1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_UACCESS_H__ 3 #define __LINUX_UACCESS_H__ 4 5 #include <linux/fault-inject-usercopy.h> 6 #include <linux/instrumented.h> 7 #include <linux/minmax.h> 8 #include <linux/sched.h> 9 #include <linux/thread_info.h> 10 11 #include <asm/uaccess.h> 12 13 /* 14 * Architectures should provide two primitives (raw_copy_{to,from}_user()) 15 * and get rid of their private instances of copy_{to,from}_user() and 16 * __copy_{to,from}_user{,_inatomic}(). 17 * 18 * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and 19 * return the amount left to copy. They should assume that access_ok() has 20 * already been checked (and succeeded); they should *not* zero-pad anything. 21 * No KASAN or object size checks either - those belong here. 22 * 23 * Both of these functions should attempt to copy size bytes starting at from 24 * into the area starting at to. They must not fetch or store anything 25 * outside of those areas. Return value must be between 0 (everything 26 * copied successfully) and size (nothing copied). 27 * 28 * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting 29 * at to must become equal to the bytes fetched from the corresponding area 30 * starting at from. All data past to + size - N must be left unmodified. 31 * 32 * If copying succeeds, the return value must be 0. If some data cannot be 33 * fetched, it is permitted to copy less than had been fetched; the only 34 * hard requirement is that not storing anything at all (i.e. returning size) 35 * should happen only when nothing could be copied. In other words, you don't 36 * have to squeeze as much as possible - it is allowed, but not necessary. 37 * 38 * For raw_copy_from_user() to always points to kernel memory and no faults 39 * on store should happen. Interpretation of from is affected by set_fs(). 40 * For raw_copy_to_user() it's the other way round. 41 * 42 * Both can be inlined - it's up to architectures whether it wants to bother 43 * with that. They should not be used directly; they are used to implement 44 * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic()) 45 * that are used instead. Out of those, __... ones are inlined. Plain 46 * copy_{to,from}_user() might or might not be inlined. If you want them 47 * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER. 48 * 49 * NOTE: only copy_from_user() zero-pads the destination in case of short copy. 50 * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything 51 * at all; their callers absolutely must check the return value. 52 * 53 * Biarch ones should also provide raw_copy_in_user() - similar to the above, 54 * but both source and destination are __user pointers (affected by set_fs() 55 * as usual) and both source and destination can trigger faults. 56 */ 57 58 static __always_inline __must_check unsigned long 59 __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n) 60 { 61 unsigned long res; 62 63 instrument_copy_from_user_before(to, from, n); 64 check_object_size(to, n, false); 65 res = raw_copy_from_user(to, from, n); 66 instrument_copy_from_user_after(to, from, n, res); 67 return res; 68 } 69 70 static __always_inline __must_check unsigned long 71 __copy_from_user(void *to, const void __user *from, unsigned long n) 72 { 73 unsigned long res; 74 75 might_fault(); 76 instrument_copy_from_user_before(to, from, n); 77 if (should_fail_usercopy()) 78 return n; 79 check_object_size(to, n, false); 80 res = raw_copy_from_user(to, from, n); 81 instrument_copy_from_user_after(to, from, n, res); 82 return res; 83 } 84 85 /** 86 * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking. 87 * @to: Destination address, in user space. 88 * @from: Source address, in kernel space. 89 * @n: Number of bytes to copy. 90 * 91 * Context: User context only. 92 * 93 * Copy data from kernel space to user space. Caller must check 94 * the specified block with access_ok() before calling this function. 95 * The caller should also make sure he pins the user space address 96 * so that we don't result in page fault and sleep. 97 */ 98 static __always_inline __must_check unsigned long 99 __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n) 100 { 101 if (should_fail_usercopy()) 102 return n; 103 instrument_copy_to_user(to, from, n); 104 check_object_size(from, n, true); 105 return raw_copy_to_user(to, from, n); 106 } 107 108 static __always_inline __must_check unsigned long 109 __copy_to_user(void __user *to, const void *from, unsigned long n) 110 { 111 might_fault(); 112 if (should_fail_usercopy()) 113 return n; 114 instrument_copy_to_user(to, from, n); 115 check_object_size(from, n, true); 116 return raw_copy_to_user(to, from, n); 117 } 118 119 #ifdef INLINE_COPY_FROM_USER 120 static inline __must_check unsigned long 121 _copy_from_user(void *to, const void __user *from, unsigned long n) 122 { 123 unsigned long res = n; 124 might_fault(); 125 if (!should_fail_usercopy() && likely(access_ok(from, n))) { 126 instrument_copy_from_user_before(to, from, n); 127 res = raw_copy_from_user(to, from, n); 128 instrument_copy_from_user_after(to, from, n, res); 129 } 130 if (unlikely(res)) 131 memset(to + (n - res), 0, res); 132 return res; 133 } 134 #else 135 extern __must_check unsigned long 136 _copy_from_user(void *, const void __user *, unsigned long); 137 #endif 138 139 #ifdef INLINE_COPY_TO_USER 140 static inline __must_check unsigned long 141 _copy_to_user(void __user *to, const void *from, unsigned long n) 142 { 143 might_fault(); 144 if (should_fail_usercopy()) 145 return n; 146 if (access_ok(to, n)) { 147 instrument_copy_to_user(to, from, n); 148 n = raw_copy_to_user(to, from, n); 149 } 150 return n; 151 } 152 #else 153 extern __must_check unsigned long 154 _copy_to_user(void __user *, const void *, unsigned long); 155 #endif 156 157 static __always_inline unsigned long __must_check 158 copy_from_user(void *to, const void __user *from, unsigned long n) 159 { 160 if (check_copy_size(to, n, false)) 161 n = _copy_from_user(to, from, n); 162 return n; 163 } 164 165 static __always_inline unsigned long __must_check 166 copy_to_user(void __user *to, const void *from, unsigned long n) 167 { 168 if (check_copy_size(from, n, true)) 169 n = _copy_to_user(to, from, n); 170 return n; 171 } 172 173 #ifndef copy_mc_to_kernel 174 /* 175 * Without arch opt-in this generic copy_mc_to_kernel() will not handle 176 * #MC (or arch equivalent) during source read. 177 */ 178 static inline unsigned long __must_check 179 copy_mc_to_kernel(void *dst, const void *src, size_t cnt) 180 { 181 memcpy(dst, src, cnt); 182 return 0; 183 } 184 #endif 185 186 static __always_inline void pagefault_disabled_inc(void) 187 { 188 current->pagefault_disabled++; 189 } 190 191 static __always_inline void pagefault_disabled_dec(void) 192 { 193 current->pagefault_disabled--; 194 } 195 196 /* 197 * These routines enable/disable the pagefault handler. If disabled, it will 198 * not take any locks and go straight to the fixup table. 199 * 200 * User access methods will not sleep when called from a pagefault_disabled() 201 * environment. 202 */ 203 static inline void pagefault_disable(void) 204 { 205 pagefault_disabled_inc(); 206 /* 207 * make sure to have issued the store before a pagefault 208 * can hit. 209 */ 210 barrier(); 211 } 212 213 static inline void pagefault_enable(void) 214 { 215 /* 216 * make sure to issue those last loads/stores before enabling 217 * the pagefault handler again. 218 */ 219 barrier(); 220 pagefault_disabled_dec(); 221 } 222 223 /* 224 * Is the pagefault handler disabled? If so, user access methods will not sleep. 225 */ 226 static inline bool pagefault_disabled(void) 227 { 228 return current->pagefault_disabled != 0; 229 } 230 231 /* 232 * The pagefault handler is in general disabled by pagefault_disable() or 233 * when in irq context (via in_atomic()). 234 * 235 * This function should only be used by the fault handlers. Other users should 236 * stick to pagefault_disabled(). 237 * Please NEVER use preempt_disable() to disable the fault handler. With 238 * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled. 239 * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT. 240 */ 241 #define faulthandler_disabled() (pagefault_disabled() || in_atomic()) 242 243 #ifndef CONFIG_ARCH_HAS_SUBPAGE_FAULTS 244 245 /** 246 * probe_subpage_writeable: probe the user range for write faults at sub-page 247 * granularity (e.g. arm64 MTE) 248 * @uaddr: start of address range 249 * @size: size of address range 250 * 251 * Returns 0 on success, the number of bytes not probed on fault. 252 * 253 * It is expected that the caller checked for the write permission of each 254 * page in the range either by put_user() or GUP. The architecture port can 255 * implement a more efficient get_user() probing if the same sub-page faults 256 * are triggered by either a read or a write. 257 */ 258 static inline size_t probe_subpage_writeable(char __user *uaddr, size_t size) 259 { 260 return 0; 261 } 262 263 #endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */ 264 265 #ifndef ARCH_HAS_NOCACHE_UACCESS 266 267 static inline __must_check unsigned long 268 __copy_from_user_inatomic_nocache(void *to, const void __user *from, 269 unsigned long n) 270 { 271 return __copy_from_user_inatomic(to, from, n); 272 } 273 274 #endif /* ARCH_HAS_NOCACHE_UACCESS */ 275 276 extern __must_check int check_zeroed_user(const void __user *from, size_t size); 277 278 /** 279 * copy_struct_from_user: copy a struct from userspace 280 * @dst: Destination address, in kernel space. This buffer must be @ksize 281 * bytes long. 282 * @ksize: Size of @dst struct. 283 * @src: Source address, in userspace. 284 * @usize: (Alleged) size of @src struct. 285 * 286 * Copies a struct from userspace to kernel space, in a way that guarantees 287 * backwards-compatibility for struct syscall arguments (as long as future 288 * struct extensions are made such that all new fields are *appended* to the 289 * old struct, and zeroed-out new fields have the same meaning as the old 290 * struct). 291 * 292 * @ksize is just sizeof(*dst), and @usize should've been passed by userspace. 293 * The recommended usage is something like the following: 294 * 295 * SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize) 296 * { 297 * int err; 298 * struct foo karg = {}; 299 * 300 * if (usize > PAGE_SIZE) 301 * return -E2BIG; 302 * if (usize < FOO_SIZE_VER0) 303 * return -EINVAL; 304 * 305 * err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize); 306 * if (err) 307 * return err; 308 * 309 * // ... 310 * } 311 * 312 * There are three cases to consider: 313 * * If @usize == @ksize, then it's copied verbatim. 314 * * If @usize < @ksize, then the userspace has passed an old struct to a 315 * newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize) 316 * are to be zero-filled. 317 * * If @usize > @ksize, then the userspace has passed a new struct to an 318 * older kernel. The trailing bytes unknown to the kernel (@usize - @ksize) 319 * are checked to ensure they are zeroed, otherwise -E2BIG is returned. 320 * 321 * Returns (in all cases, some data may have been copied): 322 * * -E2BIG: (@usize > @ksize) and there are non-zero trailing bytes in @src. 323 * * -EFAULT: access to userspace failed. 324 */ 325 static __always_inline __must_check int 326 copy_struct_from_user(void *dst, size_t ksize, const void __user *src, 327 size_t usize) 328 { 329 size_t size = min(ksize, usize); 330 size_t rest = max(ksize, usize) - size; 331 332 /* Deal with trailing bytes. */ 333 if (usize < ksize) { 334 memset(dst + size, 0, rest); 335 } else if (usize > ksize) { 336 int ret = check_zeroed_user(src + size, rest); 337 if (ret <= 0) 338 return ret ?: -E2BIG; 339 } 340 /* Copy the interoperable parts of the struct. */ 341 if (copy_from_user(dst, src, size)) 342 return -EFAULT; 343 return 0; 344 } 345 346 bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size); 347 348 long copy_from_kernel_nofault(void *dst, const void *src, size_t size); 349 long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size); 350 351 long copy_from_user_nofault(void *dst, const void __user *src, size_t size); 352 long notrace copy_to_user_nofault(void __user *dst, const void *src, 353 size_t size); 354 355 long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr, 356 long count); 357 358 long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr, 359 long count); 360 long strnlen_user_nofault(const void __user *unsafe_addr, long count); 361 362 #ifndef __get_kernel_nofault 363 #define __get_kernel_nofault(dst, src, type, label) \ 364 do { \ 365 type __user *p = (type __force __user *)(src); \ 366 type data; \ 367 if (__get_user(data, p)) \ 368 goto label; \ 369 *(type *)dst = data; \ 370 } while (0) 371 372 #define __put_kernel_nofault(dst, src, type, label) \ 373 do { \ 374 type __user *p = (type __force __user *)(dst); \ 375 type data = *(type *)src; \ 376 if (__put_user(data, p)) \ 377 goto label; \ 378 } while (0) 379 #endif 380 381 /** 382 * get_kernel_nofault(): safely attempt to read from a location 383 * @val: read into this variable 384 * @ptr: address to read from 385 * 386 * Returns 0 on success, or -EFAULT. 387 */ 388 #define get_kernel_nofault(val, ptr) ({ \ 389 const typeof(val) *__gk_ptr = (ptr); \ 390 copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\ 391 }) 392 393 #ifndef user_access_begin 394 #define user_access_begin(ptr,len) access_ok(ptr, len) 395 #define user_access_end() do { } while (0) 396 #define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0) 397 #define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e) 398 #define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e) 399 #define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e) 400 #define unsafe_copy_from_user(d,s,l,e) unsafe_op_wrap(__copy_from_user(d,s,l),e) 401 static inline unsigned long user_access_save(void) { return 0UL; } 402 static inline void user_access_restore(unsigned long flags) { } 403 #endif 404 #ifndef user_write_access_begin 405 #define user_write_access_begin user_access_begin 406 #define user_write_access_end user_access_end 407 #endif 408 #ifndef user_read_access_begin 409 #define user_read_access_begin user_access_begin 410 #define user_read_access_end user_access_end 411 #endif 412 413 #ifdef CONFIG_HARDENED_USERCOPY 414 void __noreturn usercopy_abort(const char *name, const char *detail, 415 bool to_user, unsigned long offset, 416 unsigned long len); 417 #endif 418 419 #endif /* __LINUX_UACCESS_H__ */ 420