xref: /openbmc/linux/include/linux/writeback.h (revision 4f727ece)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * include/linux/writeback.h
4  */
5 #ifndef WRITEBACK_H
6 #define WRITEBACK_H
7 
8 #include <linux/sched.h>
9 #include <linux/workqueue.h>
10 #include <linux/fs.h>
11 #include <linux/flex_proportions.h>
12 #include <linux/backing-dev-defs.h>
13 #include <linux/blk_types.h>
14 
15 struct bio;
16 
17 DECLARE_PER_CPU(int, dirty_throttle_leaks);
18 
19 /*
20  * The 1/4 region under the global dirty thresh is for smooth dirty throttling:
21  *
22  *	(thresh - thresh/DIRTY_FULL_SCOPE, thresh)
23  *
24  * Further beyond, all dirtier tasks will enter a loop waiting (possibly long
25  * time) for the dirty pages to drop, unless written enough pages.
26  *
27  * The global dirty threshold is normally equal to the global dirty limit,
28  * except when the system suddenly allocates a lot of anonymous memory and
29  * knocks down the global dirty threshold quickly, in which case the global
30  * dirty limit will follow down slowly to prevent livelocking all dirtier tasks.
31  */
32 #define DIRTY_SCOPE		8
33 #define DIRTY_FULL_SCOPE	(DIRTY_SCOPE / 2)
34 
35 struct backing_dev_info;
36 
37 /*
38  * fs/fs-writeback.c
39  */
40 enum writeback_sync_modes {
41 	WB_SYNC_NONE,	/* Don't wait on anything */
42 	WB_SYNC_ALL,	/* Wait on every mapping */
43 };
44 
45 /*
46  * A control structure which tells the writeback code what to do.  These are
47  * always on the stack, and hence need no locking.  They are always initialised
48  * in a manner such that unspecified fields are set to zero.
49  */
50 struct writeback_control {
51 	long nr_to_write;		/* Write this many pages, and decrement
52 					   this for each page written */
53 	long pages_skipped;		/* Pages which were not written */
54 
55 	/*
56 	 * For a_ops->writepages(): if start or end are non-zero then this is
57 	 * a hint that the filesystem need only write out the pages inside that
58 	 * byterange.  The byte at `end' is included in the writeout request.
59 	 */
60 	loff_t range_start;
61 	loff_t range_end;
62 
63 	enum writeback_sync_modes sync_mode;
64 
65 	unsigned for_kupdate:1;		/* A kupdate writeback */
66 	unsigned for_background:1;	/* A background writeback */
67 	unsigned tagged_writepages:1;	/* tag-and-write to avoid livelock */
68 	unsigned for_reclaim:1;		/* Invoked from the page allocator */
69 	unsigned range_cyclic:1;	/* range_start is cyclic */
70 	unsigned for_sync:1;		/* sync(2) WB_SYNC_ALL writeback */
71 #ifdef CONFIG_CGROUP_WRITEBACK
72 	struct bdi_writeback *wb;	/* wb this writeback is issued under */
73 	struct inode *inode;		/* inode being written out */
74 
75 	/* foreign inode detection, see wbc_detach_inode() */
76 	int wb_id;			/* current wb id */
77 	int wb_lcand_id;		/* last foreign candidate wb id */
78 	int wb_tcand_id;		/* this foreign candidate wb id */
79 	size_t wb_bytes;		/* bytes written by current wb */
80 	size_t wb_lcand_bytes;		/* bytes written by last candidate */
81 	size_t wb_tcand_bytes;		/* bytes written by this candidate */
82 #endif
83 };
84 
85 static inline int wbc_to_write_flags(struct writeback_control *wbc)
86 {
87 	if (wbc->sync_mode == WB_SYNC_ALL)
88 		return REQ_SYNC;
89 	else if (wbc->for_kupdate || wbc->for_background)
90 		return REQ_BACKGROUND;
91 
92 	return 0;
93 }
94 
95 /*
96  * A wb_domain represents a domain that wb's (bdi_writeback's) belong to
97  * and are measured against each other in.  There always is one global
98  * domain, global_wb_domain, that every wb in the system is a member of.
99  * This allows measuring the relative bandwidth of each wb to distribute
100  * dirtyable memory accordingly.
101  */
102 struct wb_domain {
103 	spinlock_t lock;
104 
105 	/*
106 	 * Scale the writeback cache size proportional to the relative
107 	 * writeout speed.
108 	 *
109 	 * We do this by keeping a floating proportion between BDIs, based
110 	 * on page writeback completions [end_page_writeback()]. Those
111 	 * devices that write out pages fastest will get the larger share,
112 	 * while the slower will get a smaller share.
113 	 *
114 	 * We use page writeout completions because we are interested in
115 	 * getting rid of dirty pages. Having them written out is the
116 	 * primary goal.
117 	 *
118 	 * We introduce a concept of time, a period over which we measure
119 	 * these events, because demand can/will vary over time. The length
120 	 * of this period itself is measured in page writeback completions.
121 	 */
122 	struct fprop_global completions;
123 	struct timer_list period_timer;	/* timer for aging of completions */
124 	unsigned long period_time;
125 
126 	/*
127 	 * The dirtyable memory and dirty threshold could be suddenly
128 	 * knocked down by a large amount (eg. on the startup of KVM in a
129 	 * swapless system). This may throw the system into deep dirty
130 	 * exceeded state and throttle heavy/light dirtiers alike. To
131 	 * retain good responsiveness, maintain global_dirty_limit for
132 	 * tracking slowly down to the knocked down dirty threshold.
133 	 *
134 	 * Both fields are protected by ->lock.
135 	 */
136 	unsigned long dirty_limit_tstamp;
137 	unsigned long dirty_limit;
138 };
139 
140 /**
141  * wb_domain_size_changed - memory available to a wb_domain has changed
142  * @dom: wb_domain of interest
143  *
144  * This function should be called when the amount of memory available to
145  * @dom has changed.  It resets @dom's dirty limit parameters to prevent
146  * the past values which don't match the current configuration from skewing
147  * dirty throttling.  Without this, when memory size of a wb_domain is
148  * greatly reduced, the dirty throttling logic may allow too many pages to
149  * be dirtied leading to consecutive unnecessary OOMs and may get stuck in
150  * that situation.
151  */
152 static inline void wb_domain_size_changed(struct wb_domain *dom)
153 {
154 	spin_lock(&dom->lock);
155 	dom->dirty_limit_tstamp = jiffies;
156 	dom->dirty_limit = 0;
157 	spin_unlock(&dom->lock);
158 }
159 
160 /*
161  * fs/fs-writeback.c
162  */
163 struct bdi_writeback;
164 void writeback_inodes_sb(struct super_block *, enum wb_reason reason);
165 void writeback_inodes_sb_nr(struct super_block *, unsigned long nr,
166 							enum wb_reason reason);
167 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason);
168 void sync_inodes_sb(struct super_block *);
169 void wakeup_flusher_threads(enum wb_reason reason);
170 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
171 				enum wb_reason reason);
172 void inode_wait_for_writeback(struct inode *inode);
173 
174 /* writeback.h requires fs.h; it, too, is not included from here. */
175 static inline void wait_on_inode(struct inode *inode)
176 {
177 	might_sleep();
178 	wait_on_bit(&inode->i_state, __I_NEW, TASK_UNINTERRUPTIBLE);
179 }
180 
181 #ifdef CONFIG_CGROUP_WRITEBACK
182 
183 #include <linux/cgroup.h>
184 #include <linux/bio.h>
185 
186 void __inode_attach_wb(struct inode *inode, struct page *page);
187 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
188 				 struct inode *inode)
189 	__releases(&inode->i_lock);
190 void wbc_detach_inode(struct writeback_control *wbc);
191 void wbc_account_io(struct writeback_control *wbc, struct page *page,
192 		    size_t bytes);
193 void cgroup_writeback_umount(void);
194 
195 /**
196  * inode_attach_wb - associate an inode with its wb
197  * @inode: inode of interest
198  * @page: page being dirtied (may be NULL)
199  *
200  * If @inode doesn't have its wb, associate it with the wb matching the
201  * memcg of @page or, if @page is NULL, %current.  May be called w/ or w/o
202  * @inode->i_lock.
203  */
204 static inline void inode_attach_wb(struct inode *inode, struct page *page)
205 {
206 	if (!inode->i_wb)
207 		__inode_attach_wb(inode, page);
208 }
209 
210 /**
211  * inode_detach_wb - disassociate an inode from its wb
212  * @inode: inode of interest
213  *
214  * @inode is being freed.  Detach from its wb.
215  */
216 static inline void inode_detach_wb(struct inode *inode)
217 {
218 	if (inode->i_wb) {
219 		WARN_ON_ONCE(!(inode->i_state & I_CLEAR));
220 		wb_put(inode->i_wb);
221 		inode->i_wb = NULL;
222 	}
223 }
224 
225 /**
226  * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite
227  * @wbc: writeback_control of interest
228  * @inode: target inode
229  *
230  * This function is to be used by __filemap_fdatawrite_range(), which is an
231  * alternative entry point into writeback code, and first ensures @inode is
232  * associated with a bdi_writeback and attaches it to @wbc.
233  */
234 static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
235 					       struct inode *inode)
236 {
237 	spin_lock(&inode->i_lock);
238 	inode_attach_wb(inode, NULL);
239 	wbc_attach_and_unlock_inode(wbc, inode);
240 }
241 
242 /**
243  * wbc_init_bio - writeback specific initializtion of bio
244  * @wbc: writeback_control for the writeback in progress
245  * @bio: bio to be initialized
246  *
247  * @bio is a part of the writeback in progress controlled by @wbc.  Perform
248  * writeback specific initialization.  This is used to apply the cgroup
249  * writeback context.  Must be called after the bio has been associated with
250  * a device.
251  */
252 static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio)
253 {
254 	/*
255 	 * pageout() path doesn't attach @wbc to the inode being written
256 	 * out.  This is intentional as we don't want the function to block
257 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
258 	 * regular writeback instead of writing things out itself.
259 	 */
260 	if (wbc->wb)
261 		bio_associate_blkg_from_css(bio, wbc->wb->blkcg_css);
262 }
263 
264 #else	/* CONFIG_CGROUP_WRITEBACK */
265 
266 static inline void inode_attach_wb(struct inode *inode, struct page *page)
267 {
268 }
269 
270 static inline void inode_detach_wb(struct inode *inode)
271 {
272 }
273 
274 static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
275 					       struct inode *inode)
276 	__releases(&inode->i_lock)
277 {
278 	spin_unlock(&inode->i_lock);
279 }
280 
281 static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
282 					       struct inode *inode)
283 {
284 }
285 
286 static inline void wbc_detach_inode(struct writeback_control *wbc)
287 {
288 }
289 
290 static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio)
291 {
292 }
293 
294 static inline void wbc_account_io(struct writeback_control *wbc,
295 				  struct page *page, size_t bytes)
296 {
297 }
298 
299 static inline void cgroup_writeback_umount(void)
300 {
301 }
302 
303 #endif	/* CONFIG_CGROUP_WRITEBACK */
304 
305 /*
306  * mm/page-writeback.c
307  */
308 #ifdef CONFIG_BLOCK
309 void laptop_io_completion(struct backing_dev_info *info);
310 void laptop_sync_completion(void);
311 void laptop_mode_sync(struct work_struct *work);
312 void laptop_mode_timer_fn(struct timer_list *t);
313 #else
314 static inline void laptop_sync_completion(void) { }
315 #endif
316 bool node_dirty_ok(struct pglist_data *pgdat);
317 int wb_domain_init(struct wb_domain *dom, gfp_t gfp);
318 #ifdef CONFIG_CGROUP_WRITEBACK
319 void wb_domain_exit(struct wb_domain *dom);
320 #endif
321 
322 extern struct wb_domain global_wb_domain;
323 
324 /* These are exported to sysctl. */
325 extern int dirty_background_ratio;
326 extern unsigned long dirty_background_bytes;
327 extern int vm_dirty_ratio;
328 extern unsigned long vm_dirty_bytes;
329 extern unsigned int dirty_writeback_interval;
330 extern unsigned int dirty_expire_interval;
331 extern unsigned int dirtytime_expire_interval;
332 extern int vm_highmem_is_dirtyable;
333 extern int block_dump;
334 extern int laptop_mode;
335 
336 extern int dirty_background_ratio_handler(struct ctl_table *table, int write,
337 		void __user *buffer, size_t *lenp,
338 		loff_t *ppos);
339 extern int dirty_background_bytes_handler(struct ctl_table *table, int write,
340 		void __user *buffer, size_t *lenp,
341 		loff_t *ppos);
342 extern int dirty_ratio_handler(struct ctl_table *table, int write,
343 		void __user *buffer, size_t *lenp,
344 		loff_t *ppos);
345 extern int dirty_bytes_handler(struct ctl_table *table, int write,
346 		void __user *buffer, size_t *lenp,
347 		loff_t *ppos);
348 int dirtytime_interval_handler(struct ctl_table *table, int write,
349 			       void __user *buffer, size_t *lenp, loff_t *ppos);
350 
351 struct ctl_table;
352 int dirty_writeback_centisecs_handler(struct ctl_table *, int,
353 				      void __user *, size_t *, loff_t *);
354 
355 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty);
356 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh);
357 
358 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time);
359 void balance_dirty_pages_ratelimited(struct address_space *mapping);
360 bool wb_over_bg_thresh(struct bdi_writeback *wb);
361 
362 typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
363 				void *data);
364 
365 int generic_writepages(struct address_space *mapping,
366 		       struct writeback_control *wbc);
367 void tag_pages_for_writeback(struct address_space *mapping,
368 			     pgoff_t start, pgoff_t end);
369 int write_cache_pages(struct address_space *mapping,
370 		      struct writeback_control *wbc, writepage_t writepage,
371 		      void *data);
372 int do_writepages(struct address_space *mapping, struct writeback_control *wbc);
373 void writeback_set_ratelimit(void);
374 void tag_pages_for_writeback(struct address_space *mapping,
375 			     pgoff_t start, pgoff_t end);
376 
377 void account_page_redirty(struct page *page);
378 
379 void sb_mark_inode_writeback(struct inode *inode);
380 void sb_clear_inode_writeback(struct inode *inode);
381 
382 #endif		/* WRITEBACK_H */
383