1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 #ifndef _LINUX_XARRAY_H 3 #define _LINUX_XARRAY_H 4 /* 5 * eXtensible Arrays 6 * Copyright (c) 2017 Microsoft Corporation 7 * Author: Matthew Wilcox <willy@infradead.org> 8 * 9 * See Documentation/core-api/xarray.rst for how to use the XArray. 10 */ 11 12 #include <linux/bitmap.h> 13 #include <linux/bug.h> 14 #include <linux/compiler.h> 15 #include <linux/gfp.h> 16 #include <linux/kconfig.h> 17 #include <linux/kernel.h> 18 #include <linux/rcupdate.h> 19 #include <linux/sched/mm.h> 20 #include <linux/spinlock.h> 21 #include <linux/types.h> 22 23 /* 24 * The bottom two bits of the entry determine how the XArray interprets 25 * the contents: 26 * 27 * 00: Pointer entry 28 * 10: Internal entry 29 * x1: Value entry or tagged pointer 30 * 31 * Attempting to store internal entries in the XArray is a bug. 32 * 33 * Most internal entries are pointers to the next node in the tree. 34 * The following internal entries have a special meaning: 35 * 36 * 0-62: Sibling entries 37 * 256: Retry entry 38 * 257: Zero entry 39 * 40 * Errors are also represented as internal entries, but use the negative 41 * space (-4094 to -2). They're never stored in the slots array; only 42 * returned by the normal API. 43 */ 44 45 #define BITS_PER_XA_VALUE (BITS_PER_LONG - 1) 46 47 /** 48 * xa_mk_value() - Create an XArray entry from an integer. 49 * @v: Value to store in XArray. 50 * 51 * Context: Any context. 52 * Return: An entry suitable for storing in the XArray. 53 */ 54 static inline void *xa_mk_value(unsigned long v) 55 { 56 WARN_ON((long)v < 0); 57 return (void *)((v << 1) | 1); 58 } 59 60 /** 61 * xa_to_value() - Get value stored in an XArray entry. 62 * @entry: XArray entry. 63 * 64 * Context: Any context. 65 * Return: The value stored in the XArray entry. 66 */ 67 static inline unsigned long xa_to_value(const void *entry) 68 { 69 return (unsigned long)entry >> 1; 70 } 71 72 /** 73 * xa_is_value() - Determine if an entry is a value. 74 * @entry: XArray entry. 75 * 76 * Context: Any context. 77 * Return: True if the entry is a value, false if it is a pointer. 78 */ 79 static inline bool xa_is_value(const void *entry) 80 { 81 return (unsigned long)entry & 1; 82 } 83 84 /** 85 * xa_tag_pointer() - Create an XArray entry for a tagged pointer. 86 * @p: Plain pointer. 87 * @tag: Tag value (0, 1 or 3). 88 * 89 * If the user of the XArray prefers, they can tag their pointers instead 90 * of storing value entries. Three tags are available (0, 1 and 3). 91 * These are distinct from the xa_mark_t as they are not replicated up 92 * through the array and cannot be searched for. 93 * 94 * Context: Any context. 95 * Return: An XArray entry. 96 */ 97 static inline void *xa_tag_pointer(void *p, unsigned long tag) 98 { 99 return (void *)((unsigned long)p | tag); 100 } 101 102 /** 103 * xa_untag_pointer() - Turn an XArray entry into a plain pointer. 104 * @entry: XArray entry. 105 * 106 * If you have stored a tagged pointer in the XArray, call this function 107 * to get the untagged version of the pointer. 108 * 109 * Context: Any context. 110 * Return: A pointer. 111 */ 112 static inline void *xa_untag_pointer(void *entry) 113 { 114 return (void *)((unsigned long)entry & ~3UL); 115 } 116 117 /** 118 * xa_pointer_tag() - Get the tag stored in an XArray entry. 119 * @entry: XArray entry. 120 * 121 * If you have stored a tagged pointer in the XArray, call this function 122 * to get the tag of that pointer. 123 * 124 * Context: Any context. 125 * Return: A tag. 126 */ 127 static inline unsigned int xa_pointer_tag(void *entry) 128 { 129 return (unsigned long)entry & 3UL; 130 } 131 132 /* 133 * xa_mk_internal() - Create an internal entry. 134 * @v: Value to turn into an internal entry. 135 * 136 * Internal entries are used for a number of purposes. Entries 0-255 are 137 * used for sibling entries (only 0-62 are used by the current code). 256 138 * is used for the retry entry. 257 is used for the reserved / zero entry. 139 * Negative internal entries are used to represent errnos. Node pointers 140 * are also tagged as internal entries in some situations. 141 * 142 * Context: Any context. 143 * Return: An XArray internal entry corresponding to this value. 144 */ 145 static inline void *xa_mk_internal(unsigned long v) 146 { 147 return (void *)((v << 2) | 2); 148 } 149 150 /* 151 * xa_to_internal() - Extract the value from an internal entry. 152 * @entry: XArray entry. 153 * 154 * Context: Any context. 155 * Return: The value which was stored in the internal entry. 156 */ 157 static inline unsigned long xa_to_internal(const void *entry) 158 { 159 return (unsigned long)entry >> 2; 160 } 161 162 /* 163 * xa_is_internal() - Is the entry an internal entry? 164 * @entry: XArray entry. 165 * 166 * Context: Any context. 167 * Return: %true if the entry is an internal entry. 168 */ 169 static inline bool xa_is_internal(const void *entry) 170 { 171 return ((unsigned long)entry & 3) == 2; 172 } 173 174 #define XA_ZERO_ENTRY xa_mk_internal(257) 175 176 /** 177 * xa_is_zero() - Is the entry a zero entry? 178 * @entry: Entry retrieved from the XArray 179 * 180 * The normal API will return NULL as the contents of a slot containing 181 * a zero entry. You can only see zero entries by using the advanced API. 182 * 183 * Return: %true if the entry is a zero entry. 184 */ 185 static inline bool xa_is_zero(const void *entry) 186 { 187 return unlikely(entry == XA_ZERO_ENTRY); 188 } 189 190 /** 191 * xa_is_err() - Report whether an XArray operation returned an error 192 * @entry: Result from calling an XArray function 193 * 194 * If an XArray operation cannot complete an operation, it will return 195 * a special value indicating an error. This function tells you 196 * whether an error occurred; xa_err() tells you which error occurred. 197 * 198 * Context: Any context. 199 * Return: %true if the entry indicates an error. 200 */ 201 static inline bool xa_is_err(const void *entry) 202 { 203 return unlikely(xa_is_internal(entry) && 204 entry >= xa_mk_internal(-MAX_ERRNO)); 205 } 206 207 /** 208 * xa_err() - Turn an XArray result into an errno. 209 * @entry: Result from calling an XArray function. 210 * 211 * If an XArray operation cannot complete an operation, it will return 212 * a special pointer value which encodes an errno. This function extracts 213 * the errno from the pointer value, or returns 0 if the pointer does not 214 * represent an errno. 215 * 216 * Context: Any context. 217 * Return: A negative errno or 0. 218 */ 219 static inline int xa_err(void *entry) 220 { 221 /* xa_to_internal() would not do sign extension. */ 222 if (xa_is_err(entry)) 223 return (long)entry >> 2; 224 return 0; 225 } 226 227 /** 228 * struct xa_limit - Represents a range of IDs. 229 * @min: The lowest ID to allocate (inclusive). 230 * @max: The maximum ID to allocate (inclusive). 231 * 232 * This structure is used either directly or via the XA_LIMIT() macro 233 * to communicate the range of IDs that are valid for allocation. 234 * Three common ranges are predefined for you: 235 * * xa_limit_32b - [0 - UINT_MAX] 236 * * xa_limit_31b - [0 - INT_MAX] 237 * * xa_limit_16b - [0 - USHRT_MAX] 238 */ 239 struct xa_limit { 240 u32 max; 241 u32 min; 242 }; 243 244 #define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max } 245 246 #define xa_limit_32b XA_LIMIT(0, UINT_MAX) 247 #define xa_limit_31b XA_LIMIT(0, INT_MAX) 248 #define xa_limit_16b XA_LIMIT(0, USHRT_MAX) 249 250 typedef unsigned __bitwise xa_mark_t; 251 #define XA_MARK_0 ((__force xa_mark_t)0U) 252 #define XA_MARK_1 ((__force xa_mark_t)1U) 253 #define XA_MARK_2 ((__force xa_mark_t)2U) 254 #define XA_PRESENT ((__force xa_mark_t)8U) 255 #define XA_MARK_MAX XA_MARK_2 256 #define XA_FREE_MARK XA_MARK_0 257 258 enum xa_lock_type { 259 XA_LOCK_IRQ = 1, 260 XA_LOCK_BH = 2, 261 }; 262 263 /* 264 * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags, 265 * and we remain compatible with that. 266 */ 267 #define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ) 268 #define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH) 269 #define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U) 270 #define XA_FLAGS_ZERO_BUSY ((__force gfp_t)8U) 271 #define XA_FLAGS_ALLOC_WRAPPED ((__force gfp_t)16U) 272 #define XA_FLAGS_ACCOUNT ((__force gfp_t)32U) 273 #define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \ 274 (__force unsigned)(mark))) 275 276 /* ALLOC is for a normal 0-based alloc. ALLOC1 is for an 1-based alloc */ 277 #define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK)) 278 #define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY) 279 280 /** 281 * struct xarray - The anchor of the XArray. 282 * @xa_lock: Lock that protects the contents of the XArray. 283 * 284 * To use the xarray, define it statically or embed it in your data structure. 285 * It is a very small data structure, so it does not usually make sense to 286 * allocate it separately and keep a pointer to it in your data structure. 287 * 288 * You may use the xa_lock to protect your own data structures as well. 289 */ 290 /* 291 * If all of the entries in the array are NULL, @xa_head is a NULL pointer. 292 * If the only non-NULL entry in the array is at index 0, @xa_head is that 293 * entry. If any other entry in the array is non-NULL, @xa_head points 294 * to an @xa_node. 295 */ 296 struct xarray { 297 spinlock_t xa_lock; 298 /* private: The rest of the data structure is not to be used directly. */ 299 gfp_t xa_flags; 300 void __rcu * xa_head; 301 }; 302 303 #define XARRAY_INIT(name, flags) { \ 304 .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \ 305 .xa_flags = flags, \ 306 .xa_head = NULL, \ 307 } 308 309 /** 310 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags. 311 * @name: A string that names your XArray. 312 * @flags: XA_FLAG values. 313 * 314 * This is intended for file scope definitions of XArrays. It declares 315 * and initialises an empty XArray with the chosen name and flags. It is 316 * equivalent to calling xa_init_flags() on the array, but it does the 317 * initialisation at compiletime instead of runtime. 318 */ 319 #define DEFINE_XARRAY_FLAGS(name, flags) \ 320 struct xarray name = XARRAY_INIT(name, flags) 321 322 /** 323 * DEFINE_XARRAY() - Define an XArray. 324 * @name: A string that names your XArray. 325 * 326 * This is intended for file scope definitions of XArrays. It declares 327 * and initialises an empty XArray with the chosen name. It is equivalent 328 * to calling xa_init() on the array, but it does the initialisation at 329 * compiletime instead of runtime. 330 */ 331 #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0) 332 333 /** 334 * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0. 335 * @name: A string that names your XArray. 336 * 337 * This is intended for file scope definitions of allocating XArrays. 338 * See also DEFINE_XARRAY(). 339 */ 340 #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC) 341 342 /** 343 * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1. 344 * @name: A string that names your XArray. 345 * 346 * This is intended for file scope definitions of allocating XArrays. 347 * See also DEFINE_XARRAY(). 348 */ 349 #define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1) 350 351 void *xa_load(struct xarray *, unsigned long index); 352 void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 353 void *xa_erase(struct xarray *, unsigned long index); 354 void *xa_store_range(struct xarray *, unsigned long first, unsigned long last, 355 void *entry, gfp_t); 356 bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t); 357 void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 358 void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 359 void *xa_find(struct xarray *xa, unsigned long *index, 360 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 361 void *xa_find_after(struct xarray *xa, unsigned long *index, 362 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 363 unsigned int xa_extract(struct xarray *, void **dst, unsigned long start, 364 unsigned long max, unsigned int n, xa_mark_t); 365 void xa_destroy(struct xarray *); 366 367 /** 368 * xa_init_flags() - Initialise an empty XArray with flags. 369 * @xa: XArray. 370 * @flags: XA_FLAG values. 371 * 372 * If you need to initialise an XArray with special flags (eg you need 373 * to take the lock from interrupt context), use this function instead 374 * of xa_init(). 375 * 376 * Context: Any context. 377 */ 378 static inline void xa_init_flags(struct xarray *xa, gfp_t flags) 379 { 380 spin_lock_init(&xa->xa_lock); 381 xa->xa_flags = flags; 382 xa->xa_head = NULL; 383 } 384 385 /** 386 * xa_init() - Initialise an empty XArray. 387 * @xa: XArray. 388 * 389 * An empty XArray is full of NULL entries. 390 * 391 * Context: Any context. 392 */ 393 static inline void xa_init(struct xarray *xa) 394 { 395 xa_init_flags(xa, 0); 396 } 397 398 /** 399 * xa_empty() - Determine if an array has any present entries. 400 * @xa: XArray. 401 * 402 * Context: Any context. 403 * Return: %true if the array contains only NULL pointers. 404 */ 405 static inline bool xa_empty(const struct xarray *xa) 406 { 407 return xa->xa_head == NULL; 408 } 409 410 /** 411 * xa_marked() - Inquire whether any entry in this array has a mark set 412 * @xa: Array 413 * @mark: Mark value 414 * 415 * Context: Any context. 416 * Return: %true if any entry has this mark set. 417 */ 418 static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark) 419 { 420 return xa->xa_flags & XA_FLAGS_MARK(mark); 421 } 422 423 /** 424 * xa_for_each_range() - Iterate over a portion of an XArray. 425 * @xa: XArray. 426 * @index: Index of @entry. 427 * @entry: Entry retrieved from array. 428 * @start: First index to retrieve from array. 429 * @last: Last index to retrieve from array. 430 * 431 * During the iteration, @entry will have the value of the entry stored 432 * in @xa at @index. You may modify @index during the iteration if you 433 * want to skip or reprocess indices. It is safe to modify the array 434 * during the iteration. At the end of the iteration, @entry will be set 435 * to NULL and @index will have a value less than or equal to max. 436 * 437 * xa_for_each_range() is O(n.log(n)) while xas_for_each() is O(n). You have 438 * to handle your own locking with xas_for_each(), and if you have to unlock 439 * after each iteration, it will also end up being O(n.log(n)). 440 * xa_for_each_range() will spin if it hits a retry entry; if you intend to 441 * see retry entries, you should use the xas_for_each() iterator instead. 442 * The xas_for_each() iterator will expand into more inline code than 443 * xa_for_each_range(). 444 * 445 * Context: Any context. Takes and releases the RCU lock. 446 */ 447 #define xa_for_each_range(xa, index, entry, start, last) \ 448 for (index = start, \ 449 entry = xa_find(xa, &index, last, XA_PRESENT); \ 450 entry; \ 451 entry = xa_find_after(xa, &index, last, XA_PRESENT)) 452 453 /** 454 * xa_for_each_start() - Iterate over a portion of an XArray. 455 * @xa: XArray. 456 * @index: Index of @entry. 457 * @entry: Entry retrieved from array. 458 * @start: First index to retrieve from array. 459 * 460 * During the iteration, @entry will have the value of the entry stored 461 * in @xa at @index. You may modify @index during the iteration if you 462 * want to skip or reprocess indices. It is safe to modify the array 463 * during the iteration. At the end of the iteration, @entry will be set 464 * to NULL and @index will have a value less than or equal to max. 465 * 466 * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n). You have 467 * to handle your own locking with xas_for_each(), and if you have to unlock 468 * after each iteration, it will also end up being O(n.log(n)). 469 * xa_for_each_start() will spin if it hits a retry entry; if you intend to 470 * see retry entries, you should use the xas_for_each() iterator instead. 471 * The xas_for_each() iterator will expand into more inline code than 472 * xa_for_each_start(). 473 * 474 * Context: Any context. Takes and releases the RCU lock. 475 */ 476 #define xa_for_each_start(xa, index, entry, start) \ 477 xa_for_each_range(xa, index, entry, start, ULONG_MAX) 478 479 /** 480 * xa_for_each() - Iterate over present entries in an XArray. 481 * @xa: XArray. 482 * @index: Index of @entry. 483 * @entry: Entry retrieved from array. 484 * 485 * During the iteration, @entry will have the value of the entry stored 486 * in @xa at @index. You may modify @index during the iteration if you want 487 * to skip or reprocess indices. It is safe to modify the array during the 488 * iteration. At the end of the iteration, @entry will be set to NULL and 489 * @index will have a value less than or equal to max. 490 * 491 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have 492 * to handle your own locking with xas_for_each(), and if you have to unlock 493 * after each iteration, it will also end up being O(n.log(n)). xa_for_each() 494 * will spin if it hits a retry entry; if you intend to see retry entries, 495 * you should use the xas_for_each() iterator instead. The xas_for_each() 496 * iterator will expand into more inline code than xa_for_each(). 497 * 498 * Context: Any context. Takes and releases the RCU lock. 499 */ 500 #define xa_for_each(xa, index, entry) \ 501 xa_for_each_start(xa, index, entry, 0) 502 503 /** 504 * xa_for_each_marked() - Iterate over marked entries in an XArray. 505 * @xa: XArray. 506 * @index: Index of @entry. 507 * @entry: Entry retrieved from array. 508 * @filter: Selection criterion. 509 * 510 * During the iteration, @entry will have the value of the entry stored 511 * in @xa at @index. The iteration will skip all entries in the array 512 * which do not match @filter. You may modify @index during the iteration 513 * if you want to skip or reprocess indices. It is safe to modify the array 514 * during the iteration. At the end of the iteration, @entry will be set to 515 * NULL and @index will have a value less than or equal to max. 516 * 517 * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n). 518 * You have to handle your own locking with xas_for_each(), and if you have 519 * to unlock after each iteration, it will also end up being O(n.log(n)). 520 * xa_for_each_marked() will spin if it hits a retry entry; if you intend to 521 * see retry entries, you should use the xas_for_each_marked() iterator 522 * instead. The xas_for_each_marked() iterator will expand into more inline 523 * code than xa_for_each_marked(). 524 * 525 * Context: Any context. Takes and releases the RCU lock. 526 */ 527 #define xa_for_each_marked(xa, index, entry, filter) \ 528 for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \ 529 entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter)) 530 531 #define xa_trylock(xa) spin_trylock(&(xa)->xa_lock) 532 #define xa_lock(xa) spin_lock(&(xa)->xa_lock) 533 #define xa_unlock(xa) spin_unlock(&(xa)->xa_lock) 534 #define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock) 535 #define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock) 536 #define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock) 537 #define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock) 538 #define xa_lock_irqsave(xa, flags) \ 539 spin_lock_irqsave(&(xa)->xa_lock, flags) 540 #define xa_unlock_irqrestore(xa, flags) \ 541 spin_unlock_irqrestore(&(xa)->xa_lock, flags) 542 #define xa_lock_nested(xa, subclass) \ 543 spin_lock_nested(&(xa)->xa_lock, subclass) 544 #define xa_lock_bh_nested(xa, subclass) \ 545 spin_lock_bh_nested(&(xa)->xa_lock, subclass) 546 #define xa_lock_irq_nested(xa, subclass) \ 547 spin_lock_irq_nested(&(xa)->xa_lock, subclass) 548 #define xa_lock_irqsave_nested(xa, flags, subclass) \ 549 spin_lock_irqsave_nested(&(xa)->xa_lock, flags, subclass) 550 551 /* 552 * Versions of the normal API which require the caller to hold the 553 * xa_lock. If the GFP flags allow it, they will drop the lock to 554 * allocate memory, then reacquire it afterwards. These functions 555 * may also re-enable interrupts if the XArray flags indicate the 556 * locking should be interrupt safe. 557 */ 558 void *__xa_erase(struct xarray *, unsigned long index); 559 void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 560 void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old, 561 void *entry, gfp_t); 562 int __must_check __xa_insert(struct xarray *, unsigned long index, 563 void *entry, gfp_t); 564 int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry, 565 struct xa_limit, gfp_t); 566 int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry, 567 struct xa_limit, u32 *next, gfp_t); 568 void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 569 void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 570 571 /** 572 * xa_store_bh() - Store this entry in the XArray. 573 * @xa: XArray. 574 * @index: Index into array. 575 * @entry: New entry. 576 * @gfp: Memory allocation flags. 577 * 578 * This function is like calling xa_store() except it disables softirqs 579 * while holding the array lock. 580 * 581 * Context: Any context. Takes and releases the xa_lock while 582 * disabling softirqs. 583 * Return: The old entry at this index or xa_err() if an error happened. 584 */ 585 static inline void *xa_store_bh(struct xarray *xa, unsigned long index, 586 void *entry, gfp_t gfp) 587 { 588 void *curr; 589 590 might_alloc(gfp); 591 xa_lock_bh(xa); 592 curr = __xa_store(xa, index, entry, gfp); 593 xa_unlock_bh(xa); 594 595 return curr; 596 } 597 598 /** 599 * xa_store_irq() - Store this entry in the XArray. 600 * @xa: XArray. 601 * @index: Index into array. 602 * @entry: New entry. 603 * @gfp: Memory allocation flags. 604 * 605 * This function is like calling xa_store() except it disables interrupts 606 * while holding the array lock. 607 * 608 * Context: Process context. Takes and releases the xa_lock while 609 * disabling interrupts. 610 * Return: The old entry at this index or xa_err() if an error happened. 611 */ 612 static inline void *xa_store_irq(struct xarray *xa, unsigned long index, 613 void *entry, gfp_t gfp) 614 { 615 void *curr; 616 617 might_alloc(gfp); 618 xa_lock_irq(xa); 619 curr = __xa_store(xa, index, entry, gfp); 620 xa_unlock_irq(xa); 621 622 return curr; 623 } 624 625 /** 626 * xa_erase_bh() - Erase this entry from the XArray. 627 * @xa: XArray. 628 * @index: Index of entry. 629 * 630 * After this function returns, loading from @index will return %NULL. 631 * If the index is part of a multi-index entry, all indices will be erased 632 * and none of the entries will be part of a multi-index entry. 633 * 634 * Context: Any context. Takes and releases the xa_lock while 635 * disabling softirqs. 636 * Return: The entry which used to be at this index. 637 */ 638 static inline void *xa_erase_bh(struct xarray *xa, unsigned long index) 639 { 640 void *entry; 641 642 xa_lock_bh(xa); 643 entry = __xa_erase(xa, index); 644 xa_unlock_bh(xa); 645 646 return entry; 647 } 648 649 /** 650 * xa_erase_irq() - Erase this entry from the XArray. 651 * @xa: XArray. 652 * @index: Index of entry. 653 * 654 * After this function returns, loading from @index will return %NULL. 655 * If the index is part of a multi-index entry, all indices will be erased 656 * and none of the entries will be part of a multi-index entry. 657 * 658 * Context: Process context. Takes and releases the xa_lock while 659 * disabling interrupts. 660 * Return: The entry which used to be at this index. 661 */ 662 static inline void *xa_erase_irq(struct xarray *xa, unsigned long index) 663 { 664 void *entry; 665 666 xa_lock_irq(xa); 667 entry = __xa_erase(xa, index); 668 xa_unlock_irq(xa); 669 670 return entry; 671 } 672 673 /** 674 * xa_cmpxchg() - Conditionally replace an entry in the XArray. 675 * @xa: XArray. 676 * @index: Index into array. 677 * @old: Old value to test against. 678 * @entry: New value to place in array. 679 * @gfp: Memory allocation flags. 680 * 681 * If the entry at @index is the same as @old, replace it with @entry. 682 * If the return value is equal to @old, then the exchange was successful. 683 * 684 * Context: Any context. Takes and releases the xa_lock. May sleep 685 * if the @gfp flags permit. 686 * Return: The old value at this index or xa_err() if an error happened. 687 */ 688 static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index, 689 void *old, void *entry, gfp_t gfp) 690 { 691 void *curr; 692 693 might_alloc(gfp); 694 xa_lock(xa); 695 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 696 xa_unlock(xa); 697 698 return curr; 699 } 700 701 /** 702 * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray. 703 * @xa: XArray. 704 * @index: Index into array. 705 * @old: Old value to test against. 706 * @entry: New value to place in array. 707 * @gfp: Memory allocation flags. 708 * 709 * This function is like calling xa_cmpxchg() except it disables softirqs 710 * while holding the array lock. 711 * 712 * Context: Any context. Takes and releases the xa_lock while 713 * disabling softirqs. May sleep if the @gfp flags permit. 714 * Return: The old value at this index or xa_err() if an error happened. 715 */ 716 static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index, 717 void *old, void *entry, gfp_t gfp) 718 { 719 void *curr; 720 721 might_alloc(gfp); 722 xa_lock_bh(xa); 723 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 724 xa_unlock_bh(xa); 725 726 return curr; 727 } 728 729 /** 730 * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray. 731 * @xa: XArray. 732 * @index: Index into array. 733 * @old: Old value to test against. 734 * @entry: New value to place in array. 735 * @gfp: Memory allocation flags. 736 * 737 * This function is like calling xa_cmpxchg() except it disables interrupts 738 * while holding the array lock. 739 * 740 * Context: Process context. Takes and releases the xa_lock while 741 * disabling interrupts. May sleep if the @gfp flags permit. 742 * Return: The old value at this index or xa_err() if an error happened. 743 */ 744 static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index, 745 void *old, void *entry, gfp_t gfp) 746 { 747 void *curr; 748 749 might_alloc(gfp); 750 xa_lock_irq(xa); 751 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 752 xa_unlock_irq(xa); 753 754 return curr; 755 } 756 757 /** 758 * xa_insert() - Store this entry in the XArray unless another entry is 759 * already present. 760 * @xa: XArray. 761 * @index: Index into array. 762 * @entry: New entry. 763 * @gfp: Memory allocation flags. 764 * 765 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 766 * if no entry is present. Inserting will fail if a reserved entry is 767 * present, even though loading from this index will return NULL. 768 * 769 * Context: Any context. Takes and releases the xa_lock. May sleep if 770 * the @gfp flags permit. 771 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 772 * -ENOMEM if memory could not be allocated. 773 */ 774 static inline int __must_check xa_insert(struct xarray *xa, 775 unsigned long index, void *entry, gfp_t gfp) 776 { 777 int err; 778 779 might_alloc(gfp); 780 xa_lock(xa); 781 err = __xa_insert(xa, index, entry, gfp); 782 xa_unlock(xa); 783 784 return err; 785 } 786 787 /** 788 * xa_insert_bh() - Store this entry in the XArray unless another entry is 789 * already present. 790 * @xa: XArray. 791 * @index: Index into array. 792 * @entry: New entry. 793 * @gfp: Memory allocation flags. 794 * 795 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 796 * if no entry is present. Inserting will fail if a reserved entry is 797 * present, even though loading from this index will return NULL. 798 * 799 * Context: Any context. Takes and releases the xa_lock while 800 * disabling softirqs. May sleep if the @gfp flags permit. 801 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 802 * -ENOMEM if memory could not be allocated. 803 */ 804 static inline int __must_check xa_insert_bh(struct xarray *xa, 805 unsigned long index, void *entry, gfp_t gfp) 806 { 807 int err; 808 809 might_alloc(gfp); 810 xa_lock_bh(xa); 811 err = __xa_insert(xa, index, entry, gfp); 812 xa_unlock_bh(xa); 813 814 return err; 815 } 816 817 /** 818 * xa_insert_irq() - Store this entry in the XArray unless another entry is 819 * already present. 820 * @xa: XArray. 821 * @index: Index into array. 822 * @entry: New entry. 823 * @gfp: Memory allocation flags. 824 * 825 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 826 * if no entry is present. Inserting will fail if a reserved entry is 827 * present, even though loading from this index will return NULL. 828 * 829 * Context: Process context. Takes and releases the xa_lock while 830 * disabling interrupts. May sleep if the @gfp flags permit. 831 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 832 * -ENOMEM if memory could not be allocated. 833 */ 834 static inline int __must_check xa_insert_irq(struct xarray *xa, 835 unsigned long index, void *entry, gfp_t gfp) 836 { 837 int err; 838 839 might_alloc(gfp); 840 xa_lock_irq(xa); 841 err = __xa_insert(xa, index, entry, gfp); 842 xa_unlock_irq(xa); 843 844 return err; 845 } 846 847 /** 848 * xa_alloc() - Find somewhere to store this entry in the XArray. 849 * @xa: XArray. 850 * @id: Pointer to ID. 851 * @entry: New entry. 852 * @limit: Range of ID to allocate. 853 * @gfp: Memory allocation flags. 854 * 855 * Finds an empty entry in @xa between @limit.min and @limit.max, 856 * stores the index into the @id pointer, then stores the entry at 857 * that index. A concurrent lookup will not see an uninitialised @id. 858 * 859 * Context: Any context. Takes and releases the xa_lock. May sleep if 860 * the @gfp flags permit. 861 * Return: 0 on success, -ENOMEM if memory could not be allocated or 862 * -EBUSY if there are no free entries in @limit. 863 */ 864 static inline __must_check int xa_alloc(struct xarray *xa, u32 *id, 865 void *entry, struct xa_limit limit, gfp_t gfp) 866 { 867 int err; 868 869 might_alloc(gfp); 870 xa_lock(xa); 871 err = __xa_alloc(xa, id, entry, limit, gfp); 872 xa_unlock(xa); 873 874 return err; 875 } 876 877 /** 878 * xa_alloc_bh() - Find somewhere to store this entry in the XArray. 879 * @xa: XArray. 880 * @id: Pointer to ID. 881 * @entry: New entry. 882 * @limit: Range of ID to allocate. 883 * @gfp: Memory allocation flags. 884 * 885 * Finds an empty entry in @xa between @limit.min and @limit.max, 886 * stores the index into the @id pointer, then stores the entry at 887 * that index. A concurrent lookup will not see an uninitialised @id. 888 * 889 * Context: Any context. Takes and releases the xa_lock while 890 * disabling softirqs. May sleep if the @gfp flags permit. 891 * Return: 0 on success, -ENOMEM if memory could not be allocated or 892 * -EBUSY if there are no free entries in @limit. 893 */ 894 static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id, 895 void *entry, struct xa_limit limit, gfp_t gfp) 896 { 897 int err; 898 899 might_alloc(gfp); 900 xa_lock_bh(xa); 901 err = __xa_alloc(xa, id, entry, limit, gfp); 902 xa_unlock_bh(xa); 903 904 return err; 905 } 906 907 /** 908 * xa_alloc_irq() - Find somewhere to store this entry in the XArray. 909 * @xa: XArray. 910 * @id: Pointer to ID. 911 * @entry: New entry. 912 * @limit: Range of ID to allocate. 913 * @gfp: Memory allocation flags. 914 * 915 * Finds an empty entry in @xa between @limit.min and @limit.max, 916 * stores the index into the @id pointer, then stores the entry at 917 * that index. A concurrent lookup will not see an uninitialised @id. 918 * 919 * Context: Process context. Takes and releases the xa_lock while 920 * disabling interrupts. May sleep if the @gfp flags permit. 921 * Return: 0 on success, -ENOMEM if memory could not be allocated or 922 * -EBUSY if there are no free entries in @limit. 923 */ 924 static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id, 925 void *entry, struct xa_limit limit, gfp_t gfp) 926 { 927 int err; 928 929 might_alloc(gfp); 930 xa_lock_irq(xa); 931 err = __xa_alloc(xa, id, entry, limit, gfp); 932 xa_unlock_irq(xa); 933 934 return err; 935 } 936 937 /** 938 * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 939 * @xa: XArray. 940 * @id: Pointer to ID. 941 * @entry: New entry. 942 * @limit: Range of allocated ID. 943 * @next: Pointer to next ID to allocate. 944 * @gfp: Memory allocation flags. 945 * 946 * Finds an empty entry in @xa between @limit.min and @limit.max, 947 * stores the index into the @id pointer, then stores the entry at 948 * that index. A concurrent lookup will not see an uninitialised @id. 949 * The search for an empty entry will start at @next and will wrap 950 * around if necessary. 951 * 952 * Context: Any context. Takes and releases the xa_lock. May sleep if 953 * the @gfp flags permit. 954 * Return: 0 if the allocation succeeded without wrapping. 1 if the 955 * allocation succeeded after wrapping, -ENOMEM if memory could not be 956 * allocated or -EBUSY if there are no free entries in @limit. 957 */ 958 static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 959 struct xa_limit limit, u32 *next, gfp_t gfp) 960 { 961 int err; 962 963 might_alloc(gfp); 964 xa_lock(xa); 965 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 966 xa_unlock(xa); 967 968 return err; 969 } 970 971 /** 972 * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray. 973 * @xa: XArray. 974 * @id: Pointer to ID. 975 * @entry: New entry. 976 * @limit: Range of allocated ID. 977 * @next: Pointer to next ID to allocate. 978 * @gfp: Memory allocation flags. 979 * 980 * Finds an empty entry in @xa between @limit.min and @limit.max, 981 * stores the index into the @id pointer, then stores the entry at 982 * that index. A concurrent lookup will not see an uninitialised @id. 983 * The search for an empty entry will start at @next and will wrap 984 * around if necessary. 985 * 986 * Context: Any context. Takes and releases the xa_lock while 987 * disabling softirqs. May sleep if the @gfp flags permit. 988 * Return: 0 if the allocation succeeded without wrapping. 1 if the 989 * allocation succeeded after wrapping, -ENOMEM if memory could not be 990 * allocated or -EBUSY if there are no free entries in @limit. 991 */ 992 static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry, 993 struct xa_limit limit, u32 *next, gfp_t gfp) 994 { 995 int err; 996 997 might_alloc(gfp); 998 xa_lock_bh(xa); 999 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 1000 xa_unlock_bh(xa); 1001 1002 return err; 1003 } 1004 1005 /** 1006 * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray. 1007 * @xa: XArray. 1008 * @id: Pointer to ID. 1009 * @entry: New entry. 1010 * @limit: Range of allocated ID. 1011 * @next: Pointer to next ID to allocate. 1012 * @gfp: Memory allocation flags. 1013 * 1014 * Finds an empty entry in @xa between @limit.min and @limit.max, 1015 * stores the index into the @id pointer, then stores the entry at 1016 * that index. A concurrent lookup will not see an uninitialised @id. 1017 * The search for an empty entry will start at @next and will wrap 1018 * around if necessary. 1019 * 1020 * Context: Process context. Takes and releases the xa_lock while 1021 * disabling interrupts. May sleep if the @gfp flags permit. 1022 * Return: 0 if the allocation succeeded without wrapping. 1 if the 1023 * allocation succeeded after wrapping, -ENOMEM if memory could not be 1024 * allocated or -EBUSY if there are no free entries in @limit. 1025 */ 1026 static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry, 1027 struct xa_limit limit, u32 *next, gfp_t gfp) 1028 { 1029 int err; 1030 1031 might_alloc(gfp); 1032 xa_lock_irq(xa); 1033 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 1034 xa_unlock_irq(xa); 1035 1036 return err; 1037 } 1038 1039 /** 1040 * xa_reserve() - Reserve this index in the XArray. 1041 * @xa: XArray. 1042 * @index: Index into array. 1043 * @gfp: Memory allocation flags. 1044 * 1045 * Ensures there is somewhere to store an entry at @index in the array. 1046 * If there is already something stored at @index, this function does 1047 * nothing. If there was nothing there, the entry is marked as reserved. 1048 * Loading from a reserved entry returns a %NULL pointer. 1049 * 1050 * If you do not use the entry that you have reserved, call xa_release() 1051 * or xa_erase() to free any unnecessary memory. 1052 * 1053 * Context: Any context. Takes and releases the xa_lock. 1054 * May sleep if the @gfp flags permit. 1055 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1056 */ 1057 static inline __must_check 1058 int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp) 1059 { 1060 return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1061 } 1062 1063 /** 1064 * xa_reserve_bh() - Reserve this index in the XArray. 1065 * @xa: XArray. 1066 * @index: Index into array. 1067 * @gfp: Memory allocation flags. 1068 * 1069 * A softirq-disabling version of xa_reserve(). 1070 * 1071 * Context: Any context. Takes and releases the xa_lock while 1072 * disabling softirqs. 1073 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1074 */ 1075 static inline __must_check 1076 int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp) 1077 { 1078 return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1079 } 1080 1081 /** 1082 * xa_reserve_irq() - Reserve this index in the XArray. 1083 * @xa: XArray. 1084 * @index: Index into array. 1085 * @gfp: Memory allocation flags. 1086 * 1087 * An interrupt-disabling version of xa_reserve(). 1088 * 1089 * Context: Process context. Takes and releases the xa_lock while 1090 * disabling interrupts. 1091 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1092 */ 1093 static inline __must_check 1094 int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp) 1095 { 1096 return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1097 } 1098 1099 /** 1100 * xa_release() - Release a reserved entry. 1101 * @xa: XArray. 1102 * @index: Index of entry. 1103 * 1104 * After calling xa_reserve(), you can call this function to release the 1105 * reservation. If the entry at @index has been stored to, this function 1106 * will do nothing. 1107 */ 1108 static inline void xa_release(struct xarray *xa, unsigned long index) 1109 { 1110 xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0); 1111 } 1112 1113 /* Everything below here is the Advanced API. Proceed with caution. */ 1114 1115 /* 1116 * The xarray is constructed out of a set of 'chunks' of pointers. Choosing 1117 * the best chunk size requires some tradeoffs. A power of two recommends 1118 * itself so that we can walk the tree based purely on shifts and masks. 1119 * Generally, the larger the better; as the number of slots per level of the 1120 * tree increases, the less tall the tree needs to be. But that needs to be 1121 * balanced against the memory consumption of each node. On a 64-bit system, 1122 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we 1123 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page. 1124 */ 1125 #ifndef XA_CHUNK_SHIFT 1126 #define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) 1127 #endif 1128 #define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT) 1129 #define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1) 1130 #define XA_MAX_MARKS 3 1131 #define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG) 1132 1133 /* 1134 * @count is the count of every non-NULL element in the ->slots array 1135 * whether that is a value entry, a retry entry, a user pointer, 1136 * a sibling entry or a pointer to the next level of the tree. 1137 * @nr_values is the count of every element in ->slots which is 1138 * either a value entry or a sibling of a value entry. 1139 */ 1140 struct xa_node { 1141 unsigned char shift; /* Bits remaining in each slot */ 1142 unsigned char offset; /* Slot offset in parent */ 1143 unsigned char count; /* Total entry count */ 1144 unsigned char nr_values; /* Value entry count */ 1145 struct xa_node __rcu *parent; /* NULL at top of tree */ 1146 struct xarray *array; /* The array we belong to */ 1147 union { 1148 struct list_head private_list; /* For tree user */ 1149 struct rcu_head rcu_head; /* Used when freeing node */ 1150 }; 1151 void __rcu *slots[XA_CHUNK_SIZE]; 1152 union { 1153 unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS]; 1154 unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS]; 1155 }; 1156 }; 1157 1158 void xa_dump(const struct xarray *); 1159 void xa_dump_node(const struct xa_node *); 1160 1161 #ifdef XA_DEBUG 1162 #define XA_BUG_ON(xa, x) do { \ 1163 if (x) { \ 1164 xa_dump(xa); \ 1165 BUG(); \ 1166 } \ 1167 } while (0) 1168 #define XA_NODE_BUG_ON(node, x) do { \ 1169 if (x) { \ 1170 if (node) xa_dump_node(node); \ 1171 BUG(); \ 1172 } \ 1173 } while (0) 1174 #else 1175 #define XA_BUG_ON(xa, x) do { } while (0) 1176 #define XA_NODE_BUG_ON(node, x) do { } while (0) 1177 #endif 1178 1179 /* Private */ 1180 static inline void *xa_head(const struct xarray *xa) 1181 { 1182 return rcu_dereference_check(xa->xa_head, 1183 lockdep_is_held(&xa->xa_lock)); 1184 } 1185 1186 /* Private */ 1187 static inline void *xa_head_locked(const struct xarray *xa) 1188 { 1189 return rcu_dereference_protected(xa->xa_head, 1190 lockdep_is_held(&xa->xa_lock)); 1191 } 1192 1193 /* Private */ 1194 static inline void *xa_entry(const struct xarray *xa, 1195 const struct xa_node *node, unsigned int offset) 1196 { 1197 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 1198 return rcu_dereference_check(node->slots[offset], 1199 lockdep_is_held(&xa->xa_lock)); 1200 } 1201 1202 /* Private */ 1203 static inline void *xa_entry_locked(const struct xarray *xa, 1204 const struct xa_node *node, unsigned int offset) 1205 { 1206 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 1207 return rcu_dereference_protected(node->slots[offset], 1208 lockdep_is_held(&xa->xa_lock)); 1209 } 1210 1211 /* Private */ 1212 static inline struct xa_node *xa_parent(const struct xarray *xa, 1213 const struct xa_node *node) 1214 { 1215 return rcu_dereference_check(node->parent, 1216 lockdep_is_held(&xa->xa_lock)); 1217 } 1218 1219 /* Private */ 1220 static inline struct xa_node *xa_parent_locked(const struct xarray *xa, 1221 const struct xa_node *node) 1222 { 1223 return rcu_dereference_protected(node->parent, 1224 lockdep_is_held(&xa->xa_lock)); 1225 } 1226 1227 /* Private */ 1228 static inline void *xa_mk_node(const struct xa_node *node) 1229 { 1230 return (void *)((unsigned long)node | 2); 1231 } 1232 1233 /* Private */ 1234 static inline struct xa_node *xa_to_node(const void *entry) 1235 { 1236 return (struct xa_node *)((unsigned long)entry - 2); 1237 } 1238 1239 /* Private */ 1240 static inline bool xa_is_node(const void *entry) 1241 { 1242 return xa_is_internal(entry) && (unsigned long)entry > 4096; 1243 } 1244 1245 /* Private */ 1246 static inline void *xa_mk_sibling(unsigned int offset) 1247 { 1248 return xa_mk_internal(offset); 1249 } 1250 1251 /* Private */ 1252 static inline unsigned long xa_to_sibling(const void *entry) 1253 { 1254 return xa_to_internal(entry); 1255 } 1256 1257 /** 1258 * xa_is_sibling() - Is the entry a sibling entry? 1259 * @entry: Entry retrieved from the XArray 1260 * 1261 * Return: %true if the entry is a sibling entry. 1262 */ 1263 static inline bool xa_is_sibling(const void *entry) 1264 { 1265 return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) && 1266 (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1)); 1267 } 1268 1269 #define XA_RETRY_ENTRY xa_mk_internal(256) 1270 1271 /** 1272 * xa_is_retry() - Is the entry a retry entry? 1273 * @entry: Entry retrieved from the XArray 1274 * 1275 * Return: %true if the entry is a retry entry. 1276 */ 1277 static inline bool xa_is_retry(const void *entry) 1278 { 1279 return unlikely(entry == XA_RETRY_ENTRY); 1280 } 1281 1282 /** 1283 * xa_is_advanced() - Is the entry only permitted for the advanced API? 1284 * @entry: Entry to be stored in the XArray. 1285 * 1286 * Return: %true if the entry cannot be stored by the normal API. 1287 */ 1288 static inline bool xa_is_advanced(const void *entry) 1289 { 1290 return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY); 1291 } 1292 1293 /** 1294 * typedef xa_update_node_t - A callback function from the XArray. 1295 * @node: The node which is being processed 1296 * 1297 * This function is called every time the XArray updates the count of 1298 * present and value entries in a node. It allows advanced users to 1299 * maintain the private_list in the node. 1300 * 1301 * Context: The xa_lock is held and interrupts may be disabled. 1302 * Implementations should not drop the xa_lock, nor re-enable 1303 * interrupts. 1304 */ 1305 typedef void (*xa_update_node_t)(struct xa_node *node); 1306 1307 void xa_delete_node(struct xa_node *, xa_update_node_t); 1308 1309 /* 1310 * The xa_state is opaque to its users. It contains various different pieces 1311 * of state involved in the current operation on the XArray. It should be 1312 * declared on the stack and passed between the various internal routines. 1313 * The various elements in it should not be accessed directly, but only 1314 * through the provided accessor functions. The below documentation is for 1315 * the benefit of those working on the code, not for users of the XArray. 1316 * 1317 * @xa_node usually points to the xa_node containing the slot we're operating 1318 * on (and @xa_offset is the offset in the slots array). If there is a 1319 * single entry in the array at index 0, there are no allocated xa_nodes to 1320 * point to, and so we store %NULL in @xa_node. @xa_node is set to 1321 * the value %XAS_RESTART if the xa_state is not walked to the correct 1322 * position in the tree of nodes for this operation. If an error occurs 1323 * during an operation, it is set to an %XAS_ERROR value. If we run off the 1324 * end of the allocated nodes, it is set to %XAS_BOUNDS. 1325 */ 1326 struct xa_state { 1327 struct xarray *xa; 1328 unsigned long xa_index; 1329 unsigned char xa_shift; 1330 unsigned char xa_sibs; 1331 unsigned char xa_offset; 1332 unsigned char xa_pad; /* Helps gcc generate better code */ 1333 struct xa_node *xa_node; 1334 struct xa_node *xa_alloc; 1335 xa_update_node_t xa_update; 1336 struct list_lru *xa_lru; 1337 }; 1338 1339 /* 1340 * We encode errnos in the xas->xa_node. If an error has happened, we need to 1341 * drop the lock to fix it, and once we've done so the xa_state is invalid. 1342 */ 1343 #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL)) 1344 #define XAS_BOUNDS ((struct xa_node *)1UL) 1345 #define XAS_RESTART ((struct xa_node *)3UL) 1346 1347 #define __XA_STATE(array, index, shift, sibs) { \ 1348 .xa = array, \ 1349 .xa_index = index, \ 1350 .xa_shift = shift, \ 1351 .xa_sibs = sibs, \ 1352 .xa_offset = 0, \ 1353 .xa_pad = 0, \ 1354 .xa_node = XAS_RESTART, \ 1355 .xa_alloc = NULL, \ 1356 .xa_update = NULL, \ 1357 .xa_lru = NULL, \ 1358 } 1359 1360 /** 1361 * XA_STATE() - Declare an XArray operation state. 1362 * @name: Name of this operation state (usually xas). 1363 * @array: Array to operate on. 1364 * @index: Initial index of interest. 1365 * 1366 * Declare and initialise an xa_state on the stack. 1367 */ 1368 #define XA_STATE(name, array, index) \ 1369 struct xa_state name = __XA_STATE(array, index, 0, 0) 1370 1371 /** 1372 * XA_STATE_ORDER() - Declare an XArray operation state. 1373 * @name: Name of this operation state (usually xas). 1374 * @array: Array to operate on. 1375 * @index: Initial index of interest. 1376 * @order: Order of entry. 1377 * 1378 * Declare and initialise an xa_state on the stack. This variant of 1379 * XA_STATE() allows you to specify the 'order' of the element you 1380 * want to operate on.` 1381 */ 1382 #define XA_STATE_ORDER(name, array, index, order) \ 1383 struct xa_state name = __XA_STATE(array, \ 1384 (index >> order) << order, \ 1385 order - (order % XA_CHUNK_SHIFT), \ 1386 (1U << (order % XA_CHUNK_SHIFT)) - 1) 1387 1388 #define xas_marked(xas, mark) xa_marked((xas)->xa, (mark)) 1389 #define xas_trylock(xas) xa_trylock((xas)->xa) 1390 #define xas_lock(xas) xa_lock((xas)->xa) 1391 #define xas_unlock(xas) xa_unlock((xas)->xa) 1392 #define xas_lock_bh(xas) xa_lock_bh((xas)->xa) 1393 #define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa) 1394 #define xas_lock_irq(xas) xa_lock_irq((xas)->xa) 1395 #define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa) 1396 #define xas_lock_irqsave(xas, flags) \ 1397 xa_lock_irqsave((xas)->xa, flags) 1398 #define xas_unlock_irqrestore(xas, flags) \ 1399 xa_unlock_irqrestore((xas)->xa, flags) 1400 1401 /** 1402 * xas_error() - Return an errno stored in the xa_state. 1403 * @xas: XArray operation state. 1404 * 1405 * Return: 0 if no error has been noted. A negative errno if one has. 1406 */ 1407 static inline int xas_error(const struct xa_state *xas) 1408 { 1409 return xa_err(xas->xa_node); 1410 } 1411 1412 /** 1413 * xas_set_err() - Note an error in the xa_state. 1414 * @xas: XArray operation state. 1415 * @err: Negative error number. 1416 * 1417 * Only call this function with a negative @err; zero or positive errors 1418 * will probably not behave the way you think they should. If you want 1419 * to clear the error from an xa_state, use xas_reset(). 1420 */ 1421 static inline void xas_set_err(struct xa_state *xas, long err) 1422 { 1423 xas->xa_node = XA_ERROR(err); 1424 } 1425 1426 /** 1427 * xas_invalid() - Is the xas in a retry or error state? 1428 * @xas: XArray operation state. 1429 * 1430 * Return: %true if the xas cannot be used for operations. 1431 */ 1432 static inline bool xas_invalid(const struct xa_state *xas) 1433 { 1434 return (unsigned long)xas->xa_node & 3; 1435 } 1436 1437 /** 1438 * xas_valid() - Is the xas a valid cursor into the array? 1439 * @xas: XArray operation state. 1440 * 1441 * Return: %true if the xas can be used for operations. 1442 */ 1443 static inline bool xas_valid(const struct xa_state *xas) 1444 { 1445 return !xas_invalid(xas); 1446 } 1447 1448 /** 1449 * xas_is_node() - Does the xas point to a node? 1450 * @xas: XArray operation state. 1451 * 1452 * Return: %true if the xas currently references a node. 1453 */ 1454 static inline bool xas_is_node(const struct xa_state *xas) 1455 { 1456 return xas_valid(xas) && xas->xa_node; 1457 } 1458 1459 /* True if the pointer is something other than a node */ 1460 static inline bool xas_not_node(struct xa_node *node) 1461 { 1462 return ((unsigned long)node & 3) || !node; 1463 } 1464 1465 /* True if the node represents RESTART or an error */ 1466 static inline bool xas_frozen(struct xa_node *node) 1467 { 1468 return (unsigned long)node & 2; 1469 } 1470 1471 /* True if the node represents head-of-tree, RESTART or BOUNDS */ 1472 static inline bool xas_top(struct xa_node *node) 1473 { 1474 return node <= XAS_RESTART; 1475 } 1476 1477 /** 1478 * xas_reset() - Reset an XArray operation state. 1479 * @xas: XArray operation state. 1480 * 1481 * Resets the error or walk state of the @xas so future walks of the 1482 * array will start from the root. Use this if you have dropped the 1483 * xarray lock and want to reuse the xa_state. 1484 * 1485 * Context: Any context. 1486 */ 1487 static inline void xas_reset(struct xa_state *xas) 1488 { 1489 xas->xa_node = XAS_RESTART; 1490 } 1491 1492 /** 1493 * xas_retry() - Retry the operation if appropriate. 1494 * @xas: XArray operation state. 1495 * @entry: Entry from xarray. 1496 * 1497 * The advanced functions may sometimes return an internal entry, such as 1498 * a retry entry or a zero entry. This function sets up the @xas to restart 1499 * the walk from the head of the array if needed. 1500 * 1501 * Context: Any context. 1502 * Return: true if the operation needs to be retried. 1503 */ 1504 static inline bool xas_retry(struct xa_state *xas, const void *entry) 1505 { 1506 if (xa_is_zero(entry)) 1507 return true; 1508 if (!xa_is_retry(entry)) 1509 return false; 1510 xas_reset(xas); 1511 return true; 1512 } 1513 1514 void *xas_load(struct xa_state *); 1515 void *xas_store(struct xa_state *, void *entry); 1516 void *xas_find(struct xa_state *, unsigned long max); 1517 void *xas_find_conflict(struct xa_state *); 1518 1519 bool xas_get_mark(const struct xa_state *, xa_mark_t); 1520 void xas_set_mark(const struct xa_state *, xa_mark_t); 1521 void xas_clear_mark(const struct xa_state *, xa_mark_t); 1522 void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t); 1523 void xas_init_marks(const struct xa_state *); 1524 1525 bool xas_nomem(struct xa_state *, gfp_t); 1526 void xas_destroy(struct xa_state *); 1527 void xas_pause(struct xa_state *); 1528 1529 void xas_create_range(struct xa_state *); 1530 1531 #ifdef CONFIG_XARRAY_MULTI 1532 int xa_get_order(struct xarray *, unsigned long index); 1533 void xas_split(struct xa_state *, void *entry, unsigned int order); 1534 void xas_split_alloc(struct xa_state *, void *entry, unsigned int order, gfp_t); 1535 #else 1536 static inline int xa_get_order(struct xarray *xa, unsigned long index) 1537 { 1538 return 0; 1539 } 1540 1541 static inline void xas_split(struct xa_state *xas, void *entry, 1542 unsigned int order) 1543 { 1544 xas_store(xas, entry); 1545 } 1546 1547 static inline void xas_split_alloc(struct xa_state *xas, void *entry, 1548 unsigned int order, gfp_t gfp) 1549 { 1550 } 1551 #endif 1552 1553 /** 1554 * xas_reload() - Refetch an entry from the xarray. 1555 * @xas: XArray operation state. 1556 * 1557 * Use this function to check that a previously loaded entry still has 1558 * the same value. This is useful for the lockless pagecache lookup where 1559 * we walk the array with only the RCU lock to protect us, lock the page, 1560 * then check that the page hasn't moved since we looked it up. 1561 * 1562 * The caller guarantees that @xas is still valid. If it may be in an 1563 * error or restart state, call xas_load() instead. 1564 * 1565 * Return: The entry at this location in the xarray. 1566 */ 1567 static inline void *xas_reload(struct xa_state *xas) 1568 { 1569 struct xa_node *node = xas->xa_node; 1570 void *entry; 1571 char offset; 1572 1573 if (!node) 1574 return xa_head(xas->xa); 1575 if (IS_ENABLED(CONFIG_XARRAY_MULTI)) { 1576 offset = (xas->xa_index >> node->shift) & XA_CHUNK_MASK; 1577 entry = xa_entry(xas->xa, node, offset); 1578 if (!xa_is_sibling(entry)) 1579 return entry; 1580 offset = xa_to_sibling(entry); 1581 } else { 1582 offset = xas->xa_offset; 1583 } 1584 return xa_entry(xas->xa, node, offset); 1585 } 1586 1587 /** 1588 * xas_set() - Set up XArray operation state for a different index. 1589 * @xas: XArray operation state. 1590 * @index: New index into the XArray. 1591 * 1592 * Move the operation state to refer to a different index. This will 1593 * have the effect of starting a walk from the top; see xas_next() 1594 * to move to an adjacent index. 1595 */ 1596 static inline void xas_set(struct xa_state *xas, unsigned long index) 1597 { 1598 xas->xa_index = index; 1599 xas->xa_node = XAS_RESTART; 1600 } 1601 1602 /** 1603 * xas_advance() - Skip over sibling entries. 1604 * @xas: XArray operation state. 1605 * @index: Index of last sibling entry. 1606 * 1607 * Move the operation state to refer to the last sibling entry. 1608 * This is useful for loops that normally want to see sibling 1609 * entries but sometimes want to skip them. Use xas_set() if you 1610 * want to move to an index which is not part of this entry. 1611 */ 1612 static inline void xas_advance(struct xa_state *xas, unsigned long index) 1613 { 1614 unsigned char shift = xas_is_node(xas) ? xas->xa_node->shift : 0; 1615 1616 xas->xa_index = index; 1617 xas->xa_offset = (index >> shift) & XA_CHUNK_MASK; 1618 } 1619 1620 /** 1621 * xas_set_order() - Set up XArray operation state for a multislot entry. 1622 * @xas: XArray operation state. 1623 * @index: Target of the operation. 1624 * @order: Entry occupies 2^@order indices. 1625 */ 1626 static inline void xas_set_order(struct xa_state *xas, unsigned long index, 1627 unsigned int order) 1628 { 1629 #ifdef CONFIG_XARRAY_MULTI 1630 xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0; 1631 xas->xa_shift = order - (order % XA_CHUNK_SHIFT); 1632 xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1633 xas->xa_node = XAS_RESTART; 1634 #else 1635 BUG_ON(order > 0); 1636 xas_set(xas, index); 1637 #endif 1638 } 1639 1640 /** 1641 * xas_set_update() - Set up XArray operation state for a callback. 1642 * @xas: XArray operation state. 1643 * @update: Function to call when updating a node. 1644 * 1645 * The XArray can notify a caller after it has updated an xa_node. 1646 * This is advanced functionality and is only needed by the page 1647 * cache and swap cache. 1648 */ 1649 static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update) 1650 { 1651 xas->xa_update = update; 1652 } 1653 1654 static inline void xas_set_lru(struct xa_state *xas, struct list_lru *lru) 1655 { 1656 xas->xa_lru = lru; 1657 } 1658 1659 /** 1660 * xas_next_entry() - Advance iterator to next present entry. 1661 * @xas: XArray operation state. 1662 * @max: Highest index to return. 1663 * 1664 * xas_next_entry() is an inline function to optimise xarray traversal for 1665 * speed. It is equivalent to calling xas_find(), and will call xas_find() 1666 * for all the hard cases. 1667 * 1668 * Return: The next present entry after the one currently referred to by @xas. 1669 */ 1670 static inline void *xas_next_entry(struct xa_state *xas, unsigned long max) 1671 { 1672 struct xa_node *node = xas->xa_node; 1673 void *entry; 1674 1675 if (unlikely(xas_not_node(node) || node->shift || 1676 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK))) 1677 return xas_find(xas, max); 1678 1679 do { 1680 if (unlikely(xas->xa_index >= max)) 1681 return xas_find(xas, max); 1682 if (unlikely(xas->xa_offset == XA_CHUNK_MASK)) 1683 return xas_find(xas, max); 1684 entry = xa_entry(xas->xa, node, xas->xa_offset + 1); 1685 if (unlikely(xa_is_internal(entry))) 1686 return xas_find(xas, max); 1687 xas->xa_offset++; 1688 xas->xa_index++; 1689 } while (!entry); 1690 1691 return entry; 1692 } 1693 1694 /* Private */ 1695 static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance, 1696 xa_mark_t mark) 1697 { 1698 unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark]; 1699 unsigned int offset = xas->xa_offset; 1700 1701 if (advance) 1702 offset++; 1703 if (XA_CHUNK_SIZE == BITS_PER_LONG) { 1704 if (offset < XA_CHUNK_SIZE) { 1705 unsigned long data = *addr & (~0UL << offset); 1706 if (data) 1707 return __ffs(data); 1708 } 1709 return XA_CHUNK_SIZE; 1710 } 1711 1712 return find_next_bit(addr, XA_CHUNK_SIZE, offset); 1713 } 1714 1715 /** 1716 * xas_next_marked() - Advance iterator to next marked entry. 1717 * @xas: XArray operation state. 1718 * @max: Highest index to return. 1719 * @mark: Mark to search for. 1720 * 1721 * xas_next_marked() is an inline function to optimise xarray traversal for 1722 * speed. It is equivalent to calling xas_find_marked(), and will call 1723 * xas_find_marked() for all the hard cases. 1724 * 1725 * Return: The next marked entry after the one currently referred to by @xas. 1726 */ 1727 static inline void *xas_next_marked(struct xa_state *xas, unsigned long max, 1728 xa_mark_t mark) 1729 { 1730 struct xa_node *node = xas->xa_node; 1731 void *entry; 1732 unsigned int offset; 1733 1734 if (unlikely(xas_not_node(node) || node->shift)) 1735 return xas_find_marked(xas, max, mark); 1736 offset = xas_find_chunk(xas, true, mark); 1737 xas->xa_offset = offset; 1738 xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset; 1739 if (xas->xa_index > max) 1740 return NULL; 1741 if (offset == XA_CHUNK_SIZE) 1742 return xas_find_marked(xas, max, mark); 1743 entry = xa_entry(xas->xa, node, offset); 1744 if (!entry) 1745 return xas_find_marked(xas, max, mark); 1746 return entry; 1747 } 1748 1749 /* 1750 * If iterating while holding a lock, drop the lock and reschedule 1751 * every %XA_CHECK_SCHED loops. 1752 */ 1753 enum { 1754 XA_CHECK_SCHED = 4096, 1755 }; 1756 1757 /** 1758 * xas_for_each() - Iterate over a range of an XArray. 1759 * @xas: XArray operation state. 1760 * @entry: Entry retrieved from the array. 1761 * @max: Maximum index to retrieve from array. 1762 * 1763 * The loop body will be executed for each entry present in the xarray 1764 * between the current xas position and @max. @entry will be set to 1765 * the entry retrieved from the xarray. It is safe to delete entries 1766 * from the array in the loop body. You should hold either the RCU lock 1767 * or the xa_lock while iterating. If you need to drop the lock, call 1768 * xas_pause() first. 1769 */ 1770 #define xas_for_each(xas, entry, max) \ 1771 for (entry = xas_find(xas, max); entry; \ 1772 entry = xas_next_entry(xas, max)) 1773 1774 /** 1775 * xas_for_each_marked() - Iterate over a range of an XArray. 1776 * @xas: XArray operation state. 1777 * @entry: Entry retrieved from the array. 1778 * @max: Maximum index to retrieve from array. 1779 * @mark: Mark to search for. 1780 * 1781 * The loop body will be executed for each marked entry in the xarray 1782 * between the current xas position and @max. @entry will be set to 1783 * the entry retrieved from the xarray. It is safe to delete entries 1784 * from the array in the loop body. You should hold either the RCU lock 1785 * or the xa_lock while iterating. If you need to drop the lock, call 1786 * xas_pause() first. 1787 */ 1788 #define xas_for_each_marked(xas, entry, max, mark) \ 1789 for (entry = xas_find_marked(xas, max, mark); entry; \ 1790 entry = xas_next_marked(xas, max, mark)) 1791 1792 /** 1793 * xas_for_each_conflict() - Iterate over a range of an XArray. 1794 * @xas: XArray operation state. 1795 * @entry: Entry retrieved from the array. 1796 * 1797 * The loop body will be executed for each entry in the XArray that 1798 * lies within the range specified by @xas. If the loop terminates 1799 * normally, @entry will be %NULL. The user may break out of the loop, 1800 * which will leave @entry set to the conflicting entry. The caller 1801 * may also call xa_set_err() to exit the loop while setting an error 1802 * to record the reason. 1803 */ 1804 #define xas_for_each_conflict(xas, entry) \ 1805 while ((entry = xas_find_conflict(xas))) 1806 1807 void *__xas_next(struct xa_state *); 1808 void *__xas_prev(struct xa_state *); 1809 1810 /** 1811 * xas_prev() - Move iterator to previous index. 1812 * @xas: XArray operation state. 1813 * 1814 * If the @xas was in an error state, it will remain in an error state 1815 * and this function will return %NULL. If the @xas has never been walked, 1816 * it will have the effect of calling xas_load(). Otherwise one will be 1817 * subtracted from the index and the state will be walked to the correct 1818 * location in the array for the next operation. 1819 * 1820 * If the iterator was referencing index 0, this function wraps 1821 * around to %ULONG_MAX. 1822 * 1823 * Return: The entry at the new index. This may be %NULL or an internal 1824 * entry. 1825 */ 1826 static inline void *xas_prev(struct xa_state *xas) 1827 { 1828 struct xa_node *node = xas->xa_node; 1829 1830 if (unlikely(xas_not_node(node) || node->shift || 1831 xas->xa_offset == 0)) 1832 return __xas_prev(xas); 1833 1834 xas->xa_index--; 1835 xas->xa_offset--; 1836 return xa_entry(xas->xa, node, xas->xa_offset); 1837 } 1838 1839 /** 1840 * xas_next() - Move state to next index. 1841 * @xas: XArray operation state. 1842 * 1843 * If the @xas was in an error state, it will remain in an error state 1844 * and this function will return %NULL. If the @xas has never been walked, 1845 * it will have the effect of calling xas_load(). Otherwise one will be 1846 * added to the index and the state will be walked to the correct 1847 * location in the array for the next operation. 1848 * 1849 * If the iterator was referencing index %ULONG_MAX, this function wraps 1850 * around to 0. 1851 * 1852 * Return: The entry at the new index. This may be %NULL or an internal 1853 * entry. 1854 */ 1855 static inline void *xas_next(struct xa_state *xas) 1856 { 1857 struct xa_node *node = xas->xa_node; 1858 1859 if (unlikely(xas_not_node(node) || node->shift || 1860 xas->xa_offset == XA_CHUNK_MASK)) 1861 return __xas_next(xas); 1862 1863 xas->xa_index++; 1864 xas->xa_offset++; 1865 return xa_entry(xas->xa, node, xas->xa_offset); 1866 } 1867 1868 #endif /* _LINUX_XARRAY_H */ 1869