1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 #ifndef _LINUX_XARRAY_H 3 #define _LINUX_XARRAY_H 4 /* 5 * eXtensible Arrays 6 * Copyright (c) 2017 Microsoft Corporation 7 * Author: Matthew Wilcox <willy@infradead.org> 8 * 9 * See Documentation/core-api/xarray.rst for how to use the XArray. 10 */ 11 12 #include <linux/bug.h> 13 #include <linux/compiler.h> 14 #include <linux/gfp.h> 15 #include <linux/kconfig.h> 16 #include <linux/kernel.h> 17 #include <linux/rcupdate.h> 18 #include <linux/spinlock.h> 19 #include <linux/types.h> 20 21 /* 22 * The bottom two bits of the entry determine how the XArray interprets 23 * the contents: 24 * 25 * 00: Pointer entry 26 * 10: Internal entry 27 * x1: Value entry or tagged pointer 28 * 29 * Attempting to store internal entries in the XArray is a bug. 30 * 31 * Most internal entries are pointers to the next node in the tree. 32 * The following internal entries have a special meaning: 33 * 34 * 0-62: Sibling entries 35 * 256: Retry entry 36 * 257: Zero entry 37 * 38 * Errors are also represented as internal entries, but use the negative 39 * space (-4094 to -2). They're never stored in the slots array; only 40 * returned by the normal API. 41 */ 42 43 #define BITS_PER_XA_VALUE (BITS_PER_LONG - 1) 44 45 /** 46 * xa_mk_value() - Create an XArray entry from an integer. 47 * @v: Value to store in XArray. 48 * 49 * Context: Any context. 50 * Return: An entry suitable for storing in the XArray. 51 */ 52 static inline void *xa_mk_value(unsigned long v) 53 { 54 WARN_ON((long)v < 0); 55 return (void *)((v << 1) | 1); 56 } 57 58 /** 59 * xa_to_value() - Get value stored in an XArray entry. 60 * @entry: XArray entry. 61 * 62 * Context: Any context. 63 * Return: The value stored in the XArray entry. 64 */ 65 static inline unsigned long xa_to_value(const void *entry) 66 { 67 return (unsigned long)entry >> 1; 68 } 69 70 /** 71 * xa_is_value() - Determine if an entry is a value. 72 * @entry: XArray entry. 73 * 74 * Context: Any context. 75 * Return: True if the entry is a value, false if it is a pointer. 76 */ 77 static inline bool xa_is_value(const void *entry) 78 { 79 return (unsigned long)entry & 1; 80 } 81 82 /** 83 * xa_tag_pointer() - Create an XArray entry for a tagged pointer. 84 * @p: Plain pointer. 85 * @tag: Tag value (0, 1 or 3). 86 * 87 * If the user of the XArray prefers, they can tag their pointers instead 88 * of storing value entries. Three tags are available (0, 1 and 3). 89 * These are distinct from the xa_mark_t as they are not replicated up 90 * through the array and cannot be searched for. 91 * 92 * Context: Any context. 93 * Return: An XArray entry. 94 */ 95 static inline void *xa_tag_pointer(void *p, unsigned long tag) 96 { 97 return (void *)((unsigned long)p | tag); 98 } 99 100 /** 101 * xa_untag_pointer() - Turn an XArray entry into a plain pointer. 102 * @entry: XArray entry. 103 * 104 * If you have stored a tagged pointer in the XArray, call this function 105 * to get the untagged version of the pointer. 106 * 107 * Context: Any context. 108 * Return: A pointer. 109 */ 110 static inline void *xa_untag_pointer(void *entry) 111 { 112 return (void *)((unsigned long)entry & ~3UL); 113 } 114 115 /** 116 * xa_pointer_tag() - Get the tag stored in an XArray entry. 117 * @entry: XArray entry. 118 * 119 * If you have stored a tagged pointer in the XArray, call this function 120 * to get the tag of that pointer. 121 * 122 * Context: Any context. 123 * Return: A tag. 124 */ 125 static inline unsigned int xa_pointer_tag(void *entry) 126 { 127 return (unsigned long)entry & 3UL; 128 } 129 130 /* 131 * xa_mk_internal() - Create an internal entry. 132 * @v: Value to turn into an internal entry. 133 * 134 * Internal entries are used for a number of purposes. Entries 0-255 are 135 * used for sibling entries (only 0-62 are used by the current code). 256 136 * is used for the retry entry. 257 is used for the reserved / zero entry. 137 * Negative internal entries are used to represent errnos. Node pointers 138 * are also tagged as internal entries in some situations. 139 * 140 * Context: Any context. 141 * Return: An XArray internal entry corresponding to this value. 142 */ 143 static inline void *xa_mk_internal(unsigned long v) 144 { 145 return (void *)((v << 2) | 2); 146 } 147 148 /* 149 * xa_to_internal() - Extract the value from an internal entry. 150 * @entry: XArray entry. 151 * 152 * Context: Any context. 153 * Return: The value which was stored in the internal entry. 154 */ 155 static inline unsigned long xa_to_internal(const void *entry) 156 { 157 return (unsigned long)entry >> 2; 158 } 159 160 /* 161 * xa_is_internal() - Is the entry an internal entry? 162 * @entry: XArray entry. 163 * 164 * Context: Any context. 165 * Return: %true if the entry is an internal entry. 166 */ 167 static inline bool xa_is_internal(const void *entry) 168 { 169 return ((unsigned long)entry & 3) == 2; 170 } 171 172 #define XA_ZERO_ENTRY xa_mk_internal(257) 173 174 /** 175 * xa_is_zero() - Is the entry a zero entry? 176 * @entry: Entry retrieved from the XArray 177 * 178 * The normal API will return NULL as the contents of a slot containing 179 * a zero entry. You can only see zero entries by using the advanced API. 180 * 181 * Return: %true if the entry is a zero entry. 182 */ 183 static inline bool xa_is_zero(const void *entry) 184 { 185 return unlikely(entry == XA_ZERO_ENTRY); 186 } 187 188 /** 189 * xa_is_err() - Report whether an XArray operation returned an error 190 * @entry: Result from calling an XArray function 191 * 192 * If an XArray operation cannot complete an operation, it will return 193 * a special value indicating an error. This function tells you 194 * whether an error occurred; xa_err() tells you which error occurred. 195 * 196 * Context: Any context. 197 * Return: %true if the entry indicates an error. 198 */ 199 static inline bool xa_is_err(const void *entry) 200 { 201 return unlikely(xa_is_internal(entry) && 202 entry >= xa_mk_internal(-MAX_ERRNO)); 203 } 204 205 /** 206 * xa_err() - Turn an XArray result into an errno. 207 * @entry: Result from calling an XArray function. 208 * 209 * If an XArray operation cannot complete an operation, it will return 210 * a special pointer value which encodes an errno. This function extracts 211 * the errno from the pointer value, or returns 0 if the pointer does not 212 * represent an errno. 213 * 214 * Context: Any context. 215 * Return: A negative errno or 0. 216 */ 217 static inline int xa_err(void *entry) 218 { 219 /* xa_to_internal() would not do sign extension. */ 220 if (xa_is_err(entry)) 221 return (long)entry >> 2; 222 return 0; 223 } 224 225 /** 226 * struct xa_limit - Represents a range of IDs. 227 * @min: The lowest ID to allocate (inclusive). 228 * @max: The maximum ID to allocate (inclusive). 229 * 230 * This structure is used either directly or via the XA_LIMIT() macro 231 * to communicate the range of IDs that are valid for allocation. 232 * Two common ranges are predefined for you: 233 * * xa_limit_32b - [0 - UINT_MAX] 234 * * xa_limit_31b - [0 - INT_MAX] 235 */ 236 struct xa_limit { 237 u32 max; 238 u32 min; 239 }; 240 241 #define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max } 242 243 #define xa_limit_32b XA_LIMIT(0, UINT_MAX) 244 #define xa_limit_31b XA_LIMIT(0, INT_MAX) 245 246 typedef unsigned __bitwise xa_mark_t; 247 #define XA_MARK_0 ((__force xa_mark_t)0U) 248 #define XA_MARK_1 ((__force xa_mark_t)1U) 249 #define XA_MARK_2 ((__force xa_mark_t)2U) 250 #define XA_PRESENT ((__force xa_mark_t)8U) 251 #define XA_MARK_MAX XA_MARK_2 252 #define XA_FREE_MARK XA_MARK_0 253 254 enum xa_lock_type { 255 XA_LOCK_IRQ = 1, 256 XA_LOCK_BH = 2, 257 }; 258 259 /* 260 * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags, 261 * and we remain compatible with that. 262 */ 263 #define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ) 264 #define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH) 265 #define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U) 266 #define XA_FLAGS_ZERO_BUSY ((__force gfp_t)8U) 267 #define XA_FLAGS_ALLOC_WRAPPED ((__force gfp_t)16U) 268 #define XA_FLAGS_ACCOUNT ((__force gfp_t)32U) 269 #define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \ 270 (__force unsigned)(mark))) 271 272 /* ALLOC is for a normal 0-based alloc. ALLOC1 is for an 1-based alloc */ 273 #define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK)) 274 #define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY) 275 276 /** 277 * struct xarray - The anchor of the XArray. 278 * @xa_lock: Lock that protects the contents of the XArray. 279 * 280 * To use the xarray, define it statically or embed it in your data structure. 281 * It is a very small data structure, so it does not usually make sense to 282 * allocate it separately and keep a pointer to it in your data structure. 283 * 284 * You may use the xa_lock to protect your own data structures as well. 285 */ 286 /* 287 * If all of the entries in the array are NULL, @xa_head is a NULL pointer. 288 * If the only non-NULL entry in the array is at index 0, @xa_head is that 289 * entry. If any other entry in the array is non-NULL, @xa_head points 290 * to an @xa_node. 291 */ 292 struct xarray { 293 spinlock_t xa_lock; 294 /* private: The rest of the data structure is not to be used directly. */ 295 gfp_t xa_flags; 296 void __rcu * xa_head; 297 }; 298 299 #define XARRAY_INIT(name, flags) { \ 300 .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \ 301 .xa_flags = flags, \ 302 .xa_head = NULL, \ 303 } 304 305 /** 306 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags. 307 * @name: A string that names your XArray. 308 * @flags: XA_FLAG values. 309 * 310 * This is intended for file scope definitions of XArrays. It declares 311 * and initialises an empty XArray with the chosen name and flags. It is 312 * equivalent to calling xa_init_flags() on the array, but it does the 313 * initialisation at compiletime instead of runtime. 314 */ 315 #define DEFINE_XARRAY_FLAGS(name, flags) \ 316 struct xarray name = XARRAY_INIT(name, flags) 317 318 /** 319 * DEFINE_XARRAY() - Define an XArray. 320 * @name: A string that names your XArray. 321 * 322 * This is intended for file scope definitions of XArrays. It declares 323 * and initialises an empty XArray with the chosen name. It is equivalent 324 * to calling xa_init() on the array, but it does the initialisation at 325 * compiletime instead of runtime. 326 */ 327 #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0) 328 329 /** 330 * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0. 331 * @name: A string that names your XArray. 332 * 333 * This is intended for file scope definitions of allocating XArrays. 334 * See also DEFINE_XARRAY(). 335 */ 336 #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC) 337 338 /** 339 * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1. 340 * @name: A string that names your XArray. 341 * 342 * This is intended for file scope definitions of allocating XArrays. 343 * See also DEFINE_XARRAY(). 344 */ 345 #define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1) 346 347 void *xa_load(struct xarray *, unsigned long index); 348 void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 349 void *xa_erase(struct xarray *, unsigned long index); 350 void *xa_store_range(struct xarray *, unsigned long first, unsigned long last, 351 void *entry, gfp_t); 352 bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t); 353 void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 354 void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 355 void *xa_find(struct xarray *xa, unsigned long *index, 356 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 357 void *xa_find_after(struct xarray *xa, unsigned long *index, 358 unsigned long max, xa_mark_t) __attribute__((nonnull(2))); 359 unsigned int xa_extract(struct xarray *, void **dst, unsigned long start, 360 unsigned long max, unsigned int n, xa_mark_t); 361 void xa_destroy(struct xarray *); 362 363 /** 364 * xa_init_flags() - Initialise an empty XArray with flags. 365 * @xa: XArray. 366 * @flags: XA_FLAG values. 367 * 368 * If you need to initialise an XArray with special flags (eg you need 369 * to take the lock from interrupt context), use this function instead 370 * of xa_init(). 371 * 372 * Context: Any context. 373 */ 374 static inline void xa_init_flags(struct xarray *xa, gfp_t flags) 375 { 376 spin_lock_init(&xa->xa_lock); 377 xa->xa_flags = flags; 378 xa->xa_head = NULL; 379 } 380 381 /** 382 * xa_init() - Initialise an empty XArray. 383 * @xa: XArray. 384 * 385 * An empty XArray is full of NULL entries. 386 * 387 * Context: Any context. 388 */ 389 static inline void xa_init(struct xarray *xa) 390 { 391 xa_init_flags(xa, 0); 392 } 393 394 /** 395 * xa_empty() - Determine if an array has any present entries. 396 * @xa: XArray. 397 * 398 * Context: Any context. 399 * Return: %true if the array contains only NULL pointers. 400 */ 401 static inline bool xa_empty(const struct xarray *xa) 402 { 403 return xa->xa_head == NULL; 404 } 405 406 /** 407 * xa_marked() - Inquire whether any entry in this array has a mark set 408 * @xa: Array 409 * @mark: Mark value 410 * 411 * Context: Any context. 412 * Return: %true if any entry has this mark set. 413 */ 414 static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark) 415 { 416 return xa->xa_flags & XA_FLAGS_MARK(mark); 417 } 418 419 /** 420 * xa_for_each_range() - Iterate over a portion of an XArray. 421 * @xa: XArray. 422 * @index: Index of @entry. 423 * @entry: Entry retrieved from array. 424 * @start: First index to retrieve from array. 425 * @last: Last index to retrieve from array. 426 * 427 * During the iteration, @entry will have the value of the entry stored 428 * in @xa at @index. You may modify @index during the iteration if you 429 * want to skip or reprocess indices. It is safe to modify the array 430 * during the iteration. At the end of the iteration, @entry will be set 431 * to NULL and @index will have a value less than or equal to max. 432 * 433 * xa_for_each_range() is O(n.log(n)) while xas_for_each() is O(n). You have 434 * to handle your own locking with xas_for_each(), and if you have to unlock 435 * after each iteration, it will also end up being O(n.log(n)). 436 * xa_for_each_range() will spin if it hits a retry entry; if you intend to 437 * see retry entries, you should use the xas_for_each() iterator instead. 438 * The xas_for_each() iterator will expand into more inline code than 439 * xa_for_each_range(). 440 * 441 * Context: Any context. Takes and releases the RCU lock. 442 */ 443 #define xa_for_each_range(xa, index, entry, start, last) \ 444 for (index = start, \ 445 entry = xa_find(xa, &index, last, XA_PRESENT); \ 446 entry; \ 447 entry = xa_find_after(xa, &index, last, XA_PRESENT)) 448 449 /** 450 * xa_for_each_start() - Iterate over a portion of an XArray. 451 * @xa: XArray. 452 * @index: Index of @entry. 453 * @entry: Entry retrieved from array. 454 * @start: First index to retrieve from array. 455 * 456 * During the iteration, @entry will have the value of the entry stored 457 * in @xa at @index. You may modify @index during the iteration if you 458 * want to skip or reprocess indices. It is safe to modify the array 459 * during the iteration. At the end of the iteration, @entry will be set 460 * to NULL and @index will have a value less than or equal to max. 461 * 462 * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n). You have 463 * to handle your own locking with xas_for_each(), and if you have to unlock 464 * after each iteration, it will also end up being O(n.log(n)). 465 * xa_for_each_start() will spin if it hits a retry entry; if you intend to 466 * see retry entries, you should use the xas_for_each() iterator instead. 467 * The xas_for_each() iterator will expand into more inline code than 468 * xa_for_each_start(). 469 * 470 * Context: Any context. Takes and releases the RCU lock. 471 */ 472 #define xa_for_each_start(xa, index, entry, start) \ 473 xa_for_each_range(xa, index, entry, start, ULONG_MAX) 474 475 /** 476 * xa_for_each() - Iterate over present entries in an XArray. 477 * @xa: XArray. 478 * @index: Index of @entry. 479 * @entry: Entry retrieved from array. 480 * 481 * During the iteration, @entry will have the value of the entry stored 482 * in @xa at @index. You may modify @index during the iteration if you want 483 * to skip or reprocess indices. It is safe to modify the array during the 484 * iteration. At the end of the iteration, @entry will be set to NULL and 485 * @index will have a value less than or equal to max. 486 * 487 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have 488 * to handle your own locking with xas_for_each(), and if you have to unlock 489 * after each iteration, it will also end up being O(n.log(n)). xa_for_each() 490 * will spin if it hits a retry entry; if you intend to see retry entries, 491 * you should use the xas_for_each() iterator instead. The xas_for_each() 492 * iterator will expand into more inline code than xa_for_each(). 493 * 494 * Context: Any context. Takes and releases the RCU lock. 495 */ 496 #define xa_for_each(xa, index, entry) \ 497 xa_for_each_start(xa, index, entry, 0) 498 499 /** 500 * xa_for_each_marked() - Iterate over marked entries in an XArray. 501 * @xa: XArray. 502 * @index: Index of @entry. 503 * @entry: Entry retrieved from array. 504 * @filter: Selection criterion. 505 * 506 * During the iteration, @entry will have the value of the entry stored 507 * in @xa at @index. The iteration will skip all entries in the array 508 * which do not match @filter. You may modify @index during the iteration 509 * if you want to skip or reprocess indices. It is safe to modify the array 510 * during the iteration. At the end of the iteration, @entry will be set to 511 * NULL and @index will have a value less than or equal to max. 512 * 513 * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n). 514 * You have to handle your own locking with xas_for_each(), and if you have 515 * to unlock after each iteration, it will also end up being O(n.log(n)). 516 * xa_for_each_marked() will spin if it hits a retry entry; if you intend to 517 * see retry entries, you should use the xas_for_each_marked() iterator 518 * instead. The xas_for_each_marked() iterator will expand into more inline 519 * code than xa_for_each_marked(). 520 * 521 * Context: Any context. Takes and releases the RCU lock. 522 */ 523 #define xa_for_each_marked(xa, index, entry, filter) \ 524 for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \ 525 entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter)) 526 527 #define xa_trylock(xa) spin_trylock(&(xa)->xa_lock) 528 #define xa_lock(xa) spin_lock(&(xa)->xa_lock) 529 #define xa_unlock(xa) spin_unlock(&(xa)->xa_lock) 530 #define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock) 531 #define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock) 532 #define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock) 533 #define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock) 534 #define xa_lock_irqsave(xa, flags) \ 535 spin_lock_irqsave(&(xa)->xa_lock, flags) 536 #define xa_unlock_irqrestore(xa, flags) \ 537 spin_unlock_irqrestore(&(xa)->xa_lock, flags) 538 #define xa_lock_nested(xa, subclass) \ 539 spin_lock_nested(&(xa)->xa_lock, subclass) 540 #define xa_lock_bh_nested(xa, subclass) \ 541 spin_lock_bh_nested(&(xa)->xa_lock, subclass) 542 #define xa_lock_irq_nested(xa, subclass) \ 543 spin_lock_irq_nested(&(xa)->xa_lock, subclass) 544 #define xa_lock_irqsave_nested(xa, flags, subclass) \ 545 spin_lock_irqsave_nested(&(xa)->xa_lock, flags, subclass) 546 547 /* 548 * Versions of the normal API which require the caller to hold the 549 * xa_lock. If the GFP flags allow it, they will drop the lock to 550 * allocate memory, then reacquire it afterwards. These functions 551 * may also re-enable interrupts if the XArray flags indicate the 552 * locking should be interrupt safe. 553 */ 554 void *__xa_erase(struct xarray *, unsigned long index); 555 void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); 556 void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old, 557 void *entry, gfp_t); 558 int __must_check __xa_insert(struct xarray *, unsigned long index, 559 void *entry, gfp_t); 560 int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry, 561 struct xa_limit, gfp_t); 562 int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry, 563 struct xa_limit, u32 *next, gfp_t); 564 void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); 565 void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); 566 567 /** 568 * xa_store_bh() - Store this entry in the XArray. 569 * @xa: XArray. 570 * @index: Index into array. 571 * @entry: New entry. 572 * @gfp: Memory allocation flags. 573 * 574 * This function is like calling xa_store() except it disables softirqs 575 * while holding the array lock. 576 * 577 * Context: Any context. Takes and releases the xa_lock while 578 * disabling softirqs. 579 * Return: The entry which used to be at this index. 580 */ 581 static inline void *xa_store_bh(struct xarray *xa, unsigned long index, 582 void *entry, gfp_t gfp) 583 { 584 void *curr; 585 586 xa_lock_bh(xa); 587 curr = __xa_store(xa, index, entry, gfp); 588 xa_unlock_bh(xa); 589 590 return curr; 591 } 592 593 /** 594 * xa_store_irq() - Store this entry in the XArray. 595 * @xa: XArray. 596 * @index: Index into array. 597 * @entry: New entry. 598 * @gfp: Memory allocation flags. 599 * 600 * This function is like calling xa_store() except it disables interrupts 601 * while holding the array lock. 602 * 603 * Context: Process context. Takes and releases the xa_lock while 604 * disabling interrupts. 605 * Return: The entry which used to be at this index. 606 */ 607 static inline void *xa_store_irq(struct xarray *xa, unsigned long index, 608 void *entry, gfp_t gfp) 609 { 610 void *curr; 611 612 xa_lock_irq(xa); 613 curr = __xa_store(xa, index, entry, gfp); 614 xa_unlock_irq(xa); 615 616 return curr; 617 } 618 619 /** 620 * xa_erase_bh() - Erase this entry from the XArray. 621 * @xa: XArray. 622 * @index: Index of entry. 623 * 624 * After this function returns, loading from @index will return %NULL. 625 * If the index is part of a multi-index entry, all indices will be erased 626 * and none of the entries will be part of a multi-index entry. 627 * 628 * Context: Any context. Takes and releases the xa_lock while 629 * disabling softirqs. 630 * Return: The entry which used to be at this index. 631 */ 632 static inline void *xa_erase_bh(struct xarray *xa, unsigned long index) 633 { 634 void *entry; 635 636 xa_lock_bh(xa); 637 entry = __xa_erase(xa, index); 638 xa_unlock_bh(xa); 639 640 return entry; 641 } 642 643 /** 644 * xa_erase_irq() - Erase this entry from the XArray. 645 * @xa: XArray. 646 * @index: Index of entry. 647 * 648 * After this function returns, loading from @index will return %NULL. 649 * If the index is part of a multi-index entry, all indices will be erased 650 * and none of the entries will be part of a multi-index entry. 651 * 652 * Context: Process context. Takes and releases the xa_lock while 653 * disabling interrupts. 654 * Return: The entry which used to be at this index. 655 */ 656 static inline void *xa_erase_irq(struct xarray *xa, unsigned long index) 657 { 658 void *entry; 659 660 xa_lock_irq(xa); 661 entry = __xa_erase(xa, index); 662 xa_unlock_irq(xa); 663 664 return entry; 665 } 666 667 /** 668 * xa_cmpxchg() - Conditionally replace an entry in the XArray. 669 * @xa: XArray. 670 * @index: Index into array. 671 * @old: Old value to test against. 672 * @entry: New value to place in array. 673 * @gfp: Memory allocation flags. 674 * 675 * If the entry at @index is the same as @old, replace it with @entry. 676 * If the return value is equal to @old, then the exchange was successful. 677 * 678 * Context: Any context. Takes and releases the xa_lock. May sleep 679 * if the @gfp flags permit. 680 * Return: The old value at this index or xa_err() if an error happened. 681 */ 682 static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index, 683 void *old, void *entry, gfp_t gfp) 684 { 685 void *curr; 686 687 xa_lock(xa); 688 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 689 xa_unlock(xa); 690 691 return curr; 692 } 693 694 /** 695 * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray. 696 * @xa: XArray. 697 * @index: Index into array. 698 * @old: Old value to test against. 699 * @entry: New value to place in array. 700 * @gfp: Memory allocation flags. 701 * 702 * This function is like calling xa_cmpxchg() except it disables softirqs 703 * while holding the array lock. 704 * 705 * Context: Any context. Takes and releases the xa_lock while 706 * disabling softirqs. May sleep if the @gfp flags permit. 707 * Return: The old value at this index or xa_err() if an error happened. 708 */ 709 static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index, 710 void *old, void *entry, gfp_t gfp) 711 { 712 void *curr; 713 714 xa_lock_bh(xa); 715 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 716 xa_unlock_bh(xa); 717 718 return curr; 719 } 720 721 /** 722 * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray. 723 * @xa: XArray. 724 * @index: Index into array. 725 * @old: Old value to test against. 726 * @entry: New value to place in array. 727 * @gfp: Memory allocation flags. 728 * 729 * This function is like calling xa_cmpxchg() except it disables interrupts 730 * while holding the array lock. 731 * 732 * Context: Process context. Takes and releases the xa_lock while 733 * disabling interrupts. May sleep if the @gfp flags permit. 734 * Return: The old value at this index or xa_err() if an error happened. 735 */ 736 static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index, 737 void *old, void *entry, gfp_t gfp) 738 { 739 void *curr; 740 741 xa_lock_irq(xa); 742 curr = __xa_cmpxchg(xa, index, old, entry, gfp); 743 xa_unlock_irq(xa); 744 745 return curr; 746 } 747 748 /** 749 * xa_insert() - Store this entry in the XArray unless another entry is 750 * already present. 751 * @xa: XArray. 752 * @index: Index into array. 753 * @entry: New entry. 754 * @gfp: Memory allocation flags. 755 * 756 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 757 * if no entry is present. Inserting will fail if a reserved entry is 758 * present, even though loading from this index will return NULL. 759 * 760 * Context: Any context. Takes and releases the xa_lock. May sleep if 761 * the @gfp flags permit. 762 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 763 * -ENOMEM if memory could not be allocated. 764 */ 765 static inline int __must_check xa_insert(struct xarray *xa, 766 unsigned long index, void *entry, gfp_t gfp) 767 { 768 int err; 769 770 xa_lock(xa); 771 err = __xa_insert(xa, index, entry, gfp); 772 xa_unlock(xa); 773 774 return err; 775 } 776 777 /** 778 * xa_insert_bh() - Store this entry in the XArray unless another entry is 779 * already present. 780 * @xa: XArray. 781 * @index: Index into array. 782 * @entry: New entry. 783 * @gfp: Memory allocation flags. 784 * 785 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 786 * if no entry is present. Inserting will fail if a reserved entry is 787 * present, even though loading from this index will return NULL. 788 * 789 * Context: Any context. Takes and releases the xa_lock while 790 * disabling softirqs. May sleep if the @gfp flags permit. 791 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 792 * -ENOMEM if memory could not be allocated. 793 */ 794 static inline int __must_check xa_insert_bh(struct xarray *xa, 795 unsigned long index, void *entry, gfp_t gfp) 796 { 797 int err; 798 799 xa_lock_bh(xa); 800 err = __xa_insert(xa, index, entry, gfp); 801 xa_unlock_bh(xa); 802 803 return err; 804 } 805 806 /** 807 * xa_insert_irq() - Store this entry in the XArray unless another entry is 808 * already present. 809 * @xa: XArray. 810 * @index: Index into array. 811 * @entry: New entry. 812 * @gfp: Memory allocation flags. 813 * 814 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 815 * if no entry is present. Inserting will fail if a reserved entry is 816 * present, even though loading from this index will return NULL. 817 * 818 * Context: Process context. Takes and releases the xa_lock while 819 * disabling interrupts. May sleep if the @gfp flags permit. 820 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 821 * -ENOMEM if memory could not be allocated. 822 */ 823 static inline int __must_check xa_insert_irq(struct xarray *xa, 824 unsigned long index, void *entry, gfp_t gfp) 825 { 826 int err; 827 828 xa_lock_irq(xa); 829 err = __xa_insert(xa, index, entry, gfp); 830 xa_unlock_irq(xa); 831 832 return err; 833 } 834 835 /** 836 * xa_alloc() - Find somewhere to store this entry in the XArray. 837 * @xa: XArray. 838 * @id: Pointer to ID. 839 * @entry: New entry. 840 * @limit: Range of ID to allocate. 841 * @gfp: Memory allocation flags. 842 * 843 * Finds an empty entry in @xa between @limit.min and @limit.max, 844 * stores the index into the @id pointer, then stores the entry at 845 * that index. A concurrent lookup will not see an uninitialised @id. 846 * 847 * Context: Any context. Takes and releases the xa_lock. May sleep if 848 * the @gfp flags permit. 849 * Return: 0 on success, -ENOMEM if memory could not be allocated or 850 * -EBUSY if there are no free entries in @limit. 851 */ 852 static inline __must_check int xa_alloc(struct xarray *xa, u32 *id, 853 void *entry, struct xa_limit limit, gfp_t gfp) 854 { 855 int err; 856 857 xa_lock(xa); 858 err = __xa_alloc(xa, id, entry, limit, gfp); 859 xa_unlock(xa); 860 861 return err; 862 } 863 864 /** 865 * xa_alloc_bh() - Find somewhere to store this entry in the XArray. 866 * @xa: XArray. 867 * @id: Pointer to ID. 868 * @entry: New entry. 869 * @limit: Range of ID to allocate. 870 * @gfp: Memory allocation flags. 871 * 872 * Finds an empty entry in @xa between @limit.min and @limit.max, 873 * stores the index into the @id pointer, then stores the entry at 874 * that index. A concurrent lookup will not see an uninitialised @id. 875 * 876 * Context: Any context. Takes and releases the xa_lock while 877 * disabling softirqs. May sleep if the @gfp flags permit. 878 * Return: 0 on success, -ENOMEM if memory could not be allocated or 879 * -EBUSY if there are no free entries in @limit. 880 */ 881 static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id, 882 void *entry, struct xa_limit limit, gfp_t gfp) 883 { 884 int err; 885 886 xa_lock_bh(xa); 887 err = __xa_alloc(xa, id, entry, limit, gfp); 888 xa_unlock_bh(xa); 889 890 return err; 891 } 892 893 /** 894 * xa_alloc_irq() - Find somewhere to store this entry in the XArray. 895 * @xa: XArray. 896 * @id: Pointer to ID. 897 * @entry: New entry. 898 * @limit: Range of ID to allocate. 899 * @gfp: Memory allocation flags. 900 * 901 * Finds an empty entry in @xa between @limit.min and @limit.max, 902 * stores the index into the @id pointer, then stores the entry at 903 * that index. A concurrent lookup will not see an uninitialised @id. 904 * 905 * Context: Process context. Takes and releases the xa_lock while 906 * disabling interrupts. May sleep if the @gfp flags permit. 907 * Return: 0 on success, -ENOMEM if memory could not be allocated or 908 * -EBUSY if there are no free entries in @limit. 909 */ 910 static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id, 911 void *entry, struct xa_limit limit, gfp_t gfp) 912 { 913 int err; 914 915 xa_lock_irq(xa); 916 err = __xa_alloc(xa, id, entry, limit, gfp); 917 xa_unlock_irq(xa); 918 919 return err; 920 } 921 922 /** 923 * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 924 * @xa: XArray. 925 * @id: Pointer to ID. 926 * @entry: New entry. 927 * @limit: Range of allocated ID. 928 * @next: Pointer to next ID to allocate. 929 * @gfp: Memory allocation flags. 930 * 931 * Finds an empty entry in @xa between @limit.min and @limit.max, 932 * stores the index into the @id pointer, then stores the entry at 933 * that index. A concurrent lookup will not see an uninitialised @id. 934 * The search for an empty entry will start at @next and will wrap 935 * around if necessary. 936 * 937 * Context: Any context. Takes and releases the xa_lock. May sleep if 938 * the @gfp flags permit. 939 * Return: 0 if the allocation succeeded without wrapping. 1 if the 940 * allocation succeeded after wrapping, -ENOMEM if memory could not be 941 * allocated or -EBUSY if there are no free entries in @limit. 942 */ 943 static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 944 struct xa_limit limit, u32 *next, gfp_t gfp) 945 { 946 int err; 947 948 xa_lock(xa); 949 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 950 xa_unlock(xa); 951 952 return err; 953 } 954 955 /** 956 * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray. 957 * @xa: XArray. 958 * @id: Pointer to ID. 959 * @entry: New entry. 960 * @limit: Range of allocated ID. 961 * @next: Pointer to next ID to allocate. 962 * @gfp: Memory allocation flags. 963 * 964 * Finds an empty entry in @xa between @limit.min and @limit.max, 965 * stores the index into the @id pointer, then stores the entry at 966 * that index. A concurrent lookup will not see an uninitialised @id. 967 * The search for an empty entry will start at @next and will wrap 968 * around if necessary. 969 * 970 * Context: Any context. Takes and releases the xa_lock while 971 * disabling softirqs. May sleep if the @gfp flags permit. 972 * Return: 0 if the allocation succeeded without wrapping. 1 if the 973 * allocation succeeded after wrapping, -ENOMEM if memory could not be 974 * allocated or -EBUSY if there are no free entries in @limit. 975 */ 976 static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry, 977 struct xa_limit limit, u32 *next, gfp_t gfp) 978 { 979 int err; 980 981 xa_lock_bh(xa); 982 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 983 xa_unlock_bh(xa); 984 985 return err; 986 } 987 988 /** 989 * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray. 990 * @xa: XArray. 991 * @id: Pointer to ID. 992 * @entry: New entry. 993 * @limit: Range of allocated ID. 994 * @next: Pointer to next ID to allocate. 995 * @gfp: Memory allocation flags. 996 * 997 * Finds an empty entry in @xa between @limit.min and @limit.max, 998 * stores the index into the @id pointer, then stores the entry at 999 * that index. A concurrent lookup will not see an uninitialised @id. 1000 * The search for an empty entry will start at @next and will wrap 1001 * around if necessary. 1002 * 1003 * Context: Process context. Takes and releases the xa_lock while 1004 * disabling interrupts. May sleep if the @gfp flags permit. 1005 * Return: 0 if the allocation succeeded without wrapping. 1 if the 1006 * allocation succeeded after wrapping, -ENOMEM if memory could not be 1007 * allocated or -EBUSY if there are no free entries in @limit. 1008 */ 1009 static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry, 1010 struct xa_limit limit, u32 *next, gfp_t gfp) 1011 { 1012 int err; 1013 1014 xa_lock_irq(xa); 1015 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); 1016 xa_unlock_irq(xa); 1017 1018 return err; 1019 } 1020 1021 /** 1022 * xa_reserve() - Reserve this index in the XArray. 1023 * @xa: XArray. 1024 * @index: Index into array. 1025 * @gfp: Memory allocation flags. 1026 * 1027 * Ensures there is somewhere to store an entry at @index in the array. 1028 * If there is already something stored at @index, this function does 1029 * nothing. If there was nothing there, the entry is marked as reserved. 1030 * Loading from a reserved entry returns a %NULL pointer. 1031 * 1032 * If you do not use the entry that you have reserved, call xa_release() 1033 * or xa_erase() to free any unnecessary memory. 1034 * 1035 * Context: Any context. Takes and releases the xa_lock. 1036 * May sleep if the @gfp flags permit. 1037 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1038 */ 1039 static inline __must_check 1040 int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp) 1041 { 1042 return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1043 } 1044 1045 /** 1046 * xa_reserve_bh() - Reserve this index in the XArray. 1047 * @xa: XArray. 1048 * @index: Index into array. 1049 * @gfp: Memory allocation flags. 1050 * 1051 * A softirq-disabling version of xa_reserve(). 1052 * 1053 * Context: Any context. Takes and releases the xa_lock while 1054 * disabling softirqs. 1055 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1056 */ 1057 static inline __must_check 1058 int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp) 1059 { 1060 return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1061 } 1062 1063 /** 1064 * xa_reserve_irq() - Reserve this index in the XArray. 1065 * @xa: XArray. 1066 * @index: Index into array. 1067 * @gfp: Memory allocation flags. 1068 * 1069 * An interrupt-disabling version of xa_reserve(). 1070 * 1071 * Context: Process context. Takes and releases the xa_lock while 1072 * disabling interrupts. 1073 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1074 */ 1075 static inline __must_check 1076 int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp) 1077 { 1078 return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp)); 1079 } 1080 1081 /** 1082 * xa_release() - Release a reserved entry. 1083 * @xa: XArray. 1084 * @index: Index of entry. 1085 * 1086 * After calling xa_reserve(), you can call this function to release the 1087 * reservation. If the entry at @index has been stored to, this function 1088 * will do nothing. 1089 */ 1090 static inline void xa_release(struct xarray *xa, unsigned long index) 1091 { 1092 xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0); 1093 } 1094 1095 /* Everything below here is the Advanced API. Proceed with caution. */ 1096 1097 /* 1098 * The xarray is constructed out of a set of 'chunks' of pointers. Choosing 1099 * the best chunk size requires some tradeoffs. A power of two recommends 1100 * itself so that we can walk the tree based purely on shifts and masks. 1101 * Generally, the larger the better; as the number of slots per level of the 1102 * tree increases, the less tall the tree needs to be. But that needs to be 1103 * balanced against the memory consumption of each node. On a 64-bit system, 1104 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we 1105 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page. 1106 */ 1107 #ifndef XA_CHUNK_SHIFT 1108 #define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) 1109 #endif 1110 #define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT) 1111 #define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1) 1112 #define XA_MAX_MARKS 3 1113 #define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG) 1114 1115 /* 1116 * @count is the count of every non-NULL element in the ->slots array 1117 * whether that is a value entry, a retry entry, a user pointer, 1118 * a sibling entry or a pointer to the next level of the tree. 1119 * @nr_values is the count of every element in ->slots which is 1120 * either a value entry or a sibling of a value entry. 1121 */ 1122 struct xa_node { 1123 unsigned char shift; /* Bits remaining in each slot */ 1124 unsigned char offset; /* Slot offset in parent */ 1125 unsigned char count; /* Total entry count */ 1126 unsigned char nr_values; /* Value entry count */ 1127 struct xa_node __rcu *parent; /* NULL at top of tree */ 1128 struct xarray *array; /* The array we belong to */ 1129 union { 1130 struct list_head private_list; /* For tree user */ 1131 struct rcu_head rcu_head; /* Used when freeing node */ 1132 }; 1133 void __rcu *slots[XA_CHUNK_SIZE]; 1134 union { 1135 unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS]; 1136 unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS]; 1137 }; 1138 }; 1139 1140 void xa_dump(const struct xarray *); 1141 void xa_dump_node(const struct xa_node *); 1142 1143 #ifdef XA_DEBUG 1144 #define XA_BUG_ON(xa, x) do { \ 1145 if (x) { \ 1146 xa_dump(xa); \ 1147 BUG(); \ 1148 } \ 1149 } while (0) 1150 #define XA_NODE_BUG_ON(node, x) do { \ 1151 if (x) { \ 1152 if (node) xa_dump_node(node); \ 1153 BUG(); \ 1154 } \ 1155 } while (0) 1156 #else 1157 #define XA_BUG_ON(xa, x) do { } while (0) 1158 #define XA_NODE_BUG_ON(node, x) do { } while (0) 1159 #endif 1160 1161 /* Private */ 1162 static inline void *xa_head(const struct xarray *xa) 1163 { 1164 return rcu_dereference_check(xa->xa_head, 1165 lockdep_is_held(&xa->xa_lock)); 1166 } 1167 1168 /* Private */ 1169 static inline void *xa_head_locked(const struct xarray *xa) 1170 { 1171 return rcu_dereference_protected(xa->xa_head, 1172 lockdep_is_held(&xa->xa_lock)); 1173 } 1174 1175 /* Private */ 1176 static inline void *xa_entry(const struct xarray *xa, 1177 const struct xa_node *node, unsigned int offset) 1178 { 1179 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 1180 return rcu_dereference_check(node->slots[offset], 1181 lockdep_is_held(&xa->xa_lock)); 1182 } 1183 1184 /* Private */ 1185 static inline void *xa_entry_locked(const struct xarray *xa, 1186 const struct xa_node *node, unsigned int offset) 1187 { 1188 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); 1189 return rcu_dereference_protected(node->slots[offset], 1190 lockdep_is_held(&xa->xa_lock)); 1191 } 1192 1193 /* Private */ 1194 static inline struct xa_node *xa_parent(const struct xarray *xa, 1195 const struct xa_node *node) 1196 { 1197 return rcu_dereference_check(node->parent, 1198 lockdep_is_held(&xa->xa_lock)); 1199 } 1200 1201 /* Private */ 1202 static inline struct xa_node *xa_parent_locked(const struct xarray *xa, 1203 const struct xa_node *node) 1204 { 1205 return rcu_dereference_protected(node->parent, 1206 lockdep_is_held(&xa->xa_lock)); 1207 } 1208 1209 /* Private */ 1210 static inline void *xa_mk_node(const struct xa_node *node) 1211 { 1212 return (void *)((unsigned long)node | 2); 1213 } 1214 1215 /* Private */ 1216 static inline struct xa_node *xa_to_node(const void *entry) 1217 { 1218 return (struct xa_node *)((unsigned long)entry - 2); 1219 } 1220 1221 /* Private */ 1222 static inline bool xa_is_node(const void *entry) 1223 { 1224 return xa_is_internal(entry) && (unsigned long)entry > 4096; 1225 } 1226 1227 /* Private */ 1228 static inline void *xa_mk_sibling(unsigned int offset) 1229 { 1230 return xa_mk_internal(offset); 1231 } 1232 1233 /* Private */ 1234 static inline unsigned long xa_to_sibling(const void *entry) 1235 { 1236 return xa_to_internal(entry); 1237 } 1238 1239 /** 1240 * xa_is_sibling() - Is the entry a sibling entry? 1241 * @entry: Entry retrieved from the XArray 1242 * 1243 * Return: %true if the entry is a sibling entry. 1244 */ 1245 static inline bool xa_is_sibling(const void *entry) 1246 { 1247 return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) && 1248 (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1)); 1249 } 1250 1251 #define XA_RETRY_ENTRY xa_mk_internal(256) 1252 1253 /** 1254 * xa_is_retry() - Is the entry a retry entry? 1255 * @entry: Entry retrieved from the XArray 1256 * 1257 * Return: %true if the entry is a retry entry. 1258 */ 1259 static inline bool xa_is_retry(const void *entry) 1260 { 1261 return unlikely(entry == XA_RETRY_ENTRY); 1262 } 1263 1264 /** 1265 * xa_is_advanced() - Is the entry only permitted for the advanced API? 1266 * @entry: Entry to be stored in the XArray. 1267 * 1268 * Return: %true if the entry cannot be stored by the normal API. 1269 */ 1270 static inline bool xa_is_advanced(const void *entry) 1271 { 1272 return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY); 1273 } 1274 1275 /** 1276 * typedef xa_update_node_t - A callback function from the XArray. 1277 * @node: The node which is being processed 1278 * 1279 * This function is called every time the XArray updates the count of 1280 * present and value entries in a node. It allows advanced users to 1281 * maintain the private_list in the node. 1282 * 1283 * Context: The xa_lock is held and interrupts may be disabled. 1284 * Implementations should not drop the xa_lock, nor re-enable 1285 * interrupts. 1286 */ 1287 typedef void (*xa_update_node_t)(struct xa_node *node); 1288 1289 /* 1290 * The xa_state is opaque to its users. It contains various different pieces 1291 * of state involved in the current operation on the XArray. It should be 1292 * declared on the stack and passed between the various internal routines. 1293 * The various elements in it should not be accessed directly, but only 1294 * through the provided accessor functions. The below documentation is for 1295 * the benefit of those working on the code, not for users of the XArray. 1296 * 1297 * @xa_node usually points to the xa_node containing the slot we're operating 1298 * on (and @xa_offset is the offset in the slots array). If there is a 1299 * single entry in the array at index 0, there are no allocated xa_nodes to 1300 * point to, and so we store %NULL in @xa_node. @xa_node is set to 1301 * the value %XAS_RESTART if the xa_state is not walked to the correct 1302 * position in the tree of nodes for this operation. If an error occurs 1303 * during an operation, it is set to an %XAS_ERROR value. If we run off the 1304 * end of the allocated nodes, it is set to %XAS_BOUNDS. 1305 */ 1306 struct xa_state { 1307 struct xarray *xa; 1308 unsigned long xa_index; 1309 unsigned char xa_shift; 1310 unsigned char xa_sibs; 1311 unsigned char xa_offset; 1312 unsigned char xa_pad; /* Helps gcc generate better code */ 1313 struct xa_node *xa_node; 1314 struct xa_node *xa_alloc; 1315 xa_update_node_t xa_update; 1316 }; 1317 1318 /* 1319 * We encode errnos in the xas->xa_node. If an error has happened, we need to 1320 * drop the lock to fix it, and once we've done so the xa_state is invalid. 1321 */ 1322 #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL)) 1323 #define XAS_BOUNDS ((struct xa_node *)1UL) 1324 #define XAS_RESTART ((struct xa_node *)3UL) 1325 1326 #define __XA_STATE(array, index, shift, sibs) { \ 1327 .xa = array, \ 1328 .xa_index = index, \ 1329 .xa_shift = shift, \ 1330 .xa_sibs = sibs, \ 1331 .xa_offset = 0, \ 1332 .xa_pad = 0, \ 1333 .xa_node = XAS_RESTART, \ 1334 .xa_alloc = NULL, \ 1335 .xa_update = NULL \ 1336 } 1337 1338 /** 1339 * XA_STATE() - Declare an XArray operation state. 1340 * @name: Name of this operation state (usually xas). 1341 * @array: Array to operate on. 1342 * @index: Initial index of interest. 1343 * 1344 * Declare and initialise an xa_state on the stack. 1345 */ 1346 #define XA_STATE(name, array, index) \ 1347 struct xa_state name = __XA_STATE(array, index, 0, 0) 1348 1349 /** 1350 * XA_STATE_ORDER() - Declare an XArray operation state. 1351 * @name: Name of this operation state (usually xas). 1352 * @array: Array to operate on. 1353 * @index: Initial index of interest. 1354 * @order: Order of entry. 1355 * 1356 * Declare and initialise an xa_state on the stack. This variant of 1357 * XA_STATE() allows you to specify the 'order' of the element you 1358 * want to operate on.` 1359 */ 1360 #define XA_STATE_ORDER(name, array, index, order) \ 1361 struct xa_state name = __XA_STATE(array, \ 1362 (index >> order) << order, \ 1363 order - (order % XA_CHUNK_SHIFT), \ 1364 (1U << (order % XA_CHUNK_SHIFT)) - 1) 1365 1366 #define xas_marked(xas, mark) xa_marked((xas)->xa, (mark)) 1367 #define xas_trylock(xas) xa_trylock((xas)->xa) 1368 #define xas_lock(xas) xa_lock((xas)->xa) 1369 #define xas_unlock(xas) xa_unlock((xas)->xa) 1370 #define xas_lock_bh(xas) xa_lock_bh((xas)->xa) 1371 #define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa) 1372 #define xas_lock_irq(xas) xa_lock_irq((xas)->xa) 1373 #define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa) 1374 #define xas_lock_irqsave(xas, flags) \ 1375 xa_lock_irqsave((xas)->xa, flags) 1376 #define xas_unlock_irqrestore(xas, flags) \ 1377 xa_unlock_irqrestore((xas)->xa, flags) 1378 1379 /** 1380 * xas_error() - Return an errno stored in the xa_state. 1381 * @xas: XArray operation state. 1382 * 1383 * Return: 0 if no error has been noted. A negative errno if one has. 1384 */ 1385 static inline int xas_error(const struct xa_state *xas) 1386 { 1387 return xa_err(xas->xa_node); 1388 } 1389 1390 /** 1391 * xas_set_err() - Note an error in the xa_state. 1392 * @xas: XArray operation state. 1393 * @err: Negative error number. 1394 * 1395 * Only call this function with a negative @err; zero or positive errors 1396 * will probably not behave the way you think they should. If you want 1397 * to clear the error from an xa_state, use xas_reset(). 1398 */ 1399 static inline void xas_set_err(struct xa_state *xas, long err) 1400 { 1401 xas->xa_node = XA_ERROR(err); 1402 } 1403 1404 /** 1405 * xas_invalid() - Is the xas in a retry or error state? 1406 * @xas: XArray operation state. 1407 * 1408 * Return: %true if the xas cannot be used for operations. 1409 */ 1410 static inline bool xas_invalid(const struct xa_state *xas) 1411 { 1412 return (unsigned long)xas->xa_node & 3; 1413 } 1414 1415 /** 1416 * xas_valid() - Is the xas a valid cursor into the array? 1417 * @xas: XArray operation state. 1418 * 1419 * Return: %true if the xas can be used for operations. 1420 */ 1421 static inline bool xas_valid(const struct xa_state *xas) 1422 { 1423 return !xas_invalid(xas); 1424 } 1425 1426 /** 1427 * xas_is_node() - Does the xas point to a node? 1428 * @xas: XArray operation state. 1429 * 1430 * Return: %true if the xas currently references a node. 1431 */ 1432 static inline bool xas_is_node(const struct xa_state *xas) 1433 { 1434 return xas_valid(xas) && xas->xa_node; 1435 } 1436 1437 /* True if the pointer is something other than a node */ 1438 static inline bool xas_not_node(struct xa_node *node) 1439 { 1440 return ((unsigned long)node & 3) || !node; 1441 } 1442 1443 /* True if the node represents RESTART or an error */ 1444 static inline bool xas_frozen(struct xa_node *node) 1445 { 1446 return (unsigned long)node & 2; 1447 } 1448 1449 /* True if the node represents head-of-tree, RESTART or BOUNDS */ 1450 static inline bool xas_top(struct xa_node *node) 1451 { 1452 return node <= XAS_RESTART; 1453 } 1454 1455 /** 1456 * xas_reset() - Reset an XArray operation state. 1457 * @xas: XArray operation state. 1458 * 1459 * Resets the error or walk state of the @xas so future walks of the 1460 * array will start from the root. Use this if you have dropped the 1461 * xarray lock and want to reuse the xa_state. 1462 * 1463 * Context: Any context. 1464 */ 1465 static inline void xas_reset(struct xa_state *xas) 1466 { 1467 xas->xa_node = XAS_RESTART; 1468 } 1469 1470 /** 1471 * xas_retry() - Retry the operation if appropriate. 1472 * @xas: XArray operation state. 1473 * @entry: Entry from xarray. 1474 * 1475 * The advanced functions may sometimes return an internal entry, such as 1476 * a retry entry or a zero entry. This function sets up the @xas to restart 1477 * the walk from the head of the array if needed. 1478 * 1479 * Context: Any context. 1480 * Return: true if the operation needs to be retried. 1481 */ 1482 static inline bool xas_retry(struct xa_state *xas, const void *entry) 1483 { 1484 if (xa_is_zero(entry)) 1485 return true; 1486 if (!xa_is_retry(entry)) 1487 return false; 1488 xas_reset(xas); 1489 return true; 1490 } 1491 1492 void *xas_load(struct xa_state *); 1493 void *xas_store(struct xa_state *, void *entry); 1494 void *xas_find(struct xa_state *, unsigned long max); 1495 void *xas_find_conflict(struct xa_state *); 1496 1497 bool xas_get_mark(const struct xa_state *, xa_mark_t); 1498 void xas_set_mark(const struct xa_state *, xa_mark_t); 1499 void xas_clear_mark(const struct xa_state *, xa_mark_t); 1500 void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t); 1501 void xas_init_marks(const struct xa_state *); 1502 1503 bool xas_nomem(struct xa_state *, gfp_t); 1504 void xas_pause(struct xa_state *); 1505 1506 void xas_create_range(struct xa_state *); 1507 1508 /** 1509 * xas_reload() - Refetch an entry from the xarray. 1510 * @xas: XArray operation state. 1511 * 1512 * Use this function to check that a previously loaded entry still has 1513 * the same value. This is useful for the lockless pagecache lookup where 1514 * we walk the array with only the RCU lock to protect us, lock the page, 1515 * then check that the page hasn't moved since we looked it up. 1516 * 1517 * The caller guarantees that @xas is still valid. If it may be in an 1518 * error or restart state, call xas_load() instead. 1519 * 1520 * Return: The entry at this location in the xarray. 1521 */ 1522 static inline void *xas_reload(struct xa_state *xas) 1523 { 1524 struct xa_node *node = xas->xa_node; 1525 1526 if (node) 1527 return xa_entry(xas->xa, node, xas->xa_offset); 1528 return xa_head(xas->xa); 1529 } 1530 1531 /** 1532 * xas_set() - Set up XArray operation state for a different index. 1533 * @xas: XArray operation state. 1534 * @index: New index into the XArray. 1535 * 1536 * Move the operation state to refer to a different index. This will 1537 * have the effect of starting a walk from the top; see xas_next() 1538 * to move to an adjacent index. 1539 */ 1540 static inline void xas_set(struct xa_state *xas, unsigned long index) 1541 { 1542 xas->xa_index = index; 1543 xas->xa_node = XAS_RESTART; 1544 } 1545 1546 /** 1547 * xas_set_order() - Set up XArray operation state for a multislot entry. 1548 * @xas: XArray operation state. 1549 * @index: Target of the operation. 1550 * @order: Entry occupies 2^@order indices. 1551 */ 1552 static inline void xas_set_order(struct xa_state *xas, unsigned long index, 1553 unsigned int order) 1554 { 1555 #ifdef CONFIG_XARRAY_MULTI 1556 xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0; 1557 xas->xa_shift = order - (order % XA_CHUNK_SHIFT); 1558 xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1559 xas->xa_node = XAS_RESTART; 1560 #else 1561 BUG_ON(order > 0); 1562 xas_set(xas, index); 1563 #endif 1564 } 1565 1566 /** 1567 * xas_set_update() - Set up XArray operation state for a callback. 1568 * @xas: XArray operation state. 1569 * @update: Function to call when updating a node. 1570 * 1571 * The XArray can notify a caller after it has updated an xa_node. 1572 * This is advanced functionality and is only needed by the page cache. 1573 */ 1574 static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update) 1575 { 1576 xas->xa_update = update; 1577 } 1578 1579 /** 1580 * xas_next_entry() - Advance iterator to next present entry. 1581 * @xas: XArray operation state. 1582 * @max: Highest index to return. 1583 * 1584 * xas_next_entry() is an inline function to optimise xarray traversal for 1585 * speed. It is equivalent to calling xas_find(), and will call xas_find() 1586 * for all the hard cases. 1587 * 1588 * Return: The next present entry after the one currently referred to by @xas. 1589 */ 1590 static inline void *xas_next_entry(struct xa_state *xas, unsigned long max) 1591 { 1592 struct xa_node *node = xas->xa_node; 1593 void *entry; 1594 1595 if (unlikely(xas_not_node(node) || node->shift || 1596 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK))) 1597 return xas_find(xas, max); 1598 1599 do { 1600 if (unlikely(xas->xa_index >= max)) 1601 return xas_find(xas, max); 1602 if (unlikely(xas->xa_offset == XA_CHUNK_MASK)) 1603 return xas_find(xas, max); 1604 entry = xa_entry(xas->xa, node, xas->xa_offset + 1); 1605 if (unlikely(xa_is_internal(entry))) 1606 return xas_find(xas, max); 1607 xas->xa_offset++; 1608 xas->xa_index++; 1609 } while (!entry); 1610 1611 return entry; 1612 } 1613 1614 /* Private */ 1615 static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance, 1616 xa_mark_t mark) 1617 { 1618 unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark]; 1619 unsigned int offset = xas->xa_offset; 1620 1621 if (advance) 1622 offset++; 1623 if (XA_CHUNK_SIZE == BITS_PER_LONG) { 1624 if (offset < XA_CHUNK_SIZE) { 1625 unsigned long data = *addr & (~0UL << offset); 1626 if (data) 1627 return __ffs(data); 1628 } 1629 return XA_CHUNK_SIZE; 1630 } 1631 1632 return find_next_bit(addr, XA_CHUNK_SIZE, offset); 1633 } 1634 1635 /** 1636 * xas_next_marked() - Advance iterator to next marked entry. 1637 * @xas: XArray operation state. 1638 * @max: Highest index to return. 1639 * @mark: Mark to search for. 1640 * 1641 * xas_next_marked() is an inline function to optimise xarray traversal for 1642 * speed. It is equivalent to calling xas_find_marked(), and will call 1643 * xas_find_marked() for all the hard cases. 1644 * 1645 * Return: The next marked entry after the one currently referred to by @xas. 1646 */ 1647 static inline void *xas_next_marked(struct xa_state *xas, unsigned long max, 1648 xa_mark_t mark) 1649 { 1650 struct xa_node *node = xas->xa_node; 1651 void *entry; 1652 unsigned int offset; 1653 1654 if (unlikely(xas_not_node(node) || node->shift)) 1655 return xas_find_marked(xas, max, mark); 1656 offset = xas_find_chunk(xas, true, mark); 1657 xas->xa_offset = offset; 1658 xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset; 1659 if (xas->xa_index > max) 1660 return NULL; 1661 if (offset == XA_CHUNK_SIZE) 1662 return xas_find_marked(xas, max, mark); 1663 entry = xa_entry(xas->xa, node, offset); 1664 if (!entry) 1665 return xas_find_marked(xas, max, mark); 1666 return entry; 1667 } 1668 1669 /* 1670 * If iterating while holding a lock, drop the lock and reschedule 1671 * every %XA_CHECK_SCHED loops. 1672 */ 1673 enum { 1674 XA_CHECK_SCHED = 4096, 1675 }; 1676 1677 /** 1678 * xas_for_each() - Iterate over a range of an XArray. 1679 * @xas: XArray operation state. 1680 * @entry: Entry retrieved from the array. 1681 * @max: Maximum index to retrieve from array. 1682 * 1683 * The loop body will be executed for each entry present in the xarray 1684 * between the current xas position and @max. @entry will be set to 1685 * the entry retrieved from the xarray. It is safe to delete entries 1686 * from the array in the loop body. You should hold either the RCU lock 1687 * or the xa_lock while iterating. If you need to drop the lock, call 1688 * xas_pause() first. 1689 */ 1690 #define xas_for_each(xas, entry, max) \ 1691 for (entry = xas_find(xas, max); entry; \ 1692 entry = xas_next_entry(xas, max)) 1693 1694 /** 1695 * xas_for_each_marked() - Iterate over a range of an XArray. 1696 * @xas: XArray operation state. 1697 * @entry: Entry retrieved from the array. 1698 * @max: Maximum index to retrieve from array. 1699 * @mark: Mark to search for. 1700 * 1701 * The loop body will be executed for each marked entry in the xarray 1702 * between the current xas position and @max. @entry will be set to 1703 * the entry retrieved from the xarray. It is safe to delete entries 1704 * from the array in the loop body. You should hold either the RCU lock 1705 * or the xa_lock while iterating. If you need to drop the lock, call 1706 * xas_pause() first. 1707 */ 1708 #define xas_for_each_marked(xas, entry, max, mark) \ 1709 for (entry = xas_find_marked(xas, max, mark); entry; \ 1710 entry = xas_next_marked(xas, max, mark)) 1711 1712 /** 1713 * xas_for_each_conflict() - Iterate over a range of an XArray. 1714 * @xas: XArray operation state. 1715 * @entry: Entry retrieved from the array. 1716 * 1717 * The loop body will be executed for each entry in the XArray that lies 1718 * within the range specified by @xas. If the loop completes successfully, 1719 * any entries that lie in this range will be replaced by @entry. The caller 1720 * may break out of the loop; if they do so, the contents of the XArray will 1721 * be unchanged. The operation may fail due to an out of memory condition. 1722 * The caller may also call xa_set_err() to exit the loop while setting an 1723 * error to record the reason. 1724 */ 1725 #define xas_for_each_conflict(xas, entry) \ 1726 while ((entry = xas_find_conflict(xas))) 1727 1728 void *__xas_next(struct xa_state *); 1729 void *__xas_prev(struct xa_state *); 1730 1731 /** 1732 * xas_prev() - Move iterator to previous index. 1733 * @xas: XArray operation state. 1734 * 1735 * If the @xas was in an error state, it will remain in an error state 1736 * and this function will return %NULL. If the @xas has never been walked, 1737 * it will have the effect of calling xas_load(). Otherwise one will be 1738 * subtracted from the index and the state will be walked to the correct 1739 * location in the array for the next operation. 1740 * 1741 * If the iterator was referencing index 0, this function wraps 1742 * around to %ULONG_MAX. 1743 * 1744 * Return: The entry at the new index. This may be %NULL or an internal 1745 * entry. 1746 */ 1747 static inline void *xas_prev(struct xa_state *xas) 1748 { 1749 struct xa_node *node = xas->xa_node; 1750 1751 if (unlikely(xas_not_node(node) || node->shift || 1752 xas->xa_offset == 0)) 1753 return __xas_prev(xas); 1754 1755 xas->xa_index--; 1756 xas->xa_offset--; 1757 return xa_entry(xas->xa, node, xas->xa_offset); 1758 } 1759 1760 /** 1761 * xas_next() - Move state to next index. 1762 * @xas: XArray operation state. 1763 * 1764 * If the @xas was in an error state, it will remain in an error state 1765 * and this function will return %NULL. If the @xas has never been walked, 1766 * it will have the effect of calling xas_load(). Otherwise one will be 1767 * added to the index and the state will be walked to the correct 1768 * location in the array for the next operation. 1769 * 1770 * If the iterator was referencing index %ULONG_MAX, this function wraps 1771 * around to 0. 1772 * 1773 * Return: The entry at the new index. This may be %NULL or an internal 1774 * entry. 1775 */ 1776 static inline void *xas_next(struct xa_state *xas) 1777 { 1778 struct xa_node *node = xas->xa_node; 1779 1780 if (unlikely(xas_not_node(node) || node->shift || 1781 xas->xa_offset == XA_CHUNK_MASK)) 1782 return __xas_next(xas); 1783 1784 xas->xa_index++; 1785 xas->xa_offset++; 1786 return xa_entry(xas->xa, node, xas->xa_offset); 1787 } 1788 1789 #endif /* _LINUX_XARRAY_H */ 1790