xarray.rst for how to use the XArray. 10 */ 11 12 #include <linux/bug.h> 13 #include <linux/compiler.h> 14 #include <linux/gfp.h> 15 #include <linux/kconfig.h> 16 #include <linux/kernel.h> 17 #include <linux/rcupdate.h> 18 #include <linux/spinlock.h> 19 #include <linux/types.h> 20 21 /* 22 * The bottom two bits of the entry determine how the XArray interprets 23 * the contents: 24 * 25 * 00: Pointer entry 26 * 10: Internal entry 27 * x1: Value entry or tagged pointer 28 * 29 * Attempting to store internal entries in the XArray is a bug. 30 * 31 * Most internal entries are pointers to the next node in the tree. 32 * The following internal entries have a special meaning: 33 * 34 * 0-62: Sibling entries 35 * 256: Zero entry 36 * 257: Retry entry 37 * 38 * Errors are also represented as internal entries, but use the negative 39 * space (-4094 to -2). They're never stored in the slots array; only 40 * returned by the normal API. 41 */ 42 43 #define BITS_PER_XA_VALUE (BITS_PER_LONG - 1) 44 45 /** 46 * xa_mk_value() - Create an XArray entry from an integer. 47 * @v: Value to store in XArray. 48 * 49 * Context: Any context. 50 * Return: An entry suitable for storing in the XArray. 51 */ 52 static inline void *xa_mk_value(unsigned long v) 53 { 54 WARN_ON((long)v < 0); 55 return (void *)((v << 1) | 1); 56 } 57 58 /** 59 * xa_to_value() - Get value stored in an XArray entry. 60 * @entry: XArray entry. 61 * 62 * Context: Any context. 63 * Return: The value stored in the XArray entry. 64 */ 65 static inline unsigned long xa_to_value(const void *entry) 66 { 67 return (unsigned long)entry >> 1; 68 } 69 70 /** 71 * xa_is_value() - Determine if an entry is a value. 72 * @entry: XArray entry. 73 * 74 * Context: Any context. 75 * Return: True if the entry is a value, false if it is a pointer. 76 */ 77 static inline bool xa_is_value(const void *entry) 78 { 79 return (unsigned long)entry & 1; 80 } 81 82 /** 83 * xa_tag_pointer() - Create an XArray entry for a tagged pointer. 84 * @p: Plain pointer. 85 * @tag: Tag value (0, 1 or 3). 86 * 87 * If the user of the XArray prefers, they can tag their pointers instead 88 * of storing value entries. Three tags are available (0, 1 and 3). 89 * These are distinct from the xa_mark_t as they are not replicated up 90 * through the array and cannot be searched for. 91 * 92 * Context: Any context. 93 * Return: An XArray entry. 94 */ 95 static inline void *xa_tag_pointer(void *p, unsigned long tag) 96 { 97 return (void *)((unsigned long)p | tag); 98 } 99 100 /** 101 * xa_untag_pointer() - Turn an XArray entry into a plain pointer. 102 * @entry: XArray entry. 103 * 104 * If you have stored a tagged pointer in the XArray, call this function 105 * to get the untagged version of the pointer. 106 * 107 * Context: Any context. 108 * Return: A pointer. 109 */ 110 static inline void *xa_untag_pointer(void *entry) 111 { 112 return (void *)((unsigned long)entry & ~3UL); 113 } 114 115 /** 116 * xa_pointer_tag() - Get the tag stored in an XArray entry. 117 * @entry: XArray entry. 118 * 119 * If you have stored a tagged pointer in the XArray, call this function 120 * to get the tag of that pointer. 121 * 122 * Context: Any context. 123 * Return: A tag. 124 */ 125 static inline unsigned int xa_pointer_tag(void *entry) 126 { 127 return (unsigned long)entry & 3UL; 128 } 129 130 /* 131 * xa_mk_internal() - Create an internal entry. 132 * @v: Value to turn into an internal entry. 133 * 134 * Context: Any context. 135 * Return: An XArray internal entry corresponding to this value. 136 */ 137 static inline void *xa_mk_internal(unsigned long v) 138 { 139 return (void *)((v << 2) | 2); 140 } 141 142 /* 143 * xa_to_internal() - Extract the value from an internal entry. 144 * @entry: XArray entry. 145 * 146 * Context: Any context. 147 * Return: The value which was stored in the internal entry. 148 */ 149 static inline unsigned long xa_to_internal(const void *entry) 150 { 151 return (unsigned long)entry >> 2; 152 } 153 154 /* 155 * xa_is_internal() - Is the entry an internal entry? 156 * @entry: XArray entry. 157 * 158 * Context: Any context. 159 * Return: %true if the entry is an internal entry. 160 */ 161 static inline bool xa_is_internal(const void *entry) 162 { 163 return ((unsigned long)entry & 3) == 2; 164 } 165 166 /** 167 * xa_is_err() - Report whether an XArray operation returned an error 168 * @entry: Result from calling an XArray function 169 * 170 * If an XArray operation cannot complete an operation, it will return 171 * a special value indicating an error. This function tells you 172 * whether an error occurred; xa_err() tells you which error occurred. 173 * 174 * Context: Any context. 175 * Return: %true if the entry indicates an error. 176 */ 177 static inline bool xa_is_err(const void *entry) 178 { 179 return unlikely(xa_is_internal(entry)); 180 } 181 182 /** 183 * xa_err() - Turn an XArray result into an errno. 184 * @entry: Result from calling an XArray function. 185 * 186 * If an XArray operation cannot complete an operation, it will return 187 * a special pointer value which encodes an errno. This function extracts 188 * the errno from the pointer value, or returns 0 if the pointer does not 189 * represent an errno. 190 * 191 * Context: Any context. 192 * Return: A negative errno or 0. 193 */ 194 static inline int xa_err(void *entry) 195 { 196 /* xa_to_internal() would not do sign extension. */ 197 if (xa_is_err(entry)) 198 return (long)entry >> 2; 199 return 0; 200 } 201 202 typedef unsigned __bitwise xa_mark_t; 203 #define XA_MARK_0 ((__force xa_mark_t)0U) 204 #define XA_MARK_1 ((__force xa_mark_t)1U) 205 #define XA_MARK_2 ((__force xa_mark_t)2U) 206 #define XA_PRESENT ((__force xa_mark_t)8U) 207 #define XA_MARK_MAX XA_MARK_2 208 #define XA_FREE_MARK XA_MARK_0 209 210 enum xa_lock_type { 211 XA_LOCK_IRQ = 1, 212 XA_LOCK_BH = 2, 213 }; 214 215 /* 216 * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags, 217 * and we remain compatible with that. 218 */ 219 #define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ) 220 #define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH) 221 #define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U) 222 #define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \ 223 (__force unsigned)(mark))) 224 225 #define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK)) 226 227 /** 228 * struct xarray - The anchor of the XArray. 229 * @xa_lock: Lock that protects the contents of the XArray. 230 * 231 * To use the xarray, define it statically or embed it in your data structure. 232 * It is a very small data structure, so it does not usually make sense to 233 * allocate it separately and keep a pointer to it in your data structure. 234 * 235 * You may use the xa_lock to protect your own data structures as well. 236 */ 237 /* 238 * If all of the entries in the array are NULL, @xa_head is a NULL pointer. 239 * If the only non-NULL entry in the array is at index 0, @xa_head is that 240 * entry. If any other entry in the array is non-NULL, @xa_head points 241 * to an @xa_node. 242 */ 243 struct xarray { 244 spinlock_t xa_lock; 245 /* private: The rest of the data structure is not to be used directly. */ 246 gfp_t xa_flags; 247 void __rcu * xa_head; 248 }; 249 250 #define XARRAY_INIT(name, flags) { \ 251 .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \ 252 .xa_flags = flags, \ 253 .xa_head = NULL, \ 254 } 255 256 /** 257 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags. 258 * @name: A string that names your XArray. 259 * @flags: XA_FLAG values. 260 * 261 * This is intended for file scope definitions of XArrays. It declares 262 * and initialises an empty XArray with the chosen name and flags. It is 263 * equivalent to calling xa_init_flags() on the array, but it does the 264 * initialisation at compiletime instead of runtime. 265 */ 266 #define DEFINE_XARRAY_FLAGS(name, flags) \ 267 struct xarray name = XARRAY_INIT(name, flags) 268 269 /** 270 * DEFINE_XARRAY() - Define an XArray. 271 * @name: A string that names your XArray. 272 * 273 * This is intended for file scope definitions of XArrays. It declares 274 * and initialises an empty XArray with the chosen name. It is equivalent 275 * to calling xa_init() on the array, but it does the initialisation at 276 * compiletime instead of runtime. 277 */ 278 #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0) 279 280 /** 281 * DEFINE_XARRAY_ALLOC() - Define an XArray which can allocate IDs. 282 * @name: A string that names your XArray. 283 * 284 * This is intended for file scope definitions of allocating XArrays. 285 * See also DEFINE_XARRAY(). 286 */ 287 #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC) 288 289 void xa_init_flags(struct xarray *, gfp_t flags); 290 void *xa_load(struct xarray *, unsigned long index); 291 void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 292 void *xa_erase(struct xarray *, unsigned long index); 293 void *xa_store_range(struct xarray *, unsigned long first, unsigned long last, 294 void *entry, gfp_t); 295 bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t); 296 void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 297 void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 298 void *xa_find(struct xarray *xa, unsigned long *index, 299 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 300 void *xa_find_after(struct xarray *xa, unsigned long *index, 301 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 302 unsigned int xa_extract(struct xarray *, void **dst, unsigned long start, 303 unsigned long max, unsigned int n, xa_mark_t); 304 void xa_destroy(struct xarray *); 305 306 /** 307 * xa_init() - Initialise an empty XArray. 308 * @xa: XArray. 309 * 310 * An empty XArray is full of NULL entries. 311 * 312 * Context: Any context. 313 */ 314 static inline void xa_init(struct xarray *xa) 315 { 316 xa_init_flags(xa, 0); 317 } 318 319 /** 320 * xa_empty() - Determine if an array has any present entries. 321 * @xa: XArray. 322 * 323 * Context: Any context. 324 * Return: %true if the array contains only NULL pointers. 325 */ 326 static inline bool xa_empty(const struct xarray *xa) 327 { 328 return xa->xa_head == NULL; 329 } 330 331 /** 332 * xa_marked() - Inquire whether any entry in this array has a mark set 333 * @xa: Array 334 * @mark: Mark value 335 * 336 * Context: Any context. 337 * Return: %true if any entry has this mark set. 338 */ 339 static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark) 340 { 341 return xa->xa_flags & XA_FLAGS_MARK(mark); 342 } 343 344 /** 345 * xa_for_each() - Iterate over a portion of an XArray. 346 * @xa: XArray. 347 * @entry: Entry retrieved from array. 348 * @index: Index of @entry. 349 * @max: Maximum index to retrieve from array. 350 * @filter: Selection criterion. 351 * 352 * Initialise @index to the lowest index you want to retrieve from the 353 * array. During the iteration, @entry will have the value of the entry 354 * stored in @xa at @index. The iteration will skip all entries in the 355 * array which do not match @filter. You may modify @index during the 356 * iteration if you want to skip or reprocess indices. It is safe to modify 357 * the array during the iteration. At the end of the iteration, @entry will 358 * be set to NULL and @index will have a value less than or equal to max. 359 * 360 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have 361 * to handle your own locking with xas_for_each(), and if you have to unlock 362 * after each iteration, it will also end up being O(n.log(n)). xa_for_each() 363 * will spin if it hits a retry entry; if you intend to see retry entries, 364 * you should use the xas_for_each() iterator instead. The xas_for_each() 365 * iterator will expand into more inline code than xa_for_each(). 366 * 367 * Context: Any context. Takes and releases the RCU lock. 368 */ 369 #define xa_for_each(xa, entry, index, max, filter) \ 370 for (entry = xa_find(xa, &index, max, filter); entry; \ 371 entry = xa_find_after(xa, &index, max, filter)) 372 373 #define xa_trylock(xa) spin_trylock(&(xa)->xa_lock) 374 #define xa_lock(xa) spin_lock(&(xa)->xa_lock) 375 #define xa_unlock(xa) spin_unlock(&(xa)->xa_lock) 376 #define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock) 377 #define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock) 378 #define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock) 379 #define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock) 380 #define xa_lock_irqsave(xa, flags) \ 381 spin_lock_irqsave(&(xa)->xa_lock, flags) 382 #define xa_unlock_irqrestore(xa, flags) \ 383 spin_unlock_irqrestore(&(xa)->xa_lock, flags) 384 385 /* 386 * Versions of the normal API which require the caller to hold the 387 * xa_lock. If the GFP flags allow it, they will drop the lock to 388 * allocate memory, then reacquire it afterwards. These functions 389 * may also re-enable interrupts if the XArray flags indicate the 390 * locking should be interrupt safe. 391 */ 392 void *__xa_erase(struct xarray *, unsigned long index); 393 void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 394 void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old, 395 void *entry, gfp_t); 396 int __xa_alloc(struct xarray *, u32 *id, u32 max, void *entry, gfp_t); 397 int __xa_reserve(struct xarray *, unsigned long index, gfp_t); 398 void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 399 void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 400 401 /** 402 * __xa_insert() - Store this entry in the XArray unless another entry is 403 * already present. 404 * @xa: XArray. 405 * @index: Index into array. 406 * @entry: New entry. 407 * @gfp: Memory allocation flags. 408 * 409 * If you would rather see the existing entry in the array, use __xa_cmpxchg(). 410 * This function is for users who don't care what the entry is, only that 411 * one is present. 412 * 413 * Context: Any context. Expects xa_lock to be held on entry. May 414 * release and reacquire xa_lock if the @gfp flags permit. 415 * Return: 0 if the store succeeded. -EEXIST if another entry was present. 416 * -ENOMEM if memory could not be allocated. 417 */ 418 static inline int __xa_insert(struct xarray *xa, unsigned long index, 419 void *entry, gfp_t gfp) 420 { 421 void *curr = __xa_cmpxchg(xa, index, NULL, entry, gfp); 422 if (!curr) 423 return 0; 424 if (xa_is_err(curr)) 425 return xa_err(curr); 426 return -EEXIST; 427 } 428 429 /** 430 * xa_store_bh() - Store this entry in the XArray. 431 * @xa: XArray. 432 * @index: Index into array. 433 * @entry: New entry. 434 * @gfp: Memory allocation flags. 435 * 436 * This function is like calling xa_store() except it disables softirqs 437 * while holding the array lock. 438 * 439 * Context: Any context. Takes and releases the xa_lock while 440 * disabling softirqs. 441 * Return: The entry which used to be at this index. 442 */ 443 static inline void *xa_store_bh(struct xarray *xa, unsigned long index, 444 void *entry, gfp_t gfp) 445 { 446 void *curr; 447 448 xa_lock_bh(xa); 449 curr = __xa_store(xa, index, entry, gfp); 450 xa_unlock_bh(xa); 451 452 return curr; 453 } 454 455 /** 456 * xa_store_irq() - Erase this entry from the XArray. 457 * @xa: XArray. 458 * @index: Index into array. 459 * @entry: New entry. 460 * @gfp: Memory allocation flags. 461 * 462 * This function is like calling xa_store() except it disables interrupts 463 * while holding the array lock. 464 * 465 * Context: Process context. Takes and releases the xa_lock while 466 * disabling interrupts. 467 * Return: The entry which used to be at this index. 468 */ 469 static inline void *xa_store_irq(struct xarray *xa, unsigned long index, 470 void *entry, gfp_t gfp) 471 { 472 void *curr; 473 474 xa_lock_irq(xa); 475 curr = __xa_store(xa, index, entry, gfp); 476 xa_unlock_irq(xa); 477 478 return curr; 479 } 480 481 /** 482 * xa_erase_bh() - Erase this entry from the XArray. 483 * @xa: XArray. 484 * @index: Index of entry. 485 * 486 * This function is the equivalent of calling xa_store() with %NULL as 487 * the third argument. The XArray does not need to allocate memory, so 488 * the user does not need to provide GFP flags. 489 * 490 * Context: Any context. Takes and releases the xa_lock while 491 * disabling softirqs. 492 * Return: The entry which used to be at this index. 493 */ 494 static inline void *xa_erase_bh(struct xarray *xa, unsigned long index) 495 { 496 void *entry; 497 498 xa_lock_bh(xa); 499 entry = __xa_erase(xa, index); 500 xa_unlock_bh(xa); 501 502 return entry; 503 } 504 505 /** 506 * xa_erase_irq() - Erase this entry from the XArray. 507 * @xa: XArray. 508 * @index: Index of entry. 509 * 510 * This function is the equivalent of calling xa_store() with %NULL as 511 * the third argument. The XArray does not need to allocate memory, so 512 * the user does not need to provide GFP flags. 513 * 514 * Context: Process context. Takes and releases the xa_lock while 515 * disabling interrupts. 516 * Return: The entry which used to be at this index. 517 */ 518 static inline void *xa_erase_irq(struct xarray *xa, unsigned long index) 519 { 520 void *entry; 521 522 xa_lock_irq(xa); 523 entry = __xa_erase(xa, index); 524 xa_unlock_irq(xa); 525 526 return entry; 527 } 528 529 /** 530 * xa_cmpxchg() - Conditionally replace an entry in the XArray. 531 * @xa: XArray. 532 * @index: Index into array. 533 * @old: Old value to test against. 534 * @entry: New value to place in array. 535 * @gfp: Memory allocation flags. 536 * 537 * If the entry at @index is the same as @old, replace it with @entry. 538 * If the return value is equal to @old, then the exchange was successful. 539 * 540 * Context: Any context. Takes and releases the xa_lock. May sleep 541 * if the @gfp flags permit. 542 * Return: The old value at this index or xa_err() if an error happened. 543 */ 544 static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index, 545 void *old, void *entry, gfp_t gfp) 546 { 547 void *curr; 548 549 xa_lock(xa); 550 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 551 xa_unlock(xa); 552 553 return curr; 554 } 555 556 /** 557 * xa_insert() - Store this entry in the XArray unless another entry is 558 * already present. 559 * @xa: XArray. 560 * @index: Index into array. 561 * @entry: New entry. 562 * @gfp: Memory allocation flags. 563 * 564 * If you would rather see the existing entry in the array, use xa_cmpxchg(). 565 * This function is for users who don't care what the entry is, only that 566 * one is present. 567 * 568 * Context: Process context. Takes and releases the xa_lock. 569 * May sleep if the @gfp flags permit. 570 * Return: 0 if the store succeeded. -EEXIST if another entry was present. 571 * -ENOMEM if memory could not be allocated. 572 */ 573 static inline int xa_insert(struct xarray *xa, unsigned long index, 574 void *entry, gfp_t gfp) 575 { 576 void *curr = xa_cmpxchg(xa, index, NULL, entry, gfp); 577 if (!curr) 578 return 0; 579 if (xa_is_err(curr)) 580 return xa_err(curr); 581 return -EEXIST; 582 } 583 584 /** 585 * xa_alloc() - Find somewhere to store this entry in the XArray. 586 * @xa: XArray. 587 * @id: Pointer to ID. 588 * @max: Maximum ID to allocate (inclusive). 589 * @entry: New entry. 590 * @gfp: Memory allocation flags. 591 * 592 * Allocates an unused ID in the range specified by @id and @max. 593 * Updates the @id pointer with the index, then stores the entry at that 594 * index. A concurrent lookup will not see an uninitialised @id. 595 * 596 * Context: Process context. Takes and releases the xa_lock. May sleep if 597 * the @gfp flags permit. 598 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if 599 * there is no more space in the XArray. 600 */ 601 static inline int xa_alloc(struct xarray *xa, u32 *id, u32 max, void *entry, 602 gfp_t gfp) 603 { 604 int err; 605 606 xa_lock(xa); 607 err = __xa_alloc(xa, id, max, entry, gfp); 608 xa_unlock(xa); 609 610 return err; 611 } 612 613 /** 614 * xa_alloc_bh() - Find somewhere to store this entry in the XArray. 615 * @xa: XArray. 616 * @id: Pointer to ID. 617 * @max: Maximum ID to allocate (inclusive). 618 * @entry: New entry. 619 * @gfp: Memory allocation flags. 620 * 621 * Allocates an unused ID in the range specified by @id and @max. 622 * Updates the @id pointer with the index, then stores the entry at that 623 * index. A concurrent lookup will not see an uninitialised @id. 624 * 625 * Context: Any context. Takes and releases the xa_lock while 626 * disabling softirqs. May sleep if the @gfp flags permit. 627 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if 628 * there is no more space in the XArray. 629 */ 630 static inline int xa_alloc_bh(struct xarray *xa, u32 *id, u32 max, void *entry, 631 gfp_t gfp) 632 { 633 int err; 634 635 xa_lock_bh(xa); 636 err = __xa_alloc(xa, id, max, entry, gfp); 637 xa_unlock_bh(xa); 638 639 return err; 640 } 641 642 /** 643 * xa_alloc_irq() - Find somewhere to store this entry in the XArray. 644 * @xa: XArray. 645 * @id: Pointer to ID. 646 * @max: Maximum ID to allocate (inclusive). 647 * @entry: New entry. 648 * @gfp: Memory allocation flags. 649 * 650 * Allocates an unused ID in the range specified by @id and @max. 651 * Updates the @id pointer with the index, then stores the entry at that 652 * index. A concurrent lookup will not see an uninitialised @id. 653 * 654 * Context: Process context. Takes and releases the xa_lock while 655 * disabling interrupts. May sleep if the @gfp flags permit. 656 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if 657 * there is no more space in the XArray. 658 */ 659 static inline int xa_alloc_irq(struct xarray *xa, u32 *id, u32 max, void *entry, 660 gfp_t gfp) 661 { 662 int err; 663 664 xa_lock_irq(xa); 665 err = __xa_alloc(xa, id, max, entry, gfp); 666 xa_unlock_irq(xa); 667 668 return err; 669 } 670 671 /** 672 * xa_reserve() - Reserve this index in the XArray. 673 * @xa: XArray. 674 * @index: Index into array. 675 * @gfp: Memory allocation flags. 676 * 677 * Ensures there is somewhere to store an entry at @index in the array. 678 * If there is already something stored at @index, this function does 679 * nothing. If there was nothing there, the entry is marked as reserved. 680 * Loading from a reserved entry returns a %NULL pointer. 681 * 682 * If you do not use the entry that you have reserved, call xa_release() 683 * or xa_erase() to free any unnecessary memory. 684 * 685 * Context: Any context. Takes and releases the xa_lock. 686 * May sleep if the @gfp flags permit. 687 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 688 */ 689 static inline 690 int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp) 691 { 692 int ret; 693 694 xa_lock(xa); 695 ret = __xa_reserve(xa, index, gfp); 696 xa_unlock(xa); 697 698 return ret; 699 } 700 701 /** 702 * xa_reserve_bh() - Reserve this index in the XArray. 703 * @xa: XArray. 704 * @index: Index into array. 705 * @gfp: Memory allocation flags. 706 * 707 * A softirq-disabling version of xa_reserve(). 708 * 709 * Context: Any context. Takes and releases the xa_lock while 710 * disabling softirqs. 711 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 712 */ 713 static inline 714 int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp) 715 { 716 int ret; 717 718 xa_lock_bh(xa); 719 ret = __xa_reserve(xa, index, gfp); 720 xa_unlock_bh(xa); 721 722 return ret; 723 } 724 725 /** 726 * xa_reserve_irq() - Reserve this index in the XArray. 727 * @xa: XArray. 728 * @index: Index into array. 729 * @gfp: Memory allocation flags. 730 * 731 * An interrupt-disabling version of xa_reserve(). 732 * 733 * Context: Process context. Takes and releases the xa_lock while 734 * disabling interrupts. 735 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 736 */ 737 static inline 738 int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp) 739 { 740 int ret; 741 742 xa_lock_irq(xa); 743 ret = __xa_reserve(xa, index, gfp); 744 xa_unlock_irq(xa); 745 746 return ret; 747 } 748 749 /** 750 * xa_release() - Release a reserved entry. 751 * @xa: XArray. 752 * @index: Index of entry. 753 * 754 * After calling xa_reserve(), you can call this function to release the 755 * reservation. If the entry at @index has been stored to, this function 756 * will do nothing. 757 */ 758 static inline void xa_release(struct xarray *xa, unsigned long index) 759 { 760 xa_cmpxchg(xa, index, NULL, NULL, 0); 761 } 762 763 /* Everything below here is the Advanced API. Proceed with caution. */ 764 765 /* 766 * The xarray is constructed out of a set of 'chunks' of pointers. Choosing 767 * the best chunk size requires some tradeoffs. A power of two recommends 768 * itself so that we can walk the tree based purely on shifts and masks. 769 * Generally, the larger the better; as the number of slots per level of the 770 * tree increases, the less tall the tree needs to be. But that needs to be 771 * balanced against the memory consumption of each node. On a 64-bit system, 772 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we 773 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page. 774 */ 775 #ifndef XA_CHUNK_SHIFT 776 #define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) 777 #endif 778 #define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT) 779 #define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1) 780 #define XA_MAX_MARKS 3 781 #define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG) 782 783 /* 784 * @count is the count of every non-NULL element in the ->slots array 785 * whether that is a value entry, a retry entry, a user pointer, 786 * a sibling entry or a pointer to the next level of the tree. 787 * @nr_values is the count of every element in ->slots which is 788 * either a value entry or a sibling of a value entry. 789 */ 790 struct xa_node { 791 unsigned char shift; /* Bits remaining in each slot */ 792 unsigned char offset; /* Slot offset in parent */ 793 unsigned char count; /* Total entry count */ 794 unsigned char nr_values; /* Value entry count */ 795 struct xa_node __rcu *parent; /* NULL at top of tree */ 796 struct xarray *array; /* The array we belong to */ 797 union { 798 struct list_head private_list; /* For tree user */ 799 struct rcu_head rcu_head; /* Used when freeing node */ 800 }; 801 void __rcu *slots[XA_CHUNK_SIZE]; 802 union { 803 unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS]; 804 unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS]; 805 }; 806 }; 807 808 void xa_dump(const struct xarray *); 809 void xa_dump_node(const struct xa_node *); 810 811 #ifdef XA_DEBUG 812 #define XA_BUG_ON(xa, x) do { \ 813 if (x) { \ 814 xa_dump(xa); \ 815 BUG(); \ 816 } \ 817 } while (0) 818 #define XA_NODE_BUG_ON(node, x) do { \ 819 if (x) { \ 820 if (node) xa_dump_node(node); \ 821 BUG(); \ 822 } \ 823 } while (0) 824 #else 825 #define XA_BUG_ON(xa, x) do { } while (0) 826 #define XA_NODE_BUG_ON(node, x) do { } while (0) 827 #endif 828 829 /* Private */ 830 static inline void *xa_head(const struct xarray *xa) 831 { 832 return rcu_dereference_check(xa->xa_head, 833 lockdep_is_held(&xa->xa_lock)); 834 } 835 836 /* Private */ 837 static inline void *xa_head_locked(const struct xarray *xa) 838 { 839 return rcu_dereference_protected(xa->xa_head, 840 lockdep_is_held(&xa->xa_lock)); 841 } 842 843 /* Private */ 844 static inline void *xa_entry(const struct xarray *xa, 845 const struct xa_node *node, unsigned int offset) 846 { 847 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 848 return rcu_dereference_check(node->slots[offset], 849 lockdep_is_held(&xa->xa_lock)); 850 } 851 852 /* Private */ 853 static inline void *xa_entry_locked(const struct xarray *xa, 854 const struct xa_node *node, unsigned int offset) 855 { 856 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 857 return rcu_dereference_protected(node->slots[offset], 858 lockdep_is_held(&xa->xa_lock)); 859 } 860 861 /* Private */ 862 static inline struct xa_node *xa_parent(const struct xarray *xa, 863 const struct xa_node *node) 864 { 865 return rcu_dereference_check(node->parent, 866 lockdep_is_held(&xa->xa_lock)); 867 } 868 869 /* Private */ 870 static inline struct xa_node *xa_parent_locked(const struct xarray *xa, 871 const struct xa_node *node) 872 { 873 return rcu_dereference_protected(node->parent, 874 lockdep_is_held(&xa->xa_lock)); 875 } 876 877 /* Private */ 878 static inline void *xa_mk_node(const struct xa_node *node) 879 { 880 return (void *)((unsigned long)node | 2); 881 } 882 883 /* Private */ 884 static inline struct xa_node *xa_to_node(const void *entry) 885 { 886 return (struct xa_node *)((unsigned long)entry - 2); 887 } 888 889 /* Private */ 890 static inline bool xa_is_node(const void *entry) 891 { 892 return xa_is_internal(entry) && (unsigned long)entry > 4096; 893 } 894 895 /* Private */ 896 static inline void *xa_mk_sibling(unsigned int offset) 897 { 898 return xa_mk_internal(offset); 899 } 900 901 /* Private */ 902 static inline unsigned long xa_to_sibling(const void *entry) 903 { 904 return xa_to_internal(entry); 905 } 906 907 /** 908 * xa_is_sibling() - Is the entry a sibling entry? 909 * @entry: Entry retrieved from the XArray 910 * 911 * Return: %true if the entry is a sibling entry. 912 */ 913 static inline bool xa_is_sibling(const void *entry) 914 { 915 return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) && 916 (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1)); 917 } 918 919 #define XA_ZERO_ENTRY xa_mk_internal(256) 920 #define XA_RETRY_ENTRY xa_mk_internal(257) 921 922 /** 923 * xa_is_zero() - Is the entry a zero entry? 924 * @entry: Entry retrieved from the XArray 925 * 926 * Return: %true if the entry is a zero entry. 927 */ 928 static inline bool xa_is_zero(const void *entry) 929 { 930 return unlikely(entry == XA_ZERO_ENTRY); 931 } 932 933 /** 934 * xa_is_retry() - Is the entry a retry entry? 935 * @entry: Entry retrieved from the XArray 936 * 937 * Return: %true if the entry is a retry entry. 938 */ 939 static inline bool xa_is_retry(const void *entry) 940 { 941 return unlikely(entry == XA_RETRY_ENTRY); 942 } 943 944 /** 945 * typedef xa_update_node_t - A callback function from the XArray. 946 * @node: The node which is being processed 947 * 948 * This function is called every time the XArray updates the count of 949 * present and value entries in a node. It allows advanced users to 950 * maintain the private_list in the node. 951 * 952 * Context: The xa_lock is held and interrupts may be disabled. 953 * Implementations should not drop the xa_lock, nor re-enable 954 * interrupts. 955 */ 956 typedef void (*xa_update_node_t)(struct xa_node *node); 957 958 /* 959 * The xa_state is opaque to its users. It contains various different pieces 960 * of state involved in the current operation on the XArray. It should be 961 * declared on the stack and passed between the various internal routines. 962 * The various elements in it should not be accessed directly, but only 963 * through the provided accessor functions. The below documentation is for 964 * the benefit of those working on the code, not for users of the XArray. 965 * 966 * @xa_node usually points to the xa_node containing the slot we're operating 967 * on (and @xa_offset is the offset in the slots array). If there is a 968 * single entry in the array at index 0, there are no allocated xa_nodes to 969 * point to, and so we store %NULL in @xa_node. @xa_node is set to 970 * the value %XAS_RESTART if the xa_state is not walked to the correct 971 * position in the tree of nodes for this operation. If an error occurs 972 * during an operation, it is set to an %XAS_ERROR value. If we run off the 973 * end of the allocated nodes, it is set to %XAS_BOUNDS. 974 */ 975 struct xa_state { 976 struct xarray *xa; 977 unsigned long xa_index; 978 unsigned char xa_shift; 979 unsigned char xa_sibs; 980 unsigned char xa_offset; 981 unsigned char xa_pad; /* Helps gcc generate better code */ 982 struct xa_node *xa_node; 983 struct xa_node *xa_alloc; 984 xa_update_node_t xa_update; 985 }; 986 987 /* 988 * We encode errnos in the xas->xa_node. If an error has happened, we need to 989 * drop the lock to fix it, and once we've done so the xa_state is invalid. 990 */ 991 #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL)) 992 #define XAS_BOUNDS ((struct xa_node *)1UL) 993 #define XAS_RESTART ((struct xa_node *)3UL) 994 995 #define __XA_STATE(array, index, shift, sibs) { \ 996 .xa = array, \ 997 .xa_index = index, \ 998 .xa_shift = shift, \ 999 .xa_sibs = sibs, \ 1000 .xa_offset = 0, \ 1001 .xa_pad = 0, \ 1002 .xa_node = XAS_RESTART, \ 1003 .xa_alloc = NULL, \ 1004 .xa_update = NULL \ 1005 } 1006 1007 /** 1008 * XA_STATE() - Declare an XArray operation state. 1009 * @name: Name of this operation state (usually xas). 1010 * @array: Array to operate on. 1011 * @index: Initial index of interest. 1012 * 1013 * Declare and initialise an xa_state on the stack. 1014 */ 1015 #define XA_STATE(name, array, index) \ 1016 struct xa_state name = __XA_STATE(array, index, 0, 0) 1017 1018 /** 1019 * XA_STATE_ORDER() - Declare an XArray operation state. 1020 * @name: Name of this operation state (usually xas). 1021 * @array: Array to operate on. 1022 * @index: Initial index of interest. 1023 * @order: Order of entry. 1024 * 1025 * Declare and initialise an xa_state on the stack. This variant of 1026 * XA_STATE() allows you to specify the 'order' of the element you 1027 * want to operate on.` 1028 */ 1029 #define XA_STATE_ORDER(name, array, index, order) \ 1030 struct xa_state name = __XA_STATE(array, \ 1031 (index >> order) << order, \ 1032 order - (order % XA_CHUNK_SHIFT), \ 1033 (1U << (order % XA_CHUNK_SHIFT)) - 1) 1034 1035 #define xas_marked(xas, mark) xa_marked((xas)->xa, (mark)) 1036 #define xas_trylock(xas) xa_trylock((xas)->xa) 1037 #define xas_lock(xas) xa_lock((xas)->xa) 1038 #define xas_unlock(xas) xa_unlock((xas)->xa) 1039 #define xas_lock_bh(xas) xa_lock_bh((xas)->xa) 1040 #define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa) 1041 #define xas_lock_irq(xas) xa_lock_irq((xas)->xa) 1042 #define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa) 1043 #define xas_lock_irqsave(xas, flags) \ 1044 xa_lock_irqsave((xas)->xa, flags) 1045 #define xas_unlock_irqrestore(xas, flags) \ 1046 xa_unlock_irqrestore((xas)->xa, flags) 1047 1048 /** 1049 * xas_error() - Return an errno stored in the xa_state. 1050 * @xas: XArray operation state. 1051 * 1052 * Return: 0 if no error has been noted. A negative errno if one has. 1053 */ 1054 static inline int xas_error(const struct xa_state *xas) 1055 { 1056 return xa_err(xas->xa_node); 1057 } 1058 1059 /** 1060 * xas_set_err() - Note an error in the xa_state. 1061 * @xas: XArray operation state. 1062 * @err: Negative error number. 1063 * 1064 * Only call this function with a negative @err; zero or positive errors 1065 * will probably not behave the way you think they should. If you want 1066 * to clear the error from an xa_state, use xas_reset(). 1067 */ 1068 static inline void xas_set_err(struct xa_state *xas, long err) 1069 { 1070 xas->xa_node = XA_ERROR(err); 1071 } 1072 1073 /** 1074 * xas_invalid() - Is the xas in a retry or error state? 1075 * @xas: XArray operation state. 1076 * 1077 * Return: %true if the xas cannot be used for operations. 1078 */ 1079 static inline bool xas_invalid(const struct xa_state *xas) 1080 { 1081 return (unsigned long)xas->xa_node & 3; 1082 } 1083 1084 /** 1085 * xas_valid() - Is the xas a valid cursor into the array? 1086 * @xas: XArray operation state. 1087 * 1088 * Return: %true if the xas can be used for operations. 1089 */ 1090 static inline bool xas_valid(const struct xa_state *xas) 1091 { 1092 return !xas_invalid(xas); 1093 } 1094 1095 /** 1096 * xas_is_node() - Does the xas point to a node? 1097 * @xas: XArray operation state. 1098 * 1099 * Return: %true if the xas currently references a node. 1100 */ 1101 static inline bool xas_is_node(const struct xa_state *xas) 1102 { 1103 return xas_valid(xas) && xas->xa_node; 1104 } 1105 1106 /* True if the pointer is something other than a node */ 1107 static inline bool xas_not_node(struct xa_node *node) 1108 { 1109 return ((unsigned long)node & 3) || !node; 1110 } 1111 1112 /* True if the node represents RESTART or an error */ 1113 static inline bool xas_frozen(struct xa_node *node) 1114 { 1115 return (unsigned long)node & 2; 1116 } 1117 1118 /* True if the node represents head-of-tree, RESTART or BOUNDS */ 1119 static inline bool xas_top(struct xa_node *node) 1120 { 1121 return node <= XAS_RESTART; 1122 } 1123 1124 /** 1125 * xas_reset() - Reset an XArray operation state. 1126 * @xas: XArray operation state. 1127 * 1128 * Resets the error or walk state of the @xas so future walks of the 1129 * array will start from the root. Use this if you have dropped the 1130 * xarray lock and want to reuse the xa_state. 1131 * 1132 * Context: Any context. 1133 */ 1134 static inline void xas_reset(struct xa_state *xas) 1135 { 1136 xas->xa_node = XAS_RESTART; 1137 } 1138 1139 /** 1140 * xas_retry() - Retry the operation if appropriate. 1141 * @xas: XArray operation state. 1142 * @entry: Entry from xarray. 1143 * 1144 * The advanced functions may sometimes return an internal entry, such as 1145 * a retry entry or a zero entry. This function sets up the @xas to restart 1146 * the walk from the head of the array if needed. 1147 * 1148 * Context: Any context. 1149 * Return: true if the operation needs to be retried. 1150 */ 1151 static inline bool xas_retry(struct xa_state *xas, const void *entry) 1152 { 1153 if (xa_is_zero(entry)) 1154 return true; 1155 if (!xa_is_retry(entry)) 1156 return false; 1157 xas_reset(xas); 1158 return true; 1159 } 1160 1161 void *xas_load(struct xa_state *); 1162 void *xas_store(struct xa_state *, void *entry); 1163 void *xas_find(struct xa_state *, unsigned long max); 1164 void *xas_find_conflict(struct xa_state *); 1165 1166 bool xas_get_mark(const struct xa_state *, xa_mark_t); 1167 void xas_set_mark(const struct xa_state *, xa_mark_t); 1168 void xas_clear_mark(const struct xa_state *, xa_mark_t); 1169 void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t); 1170 void xas_init_marks(const struct xa_state *); 1171 1172 bool xas_nomem(struct xa_state *, gfp_t); 1173 void xas_pause(struct xa_state *); 1174 1175 void xas_create_range(struct xa_state *); 1176 1177 /** 1178 * xas_reload() - Refetch an entry from the xarray. 1179 * @xas: XArray operation state. 1180 * 1181 * Use this function to check that a previously loaded entry still has 1182 * the same value. This is useful for the lockless pagecache lookup where 1183 * we walk the array with only the RCU lock to protect us, lock the page, 1184 * then check that the page hasn't moved since we looked it up. 1185 * 1186 * The caller guarantees that @xas is still valid. If it may be in an 1187 * error or restart state, call xas_load() instead. 1188 * 1189 * Return: The entry at this location in the xarray. 1190 */ 1191 static inline void *xas_reload(struct xa_state *xas) 1192 { 1193 struct xa_node *node = xas->xa_node; 1194 1195 if (node) 1196 return xa_entry(xas->xa, node, xas->xa_offset); 1197 return xa_head(xas->xa); 1198 } 1199 1200 /** 1201 * xas_set() - Set up XArray operation state for a different index. 1202 * @xas: XArray operation state. 1203 * @index: New index into the XArray. 1204 * 1205 * Move the operation state to refer to a different index. This will 1206 * have the effect of starting a walk from the top; see xas_next() 1207 * to move to an adjacent index. 1208 */ 1209 static inline void xas_set(struct xa_state *xas, unsigned long index) 1210 { 1211 xas->xa_index = index; 1212 xas->xa_node = XAS_RESTART; 1213 } 1214 1215 /** 1216 * xas_set_order() - Set up XArray operation state for a multislot entry. 1217 * @xas: XArray operation state. 1218 * @index: Target of the operation. 1219 * @order: Entry occupies 2^@order indices. 1220 */ 1221 static inline void xas_set_order(struct xa_state *xas, unsigned long index, 1222 unsigned int order) 1223 { 1224 #ifdef CONFIG_XARRAY_MULTI 1225 xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0; 1226 xas->xa_shift = order - (order % XA_CHUNK_SHIFT); 1227 xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1228 xas->xa_node = XAS_RESTART; 1229 #else 1230 BUG_ON(order > 0); 1231 xas_set(xas, index); 1232 #endif 1233 } 1234 1235 /** 1236 * xas_set_update() - Set up XArray operation state for a callback. 1237 * @xas: XArray operation state. 1238 * @update: Function to call when updating a node. 1239 * 1240 * The XArray can notify a caller after it has updated an xa_node. 1241 * This is advanced functionality and is only needed by the page cache. 1242 */ 1243 static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update) 1244 { 1245 xas->xa_update = update; 1246 } 1247 1248 /** 1249 * xas_next_entry() - Advance iterator to next present entry. 1250 * @xas: XArray operation state. 1251 * @max: Highest index to return. 1252 * 1253 * xas_next_entry() is an inline function to optimise xarray traversal for 1254 * speed. It is equivalent to calling xas_find(), and will call xas_find() 1255 * for all the hard cases. 1256 * 1257 * Return: The next present entry after the one currently referred to by @xas. 1258 */ 1259 static inline void *xas_next_entry(struct xa_state *xas, unsigned long max) 1260 { 1261 struct xa_node *node = xas->xa_node; 1262 void *entry; 1263 1264 if (unlikely(xas_not_node(node) || node->shift || 1265 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK))) 1266 return xas_find(xas, max); 1267 1268 do { 1269 if (unlikely(xas->xa_index >= max)) 1270 return xas_find(xas, max); 1271 if (unlikely(xas->xa_offset == XA_CHUNK_MASK)) 1272 return xas_find(xas, max); 1273 entry = xa_entry(xas->xa, node, xas->xa_offset + 1); 1274 if (unlikely(xa_is_internal(entry))) 1275 return xas_find(xas, max); 1276 xas->xa_offset++; 1277 xas->xa_index++; 1278 } while (!entry); 1279 1280 return entry; 1281 } 1282 1283 /* Private */ 1284 static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance, 1285 xa_mark_t mark) 1286 { 1287 unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark]; 1288 unsigned int offset = xas->xa_offset; 1289 1290 if (advance) 1291 offset++; 1292 if (XA_CHUNK_SIZE == BITS_PER_LONG) { 1293 if (offset < XA_CHUNK_SIZE) { 1294 unsigned long data = *addr & (~0UL << offset); 1295 if (data) 1296 return __ffs(data); 1297 } 1298 return XA_CHUNK_SIZE; 1299 } 1300 1301 return find_next_bit(addr, XA_CHUNK_SIZE, offset); 1302 } 1303 1304 /** 1305 * xas_next_marked() - Advance iterator to next marked entry. 1306 * @xas: XArray operation state. 1307 * @max: Highest index to return. 1308 * @mark: Mark to search for. 1309 * 1310 * xas_next_marked() is an inline function to optimise xarray traversal for 1311 * speed. It is equivalent to calling xas_find_marked(), and will call 1312 * xas_find_marked() for all the hard cases. 1313 * 1314 * Return: The next marked entry after the one currently referred to by @xas. 1315 */ 1316 static inline void *xas_next_marked(struct xa_state *xas, unsigned long max, 1317 xa_mark_t mark) 1318 { 1319 struct xa_node *node = xas->xa_node; 1320 unsigned int offset; 1321 1322 if (unlikely(xas_not_node(node) || node->shift)) 1323 return xas_find_marked(xas, max, mark); 1324 offset = xas_find_chunk(xas, true, mark); 1325 xas->xa_offset = offset; 1326 xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset; 1327 if (xas->xa_index > max) 1328 return NULL; 1329 if (offset == XA_CHUNK_SIZE) 1330 return xas_find_marked(xas, max, mark); 1331 return xa_entry(xas->xa, node, offset); 1332 } 1333 1334 /* 1335 * If iterating while holding a lock, drop the lock and reschedule 1336 * every %XA_CHECK_SCHED loops. 1337 */ 1338 enum { 1339 XA_CHECK_SCHED = 4096, 1340 }; 1341 1342 /** 1343 * xas_for_each() - Iterate over a range of an XArray. 1344 * @xas: XArray operation state. 1345 * @entry: Entry retrieved from the array. 1346 * @max: Maximum index to retrieve from array. 1347 * 1348 * The loop body will be executed for each entry present in the xarray 1349 * between the current xas position and @max. @entry will be set to 1350 * the entry retrieved from the xarray. It is safe to delete entries 1351 * from the array in the loop body. You should hold either the RCU lock 1352 * or the xa_lock while iterating. If you need to drop the lock, call 1353 * xas_pause() first. 1354 */ 1355 #define xas_for_each(xas, entry, max) \ 1356 for (entry = xas_find(xas, max); entry; \ 1357 entry = xas_next_entry(xas, max)) 1358 1359 /** 1360 * xas_for_each_marked() - Iterate over a range of an XArray. 1361 * @xas: XArray operation state. 1362 * @entry: Entry retrieved from the array. 1363 * @max: Maximum index to retrieve from array. 1364 * @mark: Mark to search for. 1365 * 1366 * The loop body will be executed for each marked entry in the xarray 1367 * between the current xas position and @max. @entry will be set to 1368 * the entry retrieved from the xarray. It is safe to delete entries 1369 * from the array in the loop body. You should hold either the RCU lock 1370 * or the xa_lock while iterating. If you need to drop the lock, call 1371 * xas_pause() first. 1372 */ 1373 #define xas_for_each_marked(xas, entry, max, mark) \ 1374 for (entry = xas_find_marked(xas, max, mark); entry; \ 1375 entry = xas_next_marked(xas, max, mark)) 1376 1377 /** 1378 * xas_for_each_conflict() - Iterate over a range of an XArray. 1379 * @xas: XArray operation state. 1380 * @entry: Entry retrieved from the array. 1381 * 1382 * The loop body will be executed for each entry in the XArray that lies 1383 * within the range specified by @xas. If the loop completes successfully, 1384 * any entries that lie in this range will be replaced by @entry. The caller 1385 * may break out of the loop; if they do so, the contents of the XArray will 1386 * be unchanged. The operation may fail due to an out of memory condition. 1387 * The caller may also call xa_set_err() to exit the loop while setting an 1388 * error to record the reason. 1389 */ 1390 #define xas_for_each_conflict(xas, entry) \ 1391 while ((entry = xas_find_conflict(xas))) 1392 1393 void *__xas_next(struct xa_state *); 1394 void *__xas_prev(struct xa_state *); 1395 1396 /** 1397 * xas_prev() - Move iterator to previous index. 1398 * @xas: XArray operation state. 1399 * 1400 * If the @xas was in an error state, it will remain in an error state 1401 * and this function will return %NULL. If the @xas has never been walked, 1402 * it will have the effect of calling xas_load(). Otherwise one will be 1403 * subtracted from the index and the state will be walked to the correct 1404 * location in the array for the next operation. 1405 * 1406 * If the iterator was referencing index 0, this function wraps 1407 * around to %ULONG_MAX. 1408 * 1409 * Return: The entry at the new index. This may be %NULL or an internal 1410 * entry. 1411 */ 1412 static inline void *xas_prev(struct xa_state *xas) 1413 { 1414 struct xa_node *node = xas->xa_node; 1415 1416 if (unlikely(xas_not_node(node) || node->shift || 1417 xas->xa_offset == 0)) 1418 return __xas_prev(xas); 1419 1420 xas->xa_index--; 1421 xas->xa_offset--; 1422 return xa_entry(xas->xa, node, xas->xa_offset); 1423 } 1424 1425 /** 1426 * xas_next() - Move state to next index. 1427 * @xas: XArray operation state. 1428 * 1429 * If the @xas was in an error state, it will remain in an error state 1430 * and this function will return %NULL. If the @xas has never been walked, 1431 * it will have the effect of calling xas_load(). Otherwise one will be 1432 * added to the index and the state will be walked to the correct 1433 * location in the array for the next operation. 1434 * 1435 * If the iterator was referencing index %ULONG_MAX, this function wraps 1436 * around to 0. 1437 * 1438 * Return: The entry at the new index. This may be %NULL or an internal 1439 * entry. 1440 */ 1441 static inline void *xas_next(struct xa_state *xas) 1442 { 1443 struct xa_node *node = xas->xa_node; 1444 1445 if (unlikely(xas_not_node(node) || node->shift || 1446 xas->xa_offset == XA_CHUNK_MASK)) 1447 return __xas_next(xas); 1448 1449 xas->xa_index++; 1450 xas->xa_offset++; 1451 return xa_entry(xas->xa, node, xas->xa_offset); 1452 } 1453 1454 #endif /* _LINUX_XARRAY_H */ 1455