xref: /openbmc/linux/include/linux/usb/gadget.h (revision d894fc60)
1 /*
2  * <linux/usb/gadget.h>
3  *
4  * We call the USB code inside a Linux-based peripheral device a "gadget"
5  * driver, except for the hardware-specific bus glue.  One USB host can
6  * master many USB gadgets, but the gadgets are only slaved to one host.
7  *
8  *
9  * (C) Copyright 2002-2004 by David Brownell
10  * All Rights Reserved.
11  *
12  * This software is licensed under the GNU GPL version 2.
13  */
14 
15 #ifndef __LINUX_USB_GADGET_H
16 #define __LINUX_USB_GADGET_H
17 
18 #include <linux/device.h>
19 #include <linux/errno.h>
20 #include <linux/init.h>
21 #include <linux/list.h>
22 #include <linux/slab.h>
23 #include <linux/scatterlist.h>
24 #include <linux/types.h>
25 #include <linux/workqueue.h>
26 #include <linux/usb/ch9.h>
27 
28 struct usb_ep;
29 
30 /**
31  * struct usb_request - describes one i/o request
32  * @buf: Buffer used for data.  Always provide this; some controllers
33  *	only use PIO, or don't use DMA for some endpoints.
34  * @dma: DMA address corresponding to 'buf'.  If you don't set this
35  *	field, and the usb controller needs one, it is responsible
36  *	for mapping and unmapping the buffer.
37  * @sg: a scatterlist for SG-capable controllers.
38  * @num_sgs: number of SG entries
39  * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
40  * @length: Length of that data
41  * @stream_id: The stream id, when USB3.0 bulk streams are being used
42  * @no_interrupt: If true, hints that no completion irq is needed.
43  *	Helpful sometimes with deep request queues that are handled
44  *	directly by DMA controllers.
45  * @zero: If true, when writing data, makes the last packet be "short"
46  *     by adding a zero length packet as needed;
47  * @short_not_ok: When reading data, makes short packets be
48  *     treated as errors (queue stops advancing till cleanup).
49  * @complete: Function called when request completes, so this request and
50  *	its buffer may be re-used.  The function will always be called with
51  *	interrupts disabled, and it must not sleep.
52  *	Reads terminate with a short packet, or when the buffer fills,
53  *	whichever comes first.  When writes terminate, some data bytes
54  *	will usually still be in flight (often in a hardware fifo).
55  *	Errors (for reads or writes) stop the queue from advancing
56  *	until the completion function returns, so that any transfers
57  *	invalidated by the error may first be dequeued.
58  * @context: For use by the completion callback
59  * @list: For use by the gadget driver.
60  * @status: Reports completion code, zero or a negative errno.
61  *	Normally, faults block the transfer queue from advancing until
62  *	the completion callback returns.
63  *	Code "-ESHUTDOWN" indicates completion caused by device disconnect,
64  *	or when the driver disabled the endpoint.
65  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
66  *	transfers) this may be less than the requested length.  If the
67  *	short_not_ok flag is set, short reads are treated as errors
68  *	even when status otherwise indicates successful completion.
69  *	Note that for writes (IN transfers) some data bytes may still
70  *	reside in a device-side FIFO when the request is reported as
71  *	complete.
72  *
73  * These are allocated/freed through the endpoint they're used with.  The
74  * hardware's driver can add extra per-request data to the memory it returns,
75  * which often avoids separate memory allocations (potential failures),
76  * later when the request is queued.
77  *
78  * Request flags affect request handling, such as whether a zero length
79  * packet is written (the "zero" flag), whether a short read should be
80  * treated as an error (blocking request queue advance, the "short_not_ok"
81  * flag), or hinting that an interrupt is not required (the "no_interrupt"
82  * flag, for use with deep request queues).
83  *
84  * Bulk endpoints can use any size buffers, and can also be used for interrupt
85  * transfers. interrupt-only endpoints can be much less functional.
86  *
87  * NOTE:  this is analogous to 'struct urb' on the host side, except that
88  * it's thinner and promotes more pre-allocation.
89  */
90 
91 struct usb_request {
92 	void			*buf;
93 	unsigned		length;
94 	dma_addr_t		dma;
95 
96 	struct scatterlist	*sg;
97 	unsigned		num_sgs;
98 	unsigned		num_mapped_sgs;
99 
100 	unsigned		stream_id:16;
101 	unsigned		no_interrupt:1;
102 	unsigned		zero:1;
103 	unsigned		short_not_ok:1;
104 
105 	void			(*complete)(struct usb_ep *ep,
106 					struct usb_request *req);
107 	void			*context;
108 	struct list_head	list;
109 
110 	int			status;
111 	unsigned		actual;
112 };
113 
114 /*-------------------------------------------------------------------------*/
115 
116 /* endpoint-specific parts of the api to the usb controller hardware.
117  * unlike the urb model, (de)multiplexing layers are not required.
118  * (so this api could slash overhead if used on the host side...)
119  *
120  * note that device side usb controllers commonly differ in how many
121  * endpoints they support, as well as their capabilities.
122  */
123 struct usb_ep_ops {
124 	int (*enable) (struct usb_ep *ep,
125 		const struct usb_endpoint_descriptor *desc);
126 	int (*disable) (struct usb_ep *ep);
127 
128 	struct usb_request *(*alloc_request) (struct usb_ep *ep,
129 		gfp_t gfp_flags);
130 	void (*free_request) (struct usb_ep *ep, struct usb_request *req);
131 
132 	int (*queue) (struct usb_ep *ep, struct usb_request *req,
133 		gfp_t gfp_flags);
134 	int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
135 
136 	int (*set_halt) (struct usb_ep *ep, int value);
137 	int (*set_wedge) (struct usb_ep *ep);
138 
139 	int (*fifo_status) (struct usb_ep *ep);
140 	void (*fifo_flush) (struct usb_ep *ep);
141 };
142 
143 /**
144  * struct usb_ep - device side representation of USB endpoint
145  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
146  * @ops: Function pointers used to access hardware-specific operations.
147  * @ep_list:the gadget's ep_list holds all of its endpoints
148  * @maxpacket:The maximum packet size used on this endpoint.  The initial
149  *	value can sometimes be reduced (hardware allowing), according to
150  *      the endpoint descriptor used to configure the endpoint.
151  * @maxpacket_limit:The maximum packet size value which can be handled by this
152  *	endpoint. It's set once by UDC driver when endpoint is initialized, and
153  *	should not be changed. Should not be confused with maxpacket.
154  * @max_streams: The maximum number of streams supported
155  *	by this EP (0 - 16, actual number is 2^n)
156  * @mult: multiplier, 'mult' value for SS Isoc EPs
157  * @maxburst: the maximum number of bursts supported by this EP (for usb3)
158  * @driver_data:for use by the gadget driver.
159  * @address: used to identify the endpoint when finding descriptor that
160  *	matches connection speed
161  * @desc: endpoint descriptor.  This pointer is set before the endpoint is
162  *	enabled and remains valid until the endpoint is disabled.
163  * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
164  *	descriptor that is used to configure the endpoint
165  *
166  * the bus controller driver lists all the general purpose endpoints in
167  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
168  * and is accessed only in response to a driver setup() callback.
169  */
170 struct usb_ep {
171 	void			*driver_data;
172 
173 	const char		*name;
174 	const struct usb_ep_ops	*ops;
175 	struct list_head	ep_list;
176 	unsigned		maxpacket:16;
177 	unsigned		maxpacket_limit:16;
178 	unsigned		max_streams:16;
179 	unsigned		mult:2;
180 	unsigned		maxburst:5;
181 	u8			address;
182 	const struct usb_endpoint_descriptor	*desc;
183 	const struct usb_ss_ep_comp_descriptor	*comp_desc;
184 };
185 
186 /*-------------------------------------------------------------------------*/
187 
188 /**
189  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
190  * @ep:the endpoint being configured
191  * @maxpacket_limit:value of maximum packet size limit
192  *
193  * This function shoud be used only in UDC drivers to initialize endpoint
194  * (usually in probe function).
195  */
196 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
197 					      unsigned maxpacket_limit)
198 {
199 	ep->maxpacket_limit = maxpacket_limit;
200 	ep->maxpacket = maxpacket_limit;
201 }
202 
203 /**
204  * usb_ep_enable - configure endpoint, making it usable
205  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
206  *	drivers discover endpoints through the ep_list of a usb_gadget.
207  *
208  * When configurations are set, or when interface settings change, the driver
209  * will enable or disable the relevant endpoints.  while it is enabled, an
210  * endpoint may be used for i/o until the driver receives a disconnect() from
211  * the host or until the endpoint is disabled.
212  *
213  * the ep0 implementation (which calls this routine) must ensure that the
214  * hardware capabilities of each endpoint match the descriptor provided
215  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
216  * for interrupt transfers as well as bulk, but it likely couldn't be used
217  * for iso transfers or for endpoint 14.  some endpoints are fully
218  * configurable, with more generic names like "ep-a".  (remember that for
219  * USB, "in" means "towards the USB master".)
220  *
221  * returns zero, or a negative error code.
222  */
223 static inline int usb_ep_enable(struct usb_ep *ep)
224 {
225 	return ep->ops->enable(ep, ep->desc);
226 }
227 
228 /**
229  * usb_ep_disable - endpoint is no longer usable
230  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
231  *
232  * no other task may be using this endpoint when this is called.
233  * any pending and uncompleted requests will complete with status
234  * indicating disconnect (-ESHUTDOWN) before this call returns.
235  * gadget drivers must call usb_ep_enable() again before queueing
236  * requests to the endpoint.
237  *
238  * returns zero, or a negative error code.
239  */
240 static inline int usb_ep_disable(struct usb_ep *ep)
241 {
242 	return ep->ops->disable(ep);
243 }
244 
245 /**
246  * usb_ep_alloc_request - allocate a request object to use with this endpoint
247  * @ep:the endpoint to be used with with the request
248  * @gfp_flags:GFP_* flags to use
249  *
250  * Request objects must be allocated with this call, since they normally
251  * need controller-specific setup and may even need endpoint-specific
252  * resources such as allocation of DMA descriptors.
253  * Requests may be submitted with usb_ep_queue(), and receive a single
254  * completion callback.  Free requests with usb_ep_free_request(), when
255  * they are no longer needed.
256  *
257  * Returns the request, or null if one could not be allocated.
258  */
259 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
260 						       gfp_t gfp_flags)
261 {
262 	return ep->ops->alloc_request(ep, gfp_flags);
263 }
264 
265 /**
266  * usb_ep_free_request - frees a request object
267  * @ep:the endpoint associated with the request
268  * @req:the request being freed
269  *
270  * Reverses the effect of usb_ep_alloc_request().
271  * Caller guarantees the request is not queued, and that it will
272  * no longer be requeued (or otherwise used).
273  */
274 static inline void usb_ep_free_request(struct usb_ep *ep,
275 				       struct usb_request *req)
276 {
277 	ep->ops->free_request(ep, req);
278 }
279 
280 /**
281  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
282  * @ep:the endpoint associated with the request
283  * @req:the request being submitted
284  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
285  *	pre-allocate all necessary memory with the request.
286  *
287  * This tells the device controller to perform the specified request through
288  * that endpoint (reading or writing a buffer).  When the request completes,
289  * including being canceled by usb_ep_dequeue(), the request's completion
290  * routine is called to return the request to the driver.  Any endpoint
291  * (except control endpoints like ep0) may have more than one transfer
292  * request queued; they complete in FIFO order.  Once a gadget driver
293  * submits a request, that request may not be examined or modified until it
294  * is given back to that driver through the completion callback.
295  *
296  * Each request is turned into one or more packets.  The controller driver
297  * never merges adjacent requests into the same packet.  OUT transfers
298  * will sometimes use data that's already buffered in the hardware.
299  * Drivers can rely on the fact that the first byte of the request's buffer
300  * always corresponds to the first byte of some USB packet, for both
301  * IN and OUT transfers.
302  *
303  * Bulk endpoints can queue any amount of data; the transfer is packetized
304  * automatically.  The last packet will be short if the request doesn't fill it
305  * out completely.  Zero length packets (ZLPs) should be avoided in portable
306  * protocols since not all usb hardware can successfully handle zero length
307  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
308  * the request 'zero' flag is set.)  Bulk endpoints may also be used
309  * for interrupt transfers; but the reverse is not true, and some endpoints
310  * won't support every interrupt transfer.  (Such as 768 byte packets.)
311  *
312  * Interrupt-only endpoints are less functional than bulk endpoints, for
313  * example by not supporting queueing or not handling buffers that are
314  * larger than the endpoint's maxpacket size.  They may also treat data
315  * toggle differently.
316  *
317  * Control endpoints ... after getting a setup() callback, the driver queues
318  * one response (even if it would be zero length).  That enables the
319  * status ack, after transferring data as specified in the response.  Setup
320  * functions may return negative error codes to generate protocol stalls.
321  * (Note that some USB device controllers disallow protocol stall responses
322  * in some cases.)  When control responses are deferred (the response is
323  * written after the setup callback returns), then usb_ep_set_halt() may be
324  * used on ep0 to trigger protocol stalls.  Depending on the controller,
325  * it may not be possible to trigger a status-stage protocol stall when the
326  * data stage is over, that is, from within the response's completion
327  * routine.
328  *
329  * For periodic endpoints, like interrupt or isochronous ones, the usb host
330  * arranges to poll once per interval, and the gadget driver usually will
331  * have queued some data to transfer at that time.
332  *
333  * Returns zero, or a negative error code.  Endpoints that are not enabled
334  * report errors; errors will also be
335  * reported when the usb peripheral is disconnected.
336  */
337 static inline int usb_ep_queue(struct usb_ep *ep,
338 			       struct usb_request *req, gfp_t gfp_flags)
339 {
340 	return ep->ops->queue(ep, req, gfp_flags);
341 }
342 
343 /**
344  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
345  * @ep:the endpoint associated with the request
346  * @req:the request being canceled
347  *
348  * If the request is still active on the endpoint, it is dequeued and its
349  * completion routine is called (with status -ECONNRESET); else a negative
350  * error code is returned. This is guaranteed to happen before the call to
351  * usb_ep_dequeue() returns.
352  *
353  * Note that some hardware can't clear out write fifos (to unlink the request
354  * at the head of the queue) except as part of disconnecting from usb. Such
355  * restrictions prevent drivers from supporting configuration changes,
356  * even to configuration zero (a "chapter 9" requirement).
357  */
358 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
359 {
360 	return ep->ops->dequeue(ep, req);
361 }
362 
363 /**
364  * usb_ep_set_halt - sets the endpoint halt feature.
365  * @ep: the non-isochronous endpoint being stalled
366  *
367  * Use this to stall an endpoint, perhaps as an error report.
368  * Except for control endpoints,
369  * the endpoint stays halted (will not stream any data) until the host
370  * clears this feature; drivers may need to empty the endpoint's request
371  * queue first, to make sure no inappropriate transfers happen.
372  *
373  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
374  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
375  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
376  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
377  *
378  * Returns zero, or a negative error code.  On success, this call sets
379  * underlying hardware state that blocks data transfers.
380  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
381  * transfer requests are still queued, or if the controller hardware
382  * (usually a FIFO) still holds bytes that the host hasn't collected.
383  */
384 static inline int usb_ep_set_halt(struct usb_ep *ep)
385 {
386 	return ep->ops->set_halt(ep, 1);
387 }
388 
389 /**
390  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
391  * @ep:the bulk or interrupt endpoint being reset
392  *
393  * Use this when responding to the standard usb "set interface" request,
394  * for endpoints that aren't reconfigured, after clearing any other state
395  * in the endpoint's i/o queue.
396  *
397  * Returns zero, or a negative error code.  On success, this call clears
398  * the underlying hardware state reflecting endpoint halt and data toggle.
399  * Note that some hardware can't support this request (like pxa2xx_udc),
400  * and accordingly can't correctly implement interface altsettings.
401  */
402 static inline int usb_ep_clear_halt(struct usb_ep *ep)
403 {
404 	return ep->ops->set_halt(ep, 0);
405 }
406 
407 /**
408  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
409  * @ep: the endpoint being wedged
410  *
411  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
412  * requests. If the gadget driver clears the halt status, it will
413  * automatically unwedge the endpoint.
414  *
415  * Returns zero on success, else negative errno.
416  */
417 static inline int
418 usb_ep_set_wedge(struct usb_ep *ep)
419 {
420 	if (ep->ops->set_wedge)
421 		return ep->ops->set_wedge(ep);
422 	else
423 		return ep->ops->set_halt(ep, 1);
424 }
425 
426 /**
427  * usb_ep_fifo_status - returns number of bytes in fifo, or error
428  * @ep: the endpoint whose fifo status is being checked.
429  *
430  * FIFO endpoints may have "unclaimed data" in them in certain cases,
431  * such as after aborted transfers.  Hosts may not have collected all
432  * the IN data written by the gadget driver (and reported by a request
433  * completion).  The gadget driver may not have collected all the data
434  * written OUT to it by the host.  Drivers that need precise handling for
435  * fault reporting or recovery may need to use this call.
436  *
437  * This returns the number of such bytes in the fifo, or a negative
438  * errno if the endpoint doesn't use a FIFO or doesn't support such
439  * precise handling.
440  */
441 static inline int usb_ep_fifo_status(struct usb_ep *ep)
442 {
443 	if (ep->ops->fifo_status)
444 		return ep->ops->fifo_status(ep);
445 	else
446 		return -EOPNOTSUPP;
447 }
448 
449 /**
450  * usb_ep_fifo_flush - flushes contents of a fifo
451  * @ep: the endpoint whose fifo is being flushed.
452  *
453  * This call may be used to flush the "unclaimed data" that may exist in
454  * an endpoint fifo after abnormal transaction terminations.  The call
455  * must never be used except when endpoint is not being used for any
456  * protocol translation.
457  */
458 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
459 {
460 	if (ep->ops->fifo_flush)
461 		ep->ops->fifo_flush(ep);
462 }
463 
464 
465 /*-------------------------------------------------------------------------*/
466 
467 struct usb_dcd_config_params {
468 	__u8  bU1devExitLat;	/* U1 Device exit Latency */
469 #define USB_DEFAULT_U1_DEV_EXIT_LAT	0x01	/* Less then 1 microsec */
470 	__le16 bU2DevExitLat;	/* U2 Device exit Latency */
471 #define USB_DEFAULT_U2_DEV_EXIT_LAT	0x1F4	/* Less then 500 microsec */
472 };
473 
474 
475 struct usb_gadget;
476 struct usb_gadget_driver;
477 
478 /* the rest of the api to the controller hardware: device operations,
479  * which don't involve endpoints (or i/o).
480  */
481 struct usb_gadget_ops {
482 	int	(*get_frame)(struct usb_gadget *);
483 	int	(*wakeup)(struct usb_gadget *);
484 	int	(*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
485 	int	(*vbus_session) (struct usb_gadget *, int is_active);
486 	int	(*vbus_draw) (struct usb_gadget *, unsigned mA);
487 	int	(*pullup) (struct usb_gadget *, int is_on);
488 	int	(*ioctl)(struct usb_gadget *,
489 				unsigned code, unsigned long param);
490 	void	(*get_config_params)(struct usb_dcd_config_params *);
491 	int	(*udc_start)(struct usb_gadget *,
492 			struct usb_gadget_driver *);
493 	int	(*udc_stop)(struct usb_gadget *);
494 };
495 
496 /**
497  * struct usb_gadget - represents a usb slave device
498  * @work: (internal use) Workqueue to be used for sysfs_notify()
499  * @ops: Function pointers used to access hardware-specific operations.
500  * @ep0: Endpoint zero, used when reading or writing responses to
501  *	driver setup() requests
502  * @ep_list: List of other endpoints supported by the device.
503  * @speed: Speed of current connection to USB host.
504  * @max_speed: Maximal speed the UDC can handle.  UDC must support this
505  *      and all slower speeds.
506  * @state: the state we are now (attached, suspended, configured, etc)
507  * @name: Identifies the controller hardware type.  Used in diagnostics
508  *	and sometimes configuration.
509  * @dev: Driver model state for this abstract device.
510  * @out_epnum: last used out ep number
511  * @in_epnum: last used in ep number
512  * @sg_supported: true if we can handle scatter-gather
513  * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
514  *	gadget driver must provide a USB OTG descriptor.
515  * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
516  *	is in the Mini-AB jack, and HNP has been used to switch roles
517  *	so that the "A" device currently acts as A-Peripheral, not A-Host.
518  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
519  *	supports HNP at this port.
520  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
521  *	only supports HNP on a different root port.
522  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
523  *	enabled HNP support.
524  * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
525  *	MaxPacketSize.
526  * @is_selfpowered: if the gadget is self-powered.
527  *
528  * Gadgets have a mostly-portable "gadget driver" implementing device
529  * functions, handling all usb configurations and interfaces.  Gadget
530  * drivers talk to hardware-specific code indirectly, through ops vectors.
531  * That insulates the gadget driver from hardware details, and packages
532  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
533  * and "usb_ep" interfaces provide that insulation from the hardware.
534  *
535  * Except for the driver data, all fields in this structure are
536  * read-only to the gadget driver.  That driver data is part of the
537  * "driver model" infrastructure in 2.6 (and later) kernels, and for
538  * earlier systems is grouped in a similar structure that's not known
539  * to the rest of the kernel.
540  *
541  * Values of the three OTG device feature flags are updated before the
542  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
543  * driver suspend() calls.  They are valid only when is_otg, and when the
544  * device is acting as a B-Peripheral (so is_a_peripheral is false).
545  */
546 struct usb_gadget {
547 	struct work_struct		work;
548 	/* readonly to gadget driver */
549 	const struct usb_gadget_ops	*ops;
550 	struct usb_ep			*ep0;
551 	struct list_head		ep_list;	/* of usb_ep */
552 	enum usb_device_speed		speed;
553 	enum usb_device_speed		max_speed;
554 	enum usb_device_state		state;
555 	const char			*name;
556 	struct device			dev;
557 	unsigned			out_epnum;
558 	unsigned			in_epnum;
559 
560 	unsigned			sg_supported:1;
561 	unsigned			is_otg:1;
562 	unsigned			is_a_peripheral:1;
563 	unsigned			b_hnp_enable:1;
564 	unsigned			a_hnp_support:1;
565 	unsigned			a_alt_hnp_support:1;
566 	unsigned			quirk_ep_out_aligned_size:1;
567 	unsigned			is_selfpowered:1;
568 };
569 #define work_to_gadget(w)	(container_of((w), struct usb_gadget, work))
570 
571 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
572 	{ dev_set_drvdata(&gadget->dev, data); }
573 static inline void *get_gadget_data(struct usb_gadget *gadget)
574 	{ return dev_get_drvdata(&gadget->dev); }
575 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
576 {
577 	return container_of(dev, struct usb_gadget, dev);
578 }
579 
580 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
581 #define gadget_for_each_ep(tmp, gadget) \
582 	list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
583 
584 
585 /**
586  * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
587  *	requires quirk_ep_out_aligned_size, otherwise reguens len.
588  * @g: controller to check for quirk
589  * @ep: the endpoint whose maxpacketsize is used to align @len
590  * @len: buffer size's length to align to @ep's maxpacketsize
591  *
592  * This helper is used in case it's required for any reason to check and maybe
593  * align buffer's size to an ep's maxpacketsize.
594  */
595 static inline size_t
596 usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
597 {
598 	return !g->quirk_ep_out_aligned_size ? len :
599 			round_up(len, (size_t)ep->desc->wMaxPacketSize);
600 }
601 
602 /**
603  * gadget_is_dualspeed - return true iff the hardware handles high speed
604  * @g: controller that might support both high and full speeds
605  */
606 static inline int gadget_is_dualspeed(struct usb_gadget *g)
607 {
608 	return g->max_speed >= USB_SPEED_HIGH;
609 }
610 
611 /**
612  * gadget_is_superspeed() - return true if the hardware handles superspeed
613  * @g: controller that might support superspeed
614  */
615 static inline int gadget_is_superspeed(struct usb_gadget *g)
616 {
617 	return g->max_speed >= USB_SPEED_SUPER;
618 }
619 
620 /**
621  * gadget_is_otg - return true iff the hardware is OTG-ready
622  * @g: controller that might have a Mini-AB connector
623  *
624  * This is a runtime test, since kernels with a USB-OTG stack sometimes
625  * run on boards which only have a Mini-B (or Mini-A) connector.
626  */
627 static inline int gadget_is_otg(struct usb_gadget *g)
628 {
629 #ifdef CONFIG_USB_OTG
630 	return g->is_otg;
631 #else
632 	return 0;
633 #endif
634 }
635 
636 /**
637  * usb_gadget_frame_number - returns the current frame number
638  * @gadget: controller that reports the frame number
639  *
640  * Returns the usb frame number, normally eleven bits from a SOF packet,
641  * or negative errno if this device doesn't support this capability.
642  */
643 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
644 {
645 	return gadget->ops->get_frame(gadget);
646 }
647 
648 /**
649  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
650  * @gadget: controller used to wake up the host
651  *
652  * Returns zero on success, else negative error code if the hardware
653  * doesn't support such attempts, or its support has not been enabled
654  * by the usb host.  Drivers must return device descriptors that report
655  * their ability to support this, or hosts won't enable it.
656  *
657  * This may also try to use SRP to wake the host and start enumeration,
658  * even if OTG isn't otherwise in use.  OTG devices may also start
659  * remote wakeup even when hosts don't explicitly enable it.
660  */
661 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
662 {
663 	if (!gadget->ops->wakeup)
664 		return -EOPNOTSUPP;
665 	return gadget->ops->wakeup(gadget);
666 }
667 
668 /**
669  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
670  * @gadget:the device being declared as self-powered
671  *
672  * this affects the device status reported by the hardware driver
673  * to reflect that it now has a local power supply.
674  *
675  * returns zero on success, else negative errno.
676  */
677 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
678 {
679 	if (!gadget->ops->set_selfpowered)
680 		return -EOPNOTSUPP;
681 	return gadget->ops->set_selfpowered(gadget, 1);
682 }
683 
684 /**
685  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
686  * @gadget:the device being declared as bus-powered
687  *
688  * this affects the device status reported by the hardware driver.
689  * some hardware may not support bus-powered operation, in which
690  * case this feature's value can never change.
691  *
692  * returns zero on success, else negative errno.
693  */
694 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
695 {
696 	if (!gadget->ops->set_selfpowered)
697 		return -EOPNOTSUPP;
698 	return gadget->ops->set_selfpowered(gadget, 0);
699 }
700 
701 /**
702  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
703  * @gadget:The device which now has VBUS power.
704  * Context: can sleep
705  *
706  * This call is used by a driver for an external transceiver (or GPIO)
707  * that detects a VBUS power session starting.  Common responses include
708  * resuming the controller, activating the D+ (or D-) pullup to let the
709  * host detect that a USB device is attached, and starting to draw power
710  * (8mA or possibly more, especially after SET_CONFIGURATION).
711  *
712  * Returns zero on success, else negative errno.
713  */
714 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
715 {
716 	if (!gadget->ops->vbus_session)
717 		return -EOPNOTSUPP;
718 	return gadget->ops->vbus_session(gadget, 1);
719 }
720 
721 /**
722  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
723  * @gadget:The device whose VBUS usage is being described
724  * @mA:How much current to draw, in milliAmperes.  This should be twice
725  *	the value listed in the configuration descriptor bMaxPower field.
726  *
727  * This call is used by gadget drivers during SET_CONFIGURATION calls,
728  * reporting how much power the device may consume.  For example, this
729  * could affect how quickly batteries are recharged.
730  *
731  * Returns zero on success, else negative errno.
732  */
733 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
734 {
735 	if (!gadget->ops->vbus_draw)
736 		return -EOPNOTSUPP;
737 	return gadget->ops->vbus_draw(gadget, mA);
738 }
739 
740 /**
741  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
742  * @gadget:the device whose VBUS supply is being described
743  * Context: can sleep
744  *
745  * This call is used by a driver for an external transceiver (or GPIO)
746  * that detects a VBUS power session ending.  Common responses include
747  * reversing everything done in usb_gadget_vbus_connect().
748  *
749  * Returns zero on success, else negative errno.
750  */
751 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
752 {
753 	if (!gadget->ops->vbus_session)
754 		return -EOPNOTSUPP;
755 	return gadget->ops->vbus_session(gadget, 0);
756 }
757 
758 /**
759  * usb_gadget_connect - software-controlled connect to USB host
760  * @gadget:the peripheral being connected
761  *
762  * Enables the D+ (or potentially D-) pullup.  The host will start
763  * enumerating this gadget when the pullup is active and a VBUS session
764  * is active (the link is powered).  This pullup is always enabled unless
765  * usb_gadget_disconnect() has been used to disable it.
766  *
767  * Returns zero on success, else negative errno.
768  */
769 static inline int usb_gadget_connect(struct usb_gadget *gadget)
770 {
771 	if (!gadget->ops->pullup)
772 		return -EOPNOTSUPP;
773 	return gadget->ops->pullup(gadget, 1);
774 }
775 
776 /**
777  * usb_gadget_disconnect - software-controlled disconnect from USB host
778  * @gadget:the peripheral being disconnected
779  *
780  * Disables the D+ (or potentially D-) pullup, which the host may see
781  * as a disconnect (when a VBUS session is active).  Not all systems
782  * support software pullup controls.
783  *
784  * This routine may be used during the gadget driver bind() call to prevent
785  * the peripheral from ever being visible to the USB host, unless later
786  * usb_gadget_connect() is called.  For example, user mode components may
787  * need to be activated before the system can talk to hosts.
788  *
789  * Returns zero on success, else negative errno.
790  */
791 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
792 {
793 	if (!gadget->ops->pullup)
794 		return -EOPNOTSUPP;
795 	return gadget->ops->pullup(gadget, 0);
796 }
797 
798 
799 /*-------------------------------------------------------------------------*/
800 
801 /**
802  * struct usb_gadget_driver - driver for usb 'slave' devices
803  * @function: String describing the gadget's function
804  * @max_speed: Highest speed the driver handles.
805  * @setup: Invoked for ep0 control requests that aren't handled by
806  *	the hardware level driver. Most calls must be handled by
807  *	the gadget driver, including descriptor and configuration
808  *	management.  The 16 bit members of the setup data are in
809  *	USB byte order. Called in_interrupt; this may not sleep.  Driver
810  *	queues a response to ep0, or returns negative to stall.
811  * @disconnect: Invoked after all transfers have been stopped,
812  *	when the host is disconnected.  May be called in_interrupt; this
813  *	may not sleep.  Some devices can't detect disconnect, so this might
814  *	not be called except as part of controller shutdown.
815  * @bind: the driver's bind callback
816  * @unbind: Invoked when the driver is unbound from a gadget,
817  *	usually from rmmod (after a disconnect is reported).
818  *	Called in a context that permits sleeping.
819  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
820  * @resume: Invoked on USB resume.  May be called in_interrupt.
821  * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
822  *	and should be called in_interrupt.
823  * @driver: Driver model state for this driver.
824  *
825  * Devices are disabled till a gadget driver successfully bind()s, which
826  * means the driver will handle setup() requests needed to enumerate (and
827  * meet "chapter 9" requirements) then do some useful work.
828  *
829  * If gadget->is_otg is true, the gadget driver must provide an OTG
830  * descriptor during enumeration, or else fail the bind() call.  In such
831  * cases, no USB traffic may flow until both bind() returns without
832  * having called usb_gadget_disconnect(), and the USB host stack has
833  * initialized.
834  *
835  * Drivers use hardware-specific knowledge to configure the usb hardware.
836  * endpoint addressing is only one of several hardware characteristics that
837  * are in descriptors the ep0 implementation returns from setup() calls.
838  *
839  * Except for ep0 implementation, most driver code shouldn't need change to
840  * run on top of different usb controllers.  It'll use endpoints set up by
841  * that ep0 implementation.
842  *
843  * The usb controller driver handles a few standard usb requests.  Those
844  * include set_address, and feature flags for devices, interfaces, and
845  * endpoints (the get_status, set_feature, and clear_feature requests).
846  *
847  * Accordingly, the driver's setup() callback must always implement all
848  * get_descriptor requests, returning at least a device descriptor and
849  * a configuration descriptor.  Drivers must make sure the endpoint
850  * descriptors match any hardware constraints. Some hardware also constrains
851  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
852  *
853  * The driver's setup() callback must also implement set_configuration,
854  * and should also implement set_interface, get_configuration, and
855  * get_interface.  Setting a configuration (or interface) is where
856  * endpoints should be activated or (config 0) shut down.
857  *
858  * (Note that only the default control endpoint is supported.  Neither
859  * hosts nor devices generally support control traffic except to ep0.)
860  *
861  * Most devices will ignore USB suspend/resume operations, and so will
862  * not provide those callbacks.  However, some may need to change modes
863  * when the host is not longer directing those activities.  For example,
864  * local controls (buttons, dials, etc) may need to be re-enabled since
865  * the (remote) host can't do that any longer; or an error state might
866  * be cleared, to make the device behave identically whether or not
867  * power is maintained.
868  */
869 struct usb_gadget_driver {
870 	char			*function;
871 	enum usb_device_speed	max_speed;
872 	int			(*bind)(struct usb_gadget *gadget,
873 					struct usb_gadget_driver *driver);
874 	void			(*unbind)(struct usb_gadget *);
875 	int			(*setup)(struct usb_gadget *,
876 					const struct usb_ctrlrequest *);
877 	void			(*disconnect)(struct usb_gadget *);
878 	void			(*suspend)(struct usb_gadget *);
879 	void			(*resume)(struct usb_gadget *);
880 	void			(*reset)(struct usb_gadget *);
881 
882 	/* FIXME support safe rmmod */
883 	struct device_driver	driver;
884 };
885 
886 
887 
888 /*-------------------------------------------------------------------------*/
889 
890 /* driver modules register and unregister, as usual.
891  * these calls must be made in a context that can sleep.
892  *
893  * these will usually be implemented directly by the hardware-dependent
894  * usb bus interface driver, which will only support a single driver.
895  */
896 
897 /**
898  * usb_gadget_probe_driver - probe a gadget driver
899  * @driver: the driver being registered
900  * Context: can sleep
901  *
902  * Call this in your gadget driver's module initialization function,
903  * to tell the underlying usb controller driver about your driver.
904  * The @bind() function will be called to bind it to a gadget before this
905  * registration call returns.  It's expected that the @bind() function will
906  * be in init sections.
907  */
908 int usb_gadget_probe_driver(struct usb_gadget_driver *driver);
909 
910 /**
911  * usb_gadget_unregister_driver - unregister a gadget driver
912  * @driver:the driver being unregistered
913  * Context: can sleep
914  *
915  * Call this in your gadget driver's module cleanup function,
916  * to tell the underlying usb controller that your driver is
917  * going away.  If the controller is connected to a USB host,
918  * it will first disconnect().  The driver is also requested
919  * to unbind() and clean up any device state, before this procedure
920  * finally returns.  It's expected that the unbind() functions
921  * will in in exit sections, so may not be linked in some kernels.
922  */
923 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
924 
925 extern int usb_add_gadget_udc_release(struct device *parent,
926 		struct usb_gadget *gadget, void (*release)(struct device *dev));
927 extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
928 extern void usb_del_gadget_udc(struct usb_gadget *gadget);
929 extern int usb_udc_attach_driver(const char *name,
930 		struct usb_gadget_driver *driver);
931 
932 /*-------------------------------------------------------------------------*/
933 
934 /* utility to simplify dealing with string descriptors */
935 
936 /**
937  * struct usb_string - wraps a C string and its USB id
938  * @id:the (nonzero) ID for this string
939  * @s:the string, in UTF-8 encoding
940  *
941  * If you're using usb_gadget_get_string(), use this to wrap a string
942  * together with its ID.
943  */
944 struct usb_string {
945 	u8			id;
946 	const char		*s;
947 };
948 
949 /**
950  * struct usb_gadget_strings - a set of USB strings in a given language
951  * @language:identifies the strings' language (0x0409 for en-us)
952  * @strings:array of strings with their ids
953  *
954  * If you're using usb_gadget_get_string(), use this to wrap all the
955  * strings for a given language.
956  */
957 struct usb_gadget_strings {
958 	u16			language;	/* 0x0409 for en-us */
959 	struct usb_string	*strings;
960 };
961 
962 struct usb_gadget_string_container {
963 	struct list_head        list;
964 	u8                      *stash[0];
965 };
966 
967 /* put descriptor for string with that id into buf (buflen >= 256) */
968 int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
969 
970 /*-------------------------------------------------------------------------*/
971 
972 /* utility to simplify managing config descriptors */
973 
974 /* write vector of descriptors into buffer */
975 int usb_descriptor_fillbuf(void *, unsigned,
976 		const struct usb_descriptor_header **);
977 
978 /* build config descriptor from single descriptor vector */
979 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
980 	void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
981 
982 /* copy a NULL-terminated vector of descriptors */
983 struct usb_descriptor_header **usb_copy_descriptors(
984 		struct usb_descriptor_header **);
985 
986 /**
987  * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
988  * @v: vector of descriptors
989  */
990 static inline void usb_free_descriptors(struct usb_descriptor_header **v)
991 {
992 	kfree(v);
993 }
994 
995 struct usb_function;
996 int usb_assign_descriptors(struct usb_function *f,
997 		struct usb_descriptor_header **fs,
998 		struct usb_descriptor_header **hs,
999 		struct usb_descriptor_header **ss);
1000 void usb_free_all_descriptors(struct usb_function *f);
1001 
1002 /*-------------------------------------------------------------------------*/
1003 
1004 /* utility to simplify map/unmap of usb_requests to/from DMA */
1005 
1006 extern int usb_gadget_map_request(struct usb_gadget *gadget,
1007 		struct usb_request *req, int is_in);
1008 
1009 extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
1010 		struct usb_request *req, int is_in);
1011 
1012 /*-------------------------------------------------------------------------*/
1013 
1014 /* utility to set gadget state properly */
1015 
1016 extern void usb_gadget_set_state(struct usb_gadget *gadget,
1017 		enum usb_device_state state);
1018 
1019 /*-------------------------------------------------------------------------*/
1020 
1021 /* utility to tell udc core that the bus reset occurs */
1022 extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
1023 		struct usb_gadget_driver *driver);
1024 
1025 /*-------------------------------------------------------------------------*/
1026 
1027 /* utility to give requests back to the gadget layer */
1028 
1029 extern void usb_gadget_giveback_request(struct usb_ep *ep,
1030 		struct usb_request *req);
1031 
1032 
1033 /*-------------------------------------------------------------------------*/
1034 
1035 /* utility wrapping a simple endpoint selection policy */
1036 
1037 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
1038 			struct usb_endpoint_descriptor *);
1039 
1040 
1041 extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
1042 			struct usb_endpoint_descriptor *,
1043 			struct usb_ss_ep_comp_descriptor *);
1044 
1045 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
1046 
1047 #endif /* __LINUX_USB_GADGET_H */
1048